User-defined Locales [A]

A.1 The localedef

SG-2301 10.0

In order to provide more flexible support for multicultural software interfaces,
the UNICOS system supports the concept of a locale. A locale is a collection of
culture-dependent information used by an application to interact with a user.
The information in a locale includes information on the following:

* Sorting or collation (LC_COLLATE

¢ Character classes and case mapping (LC_CTYPE
® Basic interaction messages (LC_MESSAGES

* Monetary formats (LC_MONETARY

e Numeric formats (LC_NUMERIQ

e Time and date formats (LC_TIME)

To make use of these features in an application, that application must be written
to use the information in a locale or interfaces that access the locale implicitly.
Use of this information from a locale can help an application be free of cultural
dependencies. Such an application is said to be internationalized. The goal is that
such an application can then be run by a user and, through the manipulation of
environment variables, interact with that user in a more natural manner.

utility

Locales are defined using the localedef utility. The input to localedef isa
text file (known as a locale definition file) that describes all the attributes of the
desired locale. Using this information, localedef creates files that can be
loaded by application (using the setlocale (3) library routine) to establish that
locale in the environment of the application.

The localedef utility is invoked in the following manner:

localedef [-c 1[-i localefile] [-f charmap] locale

The optional arguments are used as follows:

-C Creates the locale even if warning messages are
issued. By default, the locale will not be created if
any warnings occur.

379

General UNICOS® System Administration

-i localedef Specifies the name of the locale definition file. If
not specified, the locale definition will be read
from the standard input.

-t charmap Indicates the character encoding to be used.
Currently two are supported: 646 (which
supports the ISO 646 or ASCII character
encoding) and 8859 (which supports the ISO
8859-1 character encoding). The default is 646.

The specified locale is the name of the locale to be created. If locale contains a

slash character, it is interpreted as a path name of a directory to put the locale
files in (if the directory does not exist, it will be created). Otherwise, the locale
will be created in /usr/lib/locale , making it generally available for users.

A.1.1 Character specifications

380

In a locale definition file, characters can be specified symbolically or as literal
values. The use of symbolic values is preferred, because this allows the locale
definition file to be independent of the particular character encoding.

Literal values can either be the specific character itself (assuming that the target
locale will have the same encoding for that character as the 646 locale) or a
numeric value. Numeric values can be of the following forms (assuming that
the backslash (\) is the current escape character):

\XNN For hexadecimal byte values
\dNNN For decimal byte values
\NNN For octal byte values

A multibyte numeric value can be specified by concatenating byte specifications
of the above form.

Characters can also be specified symbolically in a locale definition file. For
example, the encoding of the characters ‘a’, ’5’, or the bell character can be
specified as < a >, < five >, and < alert >. The symbolic names for
characters in the 646 and 8859 charmap are specified in the following list:

Name Value
<NUL> \x00
<SOH> \x01
<STX> \x02
<ETX> \x03

SG-2301 10.0

User-defined Locales [A]

SG-2301 10.0

<EOT>
<ENQ>
<ACK>
<BEL>
<alert >
<backspace>
<tab>
<newline>
<vertical-tab >
<form-feed>
<carriage-return>
<SO>

<SlI>

<DLE>
<DC1>
<DC2>
<DC3>
<DC4%>
<NAK>
<SYN>
<ETB>
<CAN

<SuB>
<ESC>
<IS4 >
<IS3>

<IS2>

<IS1>

<SP>

<space>

\x04
\x05
\x06
\x07
\x07
\x08
\x09
\x0a
\x0b
\x0c
\x0d
\x0e
\x0f

\x10
\x11
\x12
\x13
\x14
\x15
\x16
\x17
\x18
\x19
\x1la
\x1b
\x1c
\x1d
\xle
\x1f

\x20
\x20

381

General UNICOS® System Administration

382

<exclamation-mark>
<quotation-mark>

<number-sign>

<dollar-sign>

<percent-sign>

<ampersand >

<apostrophe>

<left-parenthesis>

<right-parenthesis>

<asterisk>

<plus-sign>

<comma>

<hyphen>

<hyphen-minus >

<period>

<full-stop>

<slash>

<solidus>

<0> or <zero>

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>

<9>

or

or

or

or

or

or

or

or

or

<one>
<two>
<three>
<four >
<five>
<six>
<seven>
<eight>

<nine >

<colon>

<semicolon>

<less-than-sign>

“

O 0 NI O U B W N P O

SG-2301 10.0

User-defined Locales [A]

