Administration of Online Documentation [9]

This chapter describes the administrative procedures required for the online
glossary and the UNICOS online message system. Also, it describes the Cray
DynaWeb server (which replaces the Docview and CrayDoc documentation
tools) and explains how to add local man pages.

9.1 Modifying online glossary files

The UNICOS define (1) utility allows quick, online retrieval of Cray Research
technical terms and their definitions, as well as terms and definitions added by
a local site, that match a specified search string. With the define utility, Cray
Research provides a definitions file called CRAYdefs_i , which contains
embedded keywords. Sites can modify this definitions file or can add local
definitions files by using the builddefs (1) utility.

9.1.1 Modifying the Cray Research definitions file

SG-2301 10.0

A\

The following procedure shows how to use builddefs to modify the Cray
Research definitions file that the define (1) utility uses:

Caution: If you make changes to the CRAYdefs_i definitions file, the
changes will be lost when a UNICOS revision or update is installed. In this
case, back up the CRAYdefs_i file, do the installation, and then reapply the
changes you backed up.

1. Copy the CRAYdefs_i definitions file, which has embedded keywords,
from the default definitions directory, /ust/lib/define , to your working
directory.

2. Edit the file to make the desired changes.

3. Run builddefs on the edited file, as follows (CRAYdefs_i is the input
file, and CRAYdefs is the output file):

builddefs CRAYdefs i CRAYdefs

This command produces a CRAYdefs file, which is a definitions file without
embedded keywords and a CRAYdefs_k file, which is a keyword file.

361

General UNICOS® System Administration

4. Set the DEFINEDIR environment variable to the working directory
(directoryname) that contains the CRAYdefs and CRAYdefs_k files. For the
Korn and standard shells, set the variable, as follows:

DEFINEDIR=directoryname
export DEFINEDIR

For the C shell, set the variable as follows:
setenv DEFINEDIR directoryname
5. Test the modified file by using the define (1) utility on selected terms.

6. Install the CRAYdefs_i , CRAYdefs, and CRAYdefs_k files in the
{usr/lib/define directory.

7. If necessary, reset the DEFINEDIR environment variable. For the Korn and
standard shells, reset the variable as follows:

unset DEFINEDIR
For the C shell, reset the variable as follows:

unsetenv DEFINEDIR

9.1.2 Creating a local definitions file

The following procedure shows how to use the builddefs (1) utility to create a
local definitions file for use by the define (1) utility. When multiple definitions
files are in the definitions directory, the define utility reads the files in
alphabetical order; that is, it searches file aaa before file bbb.

Caution: If your site begins the installation process from a clean partition,
A your local definitions files installed in the default define directory,
lusrllib/define , might be removed during the installation of a UNICOS
revision or update. In this case, back up your local definitions files, install the
UNICOS revision or update, and then reinstall your local definitions files.

1. Prepare an input file that contains embedded keywords according to the
keywording rules contained in the following section.

2. Run builddefs on the local file, as shown in the following example.
sitedefs_i is the input file, and sitedefs is the output file. This command

362 SG-2301 10.0

Administration of Online Documentation [9]

produces a sitedefs file, which is a definitions file without embedded
keywords, and a sitedefs_k file, which is a keyword file.

builddefs sitedefs_i sitedefs

3. If you want to test how your local file works, set the DEFINEDIR
environment variable to the working directory (directoryname) that contains
the new formatted definition file. If you do not want to test the local file,
skip to step 6. For the Korn and standard shells, set the variable as follows:

DEFINEDIR=directoryname
export DEFINEDIR

For the C shell, set the variable as follows:
setenv DEFINEDIR directoryname
4. Change directories by entering the following command line:
cp sitedefs sitedefs_k directorynamel
5. Test the new file by using the define (1) utility on selected terms.

6. Install the sitedefs and sitedefs_k files in the /ust/lib/define directory.
The define utility reads the files in this directory and searches them in
sequence for search string matches.

