Accounting [10]

UNICOS provides two types of system accounting, standard UNIX System V
accounting or Cray system accounting (CSA). You may use one or the other of
these accounting packages at your site. To help you decide which accounting

package to use, see Section 10.1, page 195, which describes the unique features
of CSA.

For information on using standard UNIX System V accounting, see UNICOS
Resource Administration, Cray Research publication SG-2302.

This section describes CSA, which is the more complete and frequently used of
the two accounting types. It includes the following:

* An overview of CSA, including unique CSA features, descriptions of
directories and files, and the /usr/lib/acct/csarun primary daily
accounting shell script.

* Procedures to follow so that you can set up CSA and execute daily
accounting procedures that result in the generation of a variety of reports.

Note: The UNICOS Station Call Processor (USCP) does not apply to the
CRAY J90se system.

Your accounting configuration file is located in /etc/config/acct_config
A sample file is provided at the end of this section; the sample file may differ
slightly from the one included with your system.

10.1 Cray Research system accounting (CSA)

SG-2210 10.0

Cray Research system accounting (CSA) is designed to meet the unique
accounting requirements of Cray Research sites. Like the standard UNIX
accounting package, CSA provides methods to collect per-process resource
utilization data, record connect sessions, monitor disk usage, and charge fees to
specific logins. CSA also provides other facilities that are not available from the
standard accounting package. These include the following;:

® Per-job accounting
* Accounting for socket usage

® Device accounting

195

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

196

Daemon accounting (for the Network Queuing System (NQS) and the
UNICOS tape subsystem)

Disk accounting by account ID

Arbitrary accounting periods

Flexible system billing unit (SBU) system

One file containing all data for an accounting period

Off-line archiving of accounting data

Sites may run either the standard UNICOS accounting programs or the CSA
package by invoking the appropriate shell scripts and programs. Both packages
are installed with the UNICOS 10.0 release.

UNICOS system features in the CSA package include configurable parameters
located in a single file, /etc/config/acct_config , and a set of user-defined
exits that allows sites to tailor the daily run of accounting to their specific needs.

SG-2210 10.0

Accounting [10]

10.1.1 Concepts and terminology

SG-2210 10.0

The following concepts and terms are important in CSA:

Term

Daily accounting

Periodic accounting

Recycled data

Session

Description

Unlike the standard daily accounting, CSA’s
accounting can be run as many times as necessary
during a day. However, this feature is still
referred to as daily accounting.

Accounting similar to the standard UNICOS
monthly accounting. CSA, however, lets system
administrators specify the time periods for which
“monthly” or cumulative accounting is to be run.
Thus, periodic accounting can be run more than
once a month.

By default, accounting data for active sessions is
recycled until the session terminates. CSA reports
only data for terminated sessions unless

csarun (8) is invoked with the -A option.

csarun places recycled data into data files in the
/usrfadm/acct/day directory. These data files
are suffixed with O; for example, per-process
accounting data for active sessions from previous
accounting periods is in the
/usr/adm/acct/day/pacctO file.

CSA organizes accounting data by sessions and
boot times and then places the data into a session
record file.

For non-NQS jobs, a session consists of all
accounting data for a given job ID during a single
boot period.

A session for an NQS job consists of the
accounting data for all job IDs associated with the
job’s NQS sequence number/machine name
identifier. NQS jobs may span multiple boot
periods. If a job is restarted, it has the same job
ID associated with it during all boot periods in
which it runs. Rerun NQS jobs have multiple job
IDs. CSA treats all phases of an NQS job as being
in the same session.

197

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

Uptime period or boot A period delineated by the system boot times
period found in /etc/csainfo . The csaboots (8)
command writes to this file during system boot.

10.1.2 Files and directories overview

This section provides a brief overview of the CSA file and directory structure.
A more complete description of the files and directories can be found in Section
10.1.7, page 214.

10.1.2.1 Structures of the acct and tmp directories

The directory structure of /usr/adm/acct is set up so that it is easy to find
CSA data files and reports. The /tmp structure is also used while csarun (8) is
running. Figure 3 illustrates the directory structure for both directories.

Figure 3. /usr/adm/acct and tmp directory structures

Note: As distributed, only the directory /usr/adm/acct/day is readable by
all users. Within the day directory, only the pacct* files are readable by all
users. This allows any user to examine the pacct* files by using the
acctcom (1) command. All other directories and files within

/usr/fadm/acct are accessible only by root and users in the group adm

Warning: acctcom (1) on a Cray ML-Safe configuration of the UNICOS
e system is considered to be a covert channel. You may want to consider
restricting access to this command to the adm group.

The following abbreviations have these meanings:

Abbreviation Definition

MMDD Month, day

hhmm Hour, minute

10.1.2.2 Shell scripts and C binaries

The /usr/lib/acct directory contains virtually all of the programs and
scripts used by both the standard accounting and CSA packages. The only CSA
program not located here is /etc/csaboots (see csaboots (8)), which records

198 SG-2210 10.0

Accounting [10]

boot times at system startup. Programs used only by CSA begin with the
characters csa.

10.1.2.3 Unprocessed data files

Both CSA and the standard accounting package expect most unprocessed
accounting files to be located in the /usr/adm/acct/day directory. The use of
this directory simplifies tracking of the current accounting files. The following
table shows the location of the raw data files.

Accounting file Description
/usr/adm/acct/day/dtmp Disk accounting data
/usr/adm/acct/day/ngacct* NQS daemon accounting data
/usr/fadm/acct/day/pacct* Per-process accounting data
/usr/fadm/acct/day/tpacct* Tape daemon accounting data
/usr/fadm/acct/day/soacct* Socket accounting data
/etc/csainfo Boot times
letc/wtmp Connect time accounting data
Warning: On a Cray ML-Safe configuration of the UNICOS system,
e letc/wtmp is considered a covert channel. You may want to consider

restricting access to this file to the adm group.

Accounting files in /usr/fadm/acct/day whose names include the suffix 0
contain data from sessions that did not complete during the previous
accounting periods.

During CSA data processing, sites may select to archive the raw and/or
processed data off-line. Section 10.1.5, page 207, describes how to do this. By
default, all raw data files are deleted after use and are not archived.

10.1.2.4 Data files being processed

At the start of a daily accounting run, CSA moves the raw data files from
/usr/fadm/acct/day to the appropriate

/usr/fadm/acct/work/ MMDD/hhmm directory. The files in the work
directory are as follows:

SG-2210 10.0 199

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

File
Ever.tmp
Pctime*
Pngacct*
Puptime*

RctimeO

RngacctO

RpacctO

RtpacctO

Ruptime0
Wctime*
Wdisktacct
Wdtmp

Whngacct*
Wopacct*
Wsoacct*
Witpacct*
Wwtmp

10.1.2.5 Processed data files

200

Description

Data verification work file
Preprocessed connect time data
Preprocessed NQS data
Uptimes

Connect data to be recycled in the next
accounting run

NQS data to be recycled in the next accounting
run

Per-process accounting data to be recycled in the
next accounting run

Tape data to be recycled in the next accounting
run

Uptimes to be recycled in the next accounting run
Verified raw connect time data
Disk accounting data (cacct.h format)

Disk accounting data from diskusg (8) or
acctdusg (8)

Raw NQS accounting data
Raw per-process accounting data

Raw socket accounting data

Raw tape accounting data

Raw connect time data

CSA outputs the following data files:

File

Description

ftmp/AC. MMDD!/ hhmml/Super-record

Session record file; this file is usually deleted after it has been
used by CSA.

SG-2210 10.0

Accounting [10]

10.1.2.6 Reports

/usr/adm/acct/fiscal/data/ MMDD/ hhmmlpdacct

Consolidated periodic data.
/usr/fadm/acct/fiscal/data/ MMDD/ hhmmlcms

Periodic command usage data.

/usr/fadm/acct/sum/data/ MMDD/ hhmmlcacct

Consolidated daily data; this file is deleted by csaperiod (8) if
the -r option is specified.

/usr/fadm/acct/sum/data/ MMDD/ hhmmlcms

Daily command usage data; this file is deleted by
csaperiod (8) if the -r option is specified.

/usr/fadm/acct/sum/data/ MMDD/ hhmml/dacct

Daily disk usage data; this file is deleted by csaperiod (8) if
the -r option is specified.

CSA generates daily and periodic reports. The locations of these reports are as
follows:

File Description
/usr/adm/acct/fiscal/rpt/ MMDD/ hhmmirprt

Periodic accounting report

/usr/adm/acct/sum/rpt/ MMDD/ hhmmlrprt

Daily accounting report

10.1.3 Daily operation overview

SG-2210 10.0

When the UNICOS operating system is run in multiuser mode, accounting
behaves in a manner similar to the following process. However, because sites
may customize CSA, the following may not reflect the actual process at a
particular site:

201

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

1. System boot time is written to /etc/csainfo . Each time the system is
booted, the boot time is written to /etc/csainfo by the /etc/csaboots
command, which is invoked by rc (see brc (8)) during system startup.

2. Process accounting is enabled. When the system is switched to multiuser
mode, the /usr/lib/acct/startup (see acctsh (8)) script is called by
letc/rc and performs the following functions:

a. Writes an acctg on record to /etc/wtmp ; the acctwtmp program is
used to write this record.

b. Enables process accounting with the command line
{usr/lib/acct/turnacct on; turnacct (8) calls the accton
program with the argument /usr/adm/acct/day/pacct

¢. Removes lock files and saved pacct and wtmp files.
lusr/lib/acct/remove is invoked to clean up saved pacct and
wtmp files in /usr/adm/acct/sum . Unlike the standard accounting
package, CSA does not leave files in this directory. In addition, the lock
files are removed from /usr/adm/acct/nite

3. By default, daemon accounting for NQS, tape, and sockets is handled by
the /usr/lib/acct/startup script. However, in order to run NQS and
tape daemon accounting, you must modify the appropriate subsystem.
Section 10.1.4, page 203, describes this process in detail.

4. The amount of disk space used by each user is determined periodically.
{usr/lib/acct/dodisk (see dodisk (8)) is run periodically by cron to
generate a snapshot of the amount of disk space being used by each user.
dodisk should be run at most once for each time

{usr/lib/acct/csarun (see csarun (8)) is run. Multiple invocations of
dodisk during the same accounting period write over previous dodisk
output.

5. A fee file is created. Sites desiring to charge fees to certain users can do so
by invoking /usr/lib/acct/chargefee (see chargefee (8)). Each
accounting period’s fee file (/usr/adm/acct/day/fee) is merged into the
consolidated accounting records by /usr/lib/acct/csaperiod (see
csaperiod (8)).

6. Daily accounting is run. At specified times during the day, csarun is
executed by cron to process the current accounting data. The output from
csarun is a consolidated daily accounting file and an ASCII report.

7. Periodic accounting is run. At a specific time during the day, or on certain
days of the month, /usr/lib/acct/csaperiod (see csaperiod (8)) is

202 SG-2210 10.0

Accounting [10]

10.1.4 Setting up CSA

SG-2210 10.0

executed by cron to process consolidated accounting data from previous
accounting periods. The output from csaperiod is a consolidated periodic
accounting file and an ASCII report.

Accounting is disabled. When the system is shut down gracefully, the script
Jusr/lib/acct/shutacct (see shutacct (8)) is executed by
/etc/shutdown (see shutdown (8)). shutacct writes an “acctg off”
record to /etc/wtmp . It then calls /usr/lib/acct/turnacct and
lusr/lib/acct/turndacct to disable per-process and daemon
accounting (see turnacct (8) and turndacct (8)).

The following is a brief description of setting up CSA. Site-specific
modifications are discussed in detail in Section 10.1.10, page 229. As described
in this section, CSA is run by a person with super-user permissions. CSA also
can be run by users who have acct permissions and are in the adm group. See
Section 10.1.10.7, page 244, for the necessary modifications.

1.

Change the default system billing unit (SBU) weighting factors, if necessary.
By default, no SBUs are calculated. If your site wants to report SBUs, you
must modify the configuration file /etc/config/acct _config

. Modify any necessary parameters in the /etc/config/acct_config file,

which contains configurable parameters for the accounting system. Ensure
that parameters, such as MEMINT reflect the needs of your site.

If you want daemon accounting, you must enable daemon accounting at
system startup time by performing the following steps:

a. Ensure that the variables in /etc/config/acct_config for the
subsystems for which you want to enable daemon accounting are set to
on. Set the NQS_STARJTTAPE_START and SOCKET_STARPparameters
to on to enable NQS, online tapes, and socket accounting, respectively.

b. If necessary, enable accounting from the daemon’s side. Specifically,
NQS and tape accounting must also be enabled by the associated
daemon. Use the gmgr(8) set accounting on command to turn on
NQS accounting. To enable tape daemon accounting, execute
tpdaemon (8) with the -c option. Socket accounting does not require
any additional processing.

Prior to setting up the following cron jobs, ensure that the

letc/checklist file exists. By default, dodisk (8) performs disk

accounting on the special files listed in checklist . For most installations,
203

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

0 4 * * 1-6 /usr/lib/acct/csarun
0 3 * * 1-6 /usr/lib/acct/dodisk

204

entries similar to the following should be made in
{usr/spool/cron/crontabs/root so that cron (8) automatically runs
daily accounting;:

2> Jusr/adm/acct/nite/fd2log
-a -v 2> [usr/adm/acct/nite/dk2log

csarun (8) should be executed at such a time that dodisk has sufficient
time to complete. If dodisk does not complete before csarun executes,
disk accounting information may be missing or incomplete.

dodisk must be invoked with either the -a or the -A option. If it is not,
csaperiod (8) aborts when it attempts to merge the disk usage information
with other accounting data.

Periodically check the size of the acct files. Entries similar to the following
should be made in /usr/spool/cron/crontabs/root

0 * * * * Jusr/lib/acct/ckdacct ngs tape socket
0 * * * * Jusr/lib/acct/ckpacct

cron (8) should periodically execute the ckpacct (8) and ckdacct (8) shell
scripts. If the pacct file grows larger than 500 blocks (default), ckpacct
calls the command /ustr/lib/acct/turnacct switch to start a new
pacct file. ckpacct also makes sure that there are at least 500 free blocks
on the file system containing /usr/adm/acct (lusr by default). If there
are not enough blocks, per-process accounting is turned off. The next time
ckpacct is executed, it turns per-process accounting back on if there are
enough free blocks.

ckdacct performs an analogous function for daemon accounting. If a
daemon’s accounting file is larger than 500 blocks (default), the command
lusr/lib/acct/turndacct switch is executed in order to start a new
accounting file. In addition, ckdacct also checks the amount of free blocks
on the ACCT_FSfile system (/usr by default).