SG-2301 10.0

<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>..<Z>
<left-square-bracket
<backslash>
<reverse-solidus>
<right-square-bracket>
<circumflex>
<circumflex-accent >
<underscore>
<low-line>
<grave-accent>
<a>...<z>
<left-brace >
<left-curly-bracket>
<vertical-line>
<right-brace>
<right-curly-bracket>
<tilde>

<PAD>

<HOP>

<BPH>

<NBH>

<IND>

<NEL>

<SSA>

<ESA>

<HTS>

NVl

> = - - = > @8

\x7f
\x80
\x81
\x82
\x83
\x84
\x85
\x86
\x87
\x88

383

General UNICOS® System Administration

A.1.2 General syntax of the locale definition file

384

<HTJ>
<VTS>
<PLD>
<PLU>
<RI >

<SS2>
<SS3>
<DCS>
<PUI>
<PU2>
<STS>
<CCH>
<MW

<SPS>
<EPA>
<SOS>
<SGCI>
<SCI>

<CSI>

<ST>

<0SC
<PM>

<APC>

<nobreakspace>

\x89
\x8a
\x8b
\x8¢c
\x8d
\x8e
\x8f

\x90
\x91

\x92
\x93
\x94
\x95
\x96
\x97
\x98
\x99
\x9%a
\x9b
\x9¢

\x9d
\x9%e

\x9f

\xa0

The format of the locale definition file is a list of category specifications. Each
category corresponds to the basic groups of locale information: LC_COLLATE
LC_CTYPE LC_MESSAGES C_MONETARY.C_NUMERICand LC_TIME. The

general format for these categories is the following:

category_name
keyword
keyword

value
value...

SG-2301 10.0

User-defined Locales [A]

SG-2301 10.0

END category_name

category_name is either LC_MESSAGES.C_MONETARY.C_NUMERICor
LC_TIME. The specific keywords and the valid associated values are detailed
below. The possible values can be strings (enclosed in quotes) or integers or
lists of either of these. If the value is a list, then the list elements are separated
by semicolons.

Note that the format of the remaining categories, LC_COLLATEand LC_CTYPE
is quite different and is unique for each of these categories. The details of all
the category specifications is described in the following sections.

In addition to the list of category specifications, the locale definition file can
have the following global statements:

escape_char value
comment_char value

These define the character used to precede comments, and escape the usual
meaning of a character. The default values for these are the following;:

escape_char
comment_char #

The comment character must appear as the first character of a line. It causes
localedef to ignore the rest of that line. The escape character is used to
specify numeric character constants and to do line continuation. The latter is
necessary since each localedef directive must appear on a single line. The
escape character allows the breaking up of long lines while allowing
localedef to consider such a set of lines as a single line.

The following example shows specification of the LC_MONETARY¥ategory:

LC_MONETARY

int_curr_symbol "<U><S><D><space>"
currency _symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping 3

positive_sign "<plus-sign>"
negative_sign "<hyphen-minus>"
int_frac_digits 2

frac_digits 2

p_cs _precedes 1
p_sep_by_space 0

n_cs_precedes 1

385

General UNICOS® System Administration

n_sep_by space 0
p_sign_posn 4
n_sign_posn 4

END LC_MONETARY

A.1.3 The LC_MONETARYategory

386

The LC_MONETARYategory describes monetary formatting conventions. The
following keywords are recognized by localedef in the category:

int_curr_symbol type: string

The international currency symbol. The value is the three
character international currency symbol defined by the ISO
4217:1987 standard followed by a character, such as a space, to
separate the currency symbol from the value.

currency _symbol type: string

The local currency symbol.

mon_decimal_point type: string

The symbol used as a decimal point for monetary values.

mon_thousands_sep type: string

The symbol used to separate groups of digits for monetary
values.

mon_grouping type: list of integers

Describes how mon_thousands_sep is used to separate digit
groups. For the nonfractional part of a monetary value, the
digits are separated by mon_thousands_sep into groups of
the sizes specified in this list beginning from the least
significant digits. All groups should be greater than zero other
than the last value which may be -1. If the last value is -1, no
further grouping of digits will be done; otherwise, the last
grouping value will be used to determine the size of all
subsequent groups. As an example, if the value was 1;2;-1
then the value 123456789 would be formatted as 123456,78,9. A
typical use would be to separate thousands of digits for an
entire value regardless of length. A value of 3 would produce
the desired result in this case.