7. If necessary, reset the DEFINEDIR environment variable. For the Korn and
standard shells, reset the variable, as follows:

unset DEFINEDIR
For the C shell, reset the variable as follows:

unsetenv DEFINEDIR

9.1.3 Glossary keywording rules

SG-2301 10.0

The builddefs utility reads a definitions file that has embedded keywords to
produce a keyword file and a definitions file without embedded keywords. A
pair of keywords in the form ++term marks each definition in the input file.
Synonyms for the term, if any, also begin with ++ and follow the keyword line.
(Do not mark synonyms in pairs.) You should enter all keywords and
synonyms into the definitions file and use the correct capitalization
conventions. The keywords and synonyms are recorded in the keyword file in
lowercase characters.

363

General UNICOS® System Administration

Example:
++access control list
++ACL
The access control lists (ACLs) are an extension to the normal
UNICOS file discretionary access control. ACLs support the ability
to grant or deny access to a file on any user and/or group
basis. For more information on ACLs, see the acl(l) man page.
++access control list

The builddefs utility checks all keywords for keywording errors. The
following rules apply to keywording:

The two ++ symbols that appear in columns 1 and 2 of the intermediate
definitions file identify a keyword. The keyword immediately follows the ++
symbols, with no intervening blank spaces and tabs. Empty keywords (that
is, ++ with no following text) are not allowed.

A keyword can consist of up to 48 characters. If a keyword is longer than 48
characters, it will be truncated.

Each definition must have two keywords (a matching pair). The first
keyword indicates the start of the definition. The second keyword indicates
the end of the definition.

Synonyms for a keyword are in the form ++synonym and are limited to 48
characters. Do not mark synonyms in pairs.

9.2 Cray message system

364

The Cray message system (formerly called the UNICOS message system)
consists of tools and procedures for issuing error messages to users from
program code and delivering documentation on those messages. The message
system is based on the X/Open Native Language System specification.

This section contains information that administrators need to install, maintain,
and update message system files under the UNICOS operating system.

Warning: Sites using the Cray ML-Safe configuration of the operating system
can use the information and procedures outlined in the following sections to
change or add messages. However, for changed messages, you must not alter
the original, underlying meaning of the message.

Message system files are easy to install. They are shipped in both source and
catalog format, and they are ready to use after they are loaded in the proper

SG-2301 10.0

Administration of Online Documentation [9]

9.2.1 Overview

SG-2301 10.0

directories. This section focuses on message system terminology, the location of
message system files, and procedures for rebuilding message catalogs when
message information changes.

The message system includes the following features that aid in improving error
reporting and problem resolution:

Published guidelines for writing good messages and good message
documentation

Message catalogs, located separately from the program code, that contain
the text of the messages issued at run time

Explanation catalogs that contain a discussion of the error and suggest
solutions

Online user access to message documentation by using the explain (1)
command

User control of the message format through the MSG_FORMAdnvironment
variable

Message text source files distributed with the release

These features create the following advantages for products that use the
message system:

Messages are more informative and usable.

Online and printed explanations are readily available to users and
administrators.

Messages are easier to trace to their source because they contain a unique
identifier that includes their product of origin.

Messages and explanations are centralized in catalogs. The text of both is
readily accessible for update and translation.

Users can change the message format by using the MSG_FORMAfariable.

These advantages are achieved through a design that removes error messages
from program code and places them in a message text file, which also includes
explanations for each message.

365

General UNICOS® System Administration

The message text file is processed into a catalog of messages and a catalog of
explanations. Library calls in the program code access the message catalog at run
time. An accompanying explanation catalog contains explanations of the
messages in the message catalog. To access these explanations, use the

explain (1) command.

The system administrator is responsible for installing, maintaining, and
updating the message catalogs. The following sections explain how to work
with message text files and message catalogs. They describe how to install the
message system files so that UNICOS programs can access them. They also
describe how you can update your message catalogs if your site wants to add
or change message or explanation text.

See the Cray Message System Programmer’s Guide, Cray Research publication
SG-2121, for a complete description of the message system from a
programmer’s perspective.

The man pages for the message system routines contain descriptions and
examples of the commands, routines, and environment variables that compose
the message system. See the following man pages:

e caterr (1)

e catxt (1)

e explain (1)
e gencat (1)

e whichcat (1)
e catgetmsg (3)
e catgets (3)
e catmsgfmt (3)
e catopen (3) and catclose (3)
e nl_types (5)
* msg(7D)

9.2.2 Message system files

366

The message system uses the following three kinds of files:

SG-2301 10.0

Administration of Online Documentation [9]

9.2.2.1 File names

9.2.2.2 File location

SG-2301 10.0

* Message text file
* Message catalog
* Explanation catalog

The message text file is the source file for message system text. The message
and explanation catalogs are binary files produced from the message text file by
using the caterr (1) command. The release tape includes both the source and
binary forms of the message system files.