Ensure that the ACCT_FSand MIN_BLKS variables have been set correctly
in the /etc/config/acct_config configuration file. ACCT_FSis the file
system containing /usr/adm/acct ; the default is /Jusr . MIN_BLKS s the
minimum number of free blocks needed in the ACCT_FSfile system. The
default is 500.

It is very important that ckpacct and ckdacct be run periodically so that
an administrator is notified when the accounting file system (/usr by
default) runs out of disk space. After the file system is cleaned up, the next

SG-2210 10.0

Accounting [10]

invocation of ckpacct and ckdacct enables per-process and daemon
accounting. You can manually reenable accounting by invoking
turnacct (8) and turndacct (8) with the on operand.

If ckpacct and ckdacct are not run periodically, and the accounting file
system runs out of space, an error message is written to the console stating
that a write error occurred and that accounting is disabled. If you do not
free disk space as soon as possible, a vast amount of accounting data can be
lost unnecessarily. Additionally, lost accounting data can cause csarun (8)
to abort or report erroneous information.

. To run periodic accounting, an entry similar to the following should be

made in /usr/spool/cron/crontabs/root . This command generates a
periodic report on all consolidated data files found in
{usr/adm/acct/sum/data/* and then deletes those data files:

15 5 1 * * Jusr/lib/acct/csaperiod -r 2> /usr/adm/acct/nite/pd2log

SG-2210 10.0

This entry is executed at such a time that csarun (8) has sufficient time to

complete. This example results in the creation of a monthly accounting file
and report on the first day of each month. These files contain information

about the previous month’s accounting.

. Update the holidays file. The /ust/lib/acct/holidays file contains

the prime/nonprime time table for the accounting system, which should be
edited to reflect your site’s holiday schedule for the year.

By default, the holidays file is located in the /usr/lib/acct directory.
You can change this location by modifying the HOLIDAY_FILE variable in
letc/config/acct_config . If necessary, modify the NUM_HOLIDAYS
variable (also located in /etc/config/acct _config), which sets the
upper limit on the number of holidays that can be defined in
HOLIDAY_FILE. The format of this file is composed of the following types
of entries:

¢ Comment lines: These lines may appear anywhere in the file as long as
the first character in the line is an asterisk (*).

® Version line: This line must be the first uncommented line in the file and
must only appear once. It denotes that the new holidays file format is
being used. This line should not be changed by the site.

* Year designation line: This line must be the second uncommented line
in the file and must only appear once. The line consists of two fields.
The first field is the keyword YEAR The second field must be either the
current year or the wildcard character, asterisk (*). If the year is

205

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

wildcarded, the current year is automatically substituted for the year.
The following are examples of two valid entries:

YEAR 1997
YEAR *

* Prime/nonprime time designation lines: These must be uncommented
lines 3, 4, and 5 in the file. The format of these lines is as follows:

period prime_time_start — nonprime_time_start

The variable period is one of the following: WEEKDAYSATURDAYor
SUNDAYThe period can be in either upper or lowercase.

The prime and nonprime start time can be one of two formats:

— Both start times are 4-digit numeric values between 0000 and 2359.
The nonprime_time_start value must be greater than the
prime_time_start value. For example, it is incorrect to have prime time
start at 07:30 A.M. and nonprime time start at 1 minute after
midnight. Therefore, the following entry is wrong and can cause
incorrect accounting values to be reported.

WEEKDAY 0730 0001

It is correct to specify prime time to start at 07:30 A.M. and nonprime
time to start at 5:30 PM. on weekdays. You would enter the
following in the holiday file:

WEEKDAY 0730 1730

— Start times specify that the entire period is to be either all prime time
or all nonprime time. To specify that the entire period is to be
considered prime time, set prime_time_start to ALL and
nonprime_time_start to NONEIf the period is to be considered all
nonprime time, set prime_time_start to NONEand nonprime_time_start
to ALL. For example, to specify Monday through Friday as all prime
time, you would enter the following;:

WEEKDAY ALL NONE

To specify all of Sunday to be nonprime time, you would enter the
following;:

SUNDAY NONE ALL

206 SG-2210 10.0

Accounting [10]

10.1.5 The csarun command

SG-2210 10.0

Company holidays lines: These entries follow the year designation line
and have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range 1 through 366, indicating
the day for a given holiday (leading white space is ignored). The other
three fields are commentary and are not currently used by other
programs. Each holiday is considered all nonprime time.

If the holidays file does not exist or there is an error in the year
designation line, the default values for all lines are used.

If there is an error in a prime/nonprime time designation line, the entry
for the erroneous line is set to a default value. All other lines in the
holidays file are ignored and default values are used.

If there is an error in a company holidays line, all holidays are ignored.

The default values are as follows:

YEAR The current year.

WEEKDAY Monday through Friday is all prime time.
SATURDAY Saturday is all nonprime time.

SUNDAY Sunday is all nonprime time.

No holidays are specified

The /ustr/lib/acct/csarun command is the primary daily accounting shell
script. It processes connect, disk, per-process, and daemon accounting files and
is normally initiated by cron (8) during nonprime hours.

csarun (8) also contains four user-exit points allowing sites to tailor the daily
run of accounting to their specific needs.

The csarun command does not damage files in the event of errors. It contains
a series of protection mechanisms that attempt to recognize an error, provide
intelligent diagnostics, and terminate processing in such a way that csarun can
be restarted with minimal intervention.

207

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.5.1 Daily invocation

The csarun command is invoked periodically by cron (8). It is very important
that you ensure that the previous invocation of csarun completed successfully
before invoking csarun for a new accounting period. If this is not done,
information about unfinished sessions will be inaccurate.

Data for a new accounting period can also be interactively processed by
executing the following:

nohup csarun 2> /usr/adm/acct/nite/fd2log &

Before executing csarun in this manner, ensure that the previous invocation
completed successfully. To do this, look at the files active and statefile in
/usr/fadm/acct/nite . Both files should specify that the last invocation
completed successfully.

10.1.5.2 Error and status messages

10.1.5.3 States

208

The csarun error and status messages are placed in the

/usr/fadm/acct/nite directory. The progress of a run is tracked by writing
descriptive messages to the file active . Diagnostic output during the
execution of csarun is written to fd2log . The lock and lockl files prevent
concurrent invocations of csarun ; csarun will abort if these two files exist
when it is invoked. The clastdate file contains the month, day, and time of
the last two executions of csarun .

Errors and warning messages from programs called by csarun are written to
files that have names beginning with E and ending with the current date and
time. For example, Ebld.11121400 is an error file from csabuild (8) for a
csarun invocation on November 12, at 14:00.

If csarun detects an error, it sends an informational message to the operator
with msgi (1), sends mail to root and adm, removes the locks, saves the
diagnostic files, and terminates execution. When csarun detects an error, it
will send mail either to MAIL_LIST if it is a fatal error, or to WMAIL_LIST if it
is a warning message, as defined in the configuration file

/etc/config/acct _config

Processing is broken down into separate reentrant states so that csarun can be
restarted. As each state completes, /usr/adm/acct/nite/statefile is
updated to reflect the next state. When csarun reaches the CLEANUPstate, it
removes various data files and the locks, and then terminates.

SG-2210 10.0

Accounting [10]

SG-2210 10.0

The following describes the events that occur in each state. MMDD refers to the
month and day csarun was invoked. hhmm refers to the hour and minute of

invocation.

State
SETUP

WTMPFIX

VERIFY

PREPROC

ARCHIVE1

BUILD

ARCHIVE2

Description

The current accounting files are switched via turnacct (8) and
turndacct (8). These files are then moved to the
/usr/fadm/acct/work/ MMDD/hlhmm directory. File names are
prefaced with W /etc/wtmp and /etc/csainfo are also moved
to this directory.

The wtmp file in the work directory is checked for accuracy by
wtmpfix (see fwtmp (8)). Some date changes cause csaline (8)
to fail, so wtmpfix attempts to adjust the time stamps in the
wtmp file if a date change record appears.

If wtmpfix is unable to fix the wtmp file, the wtmp file must be
manually repaired. This is described in Section 10.1.6.1, page 212.

By default, per-process and NQS accounting files are checked for
valid data. In addition, tape and socket accounting files are
verified. Records with invalid data are removed. Names of bad
data files are prefixed with BAD. in the /usr/adm/acct/work/*
directory. The corrected files do not have this prefix.

The NQS and connect time (wtmp) accounting files are run
through preprocessors. File names of preprocessed files are
prefixed with a P in the /usr/adm/acct/work/ MMDD/ hhmm
directory.

First user exit of the csarun script. If a script named
lusr/lib/acct/csa.archivel exists, it will be executed
through the shell . (dot) command. The . (dot) command will not
execute a compiled program, but the user exit script can. You
might use this user exit to archive the accounting files in
${WORK}.

The per-process, NQS, tape, socket, and connect accounting data
is organized into a session record file.

Second user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive?2 exists, it will be executed
through the shell . (dot) command. The . (dot) command will not
execute a compiled program, but the user exit script can. You
might use this exit to archive the session record file.

209

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.5.4 Restarting csarun

210

CMS

REPORT

DREP

FEF

USEREXIT

CLEANUP

Produces a command summary file in cacct.h format. The
cacct file is put into the

/usrfadm/acct/sum/data/ MMDD/ hhmm directory for use by
csaperiod (8).

Generates the daily accounting report and puts it into

/usr/adm/acct/sum/rpt/ MMDD! hhmmirprt . A
consolidated data file,
/usr/adm/acct/sum/data/ MMDD/ hhmmlcacct , is also

produced from the session record file. In addition, accounting
data for unfinished sessions is recycled.

Generates a daemon usage report based on the session file. This
report is appended to the daily accounting report,
/usr/adm/acct/sum/rpt/ MMDD/ hhmmlrprt

Third user exit of the csarun script. If a script named
lusr/lib/acct/csa.fef exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. csarun variables
are available, without being exported, to the user exit script. You
might use this exit to convert the session record file to a format
suitable for a front-end system.

Fourth user exit of the csarun script. If a script named
lusr/lib/acct/csa.user exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute
a compiled program, but the user exit script can. csarun
variables are available, without being exported, to the user exit
script. You might use this exit to run local accounting programs.

Cleans up temporary files, removes the locks, and then exits.

If csarun (8) is executed without arguments, the previous invocation is
assumed to have completed successfully.

The following operands are required with csarun if it is being restarted:

csarun [MMDD [hhmm [state]]]

MMDD is month and day, hhmm is hour and minute, and state is the csarun

entry state.

To restart csarun , follow these steps:

SG-2210 10.0

Accounting [10]

SG-2210 10.0

1. Remove all lock files by using the following command line:
rm -f /usr/adm/acct/nite/lock*

2. Execute the appropriate csarun restart command, using the following
examples as guides:

a. To restart csarun using the time and state specified in clastdate and
statefile , execute the following command:

nohup csarun 0601 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be rerun for June 1, using the time and
state specified in clastdate and statefile

b. To restart csarun using the state specified in statefile , execute the
following command:

nohup csarun 0601 0400 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be rerun for the June 1 invocation that
started at 4:00 A.M., using the state found in statefile

c. To restart csarun using the specified date, time, and state, execute the
following command:

nohup csarun 0601 0400 BUILD 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be restarted for the June 1 invocation that
started at 4:00 A.M., beginning with state BUILD.

Before csarun is restarted, the appropriate directories must be restored. If the
directories are not restored, further processing is impossible. These directories
are as follows:

/usr/fadm/acct/work/ MMDD/ hhmm
/usr/fadm/acct/sum/data/ MMDD/ hhmm
/usr/fadm/acct/sum/rpt/ MMDD/ hhmm
Itmp/AC. MMDD/ hhimm

If you are restarting at state ARCHIVEZ CM$ REPORTDRER or FEF, the session
file must already exist in tmp/AC. MMDD/ hhmm. If the file does not exist,
csarun will automatically restart at the BUILD state. Depending on the tasks
performed during the site-specific USEREXIT state, the session file may or may
not need to exist.

211

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.6 Verifying and correcting data files

10.1.6.1 Fixing wtmp errors

10.1.6.2 Verifying data files

10.1.6.3 Editing data files

212

This section describes how to remove bad data from various accounting files.

The wtmp files generally cause the highest number of errors in the day-to-day
operation of the accounting subsystem. When the date is changed, and the
UNICOS system is in multiuser mode, a set of date change records is written
into the /etc/wtmp file. The wtmpfix (see fwtmp (8)) program is designed to
adjust the time stamps in the wtmp records when a date change is encountered.

Some combinations of date changes and reboots, however, slip by wtmpfix and
cause csaline (8) to fail. The following example shows how to repair a wtmp
file:

$ cd /usr/adm/acct/work/ MMDD/ hhmm

$ /usr/lib/acct/fwtmp < Wwtmp > xwtmp
$ ed xwtmp
(delete corrupted records)
$ /usr/lib/acct/fwtmp -ic < xwtmp > Wwtmp

(restart csarun at the WTMPFIXstate)

If the wtmp file is beyond repair, create a null Wwtmpfile. This prevents any
charging of connect time.

You can verify data files with the csaedit (8), csapacct (8), and

csaverify (8) commands. csaedit and csapacct verify and delete bad data
records, while csaverify only flags bad records. By default, csaedit and
csaverify are invoked in csarun to verify the data files.

Note that these commands may allow files that contain bad data, such as very
large values, to be successfully verified.

You can use the csaedit (8) and csapacct (8) commands to verify and remove
records from various accounting files. The following example shows how you
can use csapacct to verify and remove bad records from a per-process

(pacct) accounting file.

