File System Planning [2]

All of the files that are accessible from within the UNICOS operating system are
organized into file systems. File systems store data in formats that the operating
system can read and write.

Warning: This chapter contains warnings and information critical to the use
e of a Cray ML-Safe configuration.

This chapter discusses several aspects of administering file systems. This
chapter is organized as follows:

e Introduction to UNICOS file systems

* File system concepts

* Using the mkspice (8) command (IOS-E and IPN-1 systems only)
¢ Creating file system nodes

* Configuring disk arrays

* File system initialization

* Inode allocation strategies

¢ Inode region allocation

e Labeling a file system

* Mirrored file systems

e Performance considerations

2.1 Introduction to UNICOS file systems

The following sections introduce some general characteristics of UNICOS file
systems. The following topics are discussed:

¢ File system overview
e File system types

¢ File system strategies

SG-2301 10.0 7

General UNICOS® System Administration

2.1.1 File system overview

2.1.2 File system types

The file is the logical unit of data storage within the UNICOS operating system.
Files are grouped into structures called file systems. The root file system contains
the base or root of the file system tree. Other file systems are logically attached
to (mounted) and detached from (unmounted) the root file system by the super
user.

A file system is typically made up of slices of one or more disk devices.
However, a file system can also reside totally or in part in memory.

The solid-state storage device (SSD) is not supported on CRAY J90 systems.

The exact format of the file system data is determined by the hardware
architecture, the mkfs (8) options used to make the file system, and the version
of the UNICOS operating system under which the file system was made. The
following list summarizes the types of file systems:

Type Description

NC1FS UNICOS file system on Cray PVP systems
NFS Network file system (NFS)

SFS Shared file system

PROC /proc file system

INODE /inode file system

NC1FSfile systems are the standard UNICOS file system on Cray PVP systems.

File systems of the type NFSreside on a remote server, have been mounted

under the UNICOS operating system, and can be accessed through NFS. For
information on administering NFS file systems, see the UNICOS Networking

Facilities Administrator’s Guide, Cray Research publication SG-2304.

The SFSfile system is a file system that can be shared among multiple Cray
Research systems. To use the UNICOS Shared File System (SFS) feature you
must obtain a software license, which is maintained and administered through
the Flexible License Manager (FLEXIm) product. For information on the
UNICOS SFS feature, see Shared File System (SFS) Administrator’s Guide, Cray
Research publication SG-2114.

The /proc file system is intended to be used by the debugging utilities to
debug running processes and, to a lesser extent, as an interprocess

SG-2301 10.0

File System Planning [2]

communication mechanism. The /proc file system is a special file system that
consists of a directory in which all of the processes present in the system appear
as regular files. Processes can then be read and written as though they were
simple disk files.

The chown (1), chmod(1), and link (8) operations are prohibited in the /proc
file system. Users may modify the regular files (representing processes) that
they own. The super user may modify all files.

The /proc file system does not consume any disk space or kernel buffers.
Instead, it is produced directly from information that is maintained in the
kernel process table and is constantly changing as processes are created and
destroyed in the system. The /proc file system never needs to be checked for
damage by any of the file system repair utilities (for instance, fsck (8)) because
such damage is impossible.

The output of the df (1) command presents different information for the /proc
file system than for other file systems. The number listed under % disk

space used refers to the percentage of memory in use. The number listed
under % free refers to the percentage of memory available at the present time.

For more information about the /proc file system, see proc (4).

The /inode file system allows privileged processes access to a file or directory
when the process knows the device and inode number of a file system. For
more information about the /inode file system, see inode (4).

2.1.3 File system strategies

SG-2301 10.0

No one configuration of available disk drives into file systems will prove best
for all purposes. In addition, as the needs of users change, the file system
layout will most likely need to be reconfigured occasionally. In the absence of a
set of absolute rules, the following facts and guidelines should prove useful
when you choose the file system layout for your system.

* When organizing disks into file systems, you should first consider attributes
of the user population. These attributes can provide a logical division, such
as the following:

— Location
— Project
- Applications

— File-storage requirements

General UNICOS® System Administration

10

— Security considerations

By considering these factors, you can significantly enhance system
performance.

A large file system allows the maximum amount of resource sharing.
However, a large file system takes far longer to dump and restore than
several small file systems. In some cases, smaller file systems are desirable
to separate users and reduce disk contention. In addition, a file system that
uses a small number of disks has a lower risk of losing data because of disk
failures.

There is no universal solution to deciding on the best file system size. In
most cases, a compromise is needed to maximize performance while
maintaining file system recoverability.

Because each file is contained in a single file system, a file can be no larger
than the size of its file system.

A user can take disk space from a file system only if it contains a directory
(or file) with write permissions for the user. This usually means that a user
can take space only in the file system that contains the user’s login directory
and in the file systems of shared temporary directories /tmp and

fusritmp . Therefore, two users can avoid competition over disk space if
they have login directories on different file systems and if they do not use
the shared temporary directories. Many UNICOS commands use temporary
directory space, but the location of the space can be controlled by the
TMPDIRshell variable.

You should also consider throughput, or the file transfer rate, when dividing
disks into file systems. The two relevant factors are hardware transfer rate
and head-positioning overhead.

The hardware transfer rate is fixed and sets a limit on data transfer speed,
but several disks can be combined into a single file system to provide a
higher aggregate transfer rate.

Head-positioning overhead is a problem when a single disk is split into
several partitions and those partitions are active simultaneously. The time
wasted in moving the head between the two partitions can decrease the
effective transfer rate.

To maintain optimum performance, you should configure your system with
no more than one slice per physical device for each file system. This reduces
head movement and channel contention.

SG-2301 10.0

File System Planning [2]

2.2 File system concepts

2.2.1 Disk organization

SG-2301 10.0

The following sections provide an overview of the basic file system concepts.
The information is presented in the following order:

¢ Disk organization

Disk flawing (IOS-E and IPN-1 only)
* Disk striping

¢ Disk mirroring

® Physical devices

e Simple logical devices

* Striped logical devices

* Mirrored logical devices

¢ Logical device descriptor files

Disk drives are divided into sectors. The sectors are numbered, starting with 0.
Each sector can be identified by its sector number. See the diskspec (7) man
page for information on the sector size of disk drives used with I/O subsystem
model E (IOS-E) based systems and disk drives connected to the IPI-2 I/O
Node (IPN-1). See the disksfcn (7) man page for information on the sector
size of disk drives connected to the FCN-1. See the disksmpn (7) man page for
information on the sector size of disk drives connected to the MPN-1.

A track is a circle on the disk that the disk head can read in a single revolution
of the disk without moving. The density of the disk determines how many
sectors are in a track. The tracks are also numbered, starting from 0.

A cylinder is the group of tracks, one from each platter surface, with the same
track number. The number of tracks per cylinder is determined by the number
of surfaces within the disk device.

Note: Disk devices connected to the multipurpose node 1 (MPN-1) and disk
devices connected to the Fibre Channel I/O Node (FCN-1) do not organize
disks into tracks or cylinders, but only into sectors.

See the diskspec (7) man page for a summary of the physical characteristics of
the disk drives used with IOS-E based systems and disk drives connected to the

11

General UNICOS® System Administration

IPI-2 I/O Node (IPN-1). See the disksfcn (7) man page for a summary of the
physical characteristics of disk drives connected to the FCN-1. See the
disksmpn (7) man page for a summary of the physical characteristics of disk
drives connected to the MPN-1.

Disk drives are divided into slices, which are contiguous groups of cylinders.
This division is specified during disk configuration. For each slice there is a
corresponding physical device node.

A partition is part of a file system that consists of a single slice of a disk device.

A collection of slices from one or more physical drives make up a logical device.
Logical devices are also specified at disk configuration. For each logical device
there is a corresponding logical device node.

Disk drives on IOS-E based systems and disk drives on the IPN-1 must have a
slice of cylinders reserved for use by the customer engineer (CE cylinders) and a
slice reserved as spares cylinders to be used in place of other cylinders of the
disk that become unusable or flawed.

2.2.2 Disk flawing (I0S-E and IPN-1 only)

12

Disk drives have minute defects, or flaws, on the recording surface that may
interfere with reading and writing data. The number of flaws and their
locations vary from drive to drive. Each disk device is shipped with a factory
flaw table that lists known flawed blocks on the disk. Disk flawing under the
UNICOS system is done on a physical device basis, by replacement of bad
blocks with alternative blocks from the spares cylinders.

Note: On CRAY J90 systems, disk flawing is handled by the IOS, rather than
by the UNICOS system.

The information for bad blocks is kept separate from the file system on each
physical device and is known only to the driver. The advantage of this
mechanism is that the logical device always appears contiguous, which allows
file systems to be transferred to various logical devices without regard for bad
blocks.

Flawing is done twice; once before a physical device is placed in the system and
again if blocks go bad during online use. Typically, flawing is done either
before a new drive is placed online for the first time or once for each device
when an initial system install is performed.

SG-2301 10.0

File System Planning [2]

2.2.3 Disk striping

2.2.4 Disk mirroring

SG-2301 10.0

For information on creating physical disk device inodes that describe the spare
sector map, factory flaw map, and diagnostic and customer engineering slices,
see Section 2.3, page 15.

Striping is designed for moving large amounts of data at very high bandwidths,
higher than one can normally achieve with existing disk drives. With this
technique, several drives are combined into one logical unit. Data in n-sector
size pieces is written to and read in from the drives in a round-robin fashion,
allowing I/0 to the individual disks to be overlapped. The drives of a stripe
group must all be the same type; for example, you cannot have a stripe group
of two DD-49 disk drives and one DD-40 disk drive.

Note: CRAY]90 systems do not support IOS disk striping.

The overlapping of I/O operations causes the increased bandwidth. Each drive
in the stripe group (group of striped disks) can have an I/O operation active
simultaneously at any time. For example, consider a four-drive stripe group to
which you want to write several tracks of data. A write request for a track is
started for the first drive then a write request for the second track to second
drive is started without waiting for the first write to complete, and so on. The
I/0O operations are asynchronous between drives in the stripe group.

The disadvantage to striping is that sequential data is scattered across several
disks. Losing any one of the disks of the stripe group ruins the striped files (for
a four-drive stripe group with a striping factor of one track, you would miss
every fourth track).

