Basic Administration [5]

This chapter describes the following tools and methods, many of which are
commonly used in the day-to-day operation of a UNICOS system:

e Using the cron and at utilities

* The temporary directory (TMPDIR
¢ Communicating with users

* Monitoring system security

* Job and process recovery

e Kernel user exit (uesyscall)

Warning: This chapter contains warnings and information critical to the
proper use of a Cray ML-Safe configuration of a UNICOS system.

5.1 Using the cron and at utilities

The cron (8) and at (1) utilities are invaluable tools for automating many
administrative tasks. You can use them to run administrative tasks at regular
intervals and during off-peak hours, when they will not interfere with the
interactive work of most users. Neither utility is appropriate for every
administrative task; by using both, however, administrators can avoid many
time-consuming and repetitive tasks.

Note: For information on using the cron and at utilities on a Cray ML-Safe
system configuration, see Section 8.4.4, page 201.

5.1.1 Administrative use of cron

SG-2301 10.0

The cron (8) process executes commands at specified dates and times. As a
system administrator, you can use the cron process to run tasks on a periodic
basis. The cron utility is especially convenient for the following administrative
tasks:

e Turning off the programs in certain directories during prime time (by using
the chmod(1) utility to remove execute permission for the program).

107

General UNICOS® System Administration

108

® Running programs during hours other than prime time for the following
procedures:

— File system administration
- Accounting
— System security procedures

You can specify the commands to be executed by using the crontab (1) utility,
which takes as its argument a crontab file that describes the commands and
the times at which they should be run. The cron process consults the files
located in the directory /usr/spool/cron/crontabs to determine which
tasks are to be performed and at what times they are to be performed.

Each user maintains only one individual crontab file, which is the user’s ID,
and which requires that the /usr/spool/cron/crontabs directory contain
separate files for each user. The name of the crontab file is used as a user ID
to get user and group permissions.

A crontab file consists of lines containing six fields each. The fields are
separated by spaces or tabs. The first five fields are integers that specify the
following:

e Minute (0 to 59)

e Hour (0 to 23)

* Day of the month (1 to 31)

* Month of the year (1 to 12)

* Day of the week (0 to 6, with 0 = Sunday)

Any of the first five fields can be an asterisk (*), indicating that any value is
appropriate. The last field is the command line to be executed at the
appropriate time. For example, the following line in a crontab file would
execute a local program called /usr/bin/task once a week, every Sunday
morning at 6:30 A.M.:

30 6 * * 0 /usr/bin/task

If the system is not running at the time a command is to be executed by cron ,
the command does not execute. Consequently, cron is most appropriate for
periodic tasks that do not interfere with normal system operation if not
executed, and for tasks that must be run at a specific, regular time.

SG-2301 10.0

Basic Administration [5]

The cron (8) process is usually started from the file /etc/rc during system
startup. See crontab (1) and ksh (1) for more detailed information.

The cron daemon makes an attempt to report fatal errors that cause
termination by printing an error message on the system console. Also, a user of
the at or crontab utility receives a warning message if the cron daemon is
not active at the time the at or crontab command is issued.

The cron daemon can limit dynamically the number of concurrently running
jobs. It can also maintain up to 26 separate queues, and control the number of
jobs executed in each queue. The file /ust/lib/cron/queuedefs is used to
maintain definitions for all queues. If this file does not exist, the default values
are used. See queuedefs (5) for more detailed information.

Changes to queue definitions take effect before the next job is executed by the
cron daemon.

The cron daemon logs all command invocations, terminations, and status
information in the file /usr/lib/cron/log . Records that begin with the
character > pertain to command invocations. Two invocation records are written
for each command execution: the first displays the command being executed;
the second contains the login name of the user who executed the command and
the process ID, job queue, and time stamp for the command. Command
termination records begin with the character < and are similar to the second
invocation record, except that a nonzero termination status or exit status is also
printed. Records that begin with the character ! indicate status information.

The cron utility uses named pipes to communicate between the user-level
commands and the daemon process.

5.1.2 Administrative use of at

SG-2301 10.0

The at (1) utility submits commands or shell scripts for execution at a specific
time. Its format is as follows:

at time [date]

It takes as its argument the time (and optionally, the date) at which to execute a
list of commands that it reads from the standard input. Other options and
arguments are available (see the at (1) man page).