SG-2210 10.0

Accounting [10]

In this example, csapacct is invoked with verbose mode enabled (valid data
records are written to the file pacct. NEW):

Justr/lib/acct/csapacct -v pacct pacct.NEW

The output produced by this command line is as follows:

Bad record - starting byte offset is 077740 (32736)
invalid pacct record - bad base parent process id 97867
Found the next magic word at byte offset 0100130, ignored 120 bytes
Found 394 BASE records
Found 4 EOJ records
Found 1 MTASK (multitasking) records
Found 0 ERRORrecords
Found 0 IO records
Found O SDS records # not on CRAY EL systems
Found O MPP records # not on CRAY EL systems
Found 0 PERFORMANCEecords
Outputted records for 398 processes
Ignored 120 bytes from the input file
You can use csaedit and csapacct in conjunction with csaverify , by first
running csaverify and noting the byte offsets of the first bad record. Next,
execute csaedit or csapacct and remove the record at the specified offset.
The following example shows how you can verify and then edit a bad pacct
accounting file:
1. The pacct file is verified with the following command line, and the
following output is received:
$ Jusr/lib/acct/csaverify -P pacct
lustr/lib/acct/csaverify: pacct: invalid pacct record - bad base parent process id 97867
byte offset: start = 077740 (32736) word offset: start = 07774 (4092)
lusr/lib/acct/csaverify: pacct: invalid pacct record - bad magic word 03514000
byte offset: start = 0100070 (32824) word offset: start = 010007 (4103)

SG-2210 10.0

213

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

2. The record found at byte offset 32736 is deleted as follows (valid records are
written to pacct. NEW):

Justr/lib/acct/csapacct -0 32736 pacct pacct.NEW

3. The new pacct file is reverified as follows to ensure that all the bad
records have been deleted:

/ustr/lib/acct/csaverify -P pacct.NEW

You can use csaedit to produce an abbreviated ASCII version of some of the
daemon accounting files and acctcom (1) to generate a similar ASCII version of
pacct files.

10.1.7 Files and directories

This section describes the files and directories used by CSA.

10.1.7.1 /usr/adm/acct directory

The /usr/fadm/acct directory contains the following directories:

Directory Description

day Current accounting files

fiscal Periodic accounting data and reports

nite Processing messages and errors

sum Daily accounting data and reports

work Temporary work area

The /usr/adm/acct/day directory contains the current accounting files, as

shown in the following list. Files with names ending with O contain data for
uncompleted sessions from previous days.

File Description

dtmp Disk accounting data (ASCII) created by
dodisk (8)

ngacct* NQS daemon accounting data

pacct* Per-process accounting data

soacct* Socket accounting data

214 SG-2210 10.0

Accounting [10]

tpacct*

The /usr/adm/acct/fiscal/data/

Tape daemon accounting data

MMDD/ hhmm directory contains

processed, periodic, binary accounting data in the form of the following files:

File

cms

pdacct

The /usr/adm/acct/fiscal/rpt/

Description

Periodic command usage data in command
summary (cms) record format

Consolidated periodic data generated on MMDD
at hhmm

MMDD! hhmm directory contains the

periodic accounting report, rprt , that was generated on MMDD at hhmm.

The /usr/adm/acct/nite

directory contains error messages and status

information about the accounting runs in the following files:

File
active
active MMDDhhmm

clastdate

disktacct

dk2log
E* MMDDhhmm
fd2log

lineuse
lock, lockl
pd2log

pdact
pdact MMDDhhmm

SG-2210 10.0

Description
Progress and status of csarun

Progress and status of csarun after an error has
been detected

Last two times csarun was executed; in MMDD
hhmm format

Disk accounting records in cacct.h format;
created by dodisk (8)

Diagnostic output created during execution of
dodisk

Error/warning messages for an accounting run
done on MMDD at hhmm

Diagnostic output created during execution of
csarun

tty line usage report
Controls simultaneous invocations of csarun

Diagnostic output created during execution of
csaperiod

Progress and status of csaperiod

Progress and status of csaperiod after an error
has been detected

215

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

216

reboots

statefile
tmpwtmp

wtmperror

The /usr/adm/acct/sum/data/

The start and ending dates from wtmp and a
listing of reboots

Current state during csarun execution

The wtmp file corrected by wtmpfix (see
fwtmp (8))

wtmpfix —error messages

MMDD/ hhmm directory contains daily,

binary accounting data in the following files:

File

cacct

cms

dacct

The /usr/adm/acct/sum/rpt/

Description

Consolidated daily data generated on MMDD at
hhmm in cacct.h format

Command usage data in command summary
(cms) record format

Disk usage data in cacct.h format

MMDD/ hhmm directory contains the daily

accounting report, rprt , which was generated on MMDD at hhmm.

The /usr/adm/acct/work/

MMDD/ hhmm directory is used as a work area

during the processing of the accounting data. It contains the following files:

File
BAD.Wngacct*

BAD.Wpacct*

BAD.Wtpacct*

Ever.tmp
Pctime*

Pngacct*
Puptime*

RctimeO

Description

Unprocessed NQS accounting data containing
bad records (verified by csaedit)

Unprocessed per-process accounting data
containing bad records (verified by csaedit)

Unprocessed tape accounting data containing bad
records (verified by csaedit)

Data verification work file

Preprocessed connect time data
Preprocessed NQS data

Uptimes

Recycled connect data to be used in the next
accounting period

SG-2210 10.0

Accounting [10]

SG-2210 10.0

Rngacct0 Recycled NQS data to be used in the next
accounting period

Rpacct0 Recycled per-process accounting data to be used
in the next accounting run

Rtpacct0 Recycled tape data to be used in the next
accounting period

Ruptime0 Recycled uptimes to be used in the next
accounting period

Woctime* Verified, unprocessed connect time data

Wdisktacct Disk accounting data (cacct.h format) created
by acctdisk (8)

Wdtmp Disk accounting report (ASCII) created by
diskusg (8) or acctdusg (8)

Wngacct* Unprocessed NQS accounting data

Wpacct* Unprocessed per-process accounting data

Wtpacct* Unprocessed tape accounting data

Wsoacct* Unprocessed socket accounting data

Wwtmp* Unprocessed connect time data

The itmp/AC. MMDD/ hhmm directory contains the session record file,

Super-record , which is generated on MMDD at hhmm.

The /usr/lib/acct directory contains the following programs and shell
scripts used by CSA:

Program /script Description

csaaddc Merges consolidated (cacct) accounting files

csabuild Creates a session file

csacon Creates a consolidated (cacct) accounting file

csaconvert Converts UNICOS 8.0, 8.3, 9.0, 9.1, 9.2, and 9.3
accounting file(s), both System V and CSA, to a
10.0 format

csacrep Generates consolidated accounting reports

csadrep Reports daemon usage based on the session file

217

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

218

csaedit
csafef

csafef2

csagcon

csagfef

csaibm

csajrep
csaline
csanqgs
csapacct
csaperiod

csaperm

csarecy
csarun
csaswitch

csaverify

getconfig

The /usr/lib/acct

Verifies, deletes records, and prints various data
files

Template to convert session files to an IBM
front-end format

Template to summarize session file records by the
tuple user name, job ID, and account ID.

Consolidates accounting data for session and
pacct files

Formats consolidated accounting data

Template to convert session files to an IBM
front-end format

Generates job reports from a session file
Preprocesses connect time data (/etc/wtmp)
Preprocesses NQS accounting data

Verifies and deletes records from a pacct file
Performs periodic accounting

Changes the group ID and permissions on the
accounting files

Recycles session data for unfinished sessions

Performs daily accounting

Enables or disables kernel and daemon
accounting

Verifies various data files

Extracts values from the configuration file

directory may also contain the following programs if

your site uses the accounting user exits:

Program /script
csa.archivel
csa.archive?
csa.fef

Description
Site-generated user exit for csarun
Site-generated user exit for csarun

Site-generated user exit for csarun

SG-2210 10.0

Accounting [10]

10.1.7.2 /etc directory

10.1.7.3 /etc/config

SG-2210 10.0

csa.user Site-generated user exit for csarun

The /etc directory contains uptime and connect time data in the following files:

File Description
csaboots Captures system boot times

csainfo Output file of csaboots

wtmp Current connect time data

directory

The /etc/config directory is the location of the acct _config file that
contains the configurable parameters used by the accounting commands. These
parameters can be changed by using the UNICOS installation and configuration
menu system (the menu system). To see the acct_config file parameters, use
the following menu selection:

UNICOS 8.0 Installation
->Configure System
->Accounting Configuration

| Configuration Menu System

The main menu for accounting configuration is as follows:

Mainframe Dependent Parameters ==>
Accounting Start Parameters ==>
Block Device SBUs ==>

Character Device SBUs ==>

Connect Time SBU ==>

Multitasking CPU SBUs=>

NQS SBUs ==>

Pacct File SBUs ==>

Tape SBUs ==>
Miscellaneous
Parameters for
Site Defined

Settings ==>
CSARUNand CSAPERIOD==>
Settings ==>

Import accounting configuration
Activate accounting configuration
Reload default accounting configuration

219

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

Online help for the acct_config ~ parameters is available through the menu
system.

The main menu for accounting configuration displays a table of acct _config
parameters and the current values.

The Import accounting configuration ... option gets the local site
accounting configuration.

The Activate accounting configuration ... option rewrites the
/etc/config/acct_config file with the current values selected in the
menus.

The Reload default accounting configuration ... option reloads
the default values for the acct _config file from the released
lusr/src/skl/etc/config/acct _config file.

10.1.8 CSA data processing

220

The flow of data among the various CSA programs is explained in this section
and is illustrated in Figure 4.

Figure 4. CSA program data flow

1. Generate raw accounting files. Various daemons and system processes write
to the raw accounting files. These accounting files include pacct , ngacct ,
soacct , usacct , tpacct , wtmp, and csainfo

2. Create a fee file. Sites that want to charge fees to certain users can do so
with the chargefee (8) command. chargefee creates a fee file that is
processed by csaaddc (8).

3. Produce disk usage statistics. The dodisk (8) shell script allows sites to take
snapshots of disk usage. dodisk does not report dynamic usage; it only
reports the disk usage at the time the command was run. Disk usage is
processed by csaaddc .

4. Preprocess selected raw accounting files. Generally, a data file that must be
preprocessed contains multiple records for a session. These records are
scattered throughout the file, and the processing of the records often
depends upon other events that are logged in the accounting file (for
example, system reboot). The preprocessor collapses information about a
session into one output record.

SG-2210 10.0

Accounting [10]

SG-2210 10.0

10.

11.

12.

NQS and connect time accounting data are preprocessed by csangs (8) and
csaline (8), respectively.

Organize the accounting data. csabuild (8) organizes the raw and
preprocessed accounting data by sessions and boot times. With the
exception of disk usage statistics and fees, the csabuild output file
contains all of the accounting data available about each session.

Sometimes data for terminated sessions is continually recycled. This can
occur when accounting data is lost. To prevent data from recycling forever,
edit csarun so that csabuild is executed with the -0 nday option, which
causes all sessions older than nday days to terminate. Select an appropriate
nday value (see the csabuild (8) man page for more information).

Recycle information about unfinished sessions. Accounting data about
uncompleted sessions is saved and processed again during the next
accounting period. This information is recycled until the session completes
or until manual intervention occurs. Accounting data for unfinished
sessions is reported during each accounting period.

Generate the daemon usage report, which is appended to the daily report.
csadrep (8) outputs information about interactive, NQS, tape, and socket
usage.

Convert the session record file to a front-end format. Sites that process
UNICOS accounting data on a front-end system can convert the session file
to a format suitable for use on the front end by using the csafef (8),
csafef2 (8), or csaibm (8) command. These programs are templates, and
you must modify them to suit your site’s requirements. It is suggested that
you use the user exit in the FEF section of csarun (see Section 10.1.5, page
207 and Section 10.1.10.3, page 241) to convert the session record file to
your front-end format.

Generate command usage data. The information output by acctems (8) is
reported in the daily and periodic reports.

Consolidate the session record file. Session files are too large to retain on
disk for any amount of time. Consequently, CSA consolidates the data and
keeps the condensed version on disk. The accounting reports are based on
the consolidated data. Data consolidation is done by csacon (8).

Generate an accounting report based on the consolidated data. csacrep (8)
outputs the report.

Create the daily accounting report. The daily accounting report includes the
following:

221

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.9 Data recycling

222

e Connect time statistics (step 4)

* Disk usage statistics (step 3)

* Unfinished session information (step 6)
¢ Command summary data (step 9)

* Consolidated accounting report (step 11)
* Last login information

¢ Daemon usage report (step 7)

13. Generate periodic accounting data. Periodic accounting data is an
accumulation of the consolidated data created in step 10. csaaddc (8)
merges condensed data files together. The resulting file contains accounting
information for numerous accounting periods.

14. Generate periodic command usage data. acctcms (8) merges command
usage data from multiple accounting periods. The usage information was
created in step 9. Both an ASCII and a binary file are created.

15. Produce a periodic accounting report. csacrep (8) is used to generate a
report based on a periodic accounting file.

Steps 4 through 12 are performed during each accounting period by csarun (8).
Periodic accounting (steps 13 through 15) is initiated by the csaperiod (8)
command. Daily and periodic accounting, as well as fee and disk usage
generation (steps 2 through 3), can be scheduled by cron (8) to execute
regularly. See Section 10.1.4, page 203, for more information.

A system administrator must correctly maintain recycled data in order to ensure
accurate accounting reports. The following sections discuss data recycling and
describe how an administrator can purge unwanted recycled accounting data.

Data recycling allows CSA to properly bill sessions that are active during
multiple accounting periods. By default, csarun (8) reports data only for
sessions that terminate during the current accounting period. Through data
recycling, CSA preserves data for active sessions until the sessions terminate.

In the Super-record file, csabuild (8) flags each session as being either
active or terminated. csarecy (8) reads the Super-record file and recycles
data for the active sessions. csacon (8) consolidates the data for the terminated

SG-2210 10.0

Accounting [10]

sessions, which csaperiod (8) uses later. csabuild , csarecy , and csacon
are all invoked by csarun .

csarun puts recycled data in the /usr/adm/acct/day directory. Data files
with names suffixed with O contain recycled data. For example, ctimeO ,
ngacct0 , pacctO , tpacct0 , usacctO , and uptimeO are generally the
recycled data files that are found in /usr/adm/acct/day

Normally, an administrator should not have to manually purge the recycled
accounting data. This purge should only be necessary if accounting data is
missing. Missing data can cause sessions to recycle forever and consume
valuable CPU cycles and disk space.

10.1.9.1 How sessions are terminated

SG-2210 10.0

Interactive sessions, cron jobs, and at jobs terminate when the last process in
the job exits. Normally, the last process to terminate is the login shell. The
kernel writes an end-ofjob (EOQJ) record to the pacct file when the session
terminates.

When the NQS daemon delivers an NQS request’s output, the request
terminates. The daemon then writes an NQ_DISPrecord type to the NQS
accounting file, while the kernel writes an EOJ record to the pacct file.

Unlike interactive sessions, NQS requests can have multiple EOJ records
associated with them. In addition to the request’s EOJ record, there can be EOJ
records for pipe clients, net clients, and checkpointed portions of the request.
The pipe client and net client perform NQS processing on behalf of the request.