In most cases, the only device that you should use for striping is SWAPDEVas it
is usually the only device with I/O requests large enough for striping to be
advantageous. You should not use striping for /root or /usr file systems.

Mirroring is used to provide data redundancy when data integrity is important.
It is implemented by using two to eight slices, usually on as many different
physical disks, each of the same size. A write operation to a mirrored device
causes separate write operations to be performed on each of the components. A
read operation may be performed on any of the component devices.

For instructions on creating mirrored devices, see Section 2.4.4.3, page 26. For a
description of mirrored file systems, see Section 2.10, page 47.

13

General UNICOS® System Administration

2.2.5 Physical devices

There are four types of physical-level devices, each with its own device driver,
as follows:

e Disk drive

e Solid-state disk

e RAM disk

e Network or HIPPT disk device

By convention, disk drive, solid-state disks, and RAM disk device files are kept
in the /dev/pdd directory and HIPPI disk device files are kept in the
/dev/hdd directory. Disk drives connected to the MPN-1 or HPN-1 on a

GigaRing channel are kept in the /dev/xdd directory.

For instructions on creating physical devices, see Section 2.4.1, page 17.

2.2.6 Simple logical devices

A logical disk device is a collection of blocks on one or more physical disks or
other logical disk devices. A logical direct device indicates that the logical disk
includes exactly one partition or physical slice. A logical indirect device indicates
that the logical disk includes more than one partition or physical slice.

Logical drivers call the physical drivers by using the device switch mechanism.
By convention, logical device files are kept in the /dev/dsk directory.

The simple logical device is the highest level driver. Any mountable file system
will interface with the driver at this level. Logical device cache is supported
only at this level.

For information on creating logical devices, see Section 2.4.4, page 23.

2.2.7 Striped logical devices

14

A striped logical device is a means of combining two or more slices of two
different physical devices together to increase bandwidth. This is best for
heavily used partitions like the swap device where very large chunks of data
are being transferred.

Striped logical devices consist of physical device names lists, and can be
combined into simple logical devices. Striped logical device routines can be

SG-2301 10.0

File System Planning [2]

called directly with the open (2), close (2), read (2), write (2), and ioctl (2)
system calls or from another logical device driver.

By convention, striped logical device files are kept in the /dev/sdd directory.

For information on creating striped logical devices, see Section 2.4.4.2, page 25.

2.2.8 Mirrored logical devices

A mirrored logical device is used to provide data redundancy where data
integrity is important. It consists of two or more slices, typically on as many
different physical devices, each of the same size. A mirrored logical device is
similar in configuration to a striped device. A write operation to a mirrored
device causes separate write operations to be performed on each of the
components. A read operation may be performed on any of the component
devices.

Mirrored logical devices are made up of lists of physical device names, and can
be combined into simple logical devices. Mirrored logical device routines can
be called directly with the open, close , read , write , and ioctl system calls,
or from another logical device driver, but not concurrently.

By convention mirrored logical device files are kept in the /dev/imdd directory.

For more information on mdd files, see the mdd(4) man page. For instructions
on creating mirrored devices, see Section 2.4.4.3, page 26. For a description of
mirrored file systems, see Section 2.10, page 47.

2.2.9 Logical device descriptor files

A logical device descriptor file is used to combine one or more character special
disk files to form a single logical disk device. A logical device descriptor file is
a list of absolute path names of striped, mirrored, physical, and HIPPI devices.
By convention, logical descriptor files are kept in the /dev/ldd directory.

For instructions on creating logical descriptor files, see Section 2.4.4, page 23.

2.3 Using the mkspice (8) command (IOS-E and IPN-1)

SG-2301 10.0

When configuring a disk for the first time, use the mkspice (8) command to
create physical disk device inodes that describe the spare sector map, factory
flaw map, and diagnostic and customer engineering slices. You name the
physical disk devices according to their I/O paths. The following example

15

General UNICOS® System Administration

16

creates the spare , ift , diagnostic , and ce slices for DD-49s on cluster 0,
IOP 1, channel 30; cluster 1, IOP 2, channel 32; and cluster 1, IOP 3, channel 34:

/etc/mkspice -t dd49 0130 01232 01334
The mkspice (8) command is not supported on CRAY J90 systems.

The -i option of the mkspice (8) command initializes the spare maps from the
ift nodes. It also initializes the /etc/aft files (ASCII flaw files) which are
used with the bb(8) (bad block) command. See aft (5) for information on the
aft files and bb for information on creating the bad block files from the aft
files.

The -i option of the mkspice (8) command invokes the ift (8) command to
read the Factory Flaw table from the /dev/ift node. The following is an
example of ift output.

*

* engineering flaw table for DDA49

*

* factory flaw map date: 10-08-86

*

* S/N C2236

0000

* count head sector cylinder
1 3 0 1333
1 3 1 1333
1 3 24 1333

The -i option of the mkspice (8) command also invokes the spmap(8)
command, which generates and writes a physical disk spare map. The spmap
command reads flaw information from standard input in the same format
written by the ift (8) command. The output from ift can be piped directly
into spmap, or the output from ift can be written to an ASCII Flaw table and
then piped into spmap.

It is recommended that you create the ASCII Flaw tables. If a new flaw
develops, it must be added to the end of the ASCII Flaw table with a text
editor. The spmap command then needs to be rerun. If the ASCII Flaw table is

SG-2301 10.0

File System Planning [2]

lost, you should re-create it, usingspmap to ensure that the ordering of the
alternate blocks is preserved. For example:

letc/spmap -r /dev/spare/0130 > /etc/aft/0130

2.4 Creating file system nodes

Disk partitions and logical devices are defined with the mknod(8) command.
Only the root and swap partitions are defined in the parameter file during
startup.

This section provides information on the following areas of creating file systems:
¢ Creating physical devices

e Examples of physical device creation

¢ Creating physical devices (GigaRing systems)

¢ Creating logical devices

¢ Creating logical descriptor files

* Defining alternate disk paths

e Shared dump and swap configuration

2.4.1 Creating physical devices

SG-2301 10.0

Note: For information on creating physical devices on GigaRing based
systems, see Section 2.4.3.

A disk slice is defined by an I/O path, a unit number, a starting sector number,
and a length in sectors. Slices must be aligned on track boundaries, and in
practice they are often aligned on cylinder boundaries.

To create a partition, you must first use the mknod(8) command to create a
character special file or node and specify a major and minor device number for
each slice you want to create. The major device number should be expressed
symbolically.

Symbol Device

dev_pdd Disk devices.
dev_rdd RAM disk devices.

17

General UNICOS® System Administration

18

dev_ssdd SSD devices. (SSD devices are not supported on CRAY J90
systems.)

The minor device number ranges from 0 to PDDSLMAXor disk devices, O to
RDDSLMAXor RAM disk devices, and 0 to SSDDSLMAXor SSD devices.

The following minor device numbers have specific designations:

Number Designation

250 The root partition on the fsload tape.

251 The swap partition in the initial UNICOS kernel.

252 The diagnostic partitions.

253 The ce partitions (customer engineering).

254 The spare partitions (Factory Flaw table).

255 The ift partitions. The number 255 is special in that only nodes

with this minor device number can be used on the ioctl (8)
command to bring a disk device up after it has gone down.

Only one node of a minor device number can be open at any given time. With
the exception of the diagnostic |, ce, and ift nodes, do not create two disk
nodes with the same minor device number.

The physical device driver fills in internal driver structures and checks for
conflicts in the device open routine. An array of slice structures are indexed by
the minor device number within a given physical device driver.

The following partitions can be opened by the system without using the nodes
in /dev (but may still be accessed through nodes):

* root
* swap

The index, offset, and length of these partitions is passed into the UNICOS
kernel through the parameter file. The parameter file index, offset, and length
must match the node information. A node for root is needed to run the

fsck (8) command; a node for swap is required for defining flaws; and a node
for dump is required for snatching dumps.

The following example shows the mknod command needed to create the
diagnostic physical device node for a DD-60 disk drive:

/dev/ddd/2230.0 c dev_pdd 252 10 02230 O 120106 0137 0 O

SG-2301 10.0

File System Planning [2]

Component Definition
/dev/ddd/2230.0 Device path name

c Character special
dev_pdd Major device number
252 Minor device number
10 Disk type

02230 I/0 path in octal

0 Starting sector number
120106 Length of slice in sectors
0137 Special purpose flags

0 Alternate I/O path for redundancy
0 Disk unit number

2.4.2 Examples of physical device creation

Note: For information on creating physical devices on GigaRing based
systems, see Section 2.4.3.

The following sections give detailed examples of creating the following types of
physical devices:

e Disk
e RAM
* 5SSD (Not supported on CRAY J90 systems)

Note: When working with I/O paths and flags, remember that octal
numbers must have a leading 0. Because 1/O paths are usually expressed
in octal, take care when working with a multicluster system to express
I/0 paths in the proper form to a command. For example, I/O path 0130
works as expected because of the leading 0, but I/O path 1232 needs a
leading 0 when expressed to a UNICOS command.

2.4.2.1 Creating a physical disk device

To create a physical disk device, use the mknod(8) command. For information
about the physical disk device interface, including the supported disk types, see
the pdd(4) man page.

SG-2301 10.0 19

General UNICOS® System Administration

20

Slices normally begin and end on cylinder boundaries.

The I/0 path is a concatenation of the cluster, EIOP, and channel numbers. The
major number is dev_pdd , and the minor number should be less than
PDDSLMAXas defined in the parameter file.

The available flags are defined in the /usr/include/sys/eslice.h file as
follows:

/*

* flags for physical slice control

*/

#define S _CONTROL 0001 /* control device */

#define S _NOBBF 0002 /* no bad block forwarding */
#define S_NOERREC 0004 /* no error recovery */

#define S _NOLOG 0010 /* no error logging */

#define S _NOWRITEB 0020 /* no write behind *

#define S CWE 0040 /* control device write enable */
#define S_NOSPIRAL 0100 /* no spiraling */

#define S _NOSORT 0200 /* no disk sorting */

Example 1: The following commands define two slices on a DD-49 on cluster 1,
EIOP 2, channel 32. The slice dd49_0 starts at cylinder 0 and spans 732 (01334)
cylinders; its flags field is 0, there is no alternate I/O path, and its unit field is
0. dd49_1 starts at cylinder 732 (01334) and spans 150 (0226) cylinders; its flags
field is O, there is no alternate I/O path, and its unit field is 0.