Each type of message system file has a name in the form group.suffix. The group
code (group) identifies the product, and the suffix (suffix) identifies the file type.

The group code is any string that relates to the product or products that the file
supports. For example, the segldr (1) and Id (1) loader commands use the ldr
group code. The explain (1) man page lists all of the group codes used by
Cray Research software.

Each type of message file has a different suffix after the group code. The
message text file has the suffix .msg, the message catalog has the suffix .cat ,
and the explanation catalog has the suffix .exp .

Thus, the following three message system files are associated with the SEGLDR
product:

File name Description

Idr.msg Message text file
Idr.cat Message catalog
Idr.exp Explanation catalog

The location of a message system file is determined by its type, text or catalog,
and its product.

The message text file (group.msg) is located in the source tree with other files in
the product’s program library (for example, the message text file used by the

loaders is located in the /usr/src/prod/segldr/ldr.msg file).

Most message and explanation catalogs (group.cat and group.exp) are

installed in the /usr/lib/nIs/En directory. Some products must be available
367

General UNICOS® System Administration

when the /usr/lib file system is not mounted; the catalogs for these products
are installed in the /lib/nls/En directory.

9.2.3 Installing message system files

The release media includes the message text file, message catalog, and
explanation catalog for each product that uses the message system. Cray
Research recommends that you install the message files initially without
changes. The UNICOS installation process creates the /usr/lib/nIs/En and
llib/nls/En directories on your system and copies the message system files
to these directories. With these files in place, the message system functions
correctly and issues messages from UNICOS software.

9.2.4 Changing the message text file

368

The message system lets you update the message and explanation catalogs with
site-specific information. Situations in which you may want to add site-specific
information to existing catalogs include the following;:

* A local modification to the code has created the need to add a new message
or to change an existing message.

® A particular error condition has a site-specific remedy that you want to
describe in the explanation.

* You want to add names or phone numbers for persons or groups to be
notified if certain errors occur.

* You are creating a new program and want to use the message system to
issue the error messages.

¢ The site wants to translate the messages into a different native language;
catalogs of messages in the target language must be created and installed.

Warning: Local modifications to message and explanation catalogs will be
overwritten during the installation of the next UNICOS revision or update
that contains those catalogs. Sites must back up their local modifications,
install the new catalogs and message text files, and reapply their local
modifications.

If catalogs for a product are mistakenly deleted from the system, you may have
to rebuild them.

The following sections describe how to edit and rebuild message system files.

SG-2301 10.0

Administration of Online Documentation [9]

9.2.5 Editing the message text file

9.2.6 Rebuilding catalogs

SG-2301 10.0

The message text file is the source file for messages and explanations. If you
make changes to a product that have an impact on that product’s messages, this
is the file that you must change.

The message text file contains the following four types of information:
* Message text, preceded by the $msg tag

¢ Explanation text that contains nroff formatting codes, preceded by the
$nexp tag

* Plain ASCII explanation text, preceded by the $exp tag
e Comments, consisting of $<space>< text>, $<tab ><text>, or $<newline>

Blank lines are also acceptable within a message text file, but they are ignored
during text-to-catalog processing.

Edit the message text file to include new information. Ensure that the resulting
file conforms to the format specified in Cray Message System Programmer’s Guide,
Cray Research publication SG-2121.

After new information is incorporated into a message text file, you must rebuild
the related catalogs. You can build catalogs in two ways:

* Use the makefile for the product to remake the catalogs
* Use message system commands to remake the catalogs

The first method, using the makefile, is simpler. It requires fewer steps and less
intervention on your part. However, it is less flexible because it calls the
message system commands in a specific way.

The second method, using message system commands to remake the catalogs,
gives you more options, but it also requires that you understand more about
the message system commands and how to use them.

The following sections describe the two methods of rebuilding catalogs.

