INTRO(1) INTRO(1)

NAME

i nt r o — Introduces user utilities and commands

IMPLEMENTATION
All Cray Research systems

STANDARDS

The manual entry for each utility includes a section that lists the standard or standards in which the utility
being described is defined. Do not infer, however, from the reference to a standard that the entire UNICOS
set of utilities has necessarily been validated to conform to that standard. Validation of conformance to
these standards is an issue discussed in other Cray Research documents.

In this manual, the reference to a standard provides you with information about the portability of code using
that utility. For example, if the entry for the utility states that the utility is defined in the XPG4 standard,
you can expect a given utility to be found in any vendor’s system that conforms to the XPG4 standard. On
the other hand, if the entry for the utility states that it is a Cray Research extension, you cannot expect it to
be found in other vendors' systems.

The specific meanings of the terms in the STANDARDS section are as follows:

Term Description

XPG4 Defined in X/Open Company Ltd., Single UNIX Specification Spec 1170.

POSIX Defined in POSIX |EEE Std 1003.2-1992, Shell and Utilities.

AT&T extension Not defined in the POSIX standard; it originated from one or more of the software releases
from AT&T.

BSD extension Not defined in the POSIX standard; it originated from the Fourth Berkeley Software
Distribution under license from The Regents of the University of California.

FSF extension ~ Not defined in the POSIX standard; it originated from the Free Software Foundation (FSF)
under terms of the GNU General Public License.

CRI extension Not defined in the POSIX standard; added by Cray Research.

DESCRIPTION

This manual presents, in alphabetical order, the UNICOS user utilities and commands for all Cray Research
systems.

Command Syntax Terminology
The following terms identify the components of a UNICOS utility:

Utility Component Definition

Command The name of an executable file in lowercase letters.

SR-2011 10.0 1

INTRO(1) INTRO(1)

Option A command-line element indicated by a hyphen and usually followed by a
single lowercase |etter.

Option-argument A character string supplying information for the preceding option. Although
there are some exceptions, option-arguments are usualy not optional.

Operand A command-line element to be passed to the utility; not associated with an
option. Operands can be optional.

Items enclosed in sguare brackets, [], are optional. White space refers to any number of horizontal spaces
or tabs.

For a more detailed description of conventions, see UNICOS Command Conventions, Cray Research
publication CP—2058.

EXIT STATUS

On termination, each command returns 2 bytes of status; one supplied by the system and giving the cause for
termination, and (in the case of "normal" termination) one supplied by the procedure (see wai t (2) and

exi t (2)). The former byte is 0, indicating normal termination; the latter is usualy 0, indicating successful
execution, and nonzero indicating troubles such as erroneous parameters, bad or inaccessible data, or other
inability to cope with the task at hand. It is called varioudly exit code, exit status, or return status, and is
described only where special conventions are involved.

BUGS

Many commands do not use the aforementioned syntax.

SEE ALSO

get opt (1), get opt s(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

get opt (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080
UNICOS Command Conventions, Cray Research publication CP—2058

2 SR-2011 10.0

ACCTCOM(1) ACCTCOM(1)

NAME

acct com— Searches and prints process accounting files

SYNOPSIS
acctcom|[-a] [-b] [-c] [-d] [-f] [-h] [-i] [-K] [-m [-p] [-q] [-r] [-t] [-v] [-w] [-y] [- Al
[-BI[-D[-FI I -M NPT U -V W [-X] [-Y] [-Z] [-e time] [-g group]
[-j jid] [-1 ling] [-n pattern] [- o ofile] [-s time] [-u user] [- C sec] [- E time] [- H factor]
[-1 charg] [- O sec] [- S time] [fileg]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The acct comutility reads data files, in the format described by acct (5), and writes selected records to
standard output. You can specify files to be read; otherwise, the standard input or
/usr/adm acct/ day/ pacct isread. Each record represents the execution of one process.

The acct comutility accepts three types of options: output file options, selection options, and printing
options.
Output Options
- 0 ofile Copies selected process records in the input data format to ofile, an output file you specify.
Suppresses standard output printing.
Selection Options
-e time Selects processes existing at or before time, given in the format [Ddd:] hh[:mm[:ss]]. (See
EXAMPLES.)) The letter D flags the presence of the relative day offset parameter, which

allows acct comto select records from a previous day. (To determine the day offset, use the
- Woption.)

-g group Selects only processes belonging to group. You can designate the group by either the group 1D
or group name.

-j jid Selects only processes that have ajob ID that matches the jid argument.
-1 line Selects only processes that belong to terminal / dev/ line.

- n pattern Selects only commands matching pattern that may be a regular expression, as in ed(1), except
that a + symbol indicates one or more occurrences.

- s time Selects processes existing at or after time, given in the format [Ddd:] hh[:mm[:ss]]. Seethe
- e option and EXAMPLES for more information on this format. Using the same time for both
- s and - e shows the processes that existed at time.

SR-2011 10.0 3

ACCTCOM(1)

- U user

-Csec
-Etime

- H factor

-1 chars
-Osec
-Stime

ACCTCOM(1)

Selects only processes that belong to user. May be specified by a user ID, alogin name that is
then converted to a user ID, a# symbol designating only those processes executed with
super-user privileges, or a question mark (?) designating only those processes associated with
an unknown user ID. To avoid interpretation by the shell, the question mark must be escaped.

Selects only processes with total CPU time (system plus user time) exceeding sec seconds.

Selects processes ending at or before time, given in the format [Ddd:] hh[:mm[:ss]]. Seethe
- e option and EXAMPLES for more information on this format.

Selects only processes that exceed factor. Factor is the "hog factor" (as explained in the
description of printing option - h).

Selects only processes that transfer more characters than the cutoff number given by chars.
Selects only processes with CPU system time exceeding sec seconds.

Selects processes that start at or after time, given in the format [Ddd:] hh[:mm[:ss]]. See the
- e option for more information on this format.

Printing Options

-a

-b

-C
-d
-f

-p
-q

Shows some average statistics about the processes selected. The statistics are printed after the
output records.

Reads backward, showing latest commands first. This option has no effect when the standard
input is read.

Prints additional 1/O counts for buffered and raw blocks transferred.
Prints the number of clock periods past the last second mark to the actual start time.

Prints the f or k/ exec flag in octal and system exit status in decimal in the output. The lower
8 bits from the exit status of the process are reported in the exit status (STAT) column. For
more information about these bits, see wai t (2).

Prints the fraction of total available CPU time, instead of mean memory size, consumed by the
process during its execution. This is known as the "hog factor" and is computed as follows:

(total CPU time)/(elapsed time)
Prints columns that contain the I/O counts in the output.

Prints total kcore-minutes instead of memory size. Thisis an integral of memory usage over
time. One kcore-minute is 1024 words used for 1 minute.

Prints mean core size. This is the default print option. If you do not specify any other print
options, - mis selected. If do specify other print options and you want mean core size to print,
you must specify - m

Prints process ID and parent process ID.
Prints only the average statistics as with the - a option. Does not print any output records.

Prints the CPU factor (user time/(system time + user time)).

SR-2011 10.0

ACCTCOM(1)

-V
-w
|y

-A
-B

-F
-J

-M
-N

-P
-7
U
-V
-W

SR-2011 10.0

ACCTCOM(1)

Prints separate system and user CPU times.
Excludes column headings from the output.
Prints wait times.

Prints total system call time.

Print a column with account 1Ds.

Prints breakdown of multitasking time. If the default Hardware Performance Monitor (HPM)
group is changed to anything but 1, the WAI T SEMNA field will always be 0. This is because
wait semaphore time is accumulated by HPM counter group 1.

Prints only device accounting information. This option must not be used with other print
options.

Prints secondary data segments (SDS) usage information.
Prints a column with job IDs.
Prints additional memory usage data.

Prints ni ce field value, or scheduling priority for use of CPU time. The range of values
typicaly is 1 through 40, with 1 being super user and higher ni ce values being lower
priorities.

Prints Cray MPP usage information where a CRAY T3D system is attached.

Prints only end-of-job termination data. This option must not be used with other print options.
Shows &l user IDs in numeric format.

Combines some 1/O fields; must be specified with the - ¢, - w, or - D option.

Prints the start and end dates and each date change found in the file. Ignores all other print and
selection options. This option is useful if your data spans more than 1 day (that is, not 00:00
to 00:00) and if more than 1 day of datais present in the pacct file. The day number of the
date change is printed and can be used with the time selects. (See Example 2.)

Prints the process start date. The date follows the last date printed on the line and will be in
the format: day month date year (for example, Sun Sep 16 1993).

Prints the process end date. The date follows the last data printed on the line and will be in the
format: day month date year (for example, Sun Sep 16 1993).

Skips (does not print) first seven fields (must be specified with one of the print options
(- cdf hi knpr t wy ABDFJMNT)).

ACCTCOM(1)

files

ACCTCOM(1)

Input file(s) you specify. These are one or more of the / usr/ adntf acct / day/ pacct *
files. If you do not specify files, and if the standard input is associated with a terminal or
/dev/ nul | (asis the case when using & in the shell), / usr/ adn acct / day/ pacct is
read; otherwise, the standard input is read. Therefore, when executing acct comusing the

Network Queuing System (NQS), you must specify files.

Any file arguments specified are read in their respective order. Each file is usually read

forward; that is, in chronological order by process completion time. The
/usr/adm acct/ day/ pacct fileis the current file to be examined.

The output fields are as follows:

Field Name Option Definition

COVIVAND NAME Iz ASCII command name OR #command name if executed
with super-user privileges

USER 1 Z ASCII user name

TTYNAME (4 ASCII tty name (? in this field indicates that a process is
not associated with a known terminal)

START TI ME (4 Start time of process in clock format (that is, 10:01:25)

END TI ME (4 End time of processin clock format (that is, 10:10:15)

REAL (SECS) (4 Elapsed time of process in seconds

CPU (SECS) It CPU time used by the process in seconds OR

(SECS) SYS -t System time used by the process in seconds

(SECS) USER -t User time used by the process in seconds

CHARS TRNSFD -1 Number of characters transferred

PHYS REQS -1 Number of physical 1O requests

CPU FACTOR -r User time divided by the CPU time

HOG FACTOR -h CPU time divided by the elapsed time

MEAN S| ZE(K) -m Average amount of memory used by the process in
kilowords

KCORE M N -k Amount of memory used by the process in kilowords *
minutes

F STAT -f The record flags, F (the f or k/ exec flag: 1 for fork
without exec), and exit status

JOB I D -J Job identifier

ACCT I D -A Account identifier

GRP ID -G Group identifier

LOd O REQS -C Number of logical 10 requests

PHYS BLKS -cV Number of physical blocks transferred OR

PHYS WD:. BUF -C Number of buffered physical blocks transferred

SR-2011 10.0

ACCTCOM(1)

NOTES

BUGS

ACCTCOM(1)

Field Name Option Definition

PHYS MVD:. RAW -C Number of raw physical blocks transferred

PI D -p Process identifier

PPI D -p Parent process identifier

START FRACT -d Fractional second part of the start time (.xx)

| OMAI T COVB - W Combined 1/0 wait time in seconds OR

| OMAI T LOCKED -w Locked in memory 1/0O wait time in seconds

| OMAI T UNLOCK -w Unlocked in memory /O wait time in seconds
|OMI T TERM - W Total 1/0 wait time in seconds

WAI T SWAP - W [/O wait time in seconds

SCTI ME SECS -y System call time in seconds

SDS MABECS -F SDS memory integral in megawords * seconds
SDS REQS -F Number of SDS logical requests

SDS CHARS -F Number of SDS characters transferred

MPP PE' S -P Number of Cray MPP process elements used
MPP BB' S -P Number of Cray MPP barrier bits used

MPP (SECS) -P Time the Cray MPP was used in seconds

WAI T SENVA -B Time spent waiting for semaphores in seconds
USERTM CPU -B User time each CPU executed in seconds

| OMAI T LCKVEM -M [/O wait memory divided by I/O wait time in kilowords
H MVEM -M Largest amount of memory in kilowords
SWAPS -M Number of 1/O swaps

NI CE -N Nice value of the process

PROCESS START DATE -W Date that the process started in ct i me format
PROCESS END DATE -W Date that the process ended in ct i me format

The - d option no longer displays the system run queue time.