/dev/pdd/dd49_0 c dev_pdd 50 3 01232 0 245952 0 0 O
/dev/pdd/dd49_1 c dev_pdd 51 3 01232 245952 50400 0 0 O

Example 2: The following commands define two slices spanning an entire
DD-60 on cluster 0, EIOP 1, channel 30 (the DD-60s are daisy-chained and are
on units 0 and 1):

/etc/mknod /dev/pdd/dd60_0 ¢ dev_pdd 200 10 0130 O 119692 0 0 O
/etc/mknod /dev/pdd/dd60 1 c dev_pdd 201 10 0130 0 119692 0 0 1

Use the stor (8) command to examine your partitions. The following example
shows the stor output that you would receive if you typed in the preceding
mknod(8) commands:

SG-2301 10.0

File System Planning [2]

DD60 0130.0

minor

minor

minor

START END LENGTH

Cbock oylhd oylhd blocks mbytes
200 0 0.00 05052.00 119692 1961.0

START END LENGTH

Cblock olhd colhd blocks mbytes
201 0 0.00 05052.00 119692 1961.0

START END LENGTH

block oylhd oylhd blocks mbytes
50 0 0.00 01334.00 245952 1007.4
51 245952 01334.00 01562.00 50400 206.4

2.4.2.2 Creating RAM disks

RAMramdev { length

}

SG-2301 10.0

pdd ram

The amount of core memory available for creating RAM disks is specified in the
parameter file, as shown in the following example:

10240 blocks;

{minor 3; block 0 ; length 10240 blocks; }

To create a RAM disk physical device, use the mknod(8) command. The device
type and 1/0 path parameters are not applicable and should be 0. The major
number is dev_rdd , and the minor number should be less than RDDSLMAXas
defined in the parameter file. The following example shows the creation of a
RAM physical device:

/etc/mknod
/etc/mknod

/dev/pdd/ramO
/dev/pdd/ram1

c dev.rdd 0 0O 0 1024
c dev.rdd 1 0 O 1024 9216

21

General UNICOS® System Administration

2.4.2.3 Creating SSD slices

SSD ssddev { length

}

pdd ssd

The amount of SSD memory available for creating SSD slices is specified in the
parameter file, as shown in the following example. (SSD devices are not
supported on CRAY J90 systems.)

10240 blocks;
{minor 3; block 0 ; length 10240 blocks;}

To create an SSD physical device, use the mknod(8) command. The device type
and I/O path parameters are not applicable and should be 0. The major
number is dev_ssdd , and the minor number should be less than SSDDSLMAX
as defined in the parameter file. The following example shows the creation of
an SSD physical device:

/etc/mknod /dev/pdd/ssdO c dev.ssdd 0 0 O 0 1024
/etc/mknod /dev/pdd/ssdl c dev_ssdd 1 0 O 1024 9216

For information on using the SSD as a logical device, see Section 2.11.3, page 56.

2.4.3 Creating physical devices (GigaRing systems)

22

/etc/mknod

You define a disk slice on a GigaRing based system just as you define a disk
slice on an IOS-E based system, with the following considerations:

* The major device number for a disk device connected to the IPN-1 should
be expressed symbolically as dev_qdd . See the qdd (4) man page.

* The major device number for a disk device connected to the MPN-1 or the
FCN-1 should be expressed symbolically as dev_xdd . See the xdd (4) man

page.
¢ The I/O path for a physical device on a GigaRing based system is a

concatenation of the GigaRing number, the node number, and the controller
number of the device.

* By convention, xdd device files are kept in the /dev/xdd directory. qdd
device files, on the other hand, are kept in the /dev/pdd directory.

The following example shows the mknod (8) command needed to create a
physical device node on a DD-318 disk drive connected to the MPN-1:

/dev/xdd/s100a c dev xdd 2 0 03021 O 100000 0 01 0

SG-2301 10.0

File System Planning [2]

Component Definition
/dev/xdd/s1000a Device path name

c Character special
dev_xdd Major device number

2 Minor device number

0 Disk type

03021 I/0 path in octal

0 Starting sector number
100000 Length of slice in sectors
0 Special purpose flags

0 Alternate I/O path for redundancy
1 Disk unit number

0 Disk subunit number

2.4.4 Creating logical devices
Logical devices are categorized into the following types:
¢ Simple logical
* Striped logical
¢ Mirrored logical
Each type has its own major number and associated device driver.

Logical devices are created by using the mknod(8) command, which has the
following format:

/etc/mknod name b major minor 0 O path
/etc/mknod name C major minor 0 O path
name Name of the logical device.
b Block special device.
c Character special device.
major Major device number.

SG-2301 10.0 23

General UNICOS® System Administration

minor Minor device number in the range 1 through LDDMAXYou cannot
use minor 0 for a logical device.

00 Placeholders for future use.

path Absolute path name to a physical device, logical device, or a

logical descriptor file.

2.4.4.1 Creating simple logical devices

24

Simple logical devices can point to a physical device or a logical descriptor file
and use major number dev_Idd . The minor number must be less than
LDDSLMAXas defined in the parameter file.

The following example command sequence creates a simple logical direct
device and its associated physical slice. The logical direct device has a minor
device number of 100, it is on a DD-49, on IOC 0, IOP 1, channel 30, starting at
0 with a length of 32,768 sectors.

/etc/mknod /dev/pdd/x0 ¢ dev_pdd 100 3 0130 0 32768 0 0 0 O
/etc/mknod /dev/dsk/x0 b dev_ldd 100 O O /dev/pdd/x0

To examine logical device nodes, use the ddstat (8) command. The following is
an example of ddstat output for the preceding mknod(8) commands:

[etc/ddstat /dev/dsk/x0
x0 b 34/100 /dev/pdd/x0
/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 O

The following example command sequence creates a simple logical indirect
device and its associated physical slices:

/etc/mknod /dev/pdd/x0 ¢ dev_pdd 100 3 0130 0 32768 0 0 0 O
/etc/mknod /dev/pdd/yO ¢ dev_pdd 110 3 0132 0 32768 0 0 0 O
/etc/mknod /dev/ldd/clusterO L /dev/pdd/x0 /dev/pdd/y0

/etc/mknod /dev/dsk/clusterO b dev Idd 30 O O /dev/ldd/clusterO

The following is an example of the associated ddstat output:

/etc/ddstat /dev/dsk/clusterO

cluster0 b 34/30 /dev/ldd/clusterO
/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 O
/dev/pdd/y0 c 32/110 3 0132 0 32768 00 0 0 O

SG-2301 10.0

File System Planning [2]

2.4.4.2 Creating striped logical devices

/etc/mknod
/etc/mknod
/etc/mknod
/etc/mknod

SG-2301 10.0

Striped logical devices must point to a logical descriptor file. Striped logical
devices use major number dev_sdd , as defined in the parameter file.

The following example command sequence creates a striped logical device, its
associated physical slices, logical descriptor file, and direct logical device:

/etc/mknod /dev/pdd/x0 ¢ dev_pdd 100 3 0130 0O 32768
/etc/mknod /dev/pdd/yO ¢ dev_pdd 110 3 0132 0 32768
/etc/mknod /dev/ldd/stripe0 L /dev/pdd/x0 /dev/pdd/y0
/etc/mknod /dev/sdd/stripe0 b dev_sdd 30 O O /dev/ldd/stripeO
/etc/mknod /dev/dsk/stripe0 b dev_ldd 30 O O /dev/sdd/stripe0

The associated ddstat output is as follows:

/etc/ddstat /dev/dsk/stripe0
stripe0 b 34/30 /dev/sdd/stripe0
/dev/sdd/stripe0 b 39/30 /dev/ldd/stripe0
/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 O
/dev/pdd/y0 c 32/110 3 0132 0 32768 00 0 0 O

The following procedure provides an example of how to define devices that
include SSD devices.

1. Define physical device slices of equal size where each device is on a unique
I/0 path (argument 6), each is of the same length (argument 8) and each
has the same stripe I/O unit (definable on SSD only).

/dev/pdd/ssd0_s1
/dev/pdd/ssdl_si1
/dev/pdd/ssd2_s1
/dev/pdd/ssd3_s1

c dev_ssdd 10 3 001 O 1000000 O O O 1024
c dev_ssdd 20 3 002 0 1000000 O O O 1024
c dev_ssdd 30 3 004 0 1000000 O O O 1024
c dev_ssdd 40 3 010 O 1000000 O O O 1024

2. Define a logical node to reference the four stripe components.

/etc/mknod

/dev/ldd/s1
/dev/pdd/ssdl_s1
/dev/pdd/ssd2
/dev/pdd/ssd3_s1

3. Define a striped device.

/etc/mknod

/dev/sdd/s1

L /dev/pdd/ssd0 _sl1

sl

c dev_sdd 10 O O /dev/ldd/sl

25

General UNICOS® System Administration

4. Define a logical disk device to reference the striped device.
/etc/mknod /dev/dsk/sl b dev_Idd 10 0 O /dev/sdd/sl

You can use the ddstat (8) or the stor (8) command to verify the device
structure as defined. This verification is done by reading the appropriate inodes
and files. The device is not opened when ddstat or stor performs a read
operation. Executing /etc/ddstat on the configuration example would show
the following:

/dev/dsk/s1 b 34/10 0 O /dev/sdd/sl
/dev/sdd/s1 c 39/10 0 0 /devllss/s1

/dev/pdd/ssd0_s1 c 37/10 3 001 O 1000000 O O O 1024
/dev/pdd/ssdl _s1 c¢ 37/20 3 002 O 1000000 O O O 1024
/dev/pdd/ssd2_s1 c 37/30 3 004 O 1000000 O O O 1024
/dev/pdd/ssd3_s1 ¢ 37/40 3 010 O 1000000 O O O 1024

Errors in configuration are generally detected by the ddstat or stor
command or by the device drivers when the logical disk device is first opened.
Errors at open time are issued to the console and the kernel log.