369

General UNICOS® System Administration

9.2.6.1 Rebuilding with nmake

The makefile for each product builds a message and explanation catalog from
the message text file. It places these catalogs in the current directory (usually

within the source tree). The nmake install ~ command places the catalogs in
the proper subdirectory. (It also reinstalls other software in that directory.)

The makefile varies from product to product, but, basically, nmake calls the
caterr command twice. The first call to caterr creates a message catalog
from the $msg-tagged information in the message text file. This message
catalog is placed in the message system directory. For a discussion of where
catalogs are located in the directory structure, see Section 9.2.2.2, page 367.

The second call to caterr creates an explanation catalog from the $nexp - and
$exp -tagged information in the message text file. The explanation catalog is
placed in the same directory as the message catalog.

To create an explanation catalog from source material tagged with $nexp,
caterr calls nroff (1) and a file of message macros. nroff processes the
formatting codes embedded in the explanations and passes the formatted text
back to caterr . caterr then completes its catalog creation process.

9.2.6.2 Rebuilding with message system commands

370

The caterr (1) command rebuilds message system catalogs from the message
text file. You can use caterr to rebuild a message catalog or an explanation
catalog. Rebuilding both catalogs for a product requires that you invoke
caterr twice. See the caterr (1) man page for details of the syntax.

For example, if changes were made only to a product’s messages (not to the
explanations), use the caterr command to process the messages into an
updated message catalog. Use the -c option to call gencat (1).

The following command rebuilds the Idr.cat ~ message catalog from the
Idr.msg message text file:

caterr -c Idr.cat Idr.msg

The caterr command processes the text file, then calls gencat , which creates
the new message catalog.

If changes were made only to a product’s explanations (not to the messages),
use caterr to remake the explanation catalog. Use the -e option to produce
an explanation catalog instead of a message catalog.

SG-2301 10.0

Administration of Online Documentation [9]

9.2.7 Printing messages

SG-2301 10.0

The following command rebuilds the Idr.exp explanation catalog from the
Idr.msg message text file:

caterr -e -c Idrexp Ildr.msg

The caterr command processes the text file, then calls gencat , which creates
the new explanation catalog.

The messages for any group code can be printed as a document. You might
want to do this in either of the following cases:

® Local changes are made to the message file and the site wants to provide an
updated message document to users

¢ Cray Research has provided the messages only online, but the site wants to
provide a printed message document

Follow the steps below to print a message document locally. Throughout this
procedure replace group with the group code for the product whose messages
you want to print.

1. Locate the message text file in the source tree for the product. If you are not
familiar with the structure of the source tree, use the following find
command syntax to locate the message text file. This invocation of the
command displays the path name of the file group.msg .

find /usr/src -name group.msg -print

2. Locate or create a header file for use in printing. Check in the directory
where the message text file was found for a file named group.head . If this
file exists, proceed to the next step. If it does not, create a header file that
contains at least the following macros. (The msg(7D) man page describes
the text processing macros used in this header file.)

.GC group
ST "group Messages"
.2S

3. Extract the explanations from the message text file. Use the catxt
command to perform this step. The following invocation of the catxt
command extracts the explanations from the file group.msg and places
them in the file group.nexp . Invoke this command from a directory in

371

General UNICOS® System Administration

372

which you have write permission. This may require that you copy the
message text file (group.msg) to a directory outside of /usr/src

catxt -n group.nexp group.msg

If the group.msg file contains #include directives, the files specified in
those directives must also be available in your working directory. If
#include directives appear in the file, the messages use symbolic names
instead of literal message numbers. Use the following form of the catxt
command (instead of the command shown previously) to extract the
explanations. The -s option resolves the symbolic names into message
numbers.

catxt -s -n group.nexp group.msg

. Process the group.nexp file with a version of the troff (1) text processor

and print the resulting file. The commands to perform this step depend on
the target printer. (This procedure assumes that the target printer is
connected to a UNIX system networked to the Cray system.)

If the target printer is capable of printing files output from the
device-independent version of troff ~ (sometimes called ditroff), go to
step a. If the target printer is not capable of printing these files, go to step b.