The at utility is intended primarily for single, nonrepetitive execution of a
command or script, and is thus especially appropriate for scheduling large jobs
to run during off-peak hours. However, the at utility can set up periodic
execution of a task if a script being run by at uses at itself to reschedule its

109

General UNICOS® System Administration

110

own execution. For example, if a script, whose file name is /usr/bin/task ,
contains a line such as the following, it reschedules itself to be run at 3:30 the
next morning (and the morning after that, and so on, because the script still
contains the rescheduling line):

echo "sh /usr/bin/task" | at 0330 tomorrow

The advantage to using at instead of crontab (1) for periodic command
execution is that you are assured that the command will run; if the system is
down at the time at would normally run the command, it runs as soon as the
system is brought up again. The drawback to this automatic execution is that
the command is not guaranteed to run at the specific time you request. That is,
if a command is submitted through at to be executed at 3:30, and the system is
down for dedicated time until 7:30, the command will run at 7:30 when the
system is running, which may interfere with users’ work if it is a large,
CPU-intensive command.

The prototype file allows you to customize at command files by controlling
what information is written into the at job file, /usr/spool/cron/atjobs

If a file named /usr/lib/cron/.proto. g exists (g is a queue name), this file
is copied into the job file. Otherwise, the /ustr/lib/cron/.proto file is used.

The following substitutions are made during creation of an at job file:

Variable Description

$a User’s current account name

$m User’s current file creation mask (see umask(2))

$l User’s current file size limit (see ulimit (2))

$d Name of the current directory

$t Time (in seconds since 1/1/70) when the job is scheduled to
execute

$< Read standard input until EOF is reached

The following is an example of a prototype file:

newacct $a

cd $d
ulimit $I
umask $m
$<

SG-2301 10.0

Basic Administration [5]

At minimum, a prototype file containing $< must exist to successfully run the
at utility. The at utility exits with an error if no prototype file exists.

The at utility can queue jobs in one of 25 different queues, with the cron
daemon controlling the number of executions for each queue. (You can use this
queuing mechanism to limit the use of the crontab and at utilities.) Running
the at utility with the -gx option as the first argument queues the command in
queue X. The default queue is a. A special queue, b, is defined as a batch
queue; jobs in this queue run whenever the defined maximum level is not
exceeded (as specified in the queuedefs file). Queues d through z, by default,
run at the same priority as b. Queue ¢ (available with the standard AT&T at
utility to run cron executions) is not available with the UNICOS at utility; the
crontab (1) utility should be used to submit crontab jobs. Jobs in all other
queues run at the time specified on the command line.

5.1.3 Restricting use of crontab and at utilities

Users can potentially abuse system resources when using the crontab (1) and
at (1) utilities. However, both the crontab and at utilities provide methods
for restricting user access. The /usr/lib/cron/cron.allow and
{usr/lib/cron/at.allow files contain the login names of users (one per
line) allowed access to the crontab and at utilities, while the
{usr/lib/cron/cron.deny and /usr/lib/cron/at.deny files contain
login names of users denied access to the utilities.

When a user submits a crontab file, crontab checks cron.allow for a list of
users permitted to have a crontab file. If no cron.allow file exists, the file
cron.deny is scanned for users who are denied crontab files. If neither file
exists, only root is allowed to have a crontab file. The same process is used
for determining access to the at utility. The null cron.allow file would mean
no user is allowed a crontab file, while a null cron.deny file would mean
that no user is denied a crontab file.

For additional information on the at.allow , at.deny , cron.deny ,and
cron.allow files, see the UNICOS Configuration Administrator’s Guide, Cray
Research publication SG-2303.

5.2 The temporary directory (TMPDI R)

SG-2301 10.0

The TMPDIRdirectory contains temporary user subdirectories and files. TMPDIR
is created at the beginning of an interactive session or batch job. All the files
and directories in TMPDIRare deleted at the completion of the session or job.

111

General UNICOS® System Administration

UNICOS commands and libraries create temporary files in TMPDIRinstead of
ftmp or /usr/tmp

UNICOS temporary directories are owned by the user and have group and
other permissions turned off. This prevents other users from seeing or deleting
files in a temporary directory they do not own.