2.4.4.3 Creating mirrored logical devices

26

Mirrored logical devices must point to a logical descriptor file and use major
number dev_mdd. The minor number must be less than LDDSLMAXas defined
in the parameter file. The following command sequence creates a mirrored
logical device, its associated physical slices, logical descriptor file, and direct
logical device:

/etc/mknod /dev/pdd/x0 ¢ dev_pdd 100 3 0130 0O 32768
/etc/mknod /dev/pdd/yO ¢ dev_pdd 110 3 0132 0 32768

/etc/mknod /dev/ldd/mirrorO L /dev/pdd/x0 /dev/pdd/y0
/etc/mknod /dev/mdd/mirrorQ ¢ dev_mdd 30 0 077 /dev/ldd/mirrorO
letc/mknod /dev/dsk/mirrorO b dev Idd 30 O O /dev/mdd/mirrorQ

The associated ddstat output is as follows:

/etc/ddstat /dev/dsk/mirrorO
mirror0 b 34/30 /dev/mdd/mirrorO
/dev/mdd/mirrorO b 40/30 0 077 /dev/ldd/mirrorQ
/dev/pdd/x0 c 32/100 3 0130 0 32768 00 0 0 O
/dev/pdd/y0 c 32/110 3 0132 0 32768 00 0 0 O

Each member of a mirrored group (in the previous example pdd/x0 and
pdd/y0) contains a rwmode parameter. The bits of this parameter control read,

SG-2301 10.0

File System Planning [2]

write, and initialize privilege for each member; each octet represents (from right
to left) r-w-x (read /write/x(init)). For a rwmode of 077, as shown in the
preceding example, both X0 and yO are read/write/x(init). A rwmode of 073
would indicate initialize X0 and yO0, read only from y0, and write to both x0
and y0. A rwmode of 037 would indicate that xO is read-enabled and yO is not.

See the mdd(4) man page for more information on mdd files. For a more
complete overview of mirrored file systems, see Section 2.10, page 47.

2.4.4.4 Restrictions on striped and mirrored logical devices

The following restrictions and guidelines apply to the configuration of striped
and mirrored groups:

e All slices must be of the same length.

e All devices on a striped group must be up. When configuring a mirror
group, only one member needs to be up.

e The starting sector of each slice must be a multiple of the stripe factor.
* The length of each slice must be a multiple of the stripe factor.

* When a stripe group is opened, the driver allocates a number of PBUF
headers equal to nine times the number of slices. For mirror groups, the
number is three times the number of slices. If there are not enough PBUF
headers free, the driver waits. If not enough PBUFheaders are configured,
the system may hang.

2.4.5 Creating logical descriptor files

SG-2301 10.0

A logical descriptor file can contain up to 64 absolute path names, each which
can be up to 48 characters in length. Each absolute path name is a member of
the logical disk device. The members are combined in a manner prescribed by
the character or block special device referencing the logical descriptor file. The
members can be physical or logical devices.

You can use the mknod command to create a logical descriptor file, using the
following format:

letc/mknod name L memberQ) [member]l member2] ...

27

General UNICOS® System Administration

Example 1: To create a logical descriptor file x containing two physical slices of
type x0 and x2, specify the following;:

/etc/mknod /dev/ldd/x L /dev/pdd/x0 /dev/pdd/x1

Example 2: To create a logical descriptor file y containing two logical striped
devices of type yO and y2, specify the following:

/etc/mknod /dev/ldd/y L /dev/sdd/y0 /dev/sdd/yl

2.4.6 Defining alternate disk paths

28

mknod /dev/pdd/device.7

The UNICOS operating system allows you to define an alternate path to a disk
when you define the device node by using the mknod(8) command. The
alternate path provides a backup for the primary path to a device. If you
configure a device with an alternate path, it is initialized when you open the
device. The system then can attempt error recovery by means of the alternate
path when it detects a hard failure on the active disk path.

A path is defined as the hardware resources between the CPU and the disk
device. On IOS-E based systems, these consist of the low-speed channel to the
mainframe, the multiplexing I/O processor (MUXIOP), the low-speed channel
from the MUXIOP to a given model E 1/O processor (EIOP), and the EIOP itself
with its channel adapter.

You can access a disk through the alternate path if any element of the primary
path is not functional and hardware elements exist to connect to a second port
of the disk device. Optimally, on an IOS-E based system, the alternate path
should include a different I/O cluster and EIOP.

You create an alternate path when you define a physical device interface with
the mknod(8) command. The following example defines an alternate I/O path
of 1130 to device 0236.7.

¢ dev_pdd 15 10 0236 1472 32768 0 01130 7 O
A path of 1130 defines IOC 1, IOP 1, and channel 30.

The alternate path is used as part of error recovery. If the standard five retries
and micro-sequencing error recovery fails, the disk driver attempts recovery on
the alternate path. This can recover errors such as high-speed channel (HISP)
errors and errors on the channel adaptors or in the EIOP. Errors that are on the
disk itself remain as errors, just as on the primary path.

A device running on the alternate path does not switch back to the primary
path if normal error recovery fails. Errors that occur during write-behind, when

SG-2301 10.0

File System Planning [2]

the CPU no longer has the data, cannot be recovered by switching to a different
path, because data cannot be retrieved from the IOS.

If a device is configured with an alternate path, the system, by default, switches
to the alternate path during error recovery. You can disable and enable the error
recovery switch with the autoswitch option of the sdconf (8) command, as
follows.

sdconf device autoswitch on | off

You can control both the primary and alternate path by using the sdconf
command. Executing sdconf device pripath and sdconf device altpath resets
the primary or alternate path.

You can also change the path to a device with the inform (8) command on the
OWS-E. If the pddinform function in the driver is notified that a given EIOP

has died, any device running on that EIOP that has an alternate path switches
to the alternate path to complete any outstanding I1/0O.

2.4.7 Configuring alternate paths on FCN devices

FCN devices can be dual-ported. If these devices are dual-ported, the XDD
driver has the capability to dynamically switch to the alternate path when the
primary path fails. If the alternate path fails, the XDDdriver will not switch
back to the primary path.

An FCN device can be dual-ported in any of three configurations:
* 2 Fibre Channel Loops on the same FCN device
* 2 FCN devices on the same GigaRing channel
* 2 FCN devices, each on a different GigaRing channel.
These configurations are illustrated in "Configuring alternate paths,” Section
24.7.1.
2.4.7.1 Configuring alternate paths on FCN devices

The following diagram illustrates a system in which no devices are dual-ported
and no alternate paths are defined.

SG-2301 10.0 29

General UNICOS® System Administration

FCN
loop

GigaRing

channel FCN

Disk
drive(s)

Mainframe
all320

Figure 1. Configuration with no alternate path

The following diagram illustrates a system configured with two Fibre Channel
Loops on a single FCN device.

FCN loop

GigaRing

ECN Disk
channel

drive(s)

Mainframe FCN loop a11321

Figure 2. Configuration 1: One FCN device, two Fibre Channel Loops

Configuration 1 shows the following path configuration:
primary path Ring 1 Node 1 Channel 1 Unit 1
alternate path Ring 1 Node 1 Channel 2 Unit 1

The following command creates a device node with the primary and alternate
path definitions of Configuration 1:

/etc/mknod dd308 c 33 40 0 01011 O 2340000 O 01012 01 O

The following diagram illustrates a system configured with two FCN devices
on the same GigaRing channel.

30 SG-2301 10.0

File System Planning [2]

SG-2301 10.0

Mainframe

FCN

GigaRing
channel

FCN

FCN loop

Disk
drive(s)

FCN loop
all322

Figure 3. Configuration 2: Two FCN devices, one GigaRing channel

Configuration 2 shows the following path configuration:

primary path

alternate path

Ring 1 Node 1 Channel 1 Unit 1
Ring 1 Node 2 Channel 1 Unit 1

The following command creates a device node with the primary and alternate
path definitions of Configuration 2:

/etc/mknod

dd308 c 33 40 0 01011 0O 2340000 O 01021 01 O

The following command creates a device node with the primary and alternate
path definitions of Configuration 1:

/etc/mknod

dd308 c 33 40 0 01011 O 2340000 O 01012 01 O

The following diagram illustrates a system configured with two FCN devices
on different GigaRing channels.

Mainframe

GigaRing
channel

FCN

GigaRing
channel

FCN

FCN loop

Disk
drive(s)

FCN loop

all323

Figure 4. Configuration 3: Two FCN devices, two GigaRing channels

31

General UNICOS® System Administration

2.4.7.2 Failure modes

Configuration 3 shows the following path configuration:
primary path Ring 1 Node 1 Channel 1 Unit 1
alternate path Ring 2 Node 2 Channel 1 Unit 1

The following command creates a device node with the primary and alternate
path definitions of Configuration 3:

/etc/mknod dd308 c 33 40 0 01011 O 2340000 O 02021 01 O

Dynamic switching to the alternate path takes place under the following
conditions:

¢ Fibre Channel Loop failure
e FCN failure
* GigaRing channel failure

The following sections describe the system response to each of these conditions.

2.4.7.2.1 Fibre Channel Loop failure

2.4.7.2.2 FCN failure

32

When the mainframe detects a failure of a request to the FCN that is associated
with the Fibre Channel Loop, and if there is an alternate path to the device
through another Channel Loop on the same FCN, another FCN on the same
GigaRing channel, or another GigaRing channel, the dynamic path switch
algorithm will be executed.

The FCN return a status indicating that this is a failure of the Fibre Channel
Loop.

You can force this type of failure by disconnecting the cable to the port or
disconnecting the Fibre Channel Loop cable.

Failure of the FCN is detected by the PEER to PEER message protocol layer.
This condition is detected after failure of any communication from the FCN
with the mainframe after 30 seconds. At this time, the XDDdriver is informed
of a PEER down message condition.

SG-2301 10.0

File System Planning [2]

If there is an alternate path for these devices through another FCN on the same
GigaRing channel or another GigaRing channel, the XDDdriver will execute the
alternate path switching algorithm.

You can force this type of failure by disconnecting the FCN from the GigaRing
channel.

2.4.7.2.3 GigaRing channel failure

Failure of the GigaRing channel is detected by the PEER to PEER message
protocol layer. This condition is detected after failure of any communication
from the FCN with the mainframe after 30 seconds. At this time, the XDDdriver
is informed of a PEER down message condition. The system cannot return a
status that distinguishes between a GigaRing channel failure and an FCN failure.