SG-2301 10.0

User-defined Locales [A]

SG-2301 10.0

positive_sign type: string
The symbol used to indicate positive monetary values.

negative _sign type: string

The symbol used to indicate negative monetary values.

int _frac_digits type: integer
The number of fractional digits printed for values formatted
with an international currency symbol.

frac _digits type: integer
The number of fractional digits printed for values formatted
with a local currency symbol.

p_cs_precedes type: integer

This value (indicated in parentheses) indicates whether the
international and local currency symbols precede (1) or succeed
(0) a positive monetary value.

p_sep_by space type: integer

This value indicates that no space separates the international or
local currency symbol from a positive monetary value (0), or if
a space separates the symbol from the value (1), or if a space
separates the symbol and the sign string if adjacent (2).

n_cs_precedes type: integer

This value indicates if the international and local currency
symbol precedes the value for a negative monetary value (1) or
if the symbol succeeds the value (0).

n_sep_by space type: integer

This value indicates that no space separates the international or
local currency symbol from a negative monetary value (0), or if
a space separates the symbol from the value (1), or if a space
separates the symbol and the sign string if adjacent (2).

387

General UNICOS® System Administration

p_sign_posn type: integer

This value indicates the relative position of the positive sign
and a positive monetary value.

Value Description

0 Parentheses enclose the value and the currency
symbol (local or international).

1 The sign precedes the value and the currency
symbol.

2 The sign succeeds the value and currency symbol.

3 The sign precedes the currency symbol.

4 The sign succeeds the currency symbol.

n_sign_posn type: integer

This value indicates the relative position of the negative sign
and a negative monetary quantity. The values are the same as
for p_sign _posn above.

copy type: string

Causes the copying of the LC_MONETARY¥pecification from the
locale specified as the keyword value. This keyword cannot be
combined with any of the other keywords in the category.

This category affects the operation of the strfmon () library routine. This
information is also available directly from the localeconv () library routine.

A.1.4 The LC_MESSAGES®ategory

388

The LC_MESSAGESategory describes messages for user interaction. Currently
this is limited to the format of simple acknowledgment (yes or no) requests.
The following keywords are recognized by localedef in the category:

yesexpr type: string

An extended regular expression defining the possible value for
an affirmative response.

SG-2301 10.0

User-defined Locales [A]

noexpr type: string

An extended regular expression defining the possible value for
a negative response.

yesstr type: string

A string defining an affirmative response.

nostr type: string

A string defining a negative response.
copy type: string

Causes the copying of the LC_MESSAGESpecification from the
locale specified as the keyword value. This keyword cannot be
combined with any of the other keywords in the category.

This information is available directly from the nl_langinfo () library routine.

A.1.5 The LC_NUMERICcategory

SG-2301 10.0

The LC_NUMERICcategory describes numeric formatting conventions. The
following keywords are recognized by localedef in the category:

decimal_point type: string

The symbol used as a decimal point for numeric values.

thousands_sep type: string

The symbol used to separate groups of digits for numeric
values.

grouping type: list of integers

Describes how thousands_sep is used to separate digit
groups.

389

General UNICOS® System Administration

copy type: string

Causes the copying of the LC_NUMERIGspecification from the
locale specified as the keyword value. This keyword cannot be
combined with any of the other keywords in the category.

This category affects the operation of the printf () and scanf () family of
library routines. This information is also available directly from the
localeconv () and nl_langinfo () library routines.

A.1.6 The LC_TIME category

The LC_TIME category describes time and date formatting conventions. The
following keywords are recognized by localedef in the category:

day type: list of strings
A list, which must have seven entries, of the days of the week.
Example: "Monday";"Tuesday";... (most of the following
examples will not use symbolic format for string, for example,

"<M><o><n><d><a><y >", for clarity even though this is,
strictly, bad form)

abday type: list of strings

A list, which must have seven entries, of the abbreviated names
of the days of the week. Example: "Mon";"Tue",...

mon type: list of strings

A list, which must have twelve entries, of the months of the
year. Example: "January";"February";...

abmon type: list of strings
A list, which must have twelve entries consisting of the

abbreviated names of the months of the year. Example:
"Jan";"Feb"...

d_t_fmt type: string
The format of a date and time specification. See the description

of the strftime (3) library interface for the syntax of time/date
format strings.