The acct comutility reports only on processes that have terminated; use ps(1) for active processes.

If time exceeds the present time, time is interpreted as occurring on the previous day.

SR-2011 10.0

ACCTCOM(1) ACCTCOM(1)

EXAMPLES

FILES

Example 1: The following example generates a list of commands executed by user sarmuel by examining
all current process accounting files. The output includes system and user CPU times. In this example, if the
pacct files are not specified in the order shown, the commands may not be reported in ascending time
order.

acctcom -u samuel -t /usr/adn acct/day/ pacct?* /usr/adnf acct/day/ pacct
Example 2: The following example shows how, using the printing option - W the day number of the date
change is printed.

acctcom -W

Day 0: NMon Apr 3 10:20:11 1995 - first record
Day 1: Tue Apr 4 00:00:00 1995 - date change
Day 4: Fri Apr 7 10:20:00 1995 - date change
Day 4: Fri Apr 7 14:43:10 1995 - last record

Example 3: The following example shows how you would select and print data from day 4, 10:20 A.M. in
Example 2; you would use the same format to specify dates and times when using selection options - e, - E,
-s,-S.

acctcom -s D4:10: 20
Example 4: The following example shows how you would select and print data from the pacct file for an
interval on day 4 between 8:00 A.M. and 4:00 P.M.

acctcom -S D4: 08: 00: 00 -E D4: 16: 00: 00

[etc/ group Group file that contains group names and group I1Ds
/et c/udb User validation file that contains user control limits

/usr/adm acct/ day/ pacct Process accounting file that contains resource usage information for
processes running on the system

SEE ALSO

ps(1), su(1)
acct (2), wai t (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

acct (5), ut np(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

acct (8), acct cns(8), acct con(8), acct mer g(8), acct pr c(8), acct sh(8), f wt mp(8), r unacct (8)
in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2011 10.0

ADB(1) ADB(1)

NAME
adb — Invokes the absolute debugger

SYNOPSIS
adb [-w] [objfile [coré€file]]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The adb utility invokes the absolute debugger, which lets you look at core files resulting from crashed
systems or aborted programs. adb is an interactive, general-purpose debugger with access to global
symbols. It lets you display output in a variety of formats, patch files, and run programs with embedded
breakpoints.

The adb utility accepts the following options and operands:

-w Indicates that both objfile and corefile should be created if necessary and opened for reading and
writing so that files can be modified using adb requests.

objfile An executable program file, preferably containing a symbol table. If it does not contain a symbol
table, the symbolic features of adb cannot be used, although you can still examine the file. The
default for objfile isa. out .

corefile A core image file produced after executing objfile; the default for corefile is core. See cor e(5)
for a description of core files.

Generally, requests to adb are in the following format:
[address] [, count] [command modifier |
address and count are expressions (see the Expressions subsection). adb maintains a current address called

dot. If addressis present, dot is set to address; otherwise, dot refers to the address of the last item printed.
For example, the following request sets dot to octal 100 and prints the instruction at that address:

01007i

The following request prints 15 octal numbers starting at address dot:
., 15/ 0

Initially dot is set to 0. The interpretation of an address depends on the context in which it isused. If a
subprocess is being debugged, addresses are interpreted in the usual way in the address space of the
subprocess. For further details of address mapping, see the Addresses subsection.

SR-2011 10.0 9

ADB(1)

10

ADB(1)

For most requests, count specifies how many times the request is executed; default count is 1.

The adb utility ignores QUI T, and | NTERRUPT causes adb to return to the next adb request. Use the $Q
$q, or <CONTROL- d> keys to exit from adb.

Expressions

Addresses are represented by expressions. Expressions consist of decimal, octal, and hexadecimal integers,
and symbols from the program being tested. Integers are assumed to be octal by default. Expressions
consist of the following characters:

+
N

integer

Value of dot.

Value of dot incremented by the current increment.
Value of dot decremented by the current increment.
Last address typed.

An octal number. If you have used a $d request, integer is a decimal number unless
the number begins with a leading Ox (for hexadecimal) or aleading O (for octal).

integer. fraction

" cceececc’

< name

symbol

(exp)

A 64-bit floating-point octal number.

The ASCII value of up to 8 characters. A backslash (\) may be used to escape a’
symbol.

Value of name, which is either a variable name or a register name. adb maintains a
number of variables (see the Variables subsection) named by single uppercase letters or
digits. If nameis a register name, the register value is obtained from the user structure
in corefile. The register names are a0 through a7, sO through s7, p, vl , vm v00O
through v777, b00 through b77, t 00 through t 77, sbO through sb7, snD0 through
snB7, and st O through st 7.

Sequence of uppercase or lowercase letters, underscores or digits, not starting with a
digit. A backslash (\) may be used to escape other characters. The value of symbol is
taken from the symbol table in objfile.

Value of the expression exp.

You can aso use monadic and dyadic operators. Dyadic operators are |eft-associative and are less
binding than monadic operators.

*exp
@xp

- exp

~ exp
expl+exp2
expl- exp2

Contents of the location addressed by exp in corefile
Contents of the location addressed by exp in objfile
Integer negation

Bitwise complement

Integer addition

Integer subtraction

SR-2011 10.0

ADB(1) ADB(1)
expl* exp2 Integer multiplication
expl¥%exp2 Integer division
expl&exp?2 Bitwise conjunction (and)
expl| exp2 Bitwise digunction (or)
expl#exp2 expl rounded up to the next multiple of exp2
Commands

Most commands to adb consist of a verb, followed by a modifier or list of modifiers. The following verbs
are available. (The verbs ? and / may be followed by *; see the Addresses subsection for further details.)

Verb Description
? Prints the contents from objfile
/ Prints the contents from corefile
= Prints the current value of dot
$ Designates a miscellaneous request
Manages a child process
! Creates a shell to read the rest of the line following !
> Designates an assignment request

The following list shows the combinations of requests and modifiers you can issue to adb. Use ? with the
[2N1, [?/]w, and [?/ Imrequests if you want to include the contents from objfile; use / if you want to
include the contents from corefile.

new i ne Repeats the previous request with a count of 1 (works only with the ? and / requests).

[?/]I value mask
Masks words starting at dot with mask and compares them with value until count matches are
found. If L isused, the match is for 8 bytes at a time instead of 2. If no match is found, dot is
unchanged; otherwise, dot is set to the matched location. If mask is omitted, —1 is used.

[?/]wvalue ...
Writes the 2-byte value into the addressed location. If the request is W it writes 8 bytes.
Word-aligned addresses are required when writing to a subprocess address space.

[?/ Imbl expl f1[?/]
Records new values for (b1, expl, and f1). If less than three expressions are given, the
remaining map parameters are left unchanged. If the ? or / is followed by *, the second
segment (b2, exp2, and f2) of the mapping is changed. If the list isterminated by ? or / , the
file (objfile or corefile, respectively) is used for subsequent requests. (For example, / n? causes
|/ to refer to objfile))

>narme Assigns dot to the variable or register specified.

$modifier Specifies miscellaneous requests. The available modifiers are as follows:

SR-2011 10.0 11

ADB(1)

12

: modifier

<file
>file

O T

oo wns

7_'_'<3CQ

ADB(1)

Reads commands from the file file and returns.

Sends output to the file file, which is created if it does not exist. If no file name is
given, returns to st dout .

Prints the general registers, prints the instruction addressed by pc, and sets dot to pc.
b0O0 is also displayed.

Prints all breakpoints and their associated counts and commands.

¢ stack backtrace; attempts a backtrace for all languages. If address is given, it is taken
as the address of the current frame. If count is given, only the first count frames are
printed.

Sets the page width for output to address (default 80).

Sets the limit for symbol matches to address (default 4096 bytes).

Specifies that all integers input are regarded as octal. This is the default.

Switches input integers as specified. To switch from

octal to decimal, enter: 012%d
octal to hexadecimal, enter: 020%d
hexadecimal to decimal, enter: Oxa$d
decimal to hexadecimal, enter: 16%d

Changes the register set address. To change from one register set to another, n$p
moves the register and local memory map so that register set n may be examined. The
numbering starts from 0. Thus, 0 < n < var[VARQ].

Exits from adb.

Prints all nonzero variables in octal.

Prints the address map.

Prints vector registers at address for count.

Prints b registers at address for count.

Printst registers at address for count.

Manages a subprocess. Available modifiers are as follows:

bc

CS

Sets breakpoint at address. The breakpoint is executed count—1 times before causing a
stop. Each time the breakpoint is encountered, the request c is executed.

Deletes breakpoint at address.

Runs objfile as a subprocess. If address is given explicitly, the program is entered at
this point; otherwise, the program is entered at its standard entry point. The value
count specifies how many breakpoints are to be ignored before stopping. Arguments to
the subprocess may be supplied on the same line as the request. An argument starting
with < or > causes the standard input or output to be established for the request. All
signals are enabled on entry to the subprocess.

Continues the subprocess with signal s (see si gnal (2)). If addressis given, the
subprocess is continued at this address. If no signal is specified, the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same as for r .

SR-2011 10.0

ADB(1)

Formats

ADB(1)

Ss Continues the subprocess the same as for ¢, except that the subprocess is single stepped
count times. If there is no current subprocess, objfile is run as a subprocess as for r .
In this case, no signal can be sent; the remainder of the line is treated as arguments to
the subprocess.

k Terminates the current subprocess, if any.

A format consists of one or more characters that describe the format of the output. Each format character
may be preceded by an integer and an asterisk, for example, indicating a repeat count for the format
character (3*x). While parsing a format, dot is incremented by the amount given for each format letter. If
no format is given, the previous format is used. The format letters available are as follows:

08
08
g8
Q8
ds8
D8
X 8
X8
us8
us
b1l

Y 8
i n
ao
p8
t 0

r 0
no

AN

SR-2011 10.0

Prints 8 bytes in octal. All octal numbers output by adb are preceded by 0.

Prints 8 bytes in octal.

Prints in signed octal.

Prints long signed octal.

Prints in decimal.

Prints long decimal.

Prints 8 bytes in hexadecimal.

Prints 8 bytes in hexadecimal.

Prints as an unsigned decimal number.

Prints long unsigned decimal.

Prints the addressed byte in octal. Numeric formats:

1 Sameash

2 Prints 2-byte parcels in octa

4 Prints 4-byte halfwords in octal

Prints the addressed character.

Prints the addressed character using the following escape convention. Character values 000
through 040 are printed as @followed by the corresponding character in the range 0100 through
0140. The character @is printed as @@

Prints the addressed characters until a O character is reached.

Prints a string by using the @escape convention; n is the length of the string including its zero
terminator.

Prints 4 bytes in date format (see ct i ne(3C)).

Prints as instructions; n is the length of instructions.

Prints the value of dot in symbolic form.