If there is an alternate path for these devices either through another FCN on the
same GigaRing channel or another GigaRing channel, the XDDdriver will
execute the alternate path switching algorithm.

If the alternate path is on another FCN on the same GigaRing channel, the path
switch will fail. If the alternate path is on a different GigaRing channel, the
path switching will be successful if the FCN is functional.

You can force this type of failure by disconnecting the GigaRing cable.

2.4.7.2.4 Alternate path switching restrictions

The following restrictions apply to the use of the alternate path:

* On first open, both paths must be valid and functional; that is, the XDD
driver must be able to open both paths on first open.

* Once the device is being used on the alternate path, failure of the alternate
path will not cause the XDDdriver to switch to the primary path.

2.4.8 Shared dump and swap configuration

SG-2301 10.0

Under the UNICOS operating system, you can configure the same physical slice
that you use for a dump partition as part of the swap device. The dump header
is preserved permanently and space used by a system dump will be allocated
as needed for system dumps. The space is released back to the swap device
when the dump is processed by cpdmp(8). A single slice swap device may be
shared with the dump device.

33

General UNICOS® System Administration

34

SSD ssd {

The following restrictions apply when configuring a shared slice:

e The slice must be disk-based.

® 5SSD or RAM slices may not be used as the shared slice.

e The slice cannot be a member of a striped or mirrored device.

® The slice must be defined as a pdd type member of the swap device.
In the following swap configuration, slice dump may be chosen as the shared
slice, but slices ssd_swap , diskswapl , and diskswap2 may not.

length 1024 Mwords;

pdd ssd_sds
pdd ssd_swap

disk d0130.1 {type
unit 1;
pdd dump

disk d0236.0 {type
unit 0O
pdd diskswapl
disk d1236.0 {type

unit 0O
pdd diskswap2

sdd stripe_swap

ldd swap {

{minor
{minor

DD60;
{minor
DD60;
{minor
DD60;

{minor

{ minor

minor

swapdev is Idd swap;

4: block
6; block 1835008;
iopath{cluster 0;
22; sector 0;
iopath{cluster 0; eiop
67; sector 0;
iopath{cluster 1; eiop
68; sector 0;
10; pdd diskswapl;

pdd diskswap2;

10; pdd ssd_swap;
pdd dump;
sdd stripe_swap;

0;

eiop 1;

119692 sectors;

119692 sectors;}

119692 sectors;}

1835008 blocks;}
blocks; }

}

Both a swap logical device and a dump logical device must be defined with the
shared slice as a component. The minor number of the dump logical device is
different than the minor number of the swap logical device, but they are not

SG-2301 10.0

File System Planning [2]

SSD

disk

disk

disk

required to be the same as the examples shown. For the above example the
dump device definition would be as follows:

ldd dump { minor 19; pdd dump ;
}

The dumpdev statement is provided below.

To initialize and use the shared partition, 3 different boot parameter files must
be used.

For dump device initialization, the UNICOS system must be booted one time in
a nonshared configuration. The mkdmpcommand should be run as shown in
the mkdmg8) man page. To initialize the dump device in the above example,
use the following parameter file definitions:

ssd {

length 1024 Mwords;

pdd ssd_sds {minor 4; block 0; length 1835008 blocks; }
pdd ssd_swap {minor 6; block 1835008; length 262144 blocks;}
d0130.1 {type DDG60; iopath{cluster 0; eiop 1; channel 030;}

unit 1;

pdd dump {minor 22; sector 0; length 119692 sectors;}
d0236.0 {type DDG60; iopath{cluster 0; eiop 2; channel 036; }

unit 0O;

pdd diskswapl {minor 67; sector 0; length 119692 sectors;}
d1236.0 {type DDG60; iopath{cluster 1; eiop 2; channel 036}

unit 0O;

pdd diskswap2 {minor 68; sector 0; length 119692 sectors;}

sdd stripe_swap { minor 10; pdd diskswapl;

pdd diskswap2;

ldd swap { minor 10; pdd ssd_swap;

sdd stripe _swap;

ldd dump { minor 19; pdd dump ;

}

SG-2301 10.0 35

General UNICOS® System Administration

swapdev is Idd swap;
dmpdev is Idd dump;

After the dump device is initialized, the shared configuration should be used.
Reinitialization of the dump device is only necessary if the dump device is
changed or if flaws are added or removed on the dump device. If
reinitialization is necessary, the nonshared configuration must booted for just
the mkdmg8) processing.

To boot the UNICOS system in a shared dump/swap configuration, the
dmpdev statement must indicate that the dump device is a pdd device:

dmpdev is pdd dump;

To perform a system dump, the dumpsys (8) command requires that the
dmpdev statement indicate that the dump device is an Idd device, so the boot
parameter file cannot be used:

dmpdev is Idd dump;

It is suggested that the shared slice be named dump. This allows the cpdmp(8)
command to use defaults and will be easier to implement onsite.

2.5 Configuring disk arrays

2.5.1 Installing an array

36

This section contains information on how to configure DD-308/FCNs in RAID-3.

Perform the following steps to install and configure a disk array:
* Copy any data to be saved to another media

* Initialize the device as a RAID-3 array

e Write data to the parity drive

* Modify configuration information

After you perform these steps, the array is ready for I/O. These steps are
described in detail below.

1. Copy any data to be saved to another media.

It is not possible to move a filesystem on 4 single drives onto an array of
4+1 drives without first dumping, then restoring the data.

SG-2301 10.0

File System Planning [2]

SG-2301 10.0

There are two factors that may affect the restore of the data:

e If there are many small files, the restored data could take more space.
This is because the minimum sector size is four blocks, so small files
may take more space.

* For extended files, the space allocation may be more efficient after the
restore and take less space.

Unless the existing file system is nearly full, it is unlikely that it will not
restore.

. Initialize the device as a RAID-3 array:

xdms -a init -m 35 /dev/xdd/ name

or

xdms -a init -m 35 xdms -a init -m 35 02010.11 # 011 (Octal)
See the xdms(8) man page for details.

The syntax -m 35 means raid 3, 5 units. The 35 does not indicate a mask,
but a hex code identifying the raid type (mode) to be initialized.

. Write data to parity drive.

xdms -a scrub /dev/xdd/ name

or

xdms -a scrub 02010.11

A scrub of a DA-308 takes approximately thirty minutes.

If the scrub fails or is interrupted with Control-C, you will see errors when
you execute mkfs (8) on the file system

. Modify configuration information:

letc/mknod /dev/xdd/ name c 33 minor 4 pripath 0 2340000 O altpath unit

The dtype field needs to be 4 (to indicate a RAID-3 device); the 4 specifies
that there are four 512-word blocks per sector. Loop_ID is sometimes used
instead of unit number. Only one /dev/xdd/ XXXX node is needed to
represent an entire array.

37

General UNICOS® System Administration

The following example shows the output from a ddstat

command on an array:

/etc/mknod
/etc/mknod
/etc/mknod
/etc/mknod
/etc/mknod

diskl
disk2
disk3
disk4
disk5

33
33
33
33
33

39
40
41
42
43

O O o0 o0 o0

-m disk*
4 02010 0O 2340000 0 0 01 O
4 02010 0O 2340000 0 0 011 O
4 02020 0 2340000 0 0 01 O
4 02030 0 2340000 0 0 01 O
4 02030 0 2340000 0 0 011 O

The last line in the above example represents a RAID-3 slice on ring 2, node
3, FCN channel/loop 0, involving Loop-IDs/units 011-015.

Configure the /dev/dsk

/etc/mknod
/etc/mknod
/etc/mknod
/etc/mknod
/etc/mknod

The following example shows the output from a ddstat

diskl b
/etc/mknod
/etc/mknod disk2 b

/etc/mknod
/etc/mknod disk3 b
/etc/mknod
/etc/mknod disk4 b
/etc/mknod
/etc/mknod disk5 b
/etc/mknod

/etc/mknod
/dev/xdd/disk1

/dev/xdd/disk2

/dev/xdd/disk3

/dev/xdd/disk4

/dev/xdd/disk5

diskl
disk2
disk3
disk4
disk5

entries:
b 34 39 0 0 /dev/xdd/diskl
b 34 40 0 O /dev/xdd/disk2
b 34 41 0 O /dev/xdd/disk3
b 34 42 0 0 /dev/xdd/disk4
b 34 43 0 0 /dev/xdd/disk5

34 39 0 O /dev/xdd/diskl

c 33 39 4 02010 0O 2340000 0 0 01 O

34 40 0 O /dev/xdd/disk2
c 33 40 4 02010 0 2340000
34 41 0 O /dev/xdd/disk3
c 33 41 4 02020 0 2340000
34 42 0 0 /dev/xdd/disk4
c 33 42 4 02030 0 2340000
34 43 0 0 /dev/xdd/disk5
c 33 43 4 02030 0 2340000

00011 0

00010

00010

00011 O

After performing the above steps, the array is ready for I/0O:

letc/mkfs -q -A96 /dev/dsk/diskl
/etc/mkfs: *** NC1FS filesystem initialized
*** | ower security level =0
*** Valid security compartments
none
** Big file: 32768 bytes big
*** Allocation strategy: Round
*** 1 partitions / 9360000 total

*k%k

131072 total inodes

38

on /dev/dsk/diskl
Upper security

=0

allocation
robin all
blocks

/ 131068 free

*k%k

level =0

unit: 96 blocks
files(rrf)

/ 9351704 free

-m * command:

SG-2301 10.0

File System Planning [2]

** 1 primary partitions / 4 blocks per
*** File system partitions:
part 0O: primary blocks 0 - 9359999 on device diskl

*** Panic on error

2.5.2 Replacing a failing spindle

SG-2301 10.0

option selected

alloc. unit

Use the following procedure to replace a failing spindle when unrecovered
errors are occurring.