The csabuild command flags sessions in the Super-record file as being
terminated if they meet one of the following conditions:

e The session is an interactive, cron , or at job, and there is an EOJ record for
the job in the pacct file.

* The session is an NQS request, and there is both an EOJ record for the
request in the pacct file and an NQ_DISPrecord type in the NQS
accounting file.

e The session is an interactive, cron , or at job and is active at the time of a
system crash.

® The session is manually terminated by the administrator using one of the
methods described in Section 10.1.9.3, page 224.

223

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.9.2 Why recycled sessions should be scrutinized

Recycling unnecessary data can consume large amounts of disk space and CPU
time. The session file and recycled data can occupy a vast amount of disk space
on the file systems containing /tmp and /usr/adm/acct/day . Sites that
archive data also require additional offline media. Wasted CPU cycles are used
by csarun to reexamine and recycle the data. Therefore, to conserve disk space
and CPU cycles, unnecessary recycled data should be purged from the
accounting system.

Any of the following situations can cause CSA erroneously to recycle
terminated sessions:

¢ Kernel or daemon accounting is turned off. At boot time, the rc command
must execute /ust/lib/acct/startup in order to start kernel and
daemon accounting.

The kernel, ckpacct (8) command, or ckdacct (8) command can turn off
accounting when there is not enough space on the file system containing
/usr/fadm/acct/day

® Accounting files are corrupt. Accounting data can be lost or corrupted
during a system or disk crash.

e Boot times are not recorded in /etc/csainfo . The csaboots command
must be invoked by rc to write a boot time record to /etc/csainfo

* Recycled data is erroneously deleted in a previous accounting period.

10.1.9.3 How to remove recycled data

224

Before choosing to delete recycled data, you should understand the
repercussions, as described in Section 10.1.9.4, page 226. Data removal can
affect billing and can alter the contents of the consolidated data file, which is
used by csaperiod

You can remove recycled data from CSA in the following ways:

* Interactively execute the csarecy -A command. Administrators can select
the active sessions that are to be recycled by running csarecy with the -A
option. Users are not billed for the resources used in the sessions terminated
in this manner. Deleted data is also not included in the consolidated data file.

The following example is one way to execute csarecy -A (which generates
two accounting reports and two consolidated files):

SG-2210 10.0

Accounting [10]

SG-2210 10.0

. Run csarun at the regularly scheduled time.

. Edit a copy of /ust/lib/acct/csarun . Change the -r option on the

csarecy invocation line to -A. Also, do not redirect standard output to
${CRPT}recyrpt . The result should be similar to the following;:

csarecy -A -s ${SESSION_FILE} \

-N ${WORK/Rngacct -P ${WORK}/Rpacct \
-T ${WORK}/Rtpacct -U ${WORK}/Ruptime \
-C ${WORK}/Rctime -u ${WORK}/Rusacct \
2> ${NITE}Erec.${DTIME}

Since both the -A and -r options write output to stdout , the -r option
is not invoked and stdout is not redirected to a file. As a result, the
recycled job report is not generated.

. Execute the jstat command, as follows, to display a list of currently

active jobs:

jstat > jstat.out

. Execute the gstat command to display a list of NQS requests. The

gstat command is used for seeing whether there are requests that are
not currently running. This includes requests that are checkpointed,
held, queued, or waiting.

In order to list all NQS requests, execute the gstat command, as
follows, using a login that has either NQS manager or NQS operator
privilege:

gstat -a > (qstat.out

. Interactively run the modified version of csarun . If you execute

csarun soon after the first step is complete, this invocation of csarun
completes quickly because not very much data exists.

For each active session, csarecy asks you if you want to preserve the
session. Preserve the active and nonrunning NQS sessions found in the
third and fourth steps. All other sessions are candidates for removal.

Execute csabuild ~ with the -0 ndays option, which terminates all active
sessions older than the specified number of days. Resource usage for these
terminated sessions is reported by csarun , and users are billed for the
sessions. The consolidated data file also includes this resource usage.

225

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

To execute csabuild ~ with the -0 option, edit /usr/lib/acct/csarun .
Add the -0 ndays option to the csabuild invocation line. Specify for ndays
an appropriate value for your site.

Recycled data for currently active sessions will be removed if you specify an
inappropriate value for ndays.

Execute csarun with the -A option. It reports resource usage for both
active and terminated sessions, so users are billed for recycled sessions. This
data is also included in the consolidated data file.

None of the data for the active sessions, including the currently active
sessions, is recycled. No recycled data files are generated in the
/usr/fadm/acct/day directory.

Remove the recycled data files from the /usr/adm/acct/day directory.
You can delete data for all of the recycled sessions, both terminated and
active, by executing the following command:

rm /usr/adm/acct/day/*[a-z]0

The next time csarun is executed, it will not find data for any recycled
sessions. Thus, users are not billed for the resources used in the recycled
sessions, and this data is not included in the consolidated data file. csarun
recycles the data for currently active sessions.

10.1.9.4 Adverse effects of removing recycled data

226

CSA assumes that all necessary accounting information is available to it, which
means that CSA expects kernel and daemon accounting to be enabled and
recycled data not to have been mistakenly removed. If some data is
unavailable, CSA may provide erroneous billing information. Sites should be
aware of the following facts before removing data:

Users may or may not be billed for terminated recycled sessions.
Administrators must understand which of the previously described methods
cause the user to be billed for the terminated recycled sessions. It is up to
the site to decide whether or not it is valid for the user to be billed for these
sessions.

For those methods that cause the user to be billed, both csarun and
csaperiod report the resource usage.

It may be impossible to reconstruct a terminated recycled session. If a
recycled session is terminated by the administrator, but the session actually
terminates in a later accounting period, information about the session is lost.

SG-2210 10.0

Accounting [10]

SG-2210 10.0

If a user questions the resource billing, it may be extremely difficult or
impossible for the administrator to correctly reassemble all accounting
information for the session in question.

Manually terminated recycled sessions be improperly billed in a future
billing period. If the accounting data for the first portion of a session has
been deleted, CSA may be unable to correctly identify the remaining portion
of the job. Errors may occur, such as NQS requests being flagged as
interactive sessions, or NQS requests being billed at the wrong queue rate.
This is explained in detail in Section 10.1.9.5, page 228.

CSA programs may detect data inconsistencies. When accounting data is
missing, CSA programs may detect errors and abort.

The following table summarizes the effects of using the methods described in
Section 10.1.9.3, page 224.

227

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

Table 16. Possible effects of removing recycled data

Method Underbilling? Incorrect billing? Consolidated data file
csarecy -A Yes. Users are not Possible. Manually Does not include data for
billed for the portion terminated recycled sessions terminated by
of the session that sessions may be billed csarecy -A.
was terminated by improperly in a future
csarecy -A. billing period.
csabuild -0 No. Users are billed ~ Possible. Manually Includes data for sessions
for the portion of the terminated recycled terminated by csabuild -0.
session that was sessions may be billed
terminated by improperly in a future
csabuild -0 billing period.
csarun -A No. All active and Possible. All active and Includes data for all active
recycled sessions are recycled sessions that and recycled sessions.
billed. eventually terminate may
be billed improperly in a
future billing period,
because no data is recycled.
rm Yes. All users are not Possible. All recycled Does not include data for

billed for the portion
of the session that
was recycled.

sessions that eventually
terminate may be billed
improperly in a future
billing period.

any recycled session.

By default, the consolidated data file contains data only for terminated sessions.
Manual termination of recycled data may cause some of the recycled data to be
included in the consolidated file. These cases are noted in the previous table.

10.1.9.5 NQS requests and recycled data

228

In order for CSA to identify all NQS requests, data must be properly recycled.
When an administrator manually purges recycled data for an NQS request,
errors such as the following can occur:

e CSA flags the NQS request as an interactive session. This causes the request
to be billed at interactive rates.

* The request is billed at the wrong queue rate.

* The wrong queue wait time is associated with the request.

SG-2210 10.0

Accounting [10]

10.1.10 Tailoring CSA

SG-2210 10.0

These errors occur because valuable NQS accounting information was purged
by the administrator. Only a few NQS accounting records are written by the
NQS daemon, and all of the records are needed for CSA to properly bill NQS
requests.

NQS accounting records are only written under the following circumstances:
e The NQS daemon receives a request.
* A request is routed to a queue.

* A request executes. This includes executing a request for the first time, and
restarting and rerunning a request.

* A request terminates. A request can terminate because it is Completed,
requeued, preempted, held, checkpointed, or rerun by the operator.

® Output is delivered.

Thus, for long running requests that span days, there can be days when no NQS
data is written. Consequently, it is extremely important that accounting data be
recycled. If the site administrator manually terminates recycled sessions, care
must be taken to be sure that only nonexistent NQS requests are terminated.

This section describes the following actions in CSA:

e Setting up SBUs

® Setting up daemon accounting

e Setting up user exits

* Modifying the front-end formatting templates

* Modifying the charging of NQS jobs based on NQS termination status
¢ Tailoring CSA shell scripts

e Using at (1) instead of cron (8) to periodically execute csarun

e Allowing users without super-user permissions to execute CSA

¢ Using an alternate configuration file

229

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.10.1 System billing units (SBUS)

230

A system billing unit (SBU) is a unit of measure that reflects use of machine
resources. You can alter the weighting factors associated with each field in each
accounting record to obtain an SBU value suitable for your site. SBUs are
defined in the accounting configuration file, /etc/config/acct_config . By
default, all SBUs are set to 0.0 .

The source code for the default SBU calculations is located in

lusr/src/cmd/acct/lib/acct/sbu.c . For sites that do not have source
code, the default algorithms are also defined in

lusr/src/cmd/acct/lib/acct/user _sbu.c . By modifying
lusr/src/cmd/acct/lib/acct/user _sbu.c , compiling, and relinking the

accounting programs, your site can use local SBU calculations.

Accounting allows different periods of time to be designated either prime or
nonprime time (the time periods are specified in /usr/lib/acct/holidays)-

Following is an example of how the prime/nonprime algorithm works:

Assume a user uses 10 seconds of CPU time, and executes for 100 seconds of
prime wall-clock time, and pauses for 100 seconds of nonprime wall-clock time.
Therefore, elapsed time is 200 seconds (100+100). If

prime = prime time | elapsed time

nonprime = nonprime time | elapsed time
cputime[PRIME] = prime * CPU time
cputime[NONPRIME] = nonprime * CPU time

then

cputime[PRIME] == 5 seconds
cputime[NONPRIME] == 5 seconds

Under CSA, an SBU value is associated with each record in the Session record
file when that file is assembled by csabuild (8). Final summation of the SBU
values is done by csacon (8) during the creation of the cacct record file.

Billing for SBU values is intended to be a combination of all the SBU values
from each record associated with a job, as follows:

Total SBU = (NQS queue SBU value) * (sum of all pacct record SBUs
+ sum of all tape record SBUs
+ sum of all ctmp record SBUs)

This allows a site to bill different NQS queues at differing rates. Again, if the
available formulas are insufficient to achieve the site’s requirements, a site can

SG-2210 10.0

Accounting [10]

10.1.10.1.1 pacct SBUs

SG-2210 10.0

modify the calculations found in the sbu library routine,
/usr/src/cmd/acct/lib/acct/user_sbu.c

The SBUs for pacct data are separated into prime and nonprime values. Prime
and nonprime use is calculated by a ratio of elapsed time. If you do not want
to make a distinction between prime and nonprime time, set the nonprime time
SBUs and the prime time SBUs to the same value. Prime time is defined in
lusr/lib/acct/holidays . By default, Saturday and Sunday are considered
nonprime time.

The following is a list of prime time pacct SBU weights. Descriptions and
factor units for the nonprime time SBU weights are similar to those listed here.
SBU weights are defined in /etc/config/acct_config

Value Description
P_BASIC Prime-time weight factor. P_BASIC is multiplied

by the sum of prime time SBU values to get the
final SBU factor for the pacct base record.

P_TIME General-time weight factor. P_TIME is multiplied
by the time SBUs (made up of P_STIME,
P_ITIME , P_SCTIME and P_INTTIME) to get the
time contribution to the pacct base record SBU
value.

P_STIME System CPU-time weight factor. The unit used for
this weight is billing units per second. P_STIME is
multiplied by the system CPU time to get the
system CPU factor.

P_UTIME User CPU-time weight factor. The unit used for
this weight is billing units per second. P_UTIME is
multiplied by the user CPU time to get the user
CPU factor.

User time is the sum of user times after
weighting for multitasking. Multitasking may
affect the user CPU cost if the MUTIME_WEIGHT
parameters have been set to values other than 1.0.
See the following explanation of these values.

P_ITIME This is the weight factor for the time spent
waiting in the kernel for I/O while the process is

231

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

P_SCTIME

P_INTTIME

P_MEM

P_XMEM

P_IMEM

P_BYTEIO

232

locked in memory. The unit used for this weight
is billing units per second. P_ITIME is multiplied
by the I/O wait time.

Weight factor for system call time. The unit used
for this weight is billing units per second.

Weight factor for interrupt time. The unit used
for this weight is billing units per second.

General-memory-integral weight factor. P_MEMs
multiplied by the memory SBUs (made up of
P_XMENand P_IMEM to get the memory
contribution to the pacct base record SBU value.

CPU-time-memory-integral weight factor. The
unit used for this weight is billing units per
Kword-minute. P_XMEMs multiplied by the
memory integral (see Section 10.1.12.1, page 252).
This value is affected by your site’s choice of
MEMINT(in the accounting configuration file
/etc/config/acct_config).

The weight factor used with the I/O wait time
memory integral. This integral includes the I/O
wait time while the process is locked in memory.
The unit used for this weight is billing units per
Kword-minute. P_IMEMis multiplied by the
I/O-wait-time memory integral.

General-1/0 weight factor. P_IO is multiplied by
the I/O SBUs (made up of P_BYTEIO, P_PHYIO,
and P_LOGIO) to get the I/O contribution to the
pacct base record SBU value.

Characters-transferred weight factor. The unit
used for this weight is billing units per character
transferred. P_BYTEIO is multiplied by the bytes
of I/O transferred.

If tape or device I/0 is to be charged at a rate
other than P_BYTEIQ, the tape and device weight
factors need to be adjusted accordingly. See
Section 10.1.11.1, page 246 (field ac_io), for more
information.

SG-2210 10.0

Accounting [10]

P_PHYIO Physical-1/O-request weight factor. The unit used
for this weight is billing units per physical 1/O
request. P_PHYIO is multiplied by the number of
physical I/O requests made. Physical requests are
the number of driver requests made.