Prints the addressed value in symbolic form, using the same rules for symbol lookup as a.
When preceded by an integer, it tabs to the next appropriate tab stop. For example, 8t moves to
the next 8-space tab stop.

Prints a space.

Prints a new line.

"0

Prints the enclosed string.
dot decrements by 1 word; nothing is printed.

13

ADB(1) ADB(1)

+ dot is incremented by 1; nothing is printed.
- dot is decremented by 1; nothing is printed.
space Increments dot by one word.

Variables
The adb utility provides several uppercase variables. Named variables are set initially by adb, but they are
not subsequently used. You can access locations by using the adb-defined variables. The adb program
reads the header of the core image file to find the values for these variables. |If the second file specified does
not seem to be a core file, or if it is missing, the header of the executable file is used instead.

Base address of the data segment

Data segment size

Entry point

"Magic" number (0405, 0407, 0410, or 0411)
Stack segment size

Text segment size

Number of the current register set

Total number of register sets in the cor e file

QU-H0nZmMmO®

Numbered variables are reserved for communication, as follows:

0 Last value printed
1 Last offset part of an instruction source
2 Previous value of variable 1

Addresses
All addresses are byte addresses, except for the register number in a $v display. The interpretation of an
address depends on its context. |f a subprocess is being debugged, addresses are interpreted in the usual way
(as described below) in the address space of the subprocess.

For the UNICOS operating system, the second map for the cor e file is the map for the data section if there
is split code and data.

If either file is not of the kind expected, b1 and f1 are set to 0 and expl is set to the maximum file size; in
this way, the whole file can be analyzed with no address translation.

EXIT STATUS

Exit status is 0, unless last command failed or returned nonzero status.

14 SR-2011 10.0

ADB(1)

EXAMPLES

ADB(1)

The following example shows a run of an adb debugger on a simple C program, which examines the
symbol table at the end of an executable file. User input is shown in bold.

$ cat junk.c

include <stdio. h>

mai n(){ printf("hello world\n");}
$./a.out/

hello world

$ adb - a. out

$m

? map f-

bl =0 el = 40000000000000000f1 = O

b2 =0 e =0 f2 =0

/ map ‘a.out’

bl =0 el = 326220 f1 = 70000
b2 =0 e2 = 326220 f2 = 70000
/m 0 050000000000 O

0, 4/ 00na

0: 0411 021547

20: 014624 016253

40: 03217 0

60: 0 01

100:

0100+0215470+0146240, 30/ O't t 010* Cna

364030: 0270000000040000003217 @Q@@@@0 @
364040: 01410000014000000000001 B@ @ @ad @ @ @
364050: 03334200 @Q@@@@@B@
364060: 0221012525410124400000 $AUXAR@ @
364070: 01424000014400000000001 E@ @QHO @ @ @&
364100: 03641500 @@@@ 0 @Cam
364110: 0221062224751723400000 $FI OON@ @
364120: 01424000020000000000001 EO@@@ @@ @
364130: 03641600 @Q@@@@@Ca
364140: 0221322404252221430503 $ZPERF1C

364150: 01410000020400000000001 B @@@ @ @ @&
364160: 03334300 @Q@@@0 aBa
364170: 0221423106656335060564 $bdnst at

364200: 01410000020400000000001 B @@@ @ @ @&
364210: 03334400 Q@@@@ @@
364220: 0221463406456335060564 $f pi st at

364230: 01410000020400000000001 BO@ @@@ @@ @&
364240: 03334500 @@@@@adam
364250: 0221573446456335060564 $ori st at

SR-2011 10.0

15

ADB(1)
364260: 01410000016400000000200 BO@ho@@@
364270: 03334600 QO@@O@ @@
364300: 0221643027114731272000 $target @
364310: 01410000016400000000001 BOO@h@@@ @
364320: 03354600 (CRCXCECRCHCC)
364330:
$q
$ #
$ # run the program
$./a.out

hell o world

$ # debug program fixing invalid output

$ adb a.out -

wite:b

or

a.out: running

br eakpoi nt wite:
(<ab+1)*010, 2/ OOna

sO 021564, 0

$sysc$trap

414030: 01

414050: 014

414070:

041050/ W 017

414050: 14=

0447030/ XX

447030: 68656¢c6¢6f 20776f
0447030/ W 0x736f 206¢c6f 66720

447030: 641453306615710073557=

0447040/ W 0x7375636b65720a00
447040:

i C

a.out: running

so | ong sucker

del bp: No such process

process
$q
FILES
a. out Executable file
core Program memory dump

711543100500000000000=

term nat ed

ADB(1)

044703

041364

17

726¢c640a00000000
715571006615733463440

715653066554534405000

SR-2011 10.0

ADB(1)

ADB(1)

SEE ALSO

ptrace(2), si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

cti me(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

a. out (5), cor e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

SR-2011 10.0 17

ADDBSS(1) ADDBSS(1)

NAME

addbss — Increases the amount of BSS space in an executable file

SYNOPSIS
addbss file [[newfile] incr]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The addbss utility reports or changes the amount of BSS space for a program. The additional BSS space
dtarts as free space in the memory manager.

The addbss utility accepts the following operands:

file Specifies an executable file.

newfile Specifies the new file, which contains incr more BSS space than file.

incr Specifies the amount of Kwords (1Kword is 1024 decimal) added to the BSS space of file.

If only one argument is present (the file argument), the amount of BSS space for that executable file is
printed. file should represent an executable file. The format of an executable file is described in a. out (5).
If two arguments are present (file and incr), incr Kwords are added to file's BSS space. |If three arguments
are present (file, newfile, and incr), file is copied to newfile with a BSS size that is incr Kwords larger.

The incr argument must be at least 10.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to increase BSS space for any executable file. In a privileged administrator
shell environment, shell-redirected 1/0 is not subject to file protections.

sysadm Allowed to increase BSS space for any executable file subject to security label
restrictions. Shell-redirected 1/0 is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to increase BSS space for any
executable file. Shell-redirected I/O on behalf of the super user is not subject to file protections.

SEE ALSO

a. out (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

18 SR-2011 10.0

ADMIN(1) ADMIN(1)

NAME
adm n — Creates and administers SCCS files

SYNOPSIS

adm n [-n] [-i[name]] [-r re] [-t[name]] [-f flag[flag-val]] [- d flag[flag-val]] [- a login]
[-e login] [- m nrlist] [- y[comment]] [- h] [- z] files

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The admi n utility is used to create new Source Code Control System (SCCS) files and change parameters
of existing ones. Arguments to admni n, which may appear in any order, consist of keyletter arguments
(keyletter arguments begin with the - symbol) and named files (SCCS file names must begin with the
characters s.). If a named file does not exigt, it is created, and its parameters are initialized according to the
specified keyletter arguments. Parameters not initialized by a keyletter argument are assigned a default
value. If anamed file does exist, parameters corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If adirectory is named, admi n behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin with s.) and unreadable files
are silently ignored. If aname of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be processed
because the effects of the arguments apply independently to each named file.

-n Indicates that a new SCCS file is to be created.

- i [name] Specifies the name of a file from which the text for a new SCCS file is to be taken. The
text congtitutes the first delta of the file (see - r keyletter for delta numbering scheme). If
the - i keyletter is used, but the file name is omitted, the text is obtained by reading the
standard input until an end-of-file is encountered. If this keyletter is omitted, the SCCS
fileis created empty. Only one SCCS file may be created by an adni n utility on which
the - i keyletter is supplied. Using a single admi n to create two or more SCCS files
requires that they be created empty (no - i keyletter). Note that the - i keyletter implies
the - n keyletter.

SR-2011 10.0 19

ADMIN(1)

20

-r re

- t [name]

-f flag

ADMIN(1)

Specifies the release into which the initial delta is inserted. This keyletter may be used
only if the - i keyletter is adso used. If the - r keyletter is not used, the initial deltais
inserted into release 1. The level of the initial deltais always 1 (by default initial deltas
are named 1.1).

Specifies the name of a file from which descriptive text for the SCCS file is to be taken.
If the -t keyletter is used and adni n is creating a new SCCS file (the - n and/or - i
keyletters are also used), the descriptive text file name must also be supplied. In the case
of existing SCCSfiles: (1) a-t keyletter without a file name causes removal of any
descriptive text currently in the SCCS file, and (2) a-t keyletter with a file name causes
any text in the named file to replace any descriptive text currently in the SCCS file.

Specifies a flag, and possibly a value for the flag, to be placed in the SCCS file. Several
- f keyletters may be supplied on a single adimi n command line. The allowable flags and
their values are:

b Allows use of the - b keyletter on a get (1) command to create branch deltas.

c cell Specifies the highest release (that is, "ceiling") that may be retrieved by a
get (1) command for editing. Must be a number greater than O but less than
or equal to 9999. The default value for an unspecified ¢ flag is 9999.

f floor The lowest release (that is, "floor") that may be retrieved by a get (1)
command for editing. Must be a number greater than O but less than 9999.
The default value for an unspecified f flag is 1.

d SD Specifies the default delta number (SID) to be used by a get (1) command.

i [str] Causesthe No id keywords (ge6) message issued by get (1) or
del t a(1) to be treated as a fatal error. In the absence of this flag, the
message is only awarning. The message is issued if no SCCS identification
keywords (see get (1)) are found in the text retrieved or stored in the SCCS
file. If avalue is supplied, the keywords must exactly match the given string;
however, the string must contain a keyword and no embedded new lines.

j Allows concurrent get (1) commands for editing on the same SID of an SCCS
file. This alows multiple concurrent updates to the same version of the SCCS
file.

I list Specifies a list of releases to that deltas can no longer be made (get - e)
against one of these "locked" releases fails). The list has the following syntax:

list ::= range | list , range
range :: = releasenumber | a

The character a in the list is equivalent to specifying all releases for the
named SCCS file.

SR-2011 10.0

ADMIN(1)

- d flag

-alogin

- e login

-mnrlist

SR-2011 10.0

ADMIN(1)

n Causes del t a(1) to create a "null" delta in each of the releases skipped when
adeltais made in a new release (for example, in making delta 5.1 after delta
2.7, releases 3 and 4 are skipped). These null deltas serve as anchor points so
that branch deltas may be created from them later. The absence of this flag
causes skipped releases to be nonexistent in the SCCS file, preventing branch
deltas from being created from them in the future.

g text Specifies the user-definable text substituted for all occurrences of the %%
keyword in SCCS file text retrieved by get (1).
mmod Specifies the module name of the SCCS file substituted for all occurrences of

the %vPokeyword in SCCS file text retrieved by get (1). If the mflag is not
specified, the value assigned is the name of the SCCS file with the leading s.
removed.

t type Specifies the type of module in the SCCS file substituted for all occurrences of
%r%keyword in SCCS file text retrieved by get (1).

vV pgm Causes del t a(1) to prompt for modification request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an MR
number validity checking program (see del t a(1)). (If thisflag is set when
creating an SCCS file, the - mkeyletter must also be used even if its value is
null.)

Deletes the specified flag from an SCCS file. The - d keyletter may be specified only
when processing existing SCCS files. Severa - d keyletters may be supplied on a single
adm n command. Seethe-f keyletter for allowable flag names.

Specifies a login name, or numerical UNIX system group ID, to be added to the list of
users that may make deltas (changes) to the SCCS file. A group ID is equivaent to
specifying all login names common to that group ID. Severa - a keyletters may be used
on asingle adm n command line. As many logins, or numerical group IDs, as desired
may be on the list simultaneously. If the list of users is empty, then anyone may add
deltas. If login or group ID is preceded by a! symbol, they are to be denied permission
to make deltas.