1. Determine the failing spindle from the failing spindle mask provided in the

errpt

mapping", Table 1.

output or system console log. See "Spindle to unit number

Table 1. Spindle to unit number mapping

Unit Spindle Spindle mask
071 4 020 (parity)
0?2 3 010

0?3 2 004

0?4 1 002

0?5 0 001

2. Disable the spindle:

xdms -a disable

For example:

xdms -a disable 02010.1-3

iopath.unit-spindle

disable spindle 3

This step, disabling the spindle, may take place automatically, depending
on the type of errors encountered.

3. Spin down the spindle:

xdms -a spindown

iopath.unit-spindle

39

General UNICOS® System Administration

If you try to spin down a drive that is not disabled, the next I/O to that
array/spindle will cause the array to spin up as part of normal error
recovery.

. Replace the failing spindle.

Note: Pulling or insertion of a spindle will cause the FCN software to
re-initialize the DSFE. This DSF initialization may take a few minutes and
will affect not just the DSF containing the pulled/pushed spindle (which
will suspend I/0 to other drives in the DSF), but will affect other DSFs
on the same daisy-chained channel. Some error/console message may
appear at this time.

Before reconstructing the array, check that the serial number of the
drive/unit (on the I/O path) is correct:

xdms -a info iopath.unit-spindle

. Reconstruct the spindle.

The replacement drive that is to be used to reconstruct the full 4+1 array
does not need to be initialized.

Execute the following command:

xdms -a reconstruct iopath.unit

A reconstruct can take 1.5 hours, minimum, depending on other I/O to the
same disk array or other I/O to the same DSE. Some reconstructs have
taken over 6 hours to complete, when running heavy I/O to the same array
(for example, by using fstest (8)).

A message appears on the console (and in the ion _syslog.info) when
the reconstruct is complete:

10/16/97 17:39:17 NOTICE sdisk_admin _r3.c line 774
Array Reconstruction is complete on FC Loop O Target 1

2.5.3 Converting RAID members to single spindles

40

The spindle can be initialized in a slot that would normally be part of an array,

although this is not required to perform a reconstruct.

The following example initializes one member of a RAID to a single spindle:

SG-2301 10.0

File System Planning [2]

./xdms -ainit -m 1 4044.21

4044.21 appears to be a member of a RAID-3S 4+1
To init JUST THIS MEMBERo Single Spindle enter "y"
To init ALL RAID MEMBERSo Single Spindle enter "a"

Please be sure all activity to device is idled before continuing with init.
Continue with Init to Single Spindle now? (y, a, or n)

y

xdms: Initialized iopath 4044.21 as Single Spindle

Note: This command is different from the xdms(8) command to init the full
array, which uses -m 35.

To turn a disk array back into 5 single disks initialize each spindle of the array
or follow the example below.

The following example initializes all RAID members to a single spindle:
./xdms -ainit -m 1 4044.21
4044.21 appears to be a member of a RAID-3S 4+1

To init JUST THIS MEMBERo Single Spindle enter "y"
To init ALL RAID MEMBERSo Single Spindle enter "a"

Please be sure all activity to device is idled before continuing with init.
Continue with Init to Single Spindle now? (y, a, or n)

a

xdms: Initialized iopath 4044 unit 21

xdms: Initialized iopath 4044 unit 22

xdms: Initialized iopath 4044 unit 23

xdms: Initialized iopath 4044 unit 24

xdms: Initialized iopath 4044 unit 25

Note: If the -z option is used with the -a init action and the device mode
isa -m 1 only the RAID member specified will be initialized. The net affect
of the -z option is the same as in previous example.

2.5.4 Software Limitations

The following limitations are in effect when configuring and restoring disk
arrays.

SG-2301 10.0 41

General UNICOS® System Administration

* You cannot mix arrays with single drives on the same channel/loop. The
primary path and the alternate path are considered to be the same channel.

For example you can configure multiple DA-308 arrays on a single FCN
channel, but you cannot configure a DA-308 and a DD-308 on the same
channel. Similarly, you can configure a primary and alternate path with all
DA-308 or all DD-308 drives, but you cannot configure a primary and
alternate path that mix DA-308s with DD-308s.

¢ Executing a Control-C after issuing a xdms -a reconstruct ~ command
does not halt the reconstruct. After the initial reconstruct request, the FCN
performs the reconstruct. However, xdms(8) can resume monitoring status
of the reconstruct by reissuing the reconstruct or issuing an info request on
the array device. The info request will indicate the percent of reconstruct
complete if there is a reconstruct currently in process.

® The addresses of array members cannot be changed. If the array was
initialized as targets/units 1-5, it cannot be moved to 9-13 (011-015),
17-21 (021-025), etc. It can be moved to another channel as long as the
target addresses are the same. When you want to change the addresses, you
must execute xdms -a init and remake the /dev/xdd nodes.

2.6 File system initialization

42

Use the mkfs (8) command to initialize file systems. The mkfs command builds
the file system with a boot block, a super block, a root inode and a bit map of
free blocks. By default, it also performs a surface check and zeroes the disk
data blocks before initialization. When the UNICOS multilevel security (MLS)
feature is enabled, mkfs provides the new file system with minimum and
maximum security levels and authorized compartments. See Chapter 8, page
145, for more information on using mkfs on a UNICOS MLS system.

NC1FSfile systems include a secondary allocation area. The secondary
allocation area is a means of segmenting file data by usage. The secondary
allocation area contains only user file data and may be allocated in different
allocation units than primary allocation areas. If a secondary allocation area
exists, default allocation of user data will occur there once a file has grown to
"big file" size, as defined in the sys/param.h file or with the mkfs (8) or
setfs (8) commands.

For a complete list of the options available with mkfs , see the mkfs (8) man
page. For further information on allocation of inode regions, see Section 2.8,
page 45.

SG-2301 10.0

File System Planning [2]

2.7 Inode allocation strategies

SG-2301 10.0

You can specify inode allocation strategies at system configuration time by
using the mkfs (8) command with the -a option, as follows:

mkfs -a strategy

You can also change the allocation style after configuration is complete by using
the setfs (8) command.

The allocation strategies are as follows:

Strategy Description

ref Round-robin files (default)

rrdl Round-robin first-level directories
rrda Round-robin all directories

Round-robin allocation is a process of allocating files and directories to partitions
in sequence. When a file or directory is created, it is assigned to the next
partition in sequence after the partition to which the previous file or directory
was assigned. When a file or directory is created in the last partition, the next
partition in sequence is partition 0.

Each allocation strategy specifies the preferred location for data blocks,
directory blocks, and inodes; however, if the preferred locations are full, the
kernel places these items wherever possible in the file system.

If you use the logical device cache with your file systems, you can reduce
system overhead by using the mkfs command to make the allocation unit equal
to the logical device cache block size or a multiple of the same. Alternatively,
you can use partition cache with some or all of the partitions of a file system to
reduce system overhead.

You can improve performance on individual jobs and by pre-allocating space
using the setf (1) command, the assign (1) command, or the ialloc (2) system
call. These commands and system call perform all the allocation in one step and
allocate storage in contiguous or nearly contiguous areas. Additionally, you can
use setf , assign , and ialloc to force allocation from particular file system
slices, so that different files can be placed on different physical disk devices.

43

General UNICOS® System Administration

2.7.1 rrf allocation

2.7.2 rrd1l allocation

2.7.3 rrda allocation

44

The default allocation strategy, rrf , is the recommended strategy. The inodes
and directories are assigned to the first 25% of partition 0 whenever possible.
When new files are created, the data blocks are round-robined. As data blocks
are added to a file, they remain on the same partition as the preceding data
blocks whenever possible. This allocation style provides good recovery and a
good distribution of file blocks for performance.

The rrd1 allocation strategy round-robins all first-level directories among the
available partitions. (First level directories are directories defined in the root
(top-level) directory of the file system.) The inode and the directory data blocks
for each directory are in the assigned partition. Within a first-level directory, all
files and subdirectories remain in the same partition as the first-level directory
whenever possible.

This allocation scheme allows for better recovery and performance by limiting
the impact of system crashes. For example, if a first-level directory corresponds
to a single user, as in the typical home directory case, then all the files for one
user are in the same partition and on the same disk. If one disk of a multidisk
crashes, only a subset of all the users are affected. However, the top-level
directory data blocks and inode are on partition 0. If the first disk is lost, the
entire file system must be restored as before.

The disadvantage to this allocation strategy is that there can be severe
performance penalty for assigning all of the files for one user on the same disk.
If, for example, you use the cp (1) command to copy a file within the directory
to another file within that directory, you would be reading from and writing to
files on the same disk drive.

The rrda allocation strategy round-robins each new directory that is created.
The disk files within a directory have their inodes and data blocks in the same
partition as the parent directory.

This strategy produces bad performance and recovery. If one disk of a three
disk site were lost, even though the root directory is in partition 0, one third of
its directory entries will have been on the bad disk. Of the remaining two
thirds, the files within those directories will be recoverable, but one third of the
subdirectories will be unrecoverable. The more complex the directory tree is,

SG-2301 10.0

File System Planning [2]

the worse this situation is. Using the fsck (8) command on this file system is
not always productive.

The same performance problems of the rrd1 allocation also affect the rrda
strategy. If you copy one file to another in one directory, the command is
always doing I/O on one drive only. Also, the data blocks for files within a
directory are not distributed among the disks in the system.

2.8 Inode region allocation

SG-2301 10.0

Before creating a file system, you must understand how inode regions are
allocated and how the mkfs -i option can be used. Up to 64 partitions can
exist in an NC1FSfile system. Each partition can have up to four inode regions.
The size of an inode region is limited by the number of bits contained in the first
block that is used as a bit map for free inodes. For disks with 512-word sectors,
each inode region can contain at most 32,768 inodes. The size of an inode region
is defined when the region is created and cannot later expand or contract.

When the mkfs (8) command creates a file system, exactly one inode region is
created in each partition. When an inode region in a partition is full, a new one
is created in that partition unless there are already four regions. Then, an inode
region in the next partition is tried. If all four regions in all partitions are full,
no more files can be created until some files (and inodes) are released.

The mkfs -i option specifies the desired ratio of blocks to inodes; the default
value is 4.

Consider some examples in which the file systems have been created with the
mkfs -i 2 command and they contain 100,000 blocks. The -i 2 option and
argument indicate that 50,000 inodes (100,000/2) should be created. It is
assumed that the default rrf allocation strategy is used in the following
examples.