5.3 Communicating with users

5.3.1 The wal | command

112

During the operation of a UNICOS system, it is frequently necessary for
administrators to use the system to communicate information to its users. This
section discusses a number of UNICOS commands and tools that enable you to
communicate with users:

e The wall (8) command

e The /etc/motd file

e The /etclissue file

e The /usr/news directory
e The write (1) utility

e The mail (1) utility

The wall (8) command broadcasts items of immediate concern to all users
currently logged in to the system. Run the command by typing the following:

letc/wall

The wall command responds by telling you to type your message and to press
CONTROL-dwhen you are finished. To ensure that all users who are currently
logged in see a message sent by wall , run the command while you have root
privileges; otherwise, the message goes only to users who allow messages to be
written to their terminals (see mesg(1)). Additionally, users who are not
currently logged in will never see the message; wall is thus not a suitable
method for communicating a message to all users who have accounts on the
system.

The wall command is typically used to send the following messages:

SG-2301 10.0

Basic Administration [5]

5.3.2 The / et ¢/ not d file

5.3.3 The / et c/i ssue file

SG-2301 10.0

Warnings that the system will soon be brought down for scheduled
downtime. Users who log in after the message is sent, however, miss the
message and should be notified by the /etc/issue file (see login (1)).

Warnings that the system must be brought down immediately to address a
system emergency.

Warnings that a particular file system has run out of disk space and that
users should make an immediate effort to delete any unneeded files (see the
description of the -g option on the wall (8) man page).

The /etc/motd (message-of-the-day) file is displayed to users after they are
logged in to the system. The /etc/motd file is an ordinary text file, and the
administrator may place messages in it by using any UNICOS text editor.

Messages that should be placed in /etc/motd are those that are less
immediate than those requiring the use of wall (8), but they are important
enough that users should be forced to see them. The administrator should
remove messages from /etc/motd as soon as they are no longer needed.
Suitable items for inclusion in this file include the following;:

Warnings to users to clean up unnecessary files on a particular file system or
systems

Brief explanations of recent problems that may have affected a number of
users, often with a pointer to a news item containing a more detailed
explanation

The /etc/issue file is displayed while a user is logging in, before the user
has successfully logged in to the system. It is an ordinary text file, and you may
place messages in it by using any UNICOS text editor.

Messages placed in /etc/issue should be brief and so important that users
may need the information to decide whether or not to log in to the system.
Possible messages include the following:

Warnings that the system will be brought down soon (so that users who do
not see a wall (8) message are not surprised when the system is brought
down shortly after they log in)

113

General UNICOS® System Administration

* Warnings that the system is being used for dedicated time and that not all
users will be able to log in

5.3.4 The / usr/ news directory

5.3.5 The wri t e utility

114

When users log in to the system they are alerted to the existence of any new
files placed in the /ust/news directory. When a user then runs the news(1)
utility, it displays any news files that have been created or modified since the
last time the user ran news. The files placed in /usr/news are ordinary text
files created with any UNICOS text editor, and they are usually assigned names
that give a general idea as to their contents. For instance, a news file containing
information about a modification to a system library might be given the name
new.library

Because users are not notified of the existence of a new news file until the next
time they log in, and because there is no guarantee that any given user will see
the file (a user may choose to ignore the item by not running the news utility),
lusrinews is appropriate for items that are not time-sensitive or items that are
of interest to only some of the system’s users. These categories include the
following:

* Notices regarding recent system changes, such as a newly installed version
of a command or library

¢ Explanations of imminent system reconfigurations or changes
¢ Explanations of recent system problems and their possible effects on users

It is a good idea to remove any old files in /usr/news periodically, not only to
save disk space, but also to prevent new users on the system from having to
read through a long list of out-of-date news items. The /usr/news file may be
cleaned out regularly by cron (8).

The write (1) utility initiates immediate person-to-person communication with
a logged-in user by opening that user’s tty or pty for writing and copying each
line of text you type to his or her screen. To write to a user with a login name

of dolores , for example, you would issue the following command:

write dolores

SG-2301 10.0

Basic Administration [5]

SG-2301 10.0

If the user dolores happened to be logged in on more than one tty or pty, you
could specify the connection:

write dolores ttyp001

If, in this example, the user dolores is currently logged in, a message appears
on her screen indicating that you are writing to her. Typically, the user

dolores replies by writing back to your account; each line of text she types
appears on your screen.

Given the immediate nature of its communication, the write utility allows you
to perform the following functions:

* Converse with a user

e Obtain information about what a user is doing

e Warn a specific user to stop what he or she is doing

¢ Instruct a specific user to clean up his or her directories

Because each typed line appears on the other user’s terminal without regard for
what that person may be typing at the moment, it is easy for the other user’s
messages to your terminal to appear to interfere with your typing. This problem
is customarily solved by having the two users take turns typing, ending a
message with an 0 on a line by itself (standing for "over,” much as in a two-way
radio conversation). To end such a session, either user then ends a message
with an 00 on a line by itself (for "over and out"). Thus, a typical "conversation"
carried out by write might look like this (your input appears in bold):

wite dolores

Message from dolores (ttyp001) - Mon May 11 08:20:15 -
Yes

0

Pl ease cl ean up your account, we’'re out of space.
0

All right, I will.