Specifies a login name, or numerical group ID, to be erased from the list of users allowed
to make deltas (changes) to the SCCS file. Specifying a group ID is equivalent to
specifying all login names common to that group ID. Severa - e keyletters may be used
on asingle admi n command line.

Inserts the list of modification requests (MR) numbers into the SCCS file as the reason for
creating the initial delta in a manner identical to del t a(1). The v flag must be set and
the MR numbers are validated if the v flag has a value (the name of an MR number
validation program). Diagnostics will occur if the v flag is not set or MR validation fails.

21

ADMIN(1)

22

- y[comment]

files

ADMIN(1)

Inserts the comment text into the SCCS file as a comment for the initial delta in a manner
identical to that of del t a(1). Omission of the - y keyletter results in a default comment
line being inserted in the following form:

date and tine created
YY/ MM/ DD

HH: MM: SS

by

login

The -y keyletter is valid only if the -1 and/or - n keyletters are specified (for example, a
new SCCS file is being created).

Causes adm n to check the structure of the SCCS file. (seesccsfil e(5)), and to
compare a newly computed checksum (the sum of all the characters in the SCCS file
except those in the first ling) with the checksum that is stored in the first line of the SCCS
file. Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when processing existing files.

Recomputes the SCCS file checksum and stores it in the first line of the SCCS file (see
keyletter - h).

NOTE: Use of this keyletter on a truly corrupted file may prevent future detection of the
corruption.

Specifies the files to be created or changed.

The last component of al SCCS file names must be of the form s. file-name. New SCCS files are given
mode 444 (see chnod(1)). Write permission in the pertinent directory is, of course, required to create afile.
All writing done by admi n is to a temporary x-file, caled x. file-name, (see get (1)), created with mode
444 if the adm n utility is creating a new SCCS file, or with the same mode as the SCCS file if it exists.
After successful execution of admi n, the SCCS file is removed (if it exists), and the x-file is renamed with
the name of the SCCS file. This ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be
mode 444. The mode of the directories allows only the owner to modify SCCS files contained in the
directories. The mode of the SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file, the mode may be changed to 644 by the owner, allowing use
of ed(1). Care must be taken. The edited file should aways be processed by an admi n - h to check for
corruption followed by an adm n - z to generate a proper checksum. Another admi n - h is recommended
to ensure the SCCS file is valid.

The admi n utility also makes use of a transient lock file (called z. file-name), which is used to prevent
simultaneous updates to the SCCS file by different users. See get (1) for further information.

SR-2011 10.0

ADMIN(1)

MESSAGES

ADMIN(1)

Use hel p(1) for explanations.

EXAMPLES

The following example creates a new SCCS file named s. exanpl e. ¢c. Thefile exanpl e. ¢ is used for
initial input and the SCCSID line is required for future deltas (see the EXAMPLES section of del t a(1)).

FILES

o-file
p-file
g-file

x-file

zfile
d-file

$ cat exanple.c
static char SCCSID[] = "%%4Po %% %0 A%,
mai n()

{

}
$ admin -n -iexanple.c -fi"'grep SCCSID exanple.c™ s.exanple.c

$

printf("Hello, world/'\n");

Existed before the execution of del t a; removed after completion of del t a.
Existed before the execution of del t a; may exist after completion of del t a.
Created during the execution of del t a; removed after completion of del t a.

Created during the execution of del t a; renamed to SCCS file after completion of
del t a.

Created during the execution of del t a; removed during the execution of del t a.

Created during the execution of del t a; removed after completion of del t a.

[usr/ bin/bdiff Program to compute differences between the "gotten” fileand the g-fi | e.

SEE ALSO

cdc(1), conb(1), del t a(1), ed(1), get (1), hel p(1), pr s(1), r nrdel (1), sact (1), sccs(l),
sccsdi f f (1), unget (2), val (1), vc(2), what (2)

chown(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

sccsfil e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2011 10.0 23

AIRLOGGER(1)

NAME

AIRLOGGER(1)

ai rl ogger — Logs AIR messages in the system log

SYNOPSIS

ai rl ogger [-s msg_type] [- p product] [- P subproduct] message

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The ai r| ogger utility logs automated incident reporting (AIR) messages in a system log file. The utility
sends messages to the ai r | 0g(3C) library routine, which formats the messages and passes them to the
sysl 0g(3C) routine. sysl og writes the messages in a UNICOS system log maintained by the

sysl ogd(8) command.

The ai r| ogger utility accepts the following options and operands:

- S msg_type Specifies the message type. The msg_type argument can be one of the following:

start Indicates normal daemon initiation
term Indicates normal daemon termination
pani c Indicates abnormal daemon termination
crit Indicates that a disaster has occurred
war n Contains (nonfatal) information that indicates possible future disaster
atten Contains information that should be displayed for the operator
i nfo Contains useful information to be logged.
pul se Contains a daemon heartbeat
fork Indicates that the daemon created a child process
user Contains user-entered text
conf Contains configuration information
- p product Specifies the product to which the message pertains. The product can be one of the
following:
uni cos UNICOS kernel
ngs Network Queuing System (NQS)
tcp TCP/IP
t ape Online tape subsystem
dnf Data Migration Facility (DMF)
nfs Network file system (NFS)
acct System accounting
di sk CRI disks
super | Open Systems Interconnection (OSI) product
share Fair-share scheduler

24

SR-2011 10.0

AIRLOGGER(1) AIRLOGGER(1)

cron cr on daemon

- P subproduct Specifies information that further delineates the origin of the message. The subproduct
argument is a commarseparated string. For example, if the product were ngs, a possible
subproduct string could be qf daenon, r eadq, end.

message Text to be logged.

The ai r | og library routine creates the format of the log entry by listing the arguments and adding an
identifying key, the contents of which are defined based on the type argument. See the ai r |1 0g(3C) man
page for more information.

FILES
/fusr/1ogs/airlog AIR system log file

SEE ALSO

ai r1 0g(3C), sysl 0g(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

sysl ogd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2011 10.0 25

ALIAS(1)

NAME

al i as — Defines or displays aliases

SYNOPSIS

alias [-t] [-x] [alias-namg[=string] ...

IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T extensions (-t and - x options)

DESCRIPTION

ALIAS(1)

The al i as utility creates or redefines alias definitions or writes the values of existing alias definitions to
standard output. An alias definition provides a string value that replaces a command name when it is

encountered (see sh(1)).

An dlias definition affects the current shell execution environment and the execution environments of the
subshells of the current shell. The alias definition does not affect the parent process of the current shell or

any utility environment that the shell invokes.

The al i as utility supports the following options and operands:

-t Sets or lists tracked aliases.

- X Sets or lists exported aliases.

alias-name Writes the alias definition to standard output.
alias-name=string Assigns the value of string to the aias alias-name.
If no operands are given, all alias definitions are written to standard outpuit.

The format for displaying aliases is as follows:

" <name>=<value>\ n"

The value string is written with appropriate quoting so that it is suitable for reinput to the shell.

NOTES

The al i as utility is a built-in utility to the standard shell (sh(1)). An executable version of this utility is

availablein /usr/ bi n/ al i as.

26

SR-2011 10.0

ALIAS(1) ALIAS(1)

The csh(1) utility has a built-in al i as utility that has dightly different characteristics. See csh(1).

EXIT STATUS

The al i as utility exits with one of the following values:
0 Successful completion.

>0 One of the alias-name operands specified did not have an alias definition or an error occurred.

SEE ALSO
csh(1), sh(1), unal i as(1)

SR-2011 10.0 27

AMLAW(1) AMLAW(1)

NAME
am aw — Displays maximum theoretical parallel processing speedups

SYNOPSIS

am aw [ncpu [pc-valued]]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The aml aw utility displays the maximum theoretical speedup for selected pairs (number of CPUs, percent
parallelism) using Amdahl’s Law.

The aml aw utility accepts the following arguments:
ncpu ncpu is the number of CPUs; it must be greater than 1.

pc-values pc-values is the percent parallelism; each value must be greater than 0 and less than or equal
t0 99.9999999. (pc-values that are less than 1 are multiplied by 100.0.) Up to 19 pc-values
may be used.

A table of sample speedups is generated, using selected ncpu and pc-values, when any of the following
conditions occur:

No arguments are specified.

Only ncpu is specified.

ncpu is 0.

The only pc-value specified is 0.
More than one pc-value is specified.

EXAMPLES

The following command line generates the speedup information shown below:

$ amMlaw 8 94.45
8 CPUs, 94.45% Parallelism Max Theoretical speedup is 5.76

The following command line generates the speedup table shown below:

28 SR-2011 10.0

AMLAW(1) AMLAW(1)

$ amaw 16 97 97.1 97.2 97.3 97.4 97.5
Max Theoretical Speedup for 16 CPUs

% Speedup % Speedup

|
|
97.0 11.034 | 97.3 11.388
|
|

97.1 11. 150 97.4 11.511
97. 2 11. 268 97.5 11.636

SEE ALSO
Optimizing Code on Cray PVP Systems, Cray Research publication SG—2192

SR-2011 10.0 29

APROPOS(1) APROPOS(1)

NAME

apr opos — Locates commands by keyword

SYNOPSIS
apr opos keyword ...

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The apr opos utility displays the man page name, section number, and a short description for each man
page that contains the keyword in its NAME line. This information is contained in the

/usr/ man/ whati s file. Each keyword is considered separately and the case of letters is ignored. Words
that contain keyword also are displayed; for example, if keyword is conpi | e, apr opos displays all
instances of conpi | er also.

The apr opos utility accepts the following operand:
keyword The character string that is searched for in the NAME line of available man pages.
The function of the apr opos utility is identical to that of the - k option of the man(1) utility.

If the line displayed by apr opos starts filename(section) ..., you can type man section filename to display
the man page for filename.

FILES
/usr/ man/ whati s Database

SEE ALSO
man(1), what i s(1)

30 SR-2011 10.0

AR(1) AR(1)

NAME

ar — Archive and library maintainer for portable archives

SYNOPSIS

ar -d [-1] [-s] [-Vv] archive files

ar -mJ[-a] [-b] [-i] [-1] [-S] [-Vv] [posname] archive files

ar -p [-s] [-v] archive [fileg]

ar -q [-¢] [-1] [-s] [-u] [-Vv] archive files

ar -r [-a] [-b] [-c] [-i] [-1] [-s] [-u] [-Vv] [posname] archive files

ar -t [-s] [-Vv] [-z] archive [files]

ar -x [-0] [-s] [-Vv] [-2] [-Q] [- T] archive [files]
IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T extensions(-a,-b,-i,-1,-m-o0,-q, and - s options)

DESCRIPTION

The ar utility maintains groups of files combined into a single archive file. Once an archive has been
created, new files can be added, and existing files can be extracted, deleted, or replaced. The string and the
file headers used by ar consist of printable ASCII characters. If an archive is composed of printable files,
the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across al Cray Research systems.
The portable archive format and structure are described in detail in the ar (5) man page.

The following options are supported:

-a Places new modules after posname. This option only works when the - r or - moptions are
specified.

-b Places new modules before posname. This option only works when the - r or - moptions are
specified.

-C Suppresses the diagnostic message that is written to standard error by default when the archive

file archive is created.
-d Deletes files from archive.
- Equivalent to - b.

-1 Places temporary files in the local (current working) directory rather than in the default
temporary directory, TMPDI R.

SR-2011 10.0 31

AR(1)

32

AR(1)

Moves the named files to the end of the archive. If - a, - b, or -i are specified, the posname
argument must be present and, asin - r, specify where the files are to be moved.