File system 1 contains one partition. Because one inode region is created and an
inode region can contain at most 32,768 inodes, only 32,768 inodes are created
for this file system. If all 32,768 are used, the file system will create another
inode region if there is room on the device. A maximum of four inode regions
can be created per partition. Therefore, at most, four inode regions can exist on
file system 1.

File system 2 contains two partitions. The inode region on the first partition
contains 32,768 inodes. The inode region on the second partition contains 17,232
inodes, so there are 50,000 inodes available in the file system. If the inode
region in the first partition fills, a second, then a third, and finally a fourth are

45

General UNICOS® System Administration

created before the inode region in the second partition is used. An exception to
this rule would occur if there were not enough contiguous blocks to create
additional regions in the first partition. In that case, the kernel would switch
immediately to the inode region in the second partition.

File system 3 contains three partitions. The inode region on the first partition
contains 32,768 inodes, the region on the second partition contains 17,232
inodes, and the region on the third partition contains 16 inodes. (One block
contains 16 inodes; this is the smallest region that is created.) File system 3
contains 50,016 inodes. As with file system 2, the kernel will create more
regions in the first partition (up to four total regions) before using the inode
region in the second partition. The kernel attempts to create all four regions in
the second partition before using the inode region in the third partition.

The size of the inode regions created in these example file systems when the
first region is full do not depend on what had been specified with the mkfs -i
option. Rather, the size depends on the ratio of the number of blocks actually in
use to the number of inodes (used and unused) in all of the existing inode
regions.

For example, the first inode region fills up in file system 2 and 80,000 blocks are
used in the file system. Because there is already room for 50,000 inodes (in the
regions in both partitions), the blocks-to-inode ratio is 80,000/50,000 = 1 (integer
division). Therefore, a blocks-to-inode ratio of 1 is used for the next region.
Because there are 20,000 free blocks in the file system, room is allocated for
20,000/1 = 20,000 inodes in the second inode region in the first partition.

2.9 Labeling a file system

46

A label on a newly created file system should be created through the
labelit (8) command. It is optional, but when a label is not given to a file
system, a warning message is issued in the following format when the file
system is mounted; mntpt is the mount point of the file system:

mount: warning: <> mounted as </ mntpt>

The basic format of the labelit command is as follows:

/etc/labelit device [fsname wvolname)]

The device is the name of the device file that you want to label. The variables
fsname and volname specify the file system name and volume name to be written

SG-2301 10.0

File System Planning [2]

in the label. The labelit command takes several options. See the labelit (8)
man page for a description of the options to labelit

The following example shows how to label the device /dev/dsk/usr as the
file system usr with a volume name of usr-6.1 . After the file system is
labeled, a sync (1) command is issued.

/etc/labelit /dev/dsk/usr usr usr-6.1sync

2.10 Mirrored file systems

A mirrored file system resides in two or more component devices, each of
which contains a full copy of the mirrored information. A write operation to
the mirrored device causes separate write operations to be performed on each
of the components. A read operation may be performed on any of the
component devices.

The multiple write operations provide for redundancy and for recovery in the
case of a failure by a single component. The multiple read paths provide more
options for scheduling the read operation, leading to faster completion

2.10.1 Creating a mirrored file system

SG-2301 10.0

Example 1: The following example creates a mirrored file system consisting of
identical areas on two different physical disks.

for each component

/etc/mknod /dev/ipdd/mO0 ¢ dev_pdd 100 10 0130 0 119692 0 0 O
/etc/mknod /dev/pdd/ml1 ¢ dev_pdd 101 10 0132 0 119692 0 0 O
grouping the physical devices into a logical device
/etc/mknod /dev/ldd/log _mir L /dev/pdd/mO /dev/pdd/m1

making the mirror

/etc/mknod /dev/mdd/mir ¢ dev_mdd 100 0 07777 /dev/ldd/log_mir
making the fs

letc/mknod /dev/dsk/fs_mir b dev Idd 100 O O /dev/mdd/mir
/etc/mkfs /dev/dsk/fs_mir

Example 2: The following example creates a mirrored file system consisting of a
slice of the SSD paired with a slice of disk. This file system is intended to create
an "all-cached-spindle” in which you perform read operations from the SSD and
write operations to both the SSD and the non-volatile disk; this combines the

speed of SSD with the permanence of a non-volatile disk. Because of the nature

47

General UNICOS® System Administration

of the default path through system startup, it is important that the SSD
component be declared second in the mirror.

for each component

/etc/mknod /dev/pdd/acs_disk ¢ dev_pdd 100 10 0130 0 4600 0 0 O
/etc/mknod /dev/pdd/acs_ssd c dev_ssdd 10 10 0 4600

for the logical device

/etc/mknod /dev/ldd/acs_ldd L /dev/pdd/acs _disk /dev/pdd/acs_ssd
for the mirror

letc/mknod /dev/mdd/acs _mir ¢ dev_mdd 100 O 037 /dev/ldd/acs_ldd

for the file system

/etc/mknod /dev/dsk/acs b 100 0 O /dev/mdd/acs_mir

/etc/mkfs /dev/dsk/acs

2.10.2 Configuring a mirrored device

48

While the mountable file systems are usually found in the /dev/dsk directory,
the mirrored devices are usually in the /dev/imdd directory. At this level,
before it is a file system, the mirrored device may be configured to enable
reading and/or writing on selected components of the device.

For an open mirrored device that is known to the mdd driver in the kernel, the
configuration is carried in a kernel table. For a closed mirrored device, the
configuration is in one of the device-dependent fields of the inode.

Just as a standard file is characterized by a read/write/execute mode, each
component of a mirrored device can be summarized by r-w-x bits, or by a
single octal digit. The rightmost field describes the state of the first component.

The meaning of the bits are as follows:

Bit Meaning
04 (r-bit) This component is enabled for reading
02 (w-bit) This component is enabled for writing

01 (x-bit) This component is undamaged and physically available

You can use the /etc/mddconf ~ program to display or change the
configuration. If you specify the -p option with a new configuration, the value
is written to the permanent disk-resident inode. Following are four sample
configurations.

Example 1: This example shows a two-component mirrored file system that is
enabled in all components for reading and for writing:

SG-2301 10.0

File System Planning [2]

[etc/mddconf /dev/mdd/mir
device name r’'w mode

/dev/imdd/mir e FWXIwx

Example 2: This example shows a two-component mirrored file system that
reads from a single device but writes to both:

/etc/mddconf /dev/mdd/acs_mir
device name r’'w mode

/dev/imdd/mir s TWX-WX

No matter what is written to the following file system, the data that is read will
not change:

/etc/mddconf /dev/mdd/hard_head
device name r’'w mode

/dev/imdd/mir e WXT-X

Example 3: This example shows a two-component mirror; both components are
being synchronized with the data in the read-enabled component:

[etc/mddconf /dev/imdd/new
device name r’'w mode

/dev/imdd/mir el WX-TWX

Though the previous examples show a file system as composed of a single
logical device that is a mirror of physical devices, other configurations are
possible.

2.10.3 Default configuration

In software provided by Cray Research, the default configuration for a mirrored
device is rwx in each component. For file systems such as the acs file system
described in one of the previous examples, the default configuration may be
changed by a mirror= entry in the options field of the /etc/fstab

SG-2301 10.0 49

General UNICOS® System Administration

description for the file system. For the acs example with an SSD in the second
mirrored component, the /etc/fstab description would be:

/dev/dsk/acs /mount_point NC1FS rw,mirror=(acs_mir:073)

The mirror configurations are specified within the parentheses. The first field is
the base name of the mirrored device. The second field, separated from the first
by a colon, is the configuration specification given numerically. A leading zero
is recommended so that the configuration will be interpreted in octal.

If there is more than one mirrored device in a file system, the semicolon
separates entries, as in the following example:

mirror=(zero:0337;0ne:0373;two:0733)

If the existing configuration of a mirror does not contain an exercise (x) bit in
each component, any configuration found in /etc/fstab is ignored. The
tuned configuration used by Cray Research software will enable read and write
operations in every component that is marked with the x bit.

2.10.4 Mirrored devices during startup

If a file system containing a mirrored device has been cleanly dismounted, it
may be remounted without examination. If a mirrored file system is in an
unknown state as the result of a system crash, it must be handled with special
processing to prevent different components from being matched in a mirror.
There are three programs that help in bringing up a mirrored device.

The first program, /fetc/mdd_pre , runs before the fsck (8) utility. If the file
system needs to be checked, it configures all mirrors to a single component
read /write configuration; for example, 0117, 0171, or 0711 . The configuration
permissions ensure that fsck sees a consistent set of data.

The second program, /etc/fsck , is used by all file systems, mirrored or not.

The third program, /etc/mdd_post , is used after fsck . Though the file
system may be mounted and used as soon as fsck completes, the mdd_post
program performs the following steps to finish bringing up the mirrored parts
of the file system:

1. Reconfigures the mirror to a wide-write state. In this state, all read
operations are completed by the mirrored component used during the fsck
step, but the write operations go to every component.

2. Executes /etc/mddcopy . This program uses ioctl calls at the mdd driver
level to copy identical information to all components of the mirror.

50 SG-2301 10.0

File System Planning [2]

3. Reconfigures the mirror to the tuned state.

The mdd_pre and mdd_post programs should be placed in the start-up scripts
before and after the mfsck (8) command. Experience in the field suggests that
mdd_pre fits in /etc/inittab and mdd_post fits in rc.pst

2.10.5 Manual startup of mirrored file systems

It is possible to bring up a mirrored file system without using the
/etc/mdd_pre and /etc/mdd _post programs. This technique might be
valuable when there are more recently updated mirror components than the
one chosen by mdd_pre .

First, use the /etc/mddconf =~ command to restrict the I/O to a single
component of each mirrored device in the file system. Then run the fsck (8)
utility. You can repeat the mddconf and fsck step using the -n option on
fsck to survey the status of the file system.

When fsck has run to completion and performed the necessary corrections, the
file system may be mounted. You can perform the mdd post processing
manually, as outlined above, or you can start the /etc/mdd _post program
with a single file system as a parameter.