0

Thank you.

00

<EOT>

Because many users either do not know of this etiquette when using write , or
do not follow it, they think that write is difficult to use. In practice, it is used

115

General UNICOS® System Administration

5.3.6 The mai | utility

116

rather sparingly, mainly when more convenient forms of communication (such
as simply calling the user on the telephone) are impossible. Taking steps to
educate your user community in the proper use of the write utility will prove
valuable when write is the appropriate communication method.

Note: On a UNICOS system or Cray ML-Safe configuration, for write to
execute properly, the user’s active security labels must be equal.

The mail (1) utility provides a way to leave messages for specific users,
whether or not they are currently logged in to the system. The mail utility is
used as follows:

mail ralph

Type in message
CONTROL-d

You may specify more than one account name, in which case copies of the
message go to each user named. The next time users to whom you (or anyone
else) have sent mail messages log in to the system, the system alerts them to the
fact that they have mail messages waiting. The mail utility is thus particularly
well suited for messages such as the following:

* Instructions to clean up directories
* Asking or responding to questions
* General communication

In theory, there is no guarantee that the recipient of a mail message will
actually see the message, because the recipient may choose not to run the mail
utility to read the message; however, in practice, most users read their mail
when they log in.

Note: On a Cray ML-Safe configuration, the recipient of a mail message might
not be authorized to read mail at the classification with which it was sent.

For more information see mail (1) and mailx (1).

SG-2301 10.0

Basic Administration [5]

5.4 Monitoring system security

5.4.1 Super-user privileges

Maintaining security on UNICOS systems is largely a matter of vigilance on the
part of the system administrator, who should maintain constant surveillance for
potential security problems and for evidence of past security breaches.
Fortunately, the UNICOS system includes programs that provide the necessary
tools for the creation of a set of procedures that allows you to automate much
of the daily work of monitoring system security. This section discusses security
issues in three areas: system security (ensuring that the super-user privileges
are safe), user security, and partition security.

In the UNICOS operating system, with PRIV_SU enabled, the user
identification number (user ID) of 0, associated with the account named root ,
has special privileges and may override the security features governing the
activity of normal users. Such a user is referred to as a super user, and the super
user’s powers allow the administrator great flexibility in responding to system
problems and keeping the system running smoothly. The dominant security
concern for a UNICOS administrator is ensuring that access to super-user
privileges remains solely in the hands of the administrator and the
administrator’s staff. Failure to guard this access allows an unauthorized user
to acquire super-user privileges. At best, one user could then look at other
users’ sensitive files without authorization and, at worst, an outside intruder
(knowingly or unknowingly) could cause damage to the entire system.

5.4.1.1 Password security for super user

SG-2301 10.0

The password to the super user (root) account is the first line of defense
against security breaches. Anyone logging in as root or using the su (1) utility
to acquire super-user privileges uses this password.

Cray Research recommends the following steps to maintain secure access to the
root account:

e The root password should not be obvious and should be very difficult to
guess. Do not use a normal word in any language that might be known to a
majority of the system’s users. Additionally, capitalizing a random letter or
two (not the first letter of the password), or including a punctuation
character or a numeral in the password, or both, helps to keep super-user
privileges safe from an intruder who is trying to guess the root password.

e The root password should be changed frequently, at least once a month.

117

General UNICOS® System Administration

5.4.1.2 Physical security

5.4.1.3 setuid programs

118

e Theroot password should never be written down anywhere.

* Theroot password should be known to as few people as possible.
Generally, these should be the system administrator and the administrator’s
staff.

Use of the root password can be monitored, and potential security breaches
caught, by compiling the su utility so that it logs each use of the utility in the
/usr/fadm/sulog file. The administrator can then use the grep (1) utility to
generate periodic lists of successful and unsuccessful attempts to assume
super-user privileges by use of su. These lists can be compared against the
names of users known to have valid authorization, alerting the administrator to
unauthorized super users (a security breach) or users who are repeatedly trying
to gain super-user privileges (a security risk).