P_LOGIO Logical-I/O-request weight factor. The unit used
for this weight is billing units per logical 1I/O
request. P_LOGIOis multiplied by the number of
logical I/O requests made. The number of logical
I/0 requests is the total number of read (2),
write (2), reada (2), and writea (2) system calls.
The number of strides, multiplied by the number
of requests processed by each listio (2) call, is
also added to the total.

10.1.10.1.2 Multitasking SBUs

10.1.10.1.3 SDS SBUs

SG-2210 10.0

The MUTIME_WEIGHT variables define the weighting factors that are used to
charge user CPU time for multitasking programs. It is used in conjunction with
the ac_mutime array (see /usr/include/sys/acct.h), which defines the
amount of CPU time the multitasking program spent with i + 1 CPUs connected.

MUTIME WEIGHT: defines the marginal cost of getting the i + 1 CPU at one
instant. If these values are set to less than 1.0, there is an incentive for
multitasking. If the values are set to 1.0, multitasking programs are charged for
user CPU time just as all other programs.

For more information on multitasking incentives, see Section 10.1.12, page 251.

(On all Cray Research systems except the CRAY EL series) Secondary data
storage (SDS) system billing units are calculated from the statistics on SDS use in
the pacct file. The SBU factors are defined in /etc/config/acct_config

The values are as follows:

Value Description
NP_SDSMEMr P_SDSMEM

SDS-memory-integral weight factor. The memory integral is
based on residency time and not on execution time. P_SDSMEM

233

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.10.1.4 MPP SBUs

234

or NP_SDSMENS multiplied by the SDS memory integral. The
unit used for this weight is billing units per Mword-second.

NP_SDSLOGIQor P_SDSLOGIO

SDS-logical-I/O-request weight factor. P_SDSLOGIOor
NP_SDSLOGIGs multiplied by the number of SDS logical I/0O
requests. The unit used for this weight is billing units per
logical I/O request.

NP_SDSBYTEIOor P_SDSBYTEIO

SDS-characters-transferred weight factor. P_SDSBYTEIOor
NP_SDSBYTEIQis multiplied by the number of SDS characters
transferred. The unit used for this weight is billing units per
character transferred.

The SBU values should be very small. On Cray Research systems, it is possible
to submit a very large number of requests to SDS in a short time; therefore, to
prevent these numbers from dominating the SBU values, small weight factors
must be used. Values of 0 result in no charge.

Massively parallel processing (MPP) system billing units are calculated from the
statistics on MPP use in the pacct file. The SBU factors are defined in
/etc/config/acct_config

The P_MPPPEor NP_MPPPESBUs are the MPP processing elements (PEs)
weight factors, prime and nonprime charges. The prime time billing units for
PEs is calculated using the following equation:

of sessions

P_MPPPEDbilling units = P_MPPPE* # Z (no. MPP PEs used * MPP time used)

0

The nonprime time billing units for PEs is calculated using the following
equation:

of sessions

NP_MPPPEDbilling units = NP_MPPPE* (no. MPP PEs used * MPP time used)

0

The unit used for these weights is billing units per PE-second.

SG-2210 10.0

Accounting [10]

The P_MPPBBor NP_MPPBESBUs are the MPPbarrier bits weight factors, prime
and nonprime charges.! The prime time billing units for barrier bits is
calculated using the following equation:

of sessions

P_MPPBBbilling units = P_MPPBB* Z (no. MPP barrier bits used* MPP time used)

0

The nonprime time billing units for barrier bits is calculated using the following
equation:

of sessions

NP_MPPBBDbilling units = NP_MPPBB* Z (no. MPP barrier bits used* MPP time used)

o]
The unit used for these weights is billing units per barrier bit-second.

The P_MPPTIMEor NP_MPPTIMESBUs are the MPP time weight factors, prime
and nonprime charges. The prime time billing units for MPP time is calculated
using the following equation:

P_MPPTIME billin units = P_MPPTIME* # 22%°™ (MPD time used
g >

0

The nonprime time billing units for MPP time is calculated using the following
equation:

NP_MPPTIMEbiling units = NP_MPPTIME* #fz (MPP time used)

0
The unit used for these weights is billing units per second.
The SBU values should be very small, which will prevent these numbers from
dominating the SBU values. Values of 0 result in no charge.
10.1.10.1.5 Connect time SBUs

There are SBUs for both prime- and nonprime-time connect data. The SBU
values should reflect the system billing units per second of connect time. The
weight factors, CON_PRIMEand CON_NONPRIMEre defined in
/etc/config/acct_config

10.1.10.1.6 NQS SBUs

The /etc/config/acct_config file contains the configurable parameters
that pertain to NQS SBUs.

1 Deferred implementation.

SG-2210 10.0 235

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.10.1.7 Socket SBUs

10.1.10.1.8 Tape SBUs

236

The NQS_NUM_QUEUFSrameter sets the number of queues for which you
want to set SBUs (the value must be set to at least 1). Each NQS_QUEUE
variable in the configuration file has a queue name and an SBU pair associated
with it (the total number of queue/SBU pairs must equal NQS NUM_QUEUBS
The queue/SBU pairs define weights for the queues. If an SBU value is less
than 1.0, there is an incentive to run jobs in the associated queue; if the value is
1.0, jobs are charged as though they are non-NQS jobs; and if the SBU is 0.0,
there is no charge for jobs running in the associated queue. SBUs for queues
not found in the configuration file are automatically set to 1.0.

The NQS_NUM_MACHINESrameter sets the number of originating machines
for which you want to set SBUs (the value must be at least 1). Each
NQS_MACHINE variable in the configuration file has an originating machine
and an SBU pair associated with it (the total number of machine/SBU pairs
must equal NQS_NUM_MACHINESBUS for originating machines not specified
in /etc/config/acct _config are automatically set to 1.0.

The queue and machine SBUs are multiplied together to give an NQS
multiplier. If the SBUs are set to less than 1.0, there is an incentive to run jobs
in these queues or from these machines. SBUs of 1.0 indicate that jobs in the
queues or from associated hosts are billed normally.

Currently, there is no way to charge for socket accounting. The socket
accounting records produced are only processed in order to make the data
available to the site-supplied user exits.

There is a set of weighting factors for each group of tape devices. By default,
there are only two groups, tape and cart . The TAPE_SBU parameters in
letc/config/acct _config define the weighting factors for each group.
There are SBUs associated with the following;:

e Number of mounts
e Device reservation time (seconds)
¢ Number of bytes read

* Number of bytes written

SG-2210 10.0

Accounting [10]

10.1.10.1.9 Device SBUs

Device accounting system billing units are calculated from the device statistics
in the pacct file. SBUs can be set for both block and character devices in
/etc/config/acct_config . The fields in the acct _config file that affect
SBU factors for each device are as follows:

SBU factor Description
Logical 1/O Sbu Weight given to each logical

I/0 request.

Characters ~ Xfer Sbu Weight given to the amount
of data transferred.

Device Name Device type name (see
Section 10.1.14, page 254).

The Logical 1/O Sbu factor is multiplied by the number of system calls that
initiated I/O on a device type. The Characters Xfer Shu factor is
multiplied by the number of bytes of data transferred to a device type.

The SBUs for block devices are labeled BLOCK_DEVICEx, where x is a number
from 0 to MAXBDEVNO-1Character devices are labeled CHAR_DEVICEx, where
x is a number from 0 to MAXCDEVNO-1The numeric suffixes for the
CHAR_DEVICEx variables must match the minor numbers in /dev , which are
defined in /usr/src/uts/c1/cf/devsw.c in the cdevsw[] array.

MAXBDEVN@nd MAXCDEVNE@re located in the /usr/include/sys/param.h
include file and have default values of 10 and 35, respectively.

Device accounting is also discussed in Section 10.1.14, page 254.

The SBU values should be very small. On Cray Research systems, it is possible
to perform a very large number of I/O requests very quickly; therefore, to
prevent these numbers from dominating the SBU values, a small weight factor
must be used. A value of 0 results in no charge.

10.1.10.1.10 Example SBU settings

SG-2210 10.0

The following section provides an example showing how you could set up the
SBU system. This example is restricted to pacct base records (you should also
consider pacct multitasking, pacct 1/O (device accounting), and all the
daemon records). In this example, it is assumed that an SBU is equal to one
dollar of charge.

237

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

The formula for calculating the whole pacct base record SBU value is as
follows:

PSBU = ((P_TIME * (P_STIME * stime + P_UTIME * utime + P_ITIME *
iowtime)) + (P_MEM* (P_XMEM* cpumem + P_IMEM * iowmem)) +
(P_IO * (P_BYTEIO * bytes + P_PHYIO * phy + P_LOGIO * lo0g)));

NSBU = ((NP_TIME * (NP_STIME * stime + NP_UTIME * utime + NP_ITIME
* iowtime)) + (NP_MEM* (NP_XMEM* cpumem + NP_IMEM* iowmem)) +
(NP_IO*(NP _BYTEIO * bytes + NP_PHYIO * phy + NP_LOGIO * log)));

SBU = P_BASIC * PSBU + NP_BASIC * NSBU;

The variables in this formula are as follows:

Variable Description
stime System CPU time in seconds.
utime User CPU time in seconds. User CPU time is the sum of user

times after weighting for multitasking.

iowtime Time (in seconds) spent waiting in the kernel for I/O while the
process is locked in memory.

cpumem Memory integral (see Section 10.1.12.1, page 252).
iowmem I/O-wait-time memory integral.

bytes Number of bytes of data transferred.

phy Number of physical I/O requests made.

log Number of logical I/O requests made.

All time is considered prime time. Therefore, the nonprime time SBUs should
be set to the same values as their prime time counterparts.

In order to produce a billing that is somewhat repeatable, this example omits
various values, such as physical I/O (set P_PHYIO to 0.0), that depend on the
state of the machine at run time. In particular, system time varies greatly due to
system load and will cause this example to be nonrepeatable. Information on
which fields generate repeatable values is contained in Section 10.1.11.1, page
246.

In this example, users are charged for each logical request (P_LOGIO) and the
total data moved (P_BYTEIO). This provides users with an incentive to use
larger I/0O requests, which may be more efficient. Processes that perform I/0O

238 SG-2210 10.0

Accounting [10]

SG-2210 10.0

that locks them into memory are penalized (P_IMEM), because this may result
in memory fragmentation.

In this example, users are charged the following amounts for time (the
accounting record fields associated with the charge are also identified):

$100 per hour of user CPU time. This is equal to $100 per 3600 seconds,
which is $0.02777777 per second (P_UTIME). To produce repeatable billing,
system time must be excluded. Thus, P_STIME is set to 0.0 .

$25 for each megaword of memory per hour of CPU time. The memory
integrals are in units of Kword-minutes, so the weighting factor is $25/(60
minutes * 2!° Kwords) or 0.0004069010 (P_XMEMW

$3 for each hour spent waiting on I/O while locked into memory. The wait
time is in units of seconds. so the weighting factor is $3/3600 seconds or
.0008333333 (P_ITIME).

$25 for I/O wait time (locked in memory) per hour. This is the same value
as the memory charge because the process is using memory during this time
in the same way it would when executing. The weighting factor is $25/(60
seconds * 2!0 Kwords) or 0.0004069010 (P_IMEM.

A DD-49 disk drive can perform I/O at a maximum rate of 9.6 Mbytes per
second. Assume that the original cost of the drive was $125,000, and it will
be paid for in 2 years. Also assume that it is busy 5% of the time (63072000
seconds * 5% = 3153600 seconds). The amount of I/O that can be completed
in 2 years is 31745177026560 bytes (9.6 Mbytes/second * 3153600 seconds).
Thus, you would charge $125,000/31745177026560 bytes or
$0.00000000393760 per byte, which is approximately $0.33/10 Mwords
(P_BYTEIO).

$0 for physical I/O requests. This charge makes the billing more repeatable.
The byte I/O charge covers this activity (P_PHYIO).

$0.01 per thousand logical I/O requests. This charge encourages the user to
perform larger I/O requests by charging less for a lower number of larger
I/0 requests (instead of a lot of small I/O requests). The weighting factor is
computed as $0.01/1000 I/O requests or 0.00001 (P_LOGIO.

Therefore, in this example, the pacct base record charges are as follows (the
nonprime time SBUs are set to the same value as their prime time counterparts):

Weight factor Charge
P_BASIC 1.0

239

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

240

P_TIME
P_UTIME
P_STIME
P_ITIME
P_MEM
P_XMEM
P_IMEM

P IO
P_BYTEIO
P_PHYIO
P_LOGIO

1.0
0.02777777777777
0.0
0.00083333333333
1.0
0.00040690104166
0.00040690104166
1.0
0.00000000393760
0.0
0.00001000000000

P_BASIC, P_TIME, P_MEMand P_|O are used to weight different factors of the
equation; you can use these depending on how your other groups of weighting
factors are picked. For example, you could change the P_IO and P_BYTEIO

factors as follows and receive the same results:

Weight factor
P_BASIC

P_TIME
P_UTIME
P_STIME
P_ITIME
P_MEM
P_XMEM
P_IMEM

P IO
P_BYTEIO
P_PHYIO

Charge
1.0

1.0
0.02777777777777
0.0
0.00083333333333
1.0
0.00040690104166
0.00040690104166
0.00001
0.000393760

0.0

SG-2210 10.0

Accounting [10]

P_LOGIO 1.0

10.1.10.2 Daemon accounting

Accounting information is available from NQS, online tapes, and sockets. Data
is written to the ngacct , tpacct , and soacct files, respectively, in the
/usr/fadm/acct/day directory.

In most cases, daemon accounting must be enabled by both the CSA subsystem
and the daemon. Section 10.1.4, page 203, describes how to enable daemon
accounting at system startup time. You can also enable daemon accounting
after the system has booted.

You can enable accounting for a specified daemon with the turndacct (8)
command. For example, to start tape accounting, you would execute the
following:

Jusr/lib/acct/turndacct on tape

The NQS and online tape daemon also must enable accounting. Use the gmgr
set accounting on command to turn on NQS accounting. Tape daemon
accounting is enabled when tpdaemon (8) is executed with the -c option.