2.11 Performance considerations

The following sections discuss device and file system configuration that can
affect the performance of the system:

* Logical device cache

e System buffer cache

¢ Using SSD as a file system

* Secondary data segments (SDS)

¢ File system placement

2.11.1 Logical device cache

The logical device cache provides an excellent means of utilizing the SSD, by
providing the capability to assign SSD cache to specified logical devices. The
benefit of this type of cache is that predictable and high-speed I/O can be

assigned to specific file systems, based on the needs of a particular group or

SG-2301 10.0 51

General UNICOS® System Administration

individual and at the discretion of the administrator. It is suggested that you
assign cache to /tmp and other heavily used file systems.

Note: CRAY J90 systems only support RAM-based logical device cache.

You can also allocate cache at the partition level, with the pcache (8) command.
You cannot use partition cache and logical device cache on the same file system.

Cache for logical devices is assigned by the Idcache (8) command or with the
installation and configuration menu system. Cache may be changed
dynamically.

The cache for a logical device is specified as a number of units and a count of
4096-byte blocks per unit. The ability to dynamically alter the cache for logical
devices allows you to easily tailor the cache for differing job mixes.

The relationship between number of cache units and the size of each cache unit
can dramatically affect the throughput of the cache. For extremely sparse,
random I/0O, a greater number of units reduces the wait time for a cache unit to
become available and increases the probability that data will remain in the
cache for a reasonable amount of time. Larger cache units provide higher I/O
rates for sequential data access and lower system overhead.

There are some applications for which you might want to bypass the logical
device cache when performing I/O on particular files. For example,
applications that the perform a large amount of I/O and that access more data
than will fit in a cache can significantly decrease system performance because of
thrashing in the logical device cache. To bypass the logical device cache, set the
O_LDRAWIlag and the O_RAWlag with the open system call, as described on
the open (2) man page.

Each cache unit configured requires a header, which is maintained in main
memory. At boot time, you can change the number of logical device cache
headers allocated by editing the NLDCHparameter in the configuration
specification language (CSL) parameter file. If NLDCHis not specified in the CSL
parameter file, the value specified in config.h is used.

The Idcache (8) command lets you set logical device cache configuration and
display cache statistics. Logical device cache configuration use is restricted to
the super user, but users can display cache information.

2.11.1.1 Setting cache configuration

To set cache configuration, use the following command line:

52 SG-2301 10.0

File System Planning [2]

[dcache -I dev -n units [-s size] [-t type]

The options perform the following functions:

-l dev Specifies a file system name, or the name or number of a logical
device. If dev is a device name, it must begin with /.

-n units Specifies the number of cache units to be assigned. If 0, all cache
for the device is released.

-S size Specifies the size of each cache unit in 4096 byte blocks. This
option is meaningful only when the -n option is nonzero. size is
typically chosen to be a multiple of the track size of the disk on
which the file system resides.

-t type Specifies the memory type for cache; type can be SSD or MEM
(main memory). The default is SSD This option is meaningful
only when specified with the -n option.

2.11.1.2 Displaying cache statistics

_|

units

200
800
300
300
100
100
100

VOO ZT OO

SG-2301 10.0

size

252
84
42
42
42
42
42

To display cache statistics, you can use either of the following command lines:

Idcache -a
Idcache - dev -r rate

The -a option displays devices that have any read or write operations, even
though no cache is attached. The -I option functions as it does in the
configuration command line. The -r option specifies the refresh rate for
detailed display; the default refresh rate is 1 second.

If you specify no options or arguments, ldcache displays information about all
devices with cache in the format of the following example:

hits misses hit rate name
66196 361 99.457608 /dev/dsk/drop
1186345 897 99.924447 /dev/dsk/tmp
2250878 4248 99.811629 /dev/dsk/root
618508 1789 99.711590 /dev/dsk/usr
289529 4267 98.547632 /dev/dsk/slash _a
117462 6167 95.011688 /dev/dsk/slash_b
163790 6207 96.348759 /dev/dsk/slash_c

53

General UNICOS® System Administration

In the T (memory type) column, S stands for SSD and Mstands for main
memory. If you use the -I option to specify a specific device, Idcache
displays information about that device at the refresh rate specified (with the -r
option) or at the default refresh rate of 1 second.

For example, to receive information on /dev/dsk/root , you would specify
the following command line and get the output shown:

cray$ Idcache -l /dev/dsk/root
/dev/dsk/root Tue May 24 09:26:51 1988

Read Data Write Data
Blocks transferred: 23549 4864
Average request size: 2 blks 1 blks
Lst transfer rate: 1.067367 Mbs 0.044813 Mbs
Max transfer rate: 10.751468 Mbs 1.870442 Mbs
Cache hits: 12025 4864
Cache misses: 35 0
Cache hit rate: 99.709784 100.000000

You can use the following commands when viewing the display produced by
the -I option of ldcache

Command Description

Goes to next device with cache attached
+ Increases refresh interval by 1 second
- Decreases refresh interval by 1 second

c Clears counters to 0

2.11.1.3 Aging and threshold parameters of Idcache

54

For large applications that perform frequent write requests, you may want to
consider using the following options of the Idcache (8) command:

Option Description
-X max, min Specifies, in seconds, aging parameters for units

in the logical device cache. When the age of any
dirty cache unit exceeds the max value, the kernel

SG-2301 10.0

File System Planning [2]

automatically flushes all dirty units older than the
min value.

-h high, low Specifies threshold values for the dirty units in
the logical device cache. The high value specifies
the maximum number of dirty units that can be
in cache at one time. If the number of dirty units
equals the high value, requests to dirty more
cache units are put to sleep until the number of
dirty units falls below this threshold value. When
the low threshold value is exceeded, Idcache
starts flushing the oldest dirty units until the low
threshold is no longer exceeded.

These options implement a trickle sync mechanism, which lessens periods of
intense disk activity caused by an ldsync (8) command.

The -h parameter of Idcache provides a relatively stable read cache within a
larger read /write cache. The -h max parameter limits the number of dirty
units that can be in the cache. The difference between this value and the size of
the cache is the size of the read cache. These extra units are, in effect, reserved
for read requests, which are typically more likely to be reused.

To pick effective -h parameter values for ldcache , you need to determine the
relative amounts of the different types of I/O requests that are made to each
Idcache file system. For example, if most of the requests are read requests, the
-h parameter is unnecessary. If most of the requests are write requests and the
amount of data written over a relatively short period of time is larger than the
cache, set the -h parameter so that there is enough read cache left over to
handle the read I/O requests of the applications.

When you use the trickle sync option, you may want to disable the LDSYNCTM
parameter. To do this, manually set ldsynctm in the /etc/inittab file or
change LDSYNCTMn the /usr/src/cmd/init/conf.c file to a value greater
than 1000000 and rebuild /etc/init

2.11.2 System buffer cache

SG-2301 10.0

The amount of system buffer cache configured affects the performance of a
system. A cache that is too small degrades system performance; too large a
cache wastes memory that could be of use elsewhere. For I/O-intensive jobs
that do not use raw 1/0, a larger system buffer cache can be used to increase
throughput. Experimentation can help determine the optimal number of

55

General UNICOS® System Administration

buffers. System buffers are allocated at boot time in 512-word blocks and use
up part of main memory.

You can change the system buffer allocation by using the following menu of the
installation and configuration menu system:

Configure System
->Kernel configuration
->Table size parameters

At boot time, you can change the number of system buffers allocated by editing
the NBUFparameter in the CSL parameter file.

The effectiveness of your system buffer cache and I/O in general can be
monitored by using the sar (8) command.

2.11.3 Using SSD as a file system

SSD can be used as a logical partition. The SSD can be configured as a logical
device and mounted individually, or grouped with other logical slices and
mounted as a logical device. System performance can be improved by using the
SSD as a logical device where access time is critical to system performance (for
example, for file systems such as /tmp , /bin , or /lib). File systems that are
used heavily can be mounted on the SSD to increase throughput and reduce
I/0 wait time.

As a file system, the SSD can be configured in the same manner as disk devices;
that is, it is configured as one or more slices each having a starting block
number and number of blocks.

One or more of these slices may be used as logical devices upon which file
systems can be built. In addition, SSD slices can be combined with disk slices to
form logical devices.

Note: SSD data can be lost across system power failures. This must be taken
into account when deciding whether or not a file system should span both
disks and SSD. It is recommended that file systems reside completely on disk
and that logical device cache blocks be assigned to the SSD (see Section
2.11.1, page 51.

2.11.4 Secondary data segments (SDS)

Secondary data segments (SDS) is a feature that allows a part of the SSD to be
used as extended memory. This area must be defined in the parameter file.

56 SG-2301 10.0

File System Planning [2]

A user can specify that a file resides on the SDS by using the assign (1)
command. Users then make requests to either expand or contract their SDS
field length. SDS is automatically released when the owning process terminates.

The system maintains a base and limit address for the SDS area of each process.
All I/0 requests to SDS are relative to address 0. The simple mapping scheme
allows use of a short-circuited path to process 1/O requests to SDS, providing
transfer rates up to 10 times higher than that of SSD file systems. The system
calls ssbreak (2), ssread , and sswrite (see ssread (2)) are discussed in
UNICOS System Calls Reference Manual, Cray Research publication SR-2012.

The status of processes using SDS space can be determined with the sdss (1)
command.

The UNICOS operating system also supports direct data transfers between SDS
and disk files through the backdoor or sidedoor channel.

Allocation of a file on SDS is accomplished by opening a disk file with the
O_SSDflag set (see open (2)). All read/write addresses are then treated as
relative to SDS.

Fortran I/O library support allows particular files to be assigned to SDS in a
program-transparent manner. See assign (1) and env (1) in the UNICOS User
Commands Reference Manual, Cray Research publication SR-2011.

For a discussion of SDS management in the batch environment, refer to the
NQE Administration, Cray Research publication SG-2150.

2.11.5 File system placement

SG-2301 10.0

The /usr partitions should be on a different disk drive than the root (/)
partition(s) to reduce disk I/O contention. In addition, system core dumps
should be copied to another partition so the root partition is not filled.

The /usr/spool and /usr/fadm directories should be on separate file systems
from the /usr file system so that Network Queuing System (NQS), and
accounting are not interrupted if /usr becomes filled.

User directories should not be located on either the root (/) or /usr partition
to prevent users from filling these partitions.

57