390 SG-2301 10.0

User-defined Locales [A]

SG-2301 10.0

d_fmt type: string

The format of a date specification. See the description of the
stritime (3) library interface for the syntax of time/date
format strings.

type: string

The format of a time specification. See a description of the
strftime () library interface for the syntax of time/date
format strings.

am_pm type: list of strings

A list, which must have two entries, of the names of
antemeridian and postmeridian periods of the day. Example:
"AM";"PM"

t_fmt_ampm type: string

The form of a date and time specification using a 12-hour clock
qualified by the appropriate entry from the am_pmlist. See a
description of the strftime () library interface for the syntax
of time/date format strings.

era type: list of strings

Defines how years are counted and displayed for each era in a
locale. Each element of the list indicates how a specific time
range will be displayed. Each list entry identifies the range of
dates that it corresponds to and the format that should be
applied for that era. More specifically, each entry has the
following form:

direction: offset: start_date: end_date: era_name: era_format
The details of each of these fields is detailed below. Using a

simple example, the following describes the BC/AD era
convention:

"+:1:-0001/12/31:-*:BC:%Ey %EC" ; "+:0:0000/01/01:+*:AD:%EC %Ey"

This example will be used to clarify the meaning of the
individual fields in an era description.

391

General UNICOS® System Administration

392

Field

direction

offset

start_date

end_date

era_name

era _format

era_d_fmt

era_t fmt

era_d_t fmt

Description

Either a + or - to indicate whether the year of
the start_date has lower or higher numeric
values than the year of the end_date .

The number of the year closest to start_date

The year, month, and day of the beginning of
the era. The year, month, and day should be
specified in the format yyyy/ mm/ dd,
respectively.

The ending date of the era. This can either be
specified in the same format as start _date or
as either -* (beginning-of-time) or +*
(end-of-time).

The name of the era. In the above example,
either BC or AD.

The format for the printing days in the era.

type: string

The format of the date in alternative era
notation.

type: string

The format of the time in alternative era
notation.

type: string

The format of the date and time in alternative
era notation.

SG-2301 10.0

User-defined Locales [A]

alt_digits type: list of strings

The alternate names for digits in a date
specification. Example:

"1st";"2nd";"3rd";"4th"; "5th";"6th"
Up to 100 alternate names can be specified.
copy type: string

Causes the copying of the LC_TIME
specification from the locale specified as the
keyword value. This keyword cannot be
combined with any of the other keywords in
the category.

This category affects the operation of the strftime () and strptime () library
routines. This information is also available directly from the nl_langinfo 0
library routine.

A.1.7 The LC_CTYPEcategory

SG-2301 10.0

The LC_CTYPEcategory can be used to:
¢ Define membership of character classes
® Specify case conversion

The members of character classes (such as alpha , digit , xdigit punct ,
space) can be defined as in the following example. This specifies that the
alpha class contains a-z and A-Z.

alpha <a>;;<c>i<d>; <e><f>;<g>;<h>;<i>;<j>;<k >:<I><m>;\
<N>;<0>; <P>;<0>;<r>;<s>;<t>;<u>;<v > <W>;<X>;<y>;<z>;\
<A>;;<C>;<D><E><F>,<G >;<H>;<I>;<J>;<K>;<L>;<M>; \
<N>;<0>;<P>;<Q>;<R >;<S>;<T>;<U>;<V>;<W>;<X>; <Y>i<Z>

Alternatively, range specifications can be used. The following is equivalent to
the previous example:

alpha <a>;...;<z ><A>; <>

393

General UNICOS® System Administration

The possible character classes are the following:

alpha print phonogram
blank punct ideogram
cntrl space english
digit xdigit number
graph special

Additionally, user-defined character classes can be created. For example, the
following defines a character class named xalpha that includes all alphabetic
characters that are used as hexadecimal digits:

charclass xalpha
xalpha <a>;...<f><A>;...<F >

It is necessary to declare all user-defined character classes with the charclass
keyword before the members of that class are specified.