Sets the "last modified" date to the date recorded in the archive. This option only works if the
- X option also is specified.

Writes the contents of the files from archive to the standard output. If no files are specified, the
contents of all files in the archive are written in the order of the archive.

Quickly appends the named files to the end of the archive file. The positioning options - a, - b,
and -i are not valid. No checks are performed as to whether or not the added members are
already in the archive. This option is useful to avoid quadratic behavior when creating a large
archive piece-by-piece.

Replaces or adds files to archive. If the archive named by archive does not exist, a new archive
fileis created. Files that replace existing files do not change the order of the archive.

If the-a, -b, or-i options are not specified, files that do not replace existing files are
appended to the archive. Otherwise, the posname operand must be present and files are
positioned according to the option and posname specified.

Forces regeneration of the archive symbol table, even if ar is not invoked with a command that
will modify the archive contents (seer anl i b(2)).

Writes a table of contents of archive to the standard output. The files specified by the file
operands are included in the written list. If no file operands are specified, al files in archive are
included in the order of the archive.

Updates older files. When used with the - r or - moptions, files within the archive will be
replaced only if the corresponding file has a modification time that is at least as new as the
modification time of the file within the archive.

Gives verbose output. When used with the option characters-d, - m -r, or - X, writes a
detailed file-by-file description of the archive creation and maintenance activity.

When used with - p, writes the name of the file to the standard output before writing the file
itself to the standard output.

When used with -t , includes a long listing of information about the files within the archive.

Extracts the files named by the files operands from archive. The contents of the archive file are
not changed. If no files operands are given, al files in the archive are extracted. If the file
name of a file extracted from the archive is longer than that supported in the directory to which
it is being extracted, the results are undefined. The modification time of each file extracted is set
to the time the file is extracted from the archive.

Provides backward-compatibility for those archives incorrectly constructed in UNICOS 7.0 and
UNICOS 8.0. This option is used when the message el f or med ar chi ve is generated. If
this message is produced using the - z option, invoke ar again without the option. If this
message till appears, the archive is truly malformed. This option can only be used with the - t
and - x options.

SR-2011 10.0

AR(1) AR(1)

-C Prevents extracted files from replacing existing files of the same name.

-T Allows file name truncation of extracted files whose archive names are longer than the file
system can support. By default, extracting a file with a name that is too long is an error; a
diagnostic message is written and the file is not extracted.

The following operands are supported:
posname An archive member name used as a reference point in positioning other files in the archive.
archive The path name of the archive file.

files Path names. Only the last component is used when comparing against the names of files in the
archive. If two or more files operands have the same last path hame component (base name),
both are added to the archive. In the case of such files, however, each file operand matches only
the first archive file having a name that is the same as the last component of the file operand.
The archive format used by ar does not truncate valid file names of files added to, or replaced
in, the archive.

NOTES

All files operands can be path names. However, files within archives are identified by a file name, which is
the last component of the path name used when the file was entered into the archive. The comparison of
files operands to the names of files in the archives is performed by comparing the last component of the
operand to the name of the archive file.

ENVIRONMENT VARIABLES

Variable Description

RANLI B Absolute path name of the utility that optimizes the archive file. The default is
opt/ctl/bin/ranlib. If settoaNULL string, optimization of the archive is not
performed.

RANLI BFLAGS Option arguments to the executable file specified by RANLI B.

EXIT STATUS

The ar utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

MESSAGES

A phase error indicates that one or more files of the archive are no longer available, and that the archive
itself can no longer be used. It is possible that some individual parts of the archive may be salvaged by
extracting them.

SR-2011 10.0 33

AR(1) AR(1)

Most other error messages are self-explanatory.

EXAMPLES

Example 1: The following example creates library nyl i b. a from object filesfil el. o,fil e2. 0, and
file3. 0. After the creation of the library, the library’s table of contents is printed along with verbose
output:

$ar -r nylib.afilel.ofile2.0 file3.0
$ ar -tv nylib.a

Example 2: The following example adds newf i | e. o after fi | el. o inthe archive nyl i b. a with
verbose outpult:

$ ar -rav filel.o nylib.a newfile.o
Example 3: The following example extracts all files from the archive myl i b. a:

$ ar -x mylib.a

FILES
TWPDI R Directory containing temporary files for user

SEE ALSO
bl d(2), segl dr (2),
st at (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012
t mpnam(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

a. out (5), ar (5), r el o(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

ranl i b(1) Online only

34 SR-2011 10.0

ASA(1) ASA(1)

NAME

asa — Interprets ASA carriage control characters

SYNOPSIS

asa [fileg|

IMPLEMENTATION
All Cray Research systems
SPARC systems
STANDARDS
POSIX, XPG4

DESCRIPTION

The asa utility interprets the output of any programs that use ASA carriage control characters. It processes
either the files that are given as arguments or the standard input if you do not supply any file names. The
first character of each line is assumed to be a control character; the control characters have the following
meanings:

<space> The rest of the line is output without change.

0 A <new i ne> is output, followed by the rest of the input line. This results in double spacing.

- Two <newl i ne> symbols are output, followed by the rest of the input line. This resultsin
triple spacing.

1 Advance to the top of the next page, then output the rest of the input line.

+ Return to the column position 1; then overwrite the previous line with the rest of the input line.

Lines beginning with other than the preceding characters are treated as if they began with a <space>. The
first character of aline is not printed. If any such lines appear, an appropriate diagnostic will appear on
standard error. This program forces the first line of each input file to start on a new page.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to interpret any input file. In a privileged administrator shell environment,
shell-redirected 1/O is not subject to file protections.

sysadm Allowed to interpret any input file subject to security label restrictions.
Shell-redirected 1/O is subject to security label restrictions.

SR-2011 10.0 35

ASA(1) ASA(1)

If the PRI V_SU configuration option is enabled, the super user is allowed to interpret any input file.
Shell-redirected 1/O on behalf of the super user is not subject to file protections.
EXIT STATUS
The asa utility exits with one of the following values:
0 All input files were output successfully.

>0 An error occurred.

EXAMPLES

Example 1: The following example uses asa as afilter to view the output of a Fortran program that uses
ASA carriage control characters. myf ort isthe Fortran executable file, dat af i | e is the input data to
nyfort,andtextfil e istheoutput file

$ nyfort < datafile | asa > textfile

Example 2: asa can be used with an executable file as follows:

$ a.out | asa > filel

The output, properly formatted and paginated, would be directed to afilefi | el. Fortran output sent to the
file could be viewed by entering the following:

$ asa file

SEE ALSO
fsplit(d),!p(d),nasa(l)

36 SR-2011 10.0

ASCHECK (1) ASCHECK (1)

NAME

ascheck — Validates the array services configuration

SYNOPSIS

ascheck [-F] [-KlI key] [-Kr key] [-p port] [-q ...] [-s server [-D]] [-t valug]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The ascheck command validates the configuration of all the array services daemons known to the local
array services daemon. ascheck checks to ensure that the various array and machine definitions are
consistent, both on the individual servers and with corresponding definitions on the other servers. If any
problems are found, they are described in detail, and suggestions are provided to correct the situation.

It should be noted that ascheck is not a syntax checker for the individual array services configuration files;
that function is handled by the - ¢ option of ar r ayd(8). Instead, ascheck is used to check the semantics
of a syntactically correct array services configuration file.

The ascheck command relies on information provided by array services. Thus, for complete coverage, an
array services daemon should be running on every machine that is mentioned in the local configuration

file(s).

The checks that ascheck makes include the following:

Ensuring that the local array services daemon is accessible.
Verifying that all of the array services daemons known to the local daemon are also available.
Ensuring that each array services daemon is using the correct version of the array services library.

Ensuring that the LOCAL | DENT value used by a particular array services daemon is not different from
the machine ID used by the operating system on that daemon’s machine.

Suggesting that a machine ID be set in the operating system on those systems that have an array services
daemon but have not yet set a machine ID.

Ensuring that no two arrays on a particular server have the same ARRAY | DENT value.

Ensuring that the SERVER | DENT value, which may be declared for a particular ARRAY/ MACHI NE
definition, matches the LOCAL | DENT value of the corresponding server.

Warning if the list of machines defined for a particular array does not match the list of machines for an
array with the same name on a different server.

Warning about any server that has two or more arrays defined but has not specified a default array.

SR-2011 10.0 37

ASCHECK (1)

NOTES

ASCHECK (1)

The ascheck command takes several options, primarily to control the selection of the local server and to
select the desired amount of output.

-F

- Kl key

- Kr key

- p port

-q

-S server

-t value

When used with - s, indicates that array services requests should be forwarded to the
specified server via the server on the current machine rather than sent directly.

Use key for the local authentication key when communicating directly with a remote array
services daemon.

Use key for the remote authentication key when communicating directly with a remote
array services daemon.

Specifies the port address of the local ar r ayd server. Defaults to the value of the
ARRAYD_PORT environment variable if present, or 5434 otherwise.

Produces less verbose (quieter) output. Repeated occurrences (either-q -q . . . or
-qq . . .) may further decrease the amount of output.

Specifies the host name or IP address of the local ar r ayd server. Defaults to the value
of the ARRAYD environment variable if present, or | ocal host otherwise.

When used with - s, indicates that array services requests should be sent directly to the
specified server, rather than being forwarded to that server by the array services daemon
running on the current machine. This is the default behavior.

Specifies the time-out value (in seconds) used for waiting on individual responses from the
array daemon.

The array services daemon (ar r ayd(8)) must be running on all machines that are to be examined. It does
not necessarily have to be running on the machine that executes ascheck if an alternate server was
specified in some way.

SEE ALSO

38

arrayd(8)

arrayd. conf (5) Online only

SR-2011 10.0

AT(1) AT(1)

NAME

at , bat ch — Executes commands at a later time

SYNOPSIS
at [-m [-f file] [-q queuename] -t time
at [-m [-f file] [-q gqueuename] timespec ...
at -r at job id ...
at -1 -q queuename
at -1 [at_job id ...]
bat ch

IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The at and bat ch utilities read commands from standard input to be executed at a later time. The at
utility lets you specify when the commands should be executed; jobs queued with bat ch execute when
system load level permits.

Standard output and standard error output are mailed to the user unless they are redirected elsewhere.
Exported shell environment variables (except TMPDI R), the current directory, umask, and ul i mi t are
retained when the commands are executed. Open file descriptors, traps, and priority are lost.

Users whose names appear in the/ usr/ i b/ cron/ at . al | owfile are permitted to use at . When that
file does not exist, the/ usr/1i b/ cron/ at. deny file is checked to determine whether a user should be
denied access to at . If neither file exists, only root will be allowed to submit ajob. Null file at . al | ow
means that no users are allowed to use at ; null file at . deny means that no users are denied the use of at .
The al | ow/ deny files consist of one user name per line.

The at utility accepts the following options:

-f file Specifies the path name of a file to be used as the source of the at job, rather than standard
input.

-1 Lists all jobs scheduled for the invoking user if no at_job_id operands are specified. If
at_job _ids are specified, lists only information for these jobs.

-m Sends mail to the invoking user after the at-job has run, announcing its completion. Standard
output and standard error produced by the at-job are mailed to the user as well, unless redirected
elsewhere. Mail is sent even if the job produces no output. If you omit - m the job’s standard
output and standard error are mailed to the user, unless redirected elsewhere.

SR-2011 10.0 39

AT(1)

40

AT(1)

- g queuename
Queues the command in queue queuename. The default queue is a. queuename can be one of
25 different queues (that is, a, b, d—z.). Queue b is defined as the batch queue; jobs in this
gueue run whenever the system administrator-defined maximum level is not exceeded. Jobsin
all other queues run at the time specified on the command line. The character ¢ is not alowed
after the - g option. When used with the - | option, the search is limited to that particular
queve.