A person with access to the SWS, OWS, and 1OS consoles and a knowledge of
how to halt and reboot the system could do so and thus acquire unauthorized
super-user privileges.

To guard against this possibility, Cray Research recommends that the SWS,
OWS, and IOS consoles and the system itself be physically accessible only to
those persons with genuine need for that access. If this is not possible, they
should at least be monitored to prevent unauthorized persons from attempting
to enter commands on the system console.

An executable UNICOS program may have the setuid bit in its permissions
code set, indicating that whenever any user executes the program, the program
runs with an effective user ID of the owner of the file. Thus, any program that
is owned by root (user ID 0) and has its setuid bit set is able to override
normal permissions, regardless of who executes the program.

This feature is useful and necessary for many UNICOS utilities and commands,
but it can be a potential security problem if an astute user discovers a way to
create a copy of the shell owned by root , with the setuid bit on. To avoid this
possible security breach, the administrator should make regular checks of all
disk partitions on the system for programs that have a setuid (or setgid) of 0.

The find (1) utility can generate a list of all setuid/setgid O files on the system
(if all file systems are mounted), as follows:

find / \ -user 0O -perm -4000 -o -group O -perm -2000 \ -print

SG-2301 10.0

Basic Administration [5]

5.4.1.4 root

SG-2301 10.0

PATH

This list may be compared against a list of known setuid/setgid 0 programs.
Any new setuid/setgid 0 programs that are not on the known list and whose
creation you cannot account for may indicate a security breach.

The administrator should check the list of known setuid/setgid 0 programs
regularly to ensure that none have been modified since the last check and that
any modifications that have been made are known (in other words, were made
by the system administrator or a member of the administrator’s staff). Unknown
modification of a setuid/setgid 0 program may indicate a security breach.

Finally, the list of known setuid/setgid 0 programs should be checked to ensure
that write permission on each file is properly restricted.

Because checking the entire system for setuid/setgid programs uses a large
amount of CPU time, Cray Research recommends that this check be performed
during off-peak hours. Use of the cron (8) or at (1) utility to perform the check
automatically and to notify the administrator of any suspicious results should
make the task unobtrusive.

The PATHenvironment variable consists of a list of the directories searched by
the shell for typed commands. This means that the PATHfor the root account
must have the following security features:

e It must never contain the current directory (.).

e All directories listed in the root PATHmust never be writable by anyone
other than root .

The root PATHis set in two separate places:

e The /.profile file sets the PATHfor root whenever root logs in on the
system console.

e The su(1) utility changes the PATHafter a user has successfully entered the
root password to assume super-user privileges.

Both places should be monitored from time to time to make sure they have not
been changed since the last approved change known to the administrator.

Keeping the current directory out of the root PATHis somewhat inconvenient;
super users must remember to precede the names of any programs or scripts
they want to run from their current directory with ./ , as in ./newprogram ,
because the shell does not search the current directory for a command name.

119

General UNICOS® System Administration

5.4.2 User security

5.4.2.1 The umask utility

120

However, convenience should not take precedence over system security. Failure
to follow these guidelines leaves the system open to a security breach.

For example, suppose a knowledgeable user creates a program that mimics a
commonly used system utility, such as Is (1). In addition to performing the
expected system function (listing the files in the current directory), the new

Is (1) utility makes a copy of a program such as ksh (1) and turns on the setuid
bit on the copy. An unsuspecting super user with the current directory in PATH
having changed directories to a user’s directory and inadvertently run the
bogus Is , then creates a setuid 0 shell, which gives anyone executing it
complete control over the system.

In addition to general system security, the administrator should ensure that files
owned by system users are secure from examination and modification by other
users.

The system default umask value is normally set in the /etc/profile file by
using the umask(1) utility. It allows you to choose the permissions that will
typically be set when users create new files. For example, a umask value of 027
means that the group and other write permissions and the other read and
execute permissions are not set when a user creates a file. For possible umask
values and descriptions, see the umask(1l) man page.

In general, only the owner of the file should have write permission, which
makes a default umask value of 022 appropriate. If members of a given user
group should not be able to read the files of other user groups, using a umask
value of 026 to remove other read permission is recommended.

You should choose a umask value that restricts default access permissions to a
level appropriate to the desired security of the system. However, because users
can override the default value by using the umask utility themselves, do not
make the default umask value too stringent, as users may find that the default
value interferes with their work. For instance, if two users are working on a
joint project, and each needs access to the other’s files, they may want to change
their umask values so that, on any new files they create, the permissions will be
more open.