If you are unsure of the capability of the target printer to accept
device-independent troff input, check the Ipr (1) command man page for
the UNIX system to which the printer is connected (not the Ipr man page
on the Cray system). If the Ipr command accepts the -n option, the printer
is capable of handling output from device-independent troff

a. Device-independent troff procedure

Cray systems include device-independent troff as part of the base
software release. On your Cray system, use the following command
line to process the header and explanation files with
device-independent troff

troff ~ -msg group.head group.nexp | lpr -n
b. troff procedure

Many UNIX systems other than Cray systems include troff (not
device-independent troff) as part of the base software release. Copy
the Cray message system macro file /ust/lib/tmac.sg to the UNIX
system connected to the target printer. Also copy the group.head and
group.nexp files from the Cray system to the UNIX system.

SG-2301 10.0

Administration of Online Documentation [9]

On this UNIX system, use the following command line to process the
header and explanation files with troff

troff -t tmac.sg group.head group.nexp > outfile
Use the following command to print the troff output (outfile):

Ipr -t outfile

9.3 Cray DynaWeb server

SG-2301 10.0

The Cray DynaWeb server makes Cray Research documents available to World
Wide Web browsers. The Cray DynaWeb server is based on DynaWeb software
produced by Electronic Book Technologies, Inc. (EBT). DynaWeb is a
commercial-grade Web server that serves documents marked up in Standard
Generalized Markup Language (SGML) to Web browsers for rapid navigation
and searching. Documents in DynaWeb are stored in SGML and converted to
hypertext markup language (HTML) when a Web browser requests the
document.

Like any Web server, a DynaWeb server listens for hypertext transfer protocol
(HTTP) requests from browsers. Each request contains a uniform resource
locator (URL) that identifies the server and a particular block of data, such as a
home page, a section of text, or an image.

By default, the Cray DynaWeb server listens for incoming requests on port
8080, which does not require super user (root) privileges.

Warning: The Cray DynaWeb server uses a port number greater than 1024
(8080, by default), so that root privileges are not required to run the Cray
DynaWeb daemon. However, if you have an Internet connection, ports
greater than 1024 are accessible to users external to your site. This is a
security risk for your site: it does not meet the requirements of a Cray
ML-Safe configuration of the UNICOS operating system, and it is a violation
of copyright and licensing restrictions under which Cray Research and its
customers must operate. Consequently, you must disable external acess to
port 8080 on the Cray DynaWeb server or employ other access control
measures for port 8080 on that machine.

The server can handle up to 256 simultaneous requests. The connections are
short-lived, lasting only long enough for the server to process the requested
data and send it to the browser. After sending the requested information, the
server terminates its connection.

373

General UNICOS® System Administration

9.4 Local man pages

374

Note: The Cray DynaWeb server has been tested using Netscape Navigator
version 2.02 and 3.0. The server is also accessible using the Mosaic and Lynx
browsers; however, tables are not fully supported. Other browsers may work
but are not explicitly supported by the server.

For detailed information about installing and administering a DynaWeb server,
see Online Software Publications Installation Guide, Cray Research publication
5G—-6105 and Online Software Publications Administrator’s Guide, Cray Research
publication SG-6104.

The man(1) command displays online man pages. The man(1) command used in
the UNICOS release is compatible with the UNIX 4.3BSD man command. The
following two differences affect how you can implement local man pages:

* The man command references unformatted man pages in a set of manx
directories, and formatted man pages in a set of cat x directories (the source,
or unformatted, man pages are not released with the UNICOS system).
Directories follow the BSD organization.

Directory Description

catl User commands

cat2 System calls

cat3 Library routines

cat4 Special files (devices)

cats File formats

cat7 Miscellaneous information and DWB macro descriptions
cat8 Administrator commands

catl (letter 1) Local man pages

¢ The MANPATHnvironment variable lets you maintain local man pages in the
directory of your choice. The X Window System xman command also uses
the MANPATHnvironment variable.

The MANPATHnvironment variable lists the directories that the man command
should search for man pages. When the MANPATRnvironment variable is not
set, the man command, by default, searches the /usr/man subdirectories for
man pages. Users can set the MANPATHnvironment variable to find man pages
in directories other than /usr/man

SG-2301 10.0

Administration of Online Documentation [9]

9.4.1 Examples

9.4.1.1 Example 1

SG-2301 10.0

You can install local man pages as either source (unformatted) man pages (in
manx directories) or as formatted man pages (in cat x directories). When the
source page is newer than the formatted page, or when the formatted page is
not available, the man command uses the man page macros defined in
{usr/lib/tmac/tmac.uc to format source man pages.