-r Removes the jobs with the specified at_job_id operands that were previously scheduled by the
at utility.

-t time Submits the job to be run at the specified time. The option-argument is of the form:
[[CC]YY]MMDDhhmm[.SS]

where each two digits represent the following:

CcC First two digits of the year (the century).
YY Second two digits of the year.

MM Month of the year (01-12).

DD Day of the month (01-31).

hh Hour of the day (00-23).
mm Minute of the hour (00—59).
S Second of the minute (00-61).

If you do not specify CC or YY, the current year is assumed. If you specify YY but not CC, CC
will become 19, if YY is in the range 69—99. CC will become 20, if YY isin the range 00—68.

timespec Consists of atime followed by an optional date and an optional increment, or the special name,
now.

You may specify the time as 1, 2, or 4 digits. A 1-digit or 2-digit number indicates hours. A 4-digit
number indicates hours and minutes. Alternatively, you may aternatively specify time as two numbers
separated by a colon, meaning hour: minute. An amor pmsuffix may be appended; otherwise, 24-hour
clock time is understood. The suffix gnt , ut ¢ or zul u, may be used to indicate GMT. The special names
noon and m dni ght are also recognized.

An optional date may be specified as either a month name followed by a day number (and possibly year
number preceded by an optional comma) or a day of the week (fully spelled or abbreviated to 3 characters).
Two special "days," t oday and t onor r ow, are recognized. If date is not specified, and if the given hour
is greater than the current hour, t oday is assumed. t onor r ow is assumed if the specified hour is less than
the current hour. If the specified month is less than the current month (and no year is given), next year will
be assumed.

SR-2011 10.0

AT(1)

NOTES

AT(1)

The optional increment is simply a number suffixed by one of the following: mi nut es, hour s, days,
weeks, nont hs, or year s. (The singular form is also accepted.) The keyword next is equivalent to an
increment number of +1. For example, the following are equivalent commands:

at 2pm +1 week
at 2pm next week
Valid time specifiers include the following:

0815am Jan 24

8: 15am Jan 24

now +1 day

5 pm Fri day
at and bat ch write the job number and schedule time to standard error.
bat ch submits a batch job. It isequivalenttoat -q b -m now.

at -r removes jobs previously scheduled by at or bat ch. The job number is the number given to you
previously by the at or bat ch utilities. You can aso get job numbers by typing at -1 . Unless you are
the super user, you can remove only your own jobs.

At the time of submission, at jobs are run at the user’s current security label.

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the action shown:

Privilege Text Action
showal | Allowed to manage all jobs.

If this utility is installed with a PAL, a user with one of the following active categories is allowed to
perform the action shown:

Active Category Action
system secadm sysadm sysops Allowed to manage all jobs.
If the PRI V_SU configuration option is enabled, the super user is allowed to manage al jobs.

EXIT STATUS

The at utility exits with one of the following values:
0 The at utility successfully submitted, removed, or listed a job or jobs.

>0 An error occurred.

SR-2011 10.0 41

AT(1) AT(1)

The bat ch utility exits with one of the following values:
0 The bat ch utility successfully submitted a job.

>0 An error occurred.

MESSAGES

The at utility reports various syntax errors and times out-of-range.

EXAMPLES

Example 1: The at and bat ch utilities read from standard input the commands to be executed at a later
time. sh(1) provides various ways of specifying standard input. Within your commands, it may be useful
to redirect standard output.

The following sequence can be used at a terminal:

$ batch
make filename >outfile
<CONTRCL- d>

Example 2: The following sequence, which demonstrates the redirecting of standard error to a pipe, is useful
in a shell procedure (the sequence of output redirection specifications is significant):

$ batch <<!

make filename 2>&1 >outfile | mail loginid
!

Example 3: To use the at utility to schedule the execution of a shell script or executable binary file (stored
in execfile), use shell input redirection (<), as in the following example:

$ at 0815am Jan 24 < execfile
Example 4: To have ajob reschedule itself, invoke at from within the shell procedure by including in the
shell file code similar to the following:

$ echo "sh shelfile" | at 1900 thursday next week

FILES
fusr/lib/cron Main cr on directory
{fusr/lib/cron/at.allow List of allowed users
[fusr/1lib/cron/at.deny List of denied users
[fusr/1lib/cron/queue Scheduling information
[usr/ spool /cron/ atjobs Spool area

42 SR-2011 10.0

AT(1) AT(1)

SEE ALSO
kill (1), mail (1), ni ce(l), ps(1), sh(1)
chown(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

pr ot o(5), queuedef s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

cron(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2011 10.0 43

AWK (1) AWK (1)

NAME

awk, nawk — Pattern scanning and processing language

SYNOPSIS
awk [-F ERE] [-v assignment]... program [argument]...
awk [-F ERE] -f prodfile... [-v assignment]... [argument]...
nawk [- F ERE] [-v assignment]... program [argument]...

nawk [-F ERE] -f prodfile... [-v assignment]... [argument]...

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The awk utility scans each input file for lines that match any of a set of patterns specified in program. Each
pattern in program may have an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear either literally as program or in a file specified by using the - f
option. This version of awk provides capabilities that were not available with previous versions.

awk accepts the following options and arguments:

-F ERE Defines the input field separator to be the Extended Regular Expression ERE. (Currently,
only Basic Regular Expressions are supported.)

- v assignment... assignments in the form x=xvalue y=yvalue can be passed to awk; x and y are awk
built-in variables. The specified variable assignment occurs prior to executing the awk
program, including the actions associated with BEG N patterns, if any. You can specify
multiple occurrences of the - v option.

-f prodfile File that contains the set of pattern-action statements. If you specify multiple instances
of this option, the concatenation of the files specified as prodfile is used as the awk
program.

program Set of patterns for which awk scans file. To protect the program string from the shell,

enclose it in a single quotation marks.
argument Either of the following types of arguments can be specified:

assignment assignments in the form x=xvalue y=yvalue can be passed to awk; x and y
are awk built-in variables.

44 SR-2011 10.0

AWK (1) AWK (1)

file Input files. If no files exist, the standard input is read. The file name -
specifies the standard input. Each input line is matched against the pattern
portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is usually made up of fields separated by white space. (To changed the default, use the FS
built-in variable or the - F ERE option.) The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

You can omit either pattern or action. If no action with a pattern exists, the matching line is printed. If no
pattern with an action exists, the action is performed on every input line.

Patterns are arbitrary Boolean combinations (! , | | , &&, and parentheses) of relational expressions and
Extended Regular Expressions. A relational expression is one of the following:

"expression relop expression”

"expression matchop regular_expression”

expression i n array-name

(expression, expression, ...) i n array-name
A relop is any of the six relational operatorsin C, and a matchop is either ~ (contains) or ! ~ (does not
contain). An expression is an arithmetic expression, a relational expression, the special expression

var i n array
or a Boolean combination of these.

You can use the specia patterns BEG N and END to capture control before the first input line has been read
and after the last input line has been read, respectively. These keywords do not combine with any other
patterns.

Regular expressions are asin egr ep (see egr ep(1)). In patterns, they must be surrounded by slashes.
Isolated Extended Regular Expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this case,
the action is performed for all lines between an occurrence of the first pattern and the next occurrence of the
second pattern.

You can use an Extended Regular Expression to separate fields by using the - F ERE option or by assigning
the expression to the built-in variable FS. The default is to ignore leading <bl ank>s and to separate fields
by <bl ank>s and/or <t ab> characters. However, if FS is assigned a value, leading <bl ank>s are no
longer ignored.

Other built-in variables include the following:
ARGC Command-line argument count
ARGV Command-line argument array
FI LENAME Name of the current input file

SR-2011 10.0 45

AWK (1) AWK (1)

46

FNR Ordinal number of the current record in the current file

FS Input field separator Extended Regular Expression (default is <bl ank> and <t ab>
characters)

NF Number of fields in the current record

NR Ordinal number of the current record

OFMT Output format for numbers (default is % 69)

OFS Output field separator (default is <bl ank> character)

ORS Output record separator (default is <newl i ne> character)

RS Input record separator (default is <newl i ne>)

SUBSEP Separates multiple subscripts (default is 034)
An action is a sequence of statements. A statement can be one of the following:

i f (expression) statement [el se statement |

whi |l e (expression) statement

do statement whi |l e (expression)

for (expression ; expression ; expression) statement
for (varinarray) statement

delete array [subscript]

break

continue

{ [statement] ...}

expression # commonly variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]

next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, <newl i ne> characters, or right braces. An empty expression-list
stands for the whole input line. Expressions take on string or numeric values as appropriate, and are built
using the operators +, -, *, / , %and concatenation (indicated by a <bl ank>). The operators ++, - -, +=,
-=,*=,/ =, and % are aso available in expressions. Variables may be scalars, array elements (denoted

X[i]), or fields. Variables are initialized to the null string or 0. Array subscripts can be any string, not
necessarily numeric, allowing for associative memory. String constants are quoted ().

The pri nt statement prints its arguments on the standard output, or on afile if >expression is present, or
on apipe if | cmd is present. The current output field separator separates arguments. The output record
separator terminates arguments. The pri nt f statement formats its expression list according to the format
in printf (3C).

SR-2011 10.0

AWK (1)

AWK (1)

awk has a variety of built-in functions: arithmetic, string, input/output, and general.

The arithmetic functions are at an2, cos, exp, i nt, | og, rand, si n, sqrt, and srand. i nt truncates
its argument to an integer. r and returns a random number between O and 1. sr and(expr) sets the seed
value for r and to expr or uses the time of day if expr is omitted.

The string functions are as follows:

gsub(ERErepl,[in])

i ndex(s,t)

i nt
length[([9])]

mat ch(s, ERE)

r and

split(safs)

srand

Behaves like the sub string function, except that it replaces successive occurrences of
the Extended Regular Expression (such as the ed(1) globa substitute command) in $0
or in the in argument, when specified.

Returns the position in string s where string t first occurs, or O if it does not occur at
al.

Truncates to an integer value.

Returns the length of its argument taken as a string, or of the whole line, $0, if no
argument exists.

Returns the position in string s where the Extended Regular Expression occurs, or O if
it does not occur at all. RSTART is set to the starting position (which is the same as
the returned value), and RLENGTH is set to the length of the matched string.

Random number on (0, 1).

Splits the string s into array elements a[1], a[2], ..., @n], and returns n. The
separation is done with the Extended Regular Expression fs or with the field separator
FSif fsis not given.

Sets the seed for r and

spri nt f (fmt,expr,expr,...)

sub(ERE,repl,in)

subst r (sm,n)

t ol ower (9

t oupper (9

SR-2011 10.0

Formats the expressions according to the pri nt f (3C) format given by fmt and returns
the resulting string.

Substitutes the string repl in place of the first instance of the Extended Regular
Expression ERE in string in and returns the number of substitutions. 1f you omit in,
awk substitutes in the current record ($0).

Returns the n - char act er substring of s that begins at position m.

Return a string based on the string s. Each character in s that is an uppercase letter
specified to have at ol ower mapping by the LC_CTYPE category of the current
locale is replaced in the returned string by the lowercase letter specified by its
mapping. Other characters in s are unchanged in the returned string.

Return a string based on the string s. Each character in s that is a lowercase letter is
specified to have at oupper mapping by the LC_CTYPE category of the current
locale is replaced in the returned string by the uppercase letter specified by its
mapping. Other characters in s are unchanged in the returned string.