Character class mapping may also be defined via the toupper and tolower
keywords. The following example illustrates this:

toupper (<a>,<A>);();(<c>,<C>);(<d>,<D>);(<e>,<E>))\
(<f><F>) (1 <0>,<G>);(<h>,<H>);(<i> <] >);(<)>,<3>))\
(<k>,<K >);(<I>,<L>);(<m>,<M>);(<n>, <N>);(<0>,<0>)\
(<p>, <P>);(<g>,<Q>);(<r>,<R>);(<s > <S>);(<t>,<T>);\
(<u >,<U>);(<v>,<V>); (<w>,<W>);(<XxX>,<X>);(<y>,<Y>))\
(<z>,<Z>)

Unfortunately, the current version of localedef does not support ranges for
case mapping, so all of the mapping pairs must be specified explicitly.

A.1.7.1 Character class and case mappings

394

There are implicit rules and restrictions for building character classes and case
mappings, so that all relationships do not need to be specified explicitly.

Membership in a class can implicitly add a character to other classes as well.

e Members of the upper or lower classes are added to the alpha class.

e Members of the alpha class are added to the alnum class.

e Members of the digit classes are added to the xdigit and alnum classes.

e Members of the blank class are added to the space class.

SG-2301 10.0

User-defined Locales [A]

e Members of the alpha , digit , xdigit , and punct classes are added to
the graph and print classes.

Restrictions on character class membership:
e Members of the digit class cannot be in the upper or lower classes.

e Members of the alpha and xdigit classes cannot be members of the
space , cntrl , or punct classes.

e Members of the space character class cannot be members of the graph
class.

e Members of the graph or print classes cannot be members of the cntrl
class.

Note that the relationships need to be considered in conjunction. For example,
since members of the xdigit class cannot be members or the cntrl class, then
neither can members of the digit class, since membership in the digit class
implies members in the xdigit class. This is a bit complicated but should not
be a problem in defining actual locales, because these relationships simply
enforce the logical relationships between classes.

For case conversion, the following actions and restrictions are imposed:

* Each member of the conversion must be members of the upper or lower
classes, as appropriate.

¢ If no conversions are specified, the traditional a-z to A-Z conversion will be
done.

e If a toupper conversion is specified without a tolower conversion, then
the tolower conversion will be the inverse of the toupper conversion.

Note that the a-z to A-Z conversions are not included implicitly in a conversion
if that conversion is explicitly defined.

A.1.8 The LC_COLLATEcategory

Collation controls the relative order of characters and of strings of characters. In
general, the ordering of strings and individual characters is independent.
However, they are typically closely related.

SG-2301 10.0 395

General UNICOS® System Administration

A.1.8.1 Collation sequence

396

The relative order of characters is referred to as the collation sequence. It defines
the characters referred to by a range in regular expressions, such a A-Z or 0-9.
The collation sequence is defined by a simple listing of the characters in order,
one per line.

Additionally, it is possible to define a multicharacter sequence as having a
unique position in the collation sequence. Such a sequence is called a
multicharacter collating element, whereas the simpler term collating element refers
to either a character or a multicharacter collating element. For example, the
two-character sequence ch could be treated as a single character for the
purposes of the collation sequence (and for string sorting).

The following is a simple example of a collation sequence:

LC_COLLATE
collating-element <ch> from "<c><h>"
collating-element <CH> from "<C><H>"

order_start
<a>

<c>

<ch>

<d>

<z>

<A>

<C>
<CH>
<D>

<Z>
<one>
<nine>
order_end
END LC_COLLATE

This collation sequence reverses the convention of lowercase preceding
uppercase characters. Additionally, it defines uppercase and lowercase forms of
the multicharacter collating element ch. Also, all digits will succeed alphabetic
characters in the collation sequence.

The use of ellipses to indicate ranges of characters is allowed syntax in the
locale definition file and is not just a convention for simplifying this example.
An ellipsis can also be used before and after the other characters in the collation

SG-2301 10.0

User-defined Locales [A]

A.1.8.2 String ordering

SG-2301 10.0

sequence to indicate, respectively, all characters earlier or later in the order of
the current character encoding, not including the smallest (typically 0) or the
largest value.