SG-2301 10.0

Basic Administration [5]

5.4.2.2 Default PATHvariable

5.4.2.3 User groups

5.4.2.4 File-owner fraud

SG-2301 10.0

The default PATHvariable for the system’s users is set in the /etc/profile
and /etc/cshrc files. It specifies the system directories that will be searched
for command names typed by the users.

The users expect to be able to execute programs in the current directory without
having to precede the program name with ./ to explicitly indicate the current
directory. However, many UNICOS systems traditionally place the current
directory first in the PATH which can make the users vulnerable to a security
breach, as described in Section 5.4.2.4, page 121. The current directory should
thus be the last entry in the default PATH after the normal system directories.

User security can be enhanced by the careful placement of users into groups. In
general, it is a good idea to use factors external to the system when deciding
upon the placement of users into groups. Some examples might be the
following:

* Members of a specific software project
* Accounts for a client company purchasing system time
* Intercompany divisions

Having many groups, each containing a small number of users, is safer than
having fewer groups, each with large numbers of users with access to each
other’s files. Members of most logical groups (for example, members of a
software development project) want to share files with one another, and the
default umask should permit this.

To prevent inappropriate sharing of data, you should create a group with only
one user in it, rather than create a default "other" or "miscellaneous” group for
users who do not fit elsewhere. Because users may belong to more than one
group, and groups are active simultaneously, you may also choose to create a
separate group for each individual user at the time you create the account, and
then add users to additional logical groups as necessary.

Neither the listed owner ID of a file nor its location in the directory tree always
leads to the actual creator and owner of the file. That is, users tend to think of
the files residing in their home directory as their only files, even though they
may own files in another home directory, such as those being used for a project

121

General UNICOS® System Administration

5.4.2.5 Login attempts

5.4.3 Partition security

involving several other users. Conversely, it may not be completely appropriate
to count files that reside in one user’s home directory tree but are owned by
another user.

Users may realize this confusion and try to avoid a disk usage monitoring
system by using the chown (1) utility to change the ownership of some of their
files to another user (most likely one who will cooperate and give the file back
when requested). Nevertheless, diskusg (8) and du(1), when used together,
provide a general idea of the users who are perennial problems.

Unauthorized users might attempt to gain access to the system by making
repeated attempts to login. To help prevent such attempts, you can configure
the number of bad login attempts that will be allowed before the login
terminates. By default, the system will allow an unlimited number of bad login
attempts. To put a limit on such attempts, edit the /etc/config/confval file
(see login (1)).

Note: For information on limiting login attempts on a UNICOS system or a
Cray ML-Safe system configuration, see Chapter 8, page 145.

When administered properly, the UNICOS file system should provide adequate
protection for user and system files. You can enhance system security, however,
by mounting partitions only when they are needed. In particular, if there are
users who will be allowed dedicated time on your system, you can provide
extra protection for those accounts by not mounting the file systems that
contain other users’ accounts.

To prevent users from accessing disk partitions directly, without going through
the UNICOS file system, the disk device nodes in /dev/dsk and /dev/rdsk
must never be readable or writable by anyone other than root .

5.5 Job and process recovery

122

This section describes the recoverability considerations and restrictions of the
UNICOS operating system.

SG-2301 10.0

Basic Administration [5]

5.5.1 Restrictions to job and process recovery

This section lists restrictions to recovering jobs and processes submitted either
interactively or as batch jobs via the Network Queuing Environment (NQE) and
Network Queuing System (NQS). The sections that follow list restrictions
common to batch and interactive recovery, and restrictions unique to batch
recovery.

5.5.1.1 Restrictions common to batch and interactive

SG-2301 10.0

The following list describes restrictions common to batch and interactive job
and process recovery:

* All the files that a process was using when it was checkpointed must be
present when the process is restarted. This includes all open files, the
present working directory, and any shared-text binaries (such as shells) in
use by the process. If any of these is not available when the process is
restarted, the restart (2) system call fails and returns an EFILERM error
(errno 51). In the restart file, each of these files is identified by the file
system minor number and inode number. If either number changes, for
example, if a file system is restored after a process is checkpointed, the
restart (2) system call fails with an EFILERM error.