47

AWK (1) AWK (1)

NOTES

The input/output and general functions are as follows:
cl ose(filename) Closes the file or pipe named filename.

cmd| getline Pipesthe output of cmd into get | i ne; each successive call to getline returns the next
line of output from cmd.

getline Sets $0 to the next input record from the current input file.
getline <file Sets $0 to the next record from file.
getlinex Sets variable x instead.

getline x<file Sets x from the next record of file.
syst em(cmd) Executes cmd and returns its exit status.
All forms of get | i ne return 1 for successful input, O for end of file, and —1 for an error.

awk also provides user-defined functions. You can define such functions (in the pattern position of a
pattern-action statement) as follows:

functi on name(args, ...) { stmts }
func name(args, ...) { stmts }

Function arguments are passed by value if scalar and by reference if array name. Argument names are local
to the function; all other variable names are global. You can nest function calls, and functions may be
recursive. You can use ther et ur n statement to return a value.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm In a privileged administrator shell environment, shell-redirected 1/0 is not subject to
file protections.

sysadm Shell-redirected output is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, shell-redirected 1/0 on behalf of the super user is not
subject to file protections.

WARNINGS

48

Currently, only Basic Regular Expressions are supported. If fields are involved, input white space is not
preserved on output.

There are no explicit conversions between numbers and strings. To force an expression to be treated as a
number, add O to it; to force it to be treated as a string, concatenate the null string (" ") to it.

Separate pattern-action statements by either a semicolon or a<newl i ne>. This is an incompatibility with
the old version of awk.

SR-2011 10.0

AWK (1) AWK (1)

EXIT STATUS

The awk utility exits with one of the following values:
0 All input files were processed successfully.
>0 An error occurred.

The exit status can be altered within the program by using an exi t expression.

EXAMPLES

Example 1: The following awk program prints lines longer than 72 characters:
length > 72

Example 2: The following awk program prints first two fields in opposite order:
{ print $2, $1}
Example 3: The following awk program prints the first two fields in opposite order with input fields
separated by comma and/or <bl ank>s and <t ab>s:
BEGIN{ FS = ", [\t]*|[\t]+" }
{ print $2, $1}
Example 4: The following awk program adds up the first column, and then prints the sum and average:

{ s += $1 }
END { print "sumis", s,

average is", s/NR}

Example 5: The following awk program prints fields in reverse order:
{ for (i = NF; i >0; —i) print $i }

Example 6: The following awk program prints all lines between start/stop pairs:
/start/, [stop/

Example 7: The following awk program prints all lines whose first field differs from the previous one:

$1 !'= prev { print; prev = $1 }

Example 8: The following awk program simulates the echo(1) utility:

BEGI N {
for (i = 1; i < ARGC;, i++)
printf "9%", ARGV[i]
printf "\n"
exi t
}

SR-2011 10.0 49

AWK (1) AWK (1)

Example 9: The following awk program prints a file, filling in page numbers starting at 5:
/ Page/ { $2 = n++; }
{ print }
Assuming this program is in a file named pr og, the following command line prints the file i nput and
numbers its pages starting at 5:
awk -f prog n=5 input

SEE ALSO
echo(1), ed(2), egr ep(1), grep(1), | ex(1), sed(1)
print f (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080
The AWK Programming Language, Aho, Kerninghan, Weinberger, Addison-Wesley, 1988
sed & awk, Dale Doherty, O'Reilly & Associates, Inc., 1990

50 SR-2011 10.0

BANNER(1) BANNER(1)

NAME

banner — Makes posters

SYNOPSIS

banner strings

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The banner utility prints the strings argument (each string can be up to 10 characters long) in large letters
on standard output. Y ou can include spaces in an argument by surrounding them with quotation marks. The
maximum number of characters that can be accommodated in a line is implementati on-dependent; excess
characters are smply ignored.

EXAMPLES

Example 1: Outputs the words hi t her e as one string:

banner "hi there"

Example 2: Outputs hi as one string and t her e as a second string.

banner hi there

SEE ALSO
echo(l)

SR-2011 10.0 51

BASENAME (1) BASENAME (1)

NAME

basenarme, di r nanme — Prints parts of path names on standard output

SYNOPSIS
basename string [suffix]

di r name string

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The basenane utility deletes any prefix ending in / and the suffix (if present in string) from string, and
prints the result on the standard outpuit.

The di r nane utility converts string to the name of the directory that contains the file name corresponding
to the last pathname component in string. The result is printed on the standard output.

NOTES
The suffix must match identically to the suffix in string.

EXIT STATUS
The basenan® and di r nane utilities exit with one of the following values:
0 Successful completion.

>0 An error occurred.

EXAMPLES

Example 1: The following shell script, invoked with the / usr/ src/ cnd/ cat . ¢ argument, compiles the
specified file and moves the output to a file named cat in the current directory:

cc $1
mv a.out $(basename "$1" .c)

Example 2: The following example sets shell variable NAME to / usr/ src/ cnd:
NAME=$(di rnane /usr/src/cmd/cat.c)

52 SR-2011 10.0

BASENAME (1) BASENAME(1)

SEE ALSO
sh(1)

SR-2011 10.0 53

BC(1)

NAME

BC(1)

bc — An arbitrary precision calculator language

SYNOPSIS

be [-1] [-wW [-s] [file ..]

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4
FSF XPG4 (- s and - w options)

DESCRIPTION

54

bc is alanguage that supports arbitrary precision numbers with interactive execution of statements. This bc
utility replaces the be utility that was included in UNICOS releases prior to UNICOS 8.3. The old bc
utility has been renamed obc (1).

There are some similarities in the bc syntax to the C programming language. A standard math library is
available by command-line option. If requested, the math library is defined before processing any files. bc
starts by processing code from all the files listed on the command line in the order listed. After al files
have been processed, bc reads from the standard input. All code is executed as it isread. (If afile contains
a command to halt the processor, bc will never read from the standard input.)

This version of bc contains several extensions beyond traditional bc implementations and the POSIX draft
standard. Command-line options can cause these extensions to print a warning or to be rejected. This
document describes the language accepted by this processor. Extensions will be identified as such.

The be utility accepts the following options and operand:
-1 Defines the standard math library.

-w Gives warnings for extensions to POSIX bc.

-S Processes exactly the POSIX bc language.

file Thefile or files to be processed.

The most basic element in bc is the number. Numbers are arbitrary precision numbers. This precision is
both in the integer part and the fractional part. All numbers are represented internally in decimal and all
computation is done in decimal. (This version truncates results from divide and multiply operations.) There
are two attributes of numbers, the length and the scale. The length is the total number of significant decimal
digits in a number and the scale is the total number of decimal digits after the decimal point. For example:

. 000001 has a length of 6 and scale of 6.
1935.000 has a length of 7 and a scale of 3.

SR-2011 10.0

BC(1)

BC(1)

Numbers are stored in two types of variables, simple variables and arrays. Both simple variables and array
variables are named. Names begin with a letter followed by any number of letters, digits and underscores.
All letters must be lowercase. (Full alphanumeric names are an extension. In POSIX bc, all names are a

single lowercase letter.) The type of variable is clear by the context, because al array variable names will

be followed by brackets ([]).

There are four specia variables, scale, ibase, obase, and last. scale defines how some operations use digits
after the decimal point. The default value of scale is 0. ibase and obase define the conversion base for
input and output numbers. The default for both input and output is base 10. last (an extension) is a variable
that has the value of the last printed number. These will be discussed in further detail where appropriate.

All of these variables may have values assigned to them as well as used in expressions.

Comments in bc start with the characters/ * and end with the characters */ . Comments may start
anywhere and appear as a single space in the input. (This causes comments to delimit other input items.
For example, a comment can not be found in the middle of a variable name.) Comments include any
newlines (end-of-line) between the start and the end of the comment.

Expressions and Statements

The numbers are manipulated by expressions and statements. Since the language was designed to be
interactive, statements and expressions are executed as soon as possible. There is no "main" program.
Instead, code is executed as it is encountered. (Functions, discussed in detail later, are defined when
encountered.)

A simple expression is just a constant. bc converts constants into internal decimal numbers using the
current input base, specified by the variable ibase. (Thereis an exception in functions.) The legal values of
ibase are 2 through 16 (F). Assigning a value outside this range to ibase will result in a value of 2 or 16.
Input numbers may contain the characters 0—9 and A—F. (NOTE: They must be uppercase. Lowercase
letters are variable names.) Single-digit numbers always have the value of the digit, regardless of the value
of i base (for example, A = 10). For multidigit numbers, bc changes all input digits greater or equal to
ibase to the value of ibase—-1. This makes the number FFF always be the largest 3-digit number of the
input base.

Full expressions are similar to many other high-level languages. Since there is only one kind of number,
there are no rules for mixing types. Instead, there are rules on the scale of expressions. Every expression
has a scale. This is derived from the scale of original numbers, the operation performed and in many cases,
the value of the variable scale. Legal values of the variable scale are 0 to the maximum number
representable by a C integer.

In the following descriptions of legal expressions, expr refers to a complete expression and var refersto a
simple or an array variable. A simple variable is just a hame and an array variable is specified as
name[expr]. Unless specifically mentioned, the scale of the result is the maximum scale of the expressions
involved.

- expr The result is the negation of the expression.
++ var The variable is incremented by one and the new value is the result of the expression.
-- var The variable is decremented by one and the new value is the result of the expression.

SR-2011 10.0 55

BC(1)

56

var ++

expr + expr
expr - expr
expr * expr

expr / expr

expr %expr

expr ™ expr

(expr)
var = expr

var <op>= expr

BC(1)

The result of the expression is the value of the variable, and then the variable is
incremented by one.

The result of the expression is the value of the variable, and then the variable is
decremented by one.

The result of the expression is the sum of the two expressions.
The result of the expression is the difference of the two expressions.
The result of the expression is the product of the two expressions.

The result of the expression is the quotient of the two expressions. The scale of the result
is the value of the variable scale.

The result of the expression is the "remainder,” and it is computed in the following way.
To compute a%b, first a/b is computed to scale digits. That result is used to compute

a- (& b) *b to the scale of the maximum of scale+scale(b) and scale(a). If scaleis set to
zero, and both expressions are integers, this expression is the integer remainder function.

The result of the expression is the value of the first raised to the second. The second
expression must be an integer. (If the second expression is not an integer, a warning is
generated, and the expression is truncated to get an integer value.) The scale of the result
is scale if the exponent is negative. If the exponent is positive, the scale of the result is
the minimum of the scale of the first expression times the value of the exponent and the
maximum of scale and the scale of the first expression (for example, scale(a*b) =

min(scale(@) * b, max(scale, scale(a)))). It should be noted that expr™0 will always
return the value of 1.

This alters the standard precedence to force the evaluation of the expression.
The variable is assigned the value of the expression.

This is equivalent to var = var <op> expr with the exception that the var part is evaluated
only once. This can make a difference if var is an array.

Relational expressions are a special kind of expression that always evaluate to 0 or 1, O if the relation is
false and 1 if the relation is true. These may appear in any legal expression. (POSIX bc requires that
relational expressions are used only ini f, whi | e, and f or statements and that only one relational test may
be done in them.) The relational operators are as follows:

exprl < expr2
exprl <= expr2
exprl > expr2
exprl >= expr2
exprl == expr2

exprl! = expr2

Theresult is 1 if exprl is strictly less than expr2.
Theresult is 1 if exprl is less than or equal to expr2.
Theresult is 1 if exprl is strictly greater than expr2.
Theresult is 1 if exprl is greater than or equal to expr2.
Theresult is 1 if exprl is equa to expr2.