Daemon accounting is disabled by shutacct (8) at system shutdown (see
Section 10.1.4, page 203). It can also be disabled at any time by the
turndacct (8) command when used with the off operand. For example, to
disable NQS accounting, execute the following command:

Jusr/lib/acct/turndacct off ngs

New daemon accounting files can be started when turndacct is invoked with
the switch operand. No data is lost when files are switched. For example, to
start a new NQS accounting file, execute the following command:

Jusr/lib/acct/turndacct switch ngs

10.1.10.3 Setting up user exits

SG-2210 10.0

CSA accommodates the following user exits, which can be called from certain
csarun states:

csar un state User exit
ARCHIVE1 lusr/lib/acct/csa.archivel
ARCHIVE2 lusr/lib/acct/csa.archive2

241

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

FEF lusr/lib/acct/csa.fef
USEREXIT lusr/lib/acct/csa.user

These exits allow an administrator to tailor the csarun procedure to the
individual site’s needs by creating scripts to perform additional site-specific
processing during daily accounting.

While executing, csarun checks in the ARCHIVE], ARCHIVEZ FEF, and
USEREXIT states for a shell script with the appropriate name.

If the script exists, it is executed via the shell . (dot) command. If the script
does not exist, the user exit is ignored. The . (dot) command will not execute a
compiled program, but the user exit script can. csarun variables are available,
without being exported, to the user exit script. csarun checks the return status
from the user exit and, if it is nonzero, the execution of csarun is terminated.

If CSA is run by a user without super-user permissions, the user exits must be
both readable and executable by this user (see page Section 10.1.10.7, page 244).

10.1.10.4 Charging for NQS jobs

242

By default, SBUs are calculated for all NQS jobs regardless of the job’s NQS
termination code. If you do not want to bill portions of an NQS request, set the
appropriate NQS_TERM xxxx variable (termination code) in
/etc/config/acct_config to 0, which sets the SBU for this portion to 0.0 .
By default, all portions of a request are billed.

The following table describes the termination codes:

Code Description
NQS TERM_EXIT Generated when the request finishes running and

is no longer in a queued state. At NQS shutdown
time, requests that specified both the -nc (no
checkpoint) and -nr (no rerun) options for gqsub
also have NQS_TERM_EXITrecords written. In
addition, this record is written for requests that
specified the -nr option for gsub and were
running at the time of a system crash.

NQS_TERM_REQUEUE Written for running requests that are
checkpointed and then requeued when NQS
shuts down.

NQS_TERMPREEMPT Written when a request is preempted with the
gmgr preempt request command.

SG-2210 10.0

Accounting [10]

NQS_TERM_HOLD

NQS_TERM_OPRERUN

10.1.10.5 Tailoring CSA shell scripts and commands

Written for a request that is checkpointed with
the gmgr hold request command. The hold
request command differs from the checkpoint
done at daemon shutdown time because a “hold”
keeps the job from being scheduled until a gmgr
release command is executed.

Written when a request is rerun with the gmgr
rerun request command.

At NQS shutdown time, jobs that cannot be
checkpointed and do not have the -nr (no rerun)
option for gsub specified have this type of
termination record written. The requests are
requeued with this status.

Modify the following variables in /etc/config/acct_config if necessary:

Variable Description

ACCTFS File system on which /usr/adm/acct resides.
The default is /usr .

MAIL_LIST List of users to whom mail is sent if fatal errors
are detected in the accounting shell scripts. The
default is root and adm

WMAIL_LIST List of users to whom mail is sent if warning
errors are detected by the csarun script at
cleanup time. The default is root and adm

MIN_BLKS Minimum number of free blocks needed in

10.1.10.6 Using at to execute csarun

${ACCT_FS} to run csarun or csaperiod . The
default is 500 free blocks.

You can use the at (1) command instead of cron (8) to execute csarun
periodically. If your Cray Research system is down when csarun is scheduled
to run via cron , csarun will not be executed until the next scheduled time.
On the other hand, at jobs execute when the machine reboots if their scheduled
execution time was during a down period.

SG-2210 10.0

243

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

You can execute csarun with at in several ways. For instance, a separate
script can be written to execute csarun and then resubmit the job at a specified
time. Also, an at invocation of csarun could be placed in a user exit script,
/usrl/lib/acct/csa.user , that is executed from the USEREXIT section of
csarun . See Section 10.1.10.3, page 241, for more information.

10.1.10.7 Allowing nonsuper users to execute CSA

244

Your site may want to allow users without super-user permissions to run CSA
accounting. CSA can be run by users who are in the group adm and have
permission bit acct set in their UDB entries.

Note: If root has run CSA, you must execute the shell script
lusr/lib/acct/csaperm (see csaperm (8)) to change the group ID and
file permissions of all accounting files in /usr/adm/acct so they can be
accessed by a nonsuper user running CSA.

The following steps describe the process of setting up CSA so it is executed
automatically on a daily basis by a user without super-user permissions. In this
example, the user without super-user permissions is adm

1. Ensure that user admis a member of group admand has the permission bit
acct set in its UDB entry (see udbgen (8)).

2. Asroot , execute the shell script csaperm to change the group ID and file
permissions of all accounting files in /usr/adm/acct so they can be
accessed by a nonsuper user.

3. Ensure that, if they exist, the user exits /ust/lib/acct/csa.archivel ,
lusr/lib/acct/csa.archive2 , lusr/lib/acct/csa.fef , and
lusr/lib/acct/csa.user have the group ID admand are both readable

and executable by group adm

4. Follow steps 1 through 5 of Section 10.1.4, page 203, to set up system billing
units, record system boot times, and turn off accounting before system
shutdown.

5. Include an entry similar to the following in

{usr/spool/cron/crontabs/root so that cron (8) automatically runs
dodisk (8):
0 3 * * 1-6 /usr/lib/acct/dodisk -a -v 2> [usr/adm/acct/nite/dk2log

dodisk must be executed by root , because no other user has the correct
permissions to read /dev/dsk/*

SG-2210 10.0

Accounting [10]

6. Include entries similar to the following in
/usr/spool/cron/crontabs/adm so that user adm automatically runs
daily accounting by using cron :

0 4 * * 1-6 /usr/lib/acct/csarun 2> Jusr/fadm/acct/nite/fd2log
0 * * * * Jusr/lib/acct/ckdacct ngs tape
0 * * * * Jusr/lib/acct/ckpacct

csarun (8) should be executed at a time that allows dodisk to complete. If
dodisk does not complete before csarun executes, disk accounting
information may be missing or incomplete.

7. To run periodic accounting, place an entry similar to the following in

/usr/spool/cron/crontabs/adm (this command generates a periodic
report on all consolidated data files found in

/usr/adm/acct/sum/data/* and then deletes those data files):

15 5 1 * * [usr/lib/acct/csaperiod -r 2>/usr/fadm/acct/nite/pd2log

8. Update the holidays file as described in Section 10.1.4, page 203.

10.1.10.8 Using an alternate configuration file

By default, the /etc/config/acct_config configuration file is used when
any of the CSA commands are executed. You can specify a different file by
setting the shell variable ACCTCONFIGo another configuration file, and then
executing the CSA commands.

For example, you would execute the following commands in order to use the
configuration file /tmp/myconfig while executing csarun (8):

ACCTCONFIG=/tmp/myconfig /usr/lib/acct/csarun 2> [usr/adm/acct/nite/fd2log

10.1.10.9 Disk usage reporting (diskusg)

SG-2210 10.0

The diskusg (8) command can be configured at your site. The site.c module
of diskusg contains an example to help you in customizing a report for your
site. You can delete your choice of comment-protection characters in the
example, compile the routine, relink diskusg , then print a sample report of
disk usage for your site. You can execute your modified diskusg command in
the USEREXIT state in csarun or runacct scripts.

245

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.11 Per-process accounting data

This section describes some of the fields found in the pacct file.
{usrfinclude/sys/acct.h defines the structure of this file.

10.1.11.1 Base accounting record

246

One base accounting record per process is written; each record contains the
following fields:

Field Description
ac_flag Accounting flags; may be any of the flags defined

in sys/faccth . FORKmeans that the process
forked but did not exec . ASUmeans that the
process used super-user privileges.

ac_stat Low-order 8 bits from the process’s exit value.
See the wait (2) man page for more information.

ac_uid Real user ID.

ac_gid Real group ID.

ac_tty Controlling tty device.

ac_btime Start time of the process (in seconds).

ac_utime User CPU time used (in clocks). This number is

repeatable for nonmultitasked jobs (within the
limitations caused by memory conflicts).

ac_stime System CPU time used (in clocks). This number is
not repeatable, because it varies with system load.

ac_etime Elapsed time while process executed (in clocks).
This number is not repeatable.

ac_mem Memory integral selected when MEMINT = 1 (in
clicks-ticks). (MEMINTis located in
/etc/config/acct_config .) This is the only
constant memory integral available (within the
limitations caused by memory conflicts);
therefore, if repeatable billing is required, this
number must be used. See Section 10.1.12.1, page
252, for more information.

SG-2210 10.0

Accounting [10]

SG-2210 10.0

ac_mem?2

ac_mem3

ac_io

Memory integral selected when MEMINT = 2 (in
clicks-ticks). (MEMINTis located in
/etc/config/acct _config .) This integral is
not constant and varies with machine load. See
Section 10.1.12.1, page 252, for more information.

Memory integral selected when MEMINT = 3 (in
clicks-ticks). (MEMINTis located in
/etc/config/acct_config .) This integral is
not constant and varies with machine load. See
Section 10.1.12.1, page 252, for more information.

Number of characters transferred by the process.
If any tape accounting information existed for
this process, the number of tape bytes read and
written is included in the ac_io field. Thus, the
amount of tape I/0O is reported twice: once in the
ac_io field and again in the tape accounting
record. The ac_io field generally is larger,
because it includes additional I/O performed by
the process. This number is repeatable.

Device accounting I/0 information is also
reported twice: by ac_io and in the device
accounting record field acd_ioch

Charges for doing I/O to tape or to a particular
device can be adjusted by setting the SBU weight
factors for tape and device I/O. These weights
are defined in /etc/config/acct _config

The tape SBUs are labeled TAPE_SBUx, and the
device SBUs are BLOCK_DEVICEx and
CHARDEVICE x.

Set the weight factors relative to P_BYTEIO (see
Section 10.1.10.1.8, page 236, and Section
10.1.10.1.9, page 237). The ac_io value is
multiplied by P_BYTEIO. The tape or device I/O
value is multiplied by the appropriate tape or
device weight factor.

For example, if a surcharge is to be applied to
tape 1/0O, the read and write values for the
TAPE SBUx variables must reflect the amount
over P_BYTEIO that should be charged.

247

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

ac_rw

ac_iowtime

ac_iowmem

ac_iosw

ac_lio

ac_pid
ac_ppid
ac_ctime
ac_acid
ac_jobid

ac_nice

248

Number of physical I/O requests initiated by the
process. This number varies due to conditions in
the system buffer cache. Therefore, if repeatable
billing is desired, this number cannot be used.

I/0 wait time (in clocks) measured while the
process is locked in memory. This means that
system buffered I/O does not appear here. Also,
this is a measure of the time elapsed from when a
process is removed from the run queue until the
process is reconnected to a CPU; therefore it may
vary due to system load.

I/O-wait-time memory integral measured while
the process is locked in memory (in click-ticks).
This number may vary due to system load.

Swap count. This number may vary due to
system load.

Logical I/O request count; this is a count of the
read , write , reada , writea , and listio (list
entries) system calls made. This number is
repeatable.

Process ID.

Parent process ID.

Process raw connect time in clocks.
Account ID.

Job ID.

Nice value, measured at the end of 1 second of
system and user time or the most expensive value
used thereafter. This allows a process to set the
value at which most of its work should be done;
only charges for increased cost are levied.

The 1 second of system and user time is calculated
from the billable time, not from the time actually
connected. Therefore, because billable time is
calculated each time a process is rescheduled, or
one time per second, the nice value becomes fixed
some time in the interval from 1 to 2 seconds of
connect time. (Connect time includes semaphore

SG-2210 10.0

Accounting [10]

ac_comm

ac_iobtim

ac_himem

ac_sctime

10.1.11.2 End-of-job accounting record

wait, except on CRAY C90 systems; billable time
does not includes semaphore wait.)

Command name (first 8 characters).

I/0 wait time in clocks measured while the
process is not locked in memory (unlike
ac_iowtime). System buffer I/O accumulates
here. This number may vary due to system load.

Memory-use high water mark in words.

System call time in clocks.

There is one end-of-job record per job. The record is written when the last
process of a job is terminated. The record contains the following fields:

Field
ace_jobid
ace_uid

ace_himem

ace_sdshiwat

ace_nice

ace_fshlkused

ace_etime

10.1.11.3 Multitasking accounting record

Description
Job ID of the job to which this record belongs.

User ID from the job table.

High-water memory use of job; sum of all
processes in a job at any given time (in clicks).
This can vary because of scheduling differences.

Secondary data segment high-water use; sum of
all processes in a job at any given time (in SDS
units). This can vary because of scheduling
differences.

Last nice value of the job.

Sum of the file system storage used. This value
may be negative if more space was freed up than
was consumed.

End time of the job (in seconds).

If a process is multitasked, a multitasking accounting record is written when
the last member of the multitasked group is terminated. The record contains

the following fields:

SG-2210 10.0

249

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

Field Description
ac_smwtime (Not on CRAY C90 systems) Semaphore wait time

(in clocks).

ac_mutime[MUSIZE] Time connected to (i + 1) CPUs (in compressed
1/100ths of a second format). Prior to UNICOS
release 8.3, the multitasking CPU times were
stored as 21-bit pseudo-floating point numbers.
Beginning with release 8.3, these values are in
1/100ths of a second and are compressed as
16-bit pseudo-floating point numbers. The
compression and unit changes were made so that
multitasking information for a maximum of 32
CPUs can be stored in the pacct file without
changing the size of the records.

10.1.11.4 SDS accounting record

(Not on CRAY EL systems) If a process utilizes SDS, an SDS accounting record
is written. The record contains the following fields:

Field Description

acs_mem Memory integral based on residency time, not
execution time (in click-ticks).

acs _lio Logical I/O request count; this count is the
number of ssread and sswrite system calls
made.

acs_ioch Number of characters transferred to and from the

SDS, stored in bytes.

10.1.11.5 MPP accounting record

250

If a process uses a Cray MPP system, an MPP accounting record is written that
contains the following fields:

Field Description
ac_mpppe Number of MPP processor elements used.
ac_mppbe Number of MPP barrier bits used.

SG-2210 10.0

Accounting [10]

ac_mpptime

10.1.11.6 Performance accounting record

Number of clocks that the MPP has been used.