The keyword UNDEFINEDcan be inserted into the collation sequence. This
results in all characters which are not explicitly in the collation sequence being
put into the sequence at the point of the UNDEFINEDstatement in the order of
their encoded values.

Character string ordering can also be specified by extending the syntax
described in the preceding example. In general, the locale definition file can
describe a multipass ordering of strings with pass-specific ordering rules.
Passes can scan strings in forward or reverse order.

Multipass sorting works in the following manner. Two strings are compared on
the first pass. If they are not equal, the ordering for the first pass defines the
ordering of the strings. If, however, they are equal on the first pass, a second
comparison pass will be done. This continues until a pass compares the strings
as unequal or the maximum number of passes have been executed.

String sorting is defined by the weights of the collating elements being
compared. These are specified by putting the weights to the right of the
specification of an element in the collation sequence. There may be up to
COLL_WEIGHTS_MAZXurrently 8) weights specified, each separated by a
semicolon. A weight can be any of the following;:

1. A character. In this case, the order is indicated by the position of that
character in the collation sequence.

2. A multicharacter collating element. The order is indicated by the collating
elements’ position in the collation sequence.

3. A collating symbol. A collation symbol is a symbol that marks a position in
the collation sequence. Once defined, the only purpose for a collation
symbol is to define weights for collating elements.

4. An ellipsis. In this case, it refers to the collation value of the character or
collation element. It is only valid to use this on a line that begins with an
ellipsis or in an UNDEFINEDstatement.

5. The keyword IGNORE In this case the collating element is ignored for the
purposes of sorting. One exception to this is if the position parameter is
specified for the associated collation pass.

397

General UNICOS® System Administration

The following is an example of a specification of a collation sequence with
explicit string ordering information:

LC_COLLATE
collating-symbol <LOW>
order_start forward;backward
UNDEFINED

<LOW>

<a> <a>;<a>

 ;

<c> <c>;<Cc >
<d> <d>;<d>

<z> <z>,<z>

<A> <a>;<A>

 ;

<C> <c>;<C>

<D> <d>;<D>

<E> <e><E >

<F> <f>:;<F>

<G> <g>;<G>

<H> <h>;<H>

<I> <i><I>

<J> <j ><J>

<K> <k>;<K>

<L> <I><L >
<M> <m>;<M>
<N> <n>;<N>

<O> <0>;<0>

<pP> <p>;<pP>

<Q> <g><Q>

<R> <r>;<R>

<S> <s$>:;<S >

<T> <t><T>

<U> <u>;<U>

<V> <> <V>

<W> <w> <W>
<X> <X ><X>

<Y> <y>;<Y>

<Z> <z><Z >
<one> <one>;<LOW>
...;.<LOW>
<nine> <nine>;<LOW>

END LC_COLLATE

398 SG-2301 10.0

User-defined Locales [A]

order_start

SG-2301 10.0

The preceding example is case-insensitive on the first pass but considers case on
the second pass. For digits they are considered to be higher than alphabetic
characters in the first pass and are sorted according to their numeric value.
However, in the second pass they will sort after all the alphabetic characters
and will be considered equivalent to each other.

The specification of the weights of the lowercase letters is unnecessary since the
default for unspecified weights is to use the location of the collating element in
the collation sequence.

The previous example is not very useful for any real-world collation. A more
typical use of multipass and multidirection sorting would be in the processing
of accents or other diacriticals. The first pass would compare two strings in a
forward direction without considering the diacriticals. If the strings were equal,
the second pass would compare the strings backward considering the
diacriticals significant, as in the following example:

LC COLLATE
order_start forward;backward,position
<a> <a><a>

<a-acute> <a>; <a-acute>
<a-grave> <a>; <a-grave>

<a-circumflex> <a>;<a-circumflex>
<a-diaeresis> <a>;<a-diaeresis>
order_end

LC COLLATE

The use of the keyword position in describing the second pass is not
significant in this example and is added to give an example of the general
format of an order _start directive. That format is of a semicolon-separated
list of pass-specific parameters. When multiple parameters refer to the same
pass, they are separated by commas. For example:

forward;backward;forward,position;backward,position

The only valid parameters for a pass are the following:
forward The pass shall scan the string from beginning to end.
backward The pass shall scan the string from the end to the beginning.

position The position of ignored weights will be considered significant.
The string with the first mismatched ignored element shall
succeed the other string.

399