The requirement for shared-text binaries to be present can cause restart
failures if a system is booted on an alternate root file system, for example,
when a system is upgraded from one UNICOS update release to another. If
the old root file system is not available when checkpointed jobs are
restarted, the restarts will fail with an EFILERM error, because the shells are
not available. When converting from one root file system to another, the old
root should be mounted on some alternate mount point (/mnt for example)
so that checkpointed processes can be recovered.

e If the RESTART_FORCHption is not specified on the restart (1)
invocation, any file that was in use at checkpoint time must not have been
modified since that restart file was created in a nonsequential fashion. That
is, the restart ~ will fail if any bytes in the file between offset 0 and the file
size have been modified since the checkpoint occurred. This rule allows the
job or process to be checkpointed and to continue execution, sequentially
extending output files, without invalidating the restart file.

® The access permissions of the files and directories in use at checkpoint time
must not have been changed from their original values, or changed to deny
the required access at restart time.

e User and group ownership of the files must be unchanged.

123

General UNICOS® System Administration

124

The sum of the sizes of all unlinked files in use by the target process set
must be less than the system limit specified as MAX_UNLINKED_BYTE&
config.n . Note that the intent is to checkpoint and restart processes and
jobs using unlinked (sometimes called zerolink) files, as long as the files in
question are small. This covers such cases as unlinked files created by
/bin/sh in order to handle here documents, and small temporary files
typically used by compilers. Applications that use very large temporary files
(for example, assign -t) should be changed to use files in the linked
temporary directory.

If a user attempts to copy a restart file or to move a restart file to a different
file system, it is no longer marked as a restart file and is not restartable.

An open pipe connection that originates, or terminates, outside the
checkpoint target set prevents the successful completion of the checkpoint.

Any form of TCP/IP socket usage prevents the successful completion of the
checkpoint. Note that the innocent use of certain TCP/IP system calls, such
as gethostname (2), can cause the TCP special device /dev/net to be
opened, and this causes a checkpoint request to fail.

At checkpoint time, there must be sufficient disk space to contain the restart
file. Note that the restart file contains at least two sectors worth of header
information, any pipe data in transit between processes, the contents of any
unlinked files in use, and the user control structures and program image for
each process in the checkpoint target set.

On systems with SSDs, any secondary data segment (SDS) regions in use are
appended to the data region of the associated process.

There must be sufficient system resources, such as inode buffers, file table
entries, and job table slots.

There must be sufficient process slots available so that the successful
execution of restart will not exceed either the system or user maximum
number of processes allowable.

None of the process, process group, and job IDs needed for the successful
execution of restart may be in use at restart time.

Processes using shared memory segments (CRAY T90 series systems only)
cannot be successfully restarted.

For a UNICOS system or Cray ML-Safe system configuration, the user must
be the owner and have MAC write access or be an authorized user or
privileged process.

SG-2301 10.0

Basic Administration [5]

5.5.1.2 Recovery restrictions unique to batch

The following list describes job and process recovery restrictions unique to
batch jobs submitted through NQS:

If the user specifies at submission time, by way of the gsub (1) option -nc ,
that the job is not to be checkpointed, it is never checkpointed, even in
response to a gchkpnt (1) command.

The super user cannot checkpoint an NQS job directly (using the chkpnt (1)
utility), without letting NQS know what is happening, and expect it to
recover. The gmgr(8) command must be used to checkpoint an NQS job so
that the main NQS daemon is aware of what is happening.

Because NQS does not use the RESTART_FORCHag on the restart
invocation, any file that was in use at checkpoint time must not have been
modified in a nonsequential fashion since the restart file was created. That
is, the restart ~ will fail if any bytes in the file between offset 0 and the file
size have been modified since the checkpoint occurred. This rule allows the
job to be checkpointed and to continue execution, sequentially extending
output files, without invalidating the restart file.

5.5.2 Checkpoint and restart errors

If something goes wrong during a chkpnt (2) or restart (2) system call, an
error code is returned in the global variable errno . For lists of such error
codes, see the chkpnt (2) and restart (2) man pages.

The following section discusses how to use the crash program to examine the
restart-information buffer to help determine why a checkpoint or recovery was
not successful.

5.5.2.1 Examining the restart-information buffer

SG-2301 10.0

If you are having difficulty determining why an application will not checkpoint
or restart, attempt to recreate the scenario on a relatively quiet system, and use
the kernel debugger program crash (8) to examine the restart-information
buffer.

The system is built with several restart-information buffers. A
restart-information buffer is obtained and used for each checkpoint and restart
operation.