When the optional performance accounting feature is enabled (by using the
devacct (8) command with the -b option), a performance accounting record is
written at the end of each process. Each record contains the following fields:

Field

acp_rtime

acp_tiowtime

acp_srunwtime

acp_swapclocks

acp_rwblks

acp_phrwblks

10.1.12 Multitasking incentives

Description

The process start time offset (in clocks) from the
previous second (reported in the ac_btime field
of the base accounting record). This field allows
you to trace start times of processes that are
spawned in the same second.

The terminal I/O wait time (in clocks); in other
words, the period of time starting when a process
performing I/0 to a tty or pseudo-tty is removed
from the run queue and ending when the process
is reconnected to a CPU. This number may vary
due to system load.

This field is currently disabled.

The time (in clocks) that a process spends on the
swap device.

The number of physical blocks transferred by the
process using the system buffer I/O interface.
This number varies due to conditions in the
system buffer cache.

The number of physical blocks transferred by the
process using the raw I/0O interface.

Some sites may want to provide accounting incentives for the use of
multitasking. Several of these are available through the appropriate setting of

installation parameters.

SG-2210 10.0

251

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.12.1 Memory integrals

252

Three different memory integrals are available to the accounting software. The
differences among them are important to those sites that want to give incentives
for use of multitasking.

Memory integral #1 - At each change in memory size, memory integral #1 is
incremented by the total CPU time used since the last memory change, times
the memory size, as follows:

MI #1: memory size * (total CPU time since last size change)

Thus, a program that is connected to two CPUs for some period will pay twice
the memory cost for that period. When using memory integral #1, a
multitasking program incurs the same charges, no matter how many CPUs it
gets. This is helpful if consistent billing is important to your site, but not as
helpful if incentives for multitasking are important.

Memory integral #2 - The calculations for memory integral #2 are similar to those
for #1, except that the increment is the sum of times when at least one CPU was
connected, times the memory size, as follows:

MI #2: memory size * (total time when program was connected
to at least one CPU since last size change)

A multitasking program pays (in memory charges) only for the first CPU it
receives; additional CPUs do not increase the memory charge. Using memory
integral #2, a multitasking program can potentially decrease its memory charge
by a factor equal to the number of CPUs in the machine. This is an incentive
for using multitasking. However, because the amount of time a program is
connected to a number of CPUs varies from run to run, memory integral #2 is
not consistent. The maximum value for #2 is equal to #1 (if no connect time
overlap occurs). Note that this also means that #1 is equal to #2 for
single-tasked programs.

Memory integral #3 - Some sites with multi-CPU machines may wish to allow an
individual program to use a proportionally large amount of memory only if it is
also able to use more than one CPU. For instance, in a four-CPU machine,
allowing one program to use 90% of memory may idle some CPUs if the
program uses only one CPU.

Memory integral #3 allows the site to control this aspect of CPU use by adding
an extra factor into the calculation for memory integral #2. The total memory
available to user programs is divided by the number of CPUs to derive the
value of “one CPU worth of memory.” The memory size of the program is then

SG-2210 10.0

Accounting [10]

divided by the “CPU worth” factor to get the extra factor in memory integral
#3, as follows (this extra factor cannot be less than 1):

MI #3: memory size * (total time when program was connected
to at least one CPU since last size change) *
(memory size / "one CPU worth of memory”)

Memory integral #3 provides an incentive for single-tasked programs to limit
themselves to one CPU worth of memory. Multitasked programs will also pay
more in memory charges for lots of memory, but they can reduce their memory
charges by using multiple CPUs. However, memory integral #3 is as inconsistent
as #2, and it can also affect the memory charges for single-tasked programs.

Note that the changes from #1 to #2 and #2 to #3 are, in a sense, opposite for
multitasking programs. The changes from #1 to #2 reward multitasking
programs by a factor of up to the number of CPUs. The changes from #2 to #3
penalize large-memory programs by up to the number of CPUs. Thus, if a
multitasking program has used all memory (on a four-CPU machine), memory
integrals #1 and #3 would be nearly equal, and the value of #2 would be
approximately one-quarter the value of #1 or #3.

The accounting software is released with memory integral #2 as the default.
The MEMINTvariable in /etc/config/acct _config can be changed to
match the site’s needs.

10.1.12.2 Reducing charges

SG-2210 10.0

Another incentive you can provide for the use of multitasking is to reduce the
charges for CPU time for multitasking programs. This can be accomplished
with weighting factors. The operating system kernel maintains counters of the
length of time spent by a user program with one processor connected, two
processors connected, and so on.

By default, the charges for a multitasking program would be calculated as
follows:

sum = O;
for (i=0; i < ncpu; i++)
sum += ac_mutime[i] * (i+l);

This calculation assumes that all CPU time is charged equally. With the
weighting factors, the site can specify, for instance, that a second CPU should
be only 75% as expensive as the first CPU. Therefore, a program that gets two
CPUs as it executes would have its CPU time charges reduced. Note that,
because this charge depends on how much overlap a program gets, charges

253

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.13 Socket accounting

10.1.14 Device accounting

254

may vary from execution to execution. However, charges are never more than
the full price for all CPUs.

The accounting software is released with all CPUs having a cost of 1. The
MUTIME_WEIGHT variables, defined in /etc/config/acct_config , can be
changed to meet the site’s needs.

Note that the user time reported by the time (1) command is adjusted so that
there is no charge for wait-semaphore time. (This is in order to provide
consistent CPU time charges.) The multitasking overlap times do not adjust for
wait-semaphore times and, hence, may actually calculate to a greater CPU time
than the sum of the user times. In this case, the CPU charge is limited to the
sum of the user times.

Socket accounting tracks network usage from the perspective of sockets,
wherein one process may use several sockets, and several processes may use
the same socket.

The recorded accounting information tracks all of a socket’s usage, but it can
only be linked to the process that most recently closed the socket. This
information can help you resolve network problems and/or monitor system
network usage.

You can use the csasocket (8) command to summarize and process the socket
data; csaswitch (8) can be used to check the status of, enable, and disable
accounting methods, including socket accounting. See the csasocket (8) and
csaswitch (8) man pages for more information.

This section describes device accounting. On large computer systems with
expensive peripheral devices, it may be useful to associate device usage with
the user who initiated the I/O. Cray device accounting allows a system
administrator to specify the accounting data that should be collected for device
use. This system allows a site to individually label each mounted disk’s
partitions and so enables the site to charge each type of secondary storage at a
different rate. For example, the amount of I/O on a high-speed storage device
such as an SSD may be charged at a different rate than I/O on a disk device.

SG-2210 10.0

Accounting [10]

10.1.14.1 Categories of devices

The following three categories of devices under the UNICOS operating system
are important in device accounting;:

® Character special devices, which are devices such as terminals, pseudo tty
devices, and the HSX channel.

e Block devices, which are devices such as disks, BMR, and the SSD.

* Logical devices, for device accounting, which are the individual file systems.
Such devices do not always correspond to a single device, but are treated as
such by device accounting.

The device accounting system accounts for device I/O by device type. For a
character device, device type is equivalent to its major number. For example, tty
devices are major number 1 (in the default system), so they are accounted for as
character device 1 (ios-tty). No accounting is performed for block devices,
because block devices are used to create file systems; instead, they are treated as
logical devices. Logical devices consist of one or more partitions of disk, SSD,
and BMR storage. Each logical device is formatted by the mkfs (8) command,
which provides it with a superblock. The devacct (8) program allows you to
write an accounting device type into the superblock of each logical device.

10.1.14.2 Structures and device names

SG-2210 10.0

The BLOCK_DEVICEx and CHAR_DEVICEx parameters in

[etc/config/acct _config contain the SBU values and names for device
accounting. Refer to Section 10.1.10.1.9, page 237, for an explanation of
configuring these parameters.

Device accounting uses arbitrary ASCII names for the user interface to
accounting; internally, these names are mapped by the accounting library
routines typetonam and namtotype . To be useful, these names should be
meaningful to even the beginning user, because the ja (1) (job accounting)
command displays these names when invoked with the -d option. The ASCII
names are defined in the device name field of the BLOCK_DEVICEx and
CHAR_DEVICEx parameters.

Logical device accounting names are displayed to the user by ja and the
accounting programs, and are used by devacct (8) to determine the numeric
values the kernel uses.

Logical and character device names should not match; in fact no two names
should match, because the user cannot distinguish between them.

255

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

If names contain spaces (the shell field separator (SHELL IFS)), double quotes
must be used around the device type names during command invocation.

Device names are used as output by ja and the accounting programs; therefore,
keeping the names fairly short (less than 40 characters) will make them more
readable.

System billing units (SBUs) have the following meanings:

SBU Description
Logical 1/O Sbu The total number of system

calls made to this type of
device is multiplied by
Logical /O Sbu to
determine the SBU cost. This
value should be nonnegative.

Characters Xfer Sbu The total number of
characters transferred to this
device type is multiplied by
Characters Xfer Sbu to
determine the SBU cost. This
value should be nonnegative.

10.1.14.3 Configuration changes

The system is released with the character devices configured to match the
released configuration; any changes to /usr/src/uts/c1/cf/devsw.c
should be reflected in the configuration file.

The block device configuration is released with a simple configuration. Several
extensions are possible, although some may require altering the values of
MAXBDEVN@nd MAXCDEVNQ@nd rebuilding the system and accounting
commands. First, if a site has a special temporary device that is restricted to a
set of users, a special type might be placed on that device to allow the billing
process to increase the cost of use, offsetting the lower rate of use. Second, SSD
or BMR allocated to logical device cache may be reflected in the configuration.

10.1.14.4 System header files

The system header files discussed in this section are important in device
accounting.

256 SG-2210 10.0

Accounting [10]

10.1.14.4.1 param.h header file

10.1.14.4.2 acct.h

The values MAXBDEVN@nd MAXCDEVN@Xxe contained in the
{usrfinclude/sys/param.h file; they set the maximum size of the
accounting structures in the user structure and the maximum size of the
accounting data written. It is recommended that they not be increased beyond
the current values unless necessary (although making MAXCDEVNEmaller and
MAXBDEVNQ@rger by the same amounts is acceptable).

MAXBDEVNG@ the maximum number of block (logical) device accounting types.
This number can be changed from the current value of 10.

MAXCDEVNG® the maximum number of character device accounting types. This
number can be changed from the current value of 35.

header file

The /usr/include/sys/acct.h header file contains all the kernel structures
for accounting and sets the following values related to device accounting:

Value Description
NODEVACCT The number of devio entries per accounting

record. This value is the number of device
accounting entries that fit into one accounting
record.

ACCT_CHSP A marker combined by an ORoperation into the
type field (acd_type) to indicate that the devio
entry is for a character device.

_MAXDEVIOREC The maximum number of device accounting
records that can be written for any individual
process.

10.1.14.5 Using device accounting (devacct(8))

SG-2210 10.0

Use the devacct (8) command to label file systems with accounting types while
they are mounted. If a file system does not contain a device type label, device
accounting ignores it.

In order to enable device accounting, the system may be built to automatically
enable specific device types. However, an easier solution is to insert lines into
the system startup procedure (/etc/config/daemons) to enable device
accounting when bringing the system to multiuser mode. The following

257

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

258

example shows a line that can be added to the daemons file
(/etc/config/daemons) to enable device accounting (remember the device
type name is a single argument and so it may need to be enclosed in double
quotation marks if it contains shell separators):

SYS1 devacct YES - /usr/lib/acct/devacct -b " device type name"

The devacct command with the -I option may be used to label file systems
(file systems may be labeled only while mounted). The names of device types
are defined in the BLOCK_DEVICE and CHAR_DEVICE variables located in
/etc/config/acct_config . Some of the default names include spaces; such
names must be enclosed in double quotation marks on the command line.

For example, to label the device /dev/dsk/root with the label "dd49 with
Idcache" , the command would be as follows:

/usr/lib/acct/devacct -l "dd49 with Idcache" /dev/dsk/root

Device accounting for any device type may be turned on at any time by
invoking the devacct command with the -b option. While device accounting
is on, no records are written unless per-process accounting is enabled.

For example, to enable accounting for the devices labeled "dd49 with
Idcache" , the command is as follows:

{usr/lib/acct/devacct -b "dd49 with Idcache"
You can turn on performance accounting using the following command:
Justr/lib/acct/devacct -b perfOl

Device accounting for any device type may be turned off at any time by
invoking the devacct command with the -t option. While accounting is
disabled, those processes that have already accumulated data will report that
data at termination if per-process accounting is enabled. For example, to disable
accounting for the devices labeled "dd49 with Idcache" , the command is as
follows:

/usr/lib/acct/devacct -t "dd49 with Idcache"

To determine the current label for a device, use the devacct command with
the -L option. For example, to list the current label of /dev/dsk/root , you
would execute the following command:

/usr/lib/acct/devacct -L /dev/dsk/root

SG-2210 10.0

Accounting [10]

10.1.14.5.1 Implications of device accounting

The system overhead for device accounting is fairly low. However, the amount
of accounting data produced in the worst cases is more than double that
produced by standard accounting. The more device accounting data kept, the
more file system space that is required. If one device is accounted for, processes
that use that device generate twice as much accounting data as a process that
did not use the device or the same process without device accounting. However,
for 1 to NODEVACCevice types, the maximum size of the accounting data
does not increase, except that more processes may use one of the devices.

10.1.14.5.2 Tape device accounting

To enable or disable tape device accounting, use the device type name associated
with the CHAR_DEVICE15parameter in /etc/config/acct _config . By
default, this device name is "bmx daemon".

The device name associated with CHAR_DEVICE11(the default is "bmx tape ")
controls device accounting only for tape diagnostics.

To enable device accounting for the tapes, execute the following command:

/usr/lib/acct/devacct -b "bmx daemon"

10.1.15 Switching / and /usr file systems

Occasionally, sites run on numerous / and /usr file systems and want to
maintain the same accounting files throughout. The easiest way to accomplish
this is to put /usr/fadm or /usr/adm/acct on a separate file system and
mount this file system along with each different system.

In addition, two other files, /etc/csainfo and /etc/wtmp , must be copied
from the previously booted /. These files must be copied to the new root file
system before it is brought up. Failure to correctly copy /etc/csainfo to the
new / can cause csarun to abort abnormally. Incorrect connect time data is
reported when /etc/wtmp is not copied.

10.1.16 Logging information

SG-2210 10.0

The following sections describe log files found in the UNICOS operating
system.