If you install your local man pages in directories that are not affected by
UNICOS upgrades, you will not have to reinstall them after future upgrades;
however, users must set the MANPATHnvironment variable to include the local
man page directory.

Man pages installed in the /usr/man manl or catl subdirectories will have to
be reinstalled after each UNICOS upgrade. Save your local man pages before
beginning the upgrade, then restore those packages to the appropriate location.

Only when man page searches fail on the first specified path does the man
command search the next path. For example, by setting the MANPATH
environment variable to include the local man page directory before the Cray
Research man page directory, the man command will display local man pages,
rather than Cray Research man pages that have the same name.

For more information about the man command and the MANPATRnvironment
variable, see the UNICOS User Commands Reference Manual, Cray Research
publication SR-2011.

The following two examples illustrate ways of using the MANPATHnvironment
variable to implement local man pages on your system.

You can install local man pages in the same directory structure as the associated
binary files, such as /usr/local . If /usr/local/man is used for local man
pages, you would follow these steps:

1. Create the /usr/local/man directory, then create the cat x or manx
directories under /usr/local/man

2. Have users add the MANPATHnvironment variable to their .cshrc or
.profile file, as follows:

In .cshrc

setenv MANPATHusr/man:/usr/local/man

375

General UNICOS® System Administration

In .profile

MANPATH=/usr/man:/usr/local/man
export MANPATH

3. Add the system-wide definition of the MANPATHnvironment variable to
/etc/cshre and /etc/profile , as follows:

In /etc/cshrec
setenv MANPATHusr/man:/usr/local/man
In /etc/profile

MANPATH=/usr/man:/usr/local/man
export MANPATH

4. Install the local man pages in the /usr/local/man/cat X or
/usr/local/man/man x directories. Alternative man directories must
follow the subdirectory structure and the naming convention as used in
/usr/man . The man page file name convention allows an extension that
corresponds to the number of the directory, such as | for catl and manl,
plus a one-letter extension, as follows:

e file.1 (b,c,g, mor X)

e file.3 (c,f,g,i,l,mn,r,s,u,Xx,orX)
e file .4 (f,n,orp)

e file.7 (d or X)

e file.8 (c,v,ore)

9.4.1.2 Example 2

Users can have private man pages, or man pages restricted to a specific group
of users. To include private man pages in $HOME/manor restricted man pages
in / restricted_man_dir/man, follow these steps:

1. Add $HOME/manor / restricted_man_dir/man to the MANPATHnvironment

variable in the .cshrc or .profile file, as follows:
In .cshrc
setenv MANPATH/usr/man:/usr/local/man:$HOME/man:/ restricted_man_dir/man

376 SG-2301 10.0

Administration of Online Documentation [9]

In .profile

MANPATH=/usr/man:/usr/local/man:$HOME/man:/ restricted_man_dir/man
export MANPATH

2. Install the private man pages in the alternative man directories specified in
the MANPATHnNnvironment variable; those directories must follow the
subdirectory structure and the naming convention as used in /usr/man
(see step 4 in example 1).

9.4.2 Display order for same-name man pages

If a local man page has the same name as a Cray Research man page, the man
command displays the man pages in the order found. The man command
searches the subdirectories in numerical order, 1-8, and searches the 1 (local)
subdirectory last. For example, manl/catl are searched before man2/cat2 ,
and man8/cat8 are searched before manl/catl

When the MANPATHnvironment variable is set, the man command searches the
next path only when a search fails on the first specified path. The mancommand
will not display all same-name man pages installed in separate search paths.

If you want to display both man pages, do the following;:

e To display the Cray Research man page first, followed by the local man
page, install the local man pages in /usr/man/catl

e To display the local man page first, followed by the Cray Research page, do
the following:

1. Install the local man page in /usr/man/cat x by using the appropriate
file extension or suffix for cat x with contents clearly marked "Local."

2. Move the Cray Research original page to /usr/man/catl (or
/usr/man/manl source pages), with the file extension .| , then modify
it to mark its contents "Cray Research original."

SG-2301 10.0 377