The resinfo subcommand of the crash command may be used to obtain a
usage summary for the restart-information buffers in a system. Using a quiet

125

General UNICOS® System Administration

system allows you to examine an individual restart-information buffer without
having it overwritten. If you have determined which restart-information buffer
you want to see in detail, invoke crash and issue the following command to
receive a detailed account of everything that is still in the restart-information
buffer. The - (dash) option causes the long form of the listing to be output.

resinfo - buffer number

If you are not sure which buffer to examine, the resinfo - command displays
all the restart-information buffers.

5.5.3 Recovery and signals

5.5.3.1 SIGSHUTDN

126

The UNICOS operating system supports the automatic checkpoint and restart of
batch jobs run by NQS across multiple shutdown and restart events. No
modifications are needed for batch job requests run by NQS in order to take
advantage of the UNICOS recovery facility, except in special circumstances.

There are two signals involved in the implementation of job and process
recovery. The SIGSHUTDNsignal warns of impending system shutdown, and
the SIGRECOVERY¥ignal is delivered to a recovered process. The following
sections discuss these two signals.

To support special batch job requests that cannot be automatically checkpointed
and restarted, and to allow limited recovery of interactive processes, a user
process can register to catch the SIGSHUTDNsignal. This indicates that the
system is in the process of an orderly system shutdown.

Upon receipt of a SIGSHUTDNsignal, the catching process can take steps to
record its own state for later recovery, or improve its chances for recovery by
closing unrecoverable files, and so on. Interactive processes can checkpoint and
kill themselves by using the chkpnt (2) system call, thereby creating a restart
file for later recovery.

The NQS gmgr(8) command for bringing down NQS in an orderly manner is as
follows:

shutdown grace-time

The grace-time operand specifies the length of time between notifying a job with
the SIGSHUTDNkignal, and checkpointing or killing the job. Note that a

SG-2301 10.0

Basic Administration [5]

5.5.3.2 SIGRECOVERY

shutdown or shutdown 0 command does not send the SIGSHUTDNsignal to
the jobs; rather the jobs are immediately checkpointed or killed.

Any shutdown scripts that are executed when an orderly system shutdown is
imminent should first invoke the NQS gmgr command to shut down NQS,
checkpointing all recoverable batch jobs, and then send the SIGSHUTDNsignal
to all interactive processes in the system by using the Kkillall (8) command.

When a process is recovered from a restart file, either by itself or as a member
of an NQS job, a SIGRECOVERYignal is posted to that process. By default, the
SIGRECOVERY¥ignal is ignored, so a process must register a signal handler for
SIGRECOVERYf there may be action necessary (for example, to restore
previously closed unrecoverable files).

5.6 Kernel user exit (uesyscal l)

SG-2301 10.0

The uesyscall ~ system call is a user exit into the kernel that allows you to
write a site-specific system call. This function gives you access to kernel
structures not otherwise available and allows a site to implement functionality
in the UNICOS operating system that requires kernel support.

Warning: The kernel user exit (uesyscall) does not meet the requirements
of a Cray ML-Safe configuration of the UNICOS operating system.

The structure of uesyscall is as follows:

int uesyscall (int subsyscall, void *paramaddress, int len);

subsyscall Sub-system call number defined by the site in
uex.h , the system call include file. The
sub-system call allows multiple system calls from
one common entry point.

paramaddress Address of the parameter list passed to the
system call. The site-defined parameter list allows
different parameters to be passed to each
sub-system call.

127

General UNICOS® System Administration

128

len Length (in words) of the parameter list. The
length argument allows different parameters to be
passed to each sub-system call.

An entry in the system call table has been added to the uts/cl/os/sysent.c

file to support the uesyscall ~ system call. The

uts/cl/md/krn _uex_syscall.c file contains the system call source. The
associated uts/include/sys/uex.h include file contains user exit
definitions. The source for the system call and include file are distributed with
source and binary releases.

The krn_uex_syscall.c source file contains a stub routine that simply
returns. The main routine parses the input parameters and calls specified
sub-system calls, which allows you to write multiple site system calls.

If you want the system call to be accessible to any user, it is recommended that
you write a library interface to the system call. Creating a library interface
allows extra sanity checks and validation, and provides a cleaner, more
understandable user interface.

Caution: Use caution when creating a site-specific system call to avoid
introducing the ability to corrupt data and to panic the system. In addition,
the UNICOS kernel is now multithreaded. If a site adds code to update any
tables in the kernel, you may need to place multithreading locks around the
kernel structure being updated.

SG-2301 10.0