259

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.16.1 Boot log

10.1.16.2 cron log

260

The boot log contains the date and time the system was booted. It is located in
letc/boot.log and can be accessed through normal file manipulations such
as tail (1), cat (1), pg(1), and more (1). The /etc/rc (see brc (8)) script
appends the record to the boot.log . The format is as follows:

date, uname -a

yyl mml dd hh: mm system node release version hardware

Example:
93/05/10 08:07 sn1703c cool 8.0.0tk dev.6 CRAYY-MP

See date (1) and uname(1) for further information. See also who(1), and the
sample wtmp and utmp files in this chapter.

The cron log contains the history of all actions taken by the cron (8) command.
It is located in /ust/lib/cron/log and can be accessed by using normal file
manipulations such as tail (1), cat (1), pg(1), and more(1). The format of this
file is as follows:

CMD: command_executed username process _id job_type
start_time username process_id job_type
end_timerc= error return code

job_type can have one of the following values:

a at job

b Batch job

c cron job

Example:

> CMD: 645827040.a

> userl 7191 a Tue Jun 19 15:24:.00 1990
> CMD: /usr/lib/sa/sal 120 1

> root 7192 c¢ Tue Jun 19 15:24:.00 1990
< root 7192 c Tue Jun 19 15:24:.00 1990
< userl 7191 a Tue Jun 19 15:24:.00 1990
> CMD: 645827059.b

> userl 7273 b Tue Jun 19 15:24:19 1990
< userl 7273 b Tue Jun 19 15:24:20 1990 rc=1

SG-2210 10.0

Accounting [10]

10.1.16.3 Dump log

10.1.16.4 New user log

10.1.16.5 su log

SG-2210 10.0

The dump log contains the time and a reason for each dump. The system
supplies the time and the user supplies the reason. By default, the dump is
located in /etc/dump.log and can be accessed using the normal file
manipulations such as tail (1), cat (1), pg(1), and more (1). When the system is
changing out of single-user mode, brc (8) calls coredd (8) to copy a dump file
to a file system. The location of the dump can be reconfigured by using the
install tool. Note that the user may also change the location of the log file by
using the -| option with the cpdmp command.

Example of /etc/dump.log

cpdmp: 035120 blocks on dump device - waiting to be copied
04/26/93 07:27:09 coredd: Copying system dump into /core//04260727.
Unicos-E dump copied to=/core//04260727/dump

dump taken: 04/26/93 at 07:18:51

reason: PANIC: master.s: EEX interrupt in UNICOS kernel

The new user log contains information on new users given logins on the
system; this data includes who added the users, the times at which they were
added, and information about their environment defaults and IDs. This log is
located in /usr/fadm/nu.log and can be accessed using normal file
manipulations such as tail (1), cat (1), pg(1), and more(1). It is created by the
nu(8) command. An example of the format follows:

userl:co:user login #1
user1:ui:10702:di:/j/luserl:sh:/bin/csh:dr:/:pw:qQfHS6B8XYdzg
userl:gi:128,129,130,131,132
userl:ai:0
userl:dl:0:mx:0:mn:0:1k:0:tp:0
userl:dc:default:cm:default:pm:default

added by adml on Wed Jul 20 08:43:20 1988

The su log records su (1) attempts for the current day. It is located in the
/usr/fadm/sulog file and can be accessed using normal file manipulations
such as tail (1), cat (1), pg(1), and more(1). It is written by the su(1)
command. The format of the log is as follows:

SU MM/DD hh:mm flag tty olduser-newuser

261

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.16.6 OLDsu log

10.1.16.7 System logs

262

flag can have the following values:
+ su was successful.
- su was not successful.

olduser is the login name of the user executing su, and newuser is the name of
the user the executing user is becoming. For example:

SU 06/19 15:13 + console operator-root SU 06/19 15:13 + ttyp025 \n
userl-root SU 06/19 15:14 + ttyp021 user2-adm SU 06/19 15:19 - ttyp026 \n
user3-root SU 06/19 15:19 - ttyp022 user4-root

The OLDsu log is a directory containing all files of daily su (1) attempts. It is
located in /usr/adm/OLDsu/* and can be accessed using normal file
manipulations such as tail (1), cat (1), pg(1), and more(1). The /etc/rc

script moved the /usr/adm/sulog file to the /usr/adm/OLDsu directory at
system startup. An example of the format follows:

$ Is -al OLDsu

-"W-TW-rw- 1 root 2864 Oct 31 19:02 Oct31
-rW-rW-rw- 1 root 20211 Sep 12 09:15 SepOl
-rW-rW-rw- 1 root 938 Sep 12 09:15 Sep02
$ cat Sep0Ol

SU 09/01 16:29
SU 09/01 16:30
SU 09/01 16:32
SU 09/01 16:32
SU 09/01 16:34
SU 09/01 16:35
SU 09/01 16:36

tty?? root-root
tty?? root-sys
tty?? root-sys
tty?? root-root
tty?? root-sys
tty?? root-root
tty?? root-sys

+ + + + + + o+

The system logs are files into which the syslogd (8) command has logged
messages. They are located in the /usr/adm/syslog/* directory. Note that
these files are described by the configuration file /etc/syslog.conf . They
can be accessed using normal file manipulations such as tail (1), cat (1),

SG-2210 10.0

Accounting [10]

page (1), and more(1). They are written by the /etc/syslogd

command; the

logger (1B) command also makes entries in the system logs.

These logs consist of ASCII messages, which may include debug messages,
kernel messages, and so on.

The following example is the configuration file for /etc/syslogd

(these fields

are described on the syslogd (8) and syslog (3) man pages):

$ cat /etc/syslog.conf

USMID @(#)man/2302/02.accounting
#

This
#

#*.debug

#

mail.debug

#

kern.debug

#
daemon,auth.debug

#
#*.err;kern.debug;auth.notice
#

is a configuration

file

for

92.2 02/05/96 13:26:44
/etc/syslogd
/usr/adm/syslog/debug
/usr/spool/mqueue/syslog
/usr/adm/syslog/kern

/usr/adm/syslog/auth

/dev/console

*.err;kern.debug;daemon,auth.notice; /usr/adm/syslog/daylog
#
#*.alert;kern.err;daemon.err operator
* alert root
Note: The /etc/syslogd.conf file does not work if spaces are in it; only
tabs can be used to separate items in this file.
The following example shows a listing of the files in the /usr/adm/syslog
directory:
$ Is -l /usr/adm/syslog
total 10
-rW-r--r-- 1 root root 168 Jun 19 15:35 auth
-PW-r--r-- 1 root root 5164 Jun 19 15:45 daylog
-rW-r--r-- 1 root root 4107 Jun 19 15:45 Kkern
drwxr-xr-x 2 root root 16864 Jun 19 15:09 oldlogs
SG-2210 10.0 263

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.16.8 Error log

The error log is a file containing error records from the operating system. The
default error file is /usr/adm/errfile . There are two facilities available for
generating reports from the data collected by the error-logging mechanism. The
first is errpt (8), which processes error reports from the data, and the second is
olhpa , a hardware performance analyzer that reports the hardware errors and
statuses recorded in the system error log.

Note: The olhpa facility is only available on IOS-E based systems. It is not
available on GigaRing based systems.

The /etc/errdemon command (see errdemon (8)) reads /dev/error and
places the error records from the operating system into either the specified file,
or errfile , by default. The /etc/rc (see brc (8)) script starts

/etc/lerrdemon , and /etc/mverr is used to start a new errfile

The following example shows sample errpt output:

Tue Jun 7 12:01:49 1988
Error reported from 10S 0 for device S49-0-21

Major:0 Minor:6 Block:140868 status: Recovered
lop:0 Channel:21 Unit:0
Cylinder:1156 Head:5 Sector:0

Function:Read Requested:344064 bytes Received:344064 bytes

I0S 0 ERRORLOGGINGENABLED

See errpt (8) for further information. See the Online Maintenance Tools Guide for
Cray PVP Systems, Cray Research publication SD-1012, or the olhpa (8) man
page for information concerning olhpa . 2

10.1.16.9 Multilevel security (MLS) log

The multilevel security (MLS) log is a file containing security-relevant event
loggings. The security log, /usr/adm/sl/slogfile , can be analyzed by
using the reduce command. reduce extracts, formats, and outputs entries
from UNICOS security event files. The security event logging daemon,
slogdemon (8), collects security-relevant records from the operating system by
reading the character special pseudo device /dev/slog . For more information
regarding the format of the security log and on the UNICOS MLS feature, see

2 CRAY RESEARCH PRIVATE. This document contains information private to Cray Research, Inc. It can be
distributed to non-CRI personnel only with approval of the appropriate Cray manager.

264 SG-2210 10.0

Accounting [10]

the reduce (8) man page and General UNICOS System Administration, Cray
Research publication SG-2301.

10.1.16.10 System activity log

10.1.16.11 Message log

SG-2210 10.0

The system activity report facility provides commands for generating various
system activity reports. Two reporting capabilities exist (one automatic and one
user-driven); however, the actual reports are created by the sar (8) program in
either case. The system activity log is located in /usr/adm/sa/sa DD and can
be accessed with sar .

Warning: The log files located in /usr/adm/sa/sa DD on a Cray ML-Safe
configuration of the UNICOS system are considered to be covert channels.
You may want to consider restricting access to these files to the adm group.

With this command, you can generate system activity reports in real time and
save system activities in a file for later use. The sal, sa2, and sadc commands
(see sar (8)) generate system activity data on a routine basis, with sa2 calling
sar to generate the report.

UNICOS counters are incremented as various system actions occur. These
counters provide system-wide measurements. sadc accesses /devikmem to
read these system activity counters.

Refer to the sar (8) man page for more information on the format of the system
activity log.

The message log contains messages and replies to the operator. It is located in
{usr/spool/msg/msglog.log and can be accessed using normal file
manipulations, such as tail (1), cat (1), pg(1), and more (1). All messages and
replies to and from the operator console are put into this file by the console. An
example of the file format follows:

Apr 1 07:11:06 Message daemon stopped

Apr 1 09:36:54 Message daemon started

Apr 1 08:09:49 Message 1: TM122 - mount tape WK1102(sl) on a CART
device for wuserl 50, () or reply cancel / device name

Warning: The msglog.log file is considered a covert channel on a Cray
ML-Safe configuration of the UNICOS system. You may want to consider
restricting access to this file to the adm group.

265

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

10.1.16.12 Accounting logs

The accounting logs are files containing various accounting information, as

follows:

Log

csainfo

utmp

wtmp

pacct

266

Description

A file containing boot times. It can be accessed with the od(1)
command (the -d option will give the seconds). Each time the
system is booted, the boot time is written to /etc/csainfo by
the /etc/csaboots (see csaboots (8)) command. csaboots is
invoked by /etc/rc (see brc (8)). See also the description of the
boot log in Section 10.1.16.1, page 260.

A file containing active system and terminal connection
information. This log is used by write (1), who(1), wall (8), and
mail (1) in getting user information. It is located in /etc/utmp

and can be accessed using the who(1l) and last (1B) commands. It
is written to by init (8), date (1), login (1), and getty (8). For
information on the format of utmp, see utmp (5).

Warning: On a Cray ML-Safe configuration of the UNICOS
system, utmp and wtmp are considered to be covert channels.
You may want to consider restricting access to these files to the
adm group.

A file containing a system and terminal connection history record.
This log includes usage statistics for each terminal, date change,
time stamp, boot records, reboots, shutdowns, and state changes.
wtmp must exist; programs that access it do not create it (the
letc/lrc script creates /etc/wtmp by default).

Records are in the form of utmp (5); acctcon (8) and csaline (8)
convert /etc/wtmp into session and charging records. This data
is merged into the system accounting reports. wtmp can also be
accessed using the who(1) and last (1) commands.

wtmp is written by init (8), date (1), login (1), and getty (8).
For information on the format of wtmp, see utmp (5).

Files containing per-process accounting data; these are located in
/usr/adm/acct/day/pacct* and can be accessed using the
acctcom (1) command. Note that these files are read by system
accounting programs, and the information appears in the
accounting reports. pacct is written by the kernel, and its format
is described in /usr/include/sys/acct.h

SG-2210 10.0

Accounting [10]

10.1.16.13 NQS log

SG-2210 10.0

Warning: On systems running a Cray ML-Safe configuration of
e the UNICOS system, access to pacct* files should be
restricted to the adm group.

The following data files are accessed by system accounting programs, and their
information appears in the accounting reports:

Log Description

disktacct A file containing disk accounting data, located in
/usr/adm/acct/nite/disktacct . The
{usr/lib/acct/dodisk (see dodisk (8))
command writes this file.

fee A file containing user fees for accounting data,
located in /usr/adm/acct/day/fee . This file
is written by /usr/lib/acct/chargefee (see
chargefee (8)).

ngacct A file containing NQS daemon accounting data,
located in /usr/adm/acct/day/ngacct* . This
file is written by /usr/lib/ngs/ngsdaemon
See /usr/include/acct/dacct.h for the
format.

soacct A file containing socket accounting data, located
in /usr/adm/acct/day/soacct* . This file is
written by the kernel. See
{usrfinclude/sys/acct.h for the format.

tpacct A file containing tape daemon accounting data,
located in /usr/fadm/acct/day/tpacct* . This
file is written by /usr/lib/tp/tpdaemon (see
tpdaemon (8)). See
Jusr/include/acct/dacct.h for the format.

The NQS log contains NQS information. Its default location is the ASCII file

lusr/spool/ngs/log (you can change the location of the log file with the
gmgr set log_file command; to see where the current log file resides, use
the gmgr show parameters command). Access to /usr/spool/ngs is

restricted; however, if you have the correct permissions, you can access the
NQS log file using normal file manipulations, such as tail (1), cat (1), pg(1),
and more(1). This log is created by the NQS log daemon.

267

UNICOS® Basic Administration Guide for CRAY J90se™ GigaRing based Systems

268

Warning: On systems running a Cray ML-Safe configuration of the UNICOS
system, access to the NQS log should be restricted to the adm group.

An example of the log file’s format is as follows:

05/13
05/13
05/13
05/13
05/13
05/13
05/13
05/13
05/13

08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00

I getpkt(): Received packet from local process: <89775>.

I getpkt(): Client process real UID=<900>.

I getpkt(): Packet type=<PKT_QUEREQVLPQ(30)>.

I getpkt(): Packet contents are as follows:

I getpkt(): Pkt_str[1] = <batnam1l >.

I getpkt(): Pkt_int[1] = <40>.

I getpkt(): Pkt_int[2] = <119>.

T ngs_quereq(): Request <40.cool>: Attempting to read request.
T ngs_quereq(): Request <40.cool>: Request was read.

SG-2210 10.0