Theresult is 1 if exprlis not equa to expr2.

SR-2011 10.0

BC(1)

BC(1)

Boolean operations are also legal. (POSIX bc does not have boolean operations). The result of all boolean
operations are 0 and 1 (for false and true) as in relational expressions. The boolean operators are as follows:

I expr Theresult is 1 if expr is 0.

expr && expr The result is 1 if both expressions are nonzero.
expr | | expr The result is 1 if either expression is nonzero.
The expression precedence is as follows: (lowest to highest)

|| operator, left associative

&& operator, left associative

I operator, nonassociative

Rel ati onal operators, left associative
Assi gnnent operator, right associative
+ and - operators, left associative

* | and % operators, left associative
AN operator, right associative

unary - operator, nonassociative

++ and -- operators, nonassoci ative

This precedence was chosen so that POSIX-compliant bc programs will run correctly. This will cause the
use of the relational and logical operators to have some unusual behavior when used with assignment
expressions. Consider the expression:

a=3«<5

Most C programmers would assume this would assign the result of 3 < 5 (the value 1) to the variable a.
What this does in bc is assign the value 3 to the variable a and then compare 3 to 5. It is best to use
parentheses when using relational and logical operators with the assignment operators.

A few more special expressions are provided in bc. These have to do with user-defined functions and
standard functions. They all appear as name(parameters) . See the Functions subsection for user-defined
functions. The standard functions are as follows:

| engt h (expression)
The value of the length function is the number of significant digits in the expression.

read ()
The r ead function (an extension) will read a number from the standard input, regardless of
where the function occurs. WARNING: This can cause problems with the mixing of data and
program in the standard input. The best use for this function is in a previously written program
that needs input from the user, but never allows program code to be input from the user. The
value of the read function is the number read from the standard input using the current value of
the variable i base for the conversion base.

SR-2011 10.0 57

BC(1) BC(1)

58

scal e (expression)
The value of the scal e function is the number of digits after the decimal point in the
expression.

sqrt (expression)
The value of the sgrt function is the square root of the expression. If the expression is
negative, a run-time error is generated.

Statements
Statements (as in most algebraic languages) provide the sequencing of expression evaluation. In bc,
statements are executed "as soon as possible.” Execution happens when a newline is encountered, and there
is one or more complete statement. Due to this immediate execution, newlines are very important in bc. In
fact, both a semicolon and a newline are used as statement separators. An improperly placed newline will
cause a syntax error. Because newlines are statement separators, it is possible to hide a newline by using the
backslash character (\). The sequence\ <nl>, where <nl> is the newline, appears to bc as white space
instead of a newline. A statement list is a series of statements separated by semicolons and newlines. The
following is a list of bc statements and what they do. (Items enclosed in brackets ([]) are optional parts of
the statement.)

expr essi on
This statement does one of two things. If the expression starts with <variable>
<assignment> ..., it is considered to be an assignment statement. If the expression is not an
assignment statement, the expression is evaluated and printed to the output. After the number
is printed, a newline is printed. For example, a=1 is an assignment statement, and (a=1) is
an expression that has an embedded assignment. All numbers that are printed are printed in
the base specified by the variable obase. The legal values for obase are 2 through
BC_BASE_MAX. (See the Limits subsection.) For bases 2 through 16, the usual method of
writing numbers is used. For bases greater than 16, bc uses a multicharacter digit method of
printing the numbers, in which each higher base digit is printed as a base-10 number. The
multicharacter digits are separated by spaces. Each digit contains the number of characters
required to represent the base-10 value of obase- 1. Since numbers are of arbitrary precision,
some numbers may not be printable on a single output line. These long numbers will be split
across lines using the \ as the last character on aline. The maximum number of characters
printed per line is 70. Due to the interactive nature of bc, printing a number causes the side
effect of assigning the printed value to the special variable last. This allows the user to
recover the last value printed without having to retype the expression that printed the number.
Assigning to last is legal and will overwrite the last printed value with the assigned value.
The newly assigned value will remain until the next number is printed or another value is
assigned to last.

string The string is printed to the output. Strings start with double quotation marks and contain al
characters until the next double quotation marks. All characters are taken literally, including
any newline. No newline character is printed after the string.

SR-2011 10.0

BC(1)

BC(1)

print liss Theprint statement (an extension) provides another method of output. The list is alist of
strings and expressions separated by commas. Each string or expression is printed in the
order of the list. No terminating newline is printed. Expressions are evaluated and their value
is printed and assigned the variable | ast . Strings in the pri nt statement are printed to the
output and may contain special characters. Special characters start with the backslash
character (\). The special characters recognized by bc are b (bell), f (form feed), n
(newline), r (carriage return), t (tab), and \ (backslash). Any other character following the
backslash will be ignored. This still does not allow the double quote character to be part of
any string.

{ statement _list }
This is the compound statement. It allows multiple statements to be grouped together for
execution.

i f (expression) t hen statementl [el se statement?]
Thei f statement evaluates the expression and executes statement1 or statement? depending
on the value of the expression. If the expression is nonzero, statementl is executed. If
statement? is present, and the value of the expression is 0, then statement? is executed. (The
el se clause is an extension.)

whi | e (expression) statement
The whi | e statement will execute the statement while the expression is nonzero. It evaluates
the expression before each execution of the statement. Termination of the loop is caused by a
zero expression value or the execution of a break statement.

for ([expressionl] ; [expression?] ; [expression3]) statement
The f or statement controls repeated execution of the statement. expressionl is evaluated
before the loop. expression? is evaluated before each execution of the statement. If it is
nonzero, the statement is evaluated. If it is zero, the loop is terminated. After each execution
of the statement, expression3 is evaluated before the reevaluation of expression2. If
expressionl or expression3 is missing, nothing is evaluated at the point at which it would be
evaluated. If expression2 is missing, it is the same as substituting the value 1 for expression2.
(The optional expressions are an extension. POSIX bc requires al three expressions.) The
following is equivalent code for the f or statement:

expressi onl;

whi | e (expression2) {
st at ement ;
expressi on3;

}

br eak The br eak statement causes a forced exit of the most recent enclosing whi | e statement or
f or statement.

continue Theconti nue statement (an extension) causes the most recent enclosing for statement to
start the next iteration.

SR-2011 10.0 59

BC(1) BC(1)

hal t The hal t statement (an extension) is an executed statement that causes the bc processor to
quit only when it is executed. For example, i f (0 == 1) hal t will not cause bc to

terminate, because the halt is not executed.
return Returns the value 0 from a function. (See the Functions subsection.)

return (expression)
Returns the value of the expression from a function. (See the Functions subsection.)

Pseudo Statements
These statements are not statements in the traditional sense. They are not executed statements. Their
function is performed at "compile" time.

[imts Prints the local limits enforced by the local version of bc. This is an extension.
qui t When the qui t statement is read, the bc processor is terminated, regardless of where the
qui t statement is found. For example, i f (0 == 1), qui t will cause bc to terminate.

warranty Prints alonger warranty notice. Thisis an extension.

Functions
Functions provide a method of defining a computation that can be executed later. Functions in bc always
compute a value and return it to the caller. Function definitions are dynamic in the sense that a function is
undefined until a definition is encountered in the input. That definition is then used until another definition
function for the same name is encountered. The new definition then replaces the older definition. A
function is defined as follows:

define name (parameters) { newline
auto list statement list }

A function call is just an expression of the form name(parameters) .

Parameters are numbers or arrays (an extension). In the function definition, zero or more parameters are
defined by listing their names separated by commas. Numbers are only call-by-value parameters. Arrays are
only call-by-variable. Arrays are specified in the parameter definition by the notation name[] . In the
function call, actual parameters are full expressions for number parameters. The same notation is used for
passing arrays as for defining array parameters. The named array is passed by variable to the function.

Since function definitions are dynamic, parameter numbers and types are checked when a function is called.
Any mismatch in number or types of parameters will cause a run-time error. A run-time error will also
occur for the call to an undefined function.

60 SR-2011 10.0

BC(1) BC(1)

The auto _list is an optional list of variables that are for local use. The syntax of the auto list (if present) is
autoname, ... ;. (Thesemicolon isoptional.) Each name isthe name of an auto variable. Arrays
may be specified by using the same notation as used in parameters. These variables have their values pushed
onto a stack at the start of the function. The variables are then initialized to zero and used throughout the
execution of the function. At function exit, these variables are popped so that the original values (at the time
of the function call) of these variables are restored. The parameters are really auto variables that are
initialized to a value provided in the function call. Auto variables are different than traditional local
variables in that if function A calls function B, B may access function A’s auto variables by just using the
same name, unless function B has called them auto variables. Due to the fact that auto variables and
parameters are pushed onto a stack, bc supports recursive functions.

The function body is alist of bc statements. Again, statements are separated by semicolons or newlines.
Return statements cause the termination of a function and the return of a value. There are two versions of
the return statement. The first form, r et ur n, returns the value 0 to the calling expression. The second
form, ret ur n (expression) , computes the value of the expression and returns that value to the calling
expression. Thereisanimpliedreturn (0) at the end of every function. This alows a function to
terminate and return O without an explicit return statement.

Functions also change the usage of the variable ibase. All constants in the function body will be converted
using the value of ibase at the time of the function call. Changes of ibase will be ignored during the
execution of the function except for the standard function r ead, which will always use the current value of
ibase for conversion of numbers.

Math Library
If bc isinvoked with the - | option, a math library is preloaded and the default scale is set to 20. The math
functions will calculate their results to the scale set at the time of their call. The math library defines the
following functions:

s (X The sine of x in radians.
c (X The cosine of x in radians.
a (x The arctangent of x.

I (X The natural logarithm of x.
e (X The exponential function of raising e to the value x.
j (n,x) The Bessd function of integer order n of x.

Differences
This version of bc was implemented from the POSIX P1003.2/D11 draft and contains severa differences
and extensions relative to the draft and traditional implementations. It is not implemented in the traditional
way using odc(1). This version is a single process which parses and runs a byte code tranglation of the
program. There is an undocumented option (- ¢) that causes the program to output the byte code to the
standard output instead of running it. It was mainly used for debugging the parser and preparing the math

library.

SR-2011 10.0 61

BC(1)

62

BC(1)

A major source of differences is extensions, where a feature is extended to add more functionality,
and additions, where new features are added. The following is the list of differences and extensions.

LANG environment
This version does not conform to the POSIX standard in the processing of the LANG
environment variable and all environment variables starting with LC .

nanes Traditional and POSIX bc have single-letter names for functions, variables and arrays.
They have been extended to be multicharacter names that start with a letter and may
contain letters, numbers, and the underscore character.

Strings Strings are not allowed to contain NUL characters. POSIX says all characters must be
included in strings.
| ast POSIX bc does not have a last variable.

conpari sons POSIX bc alows comparisons only in thei f statement, the whi | e statement, and the
second expression of the f or statement. Also, only one relational operation is allowed in
each of those statements.

if statenent, else clause
POSIX bc does not have an el se clause.

for statenent
POSIX bc requires al expressions to be present in the f or statement.

&&, ||, ! POSIX bc does not have the logical operators.

read function
POSIX bc does not have a read function.

print statement”
POSIX bc does not have apri nt statement.

conti nue statenent
POSIX bc does not have acont i nue statement.

array paraneters
POSIX bc does not have ar r ay parameters. Other implementations of bc may have call
by value array parameters.

=+, =-, :*' :/' :% =N
POSIX bc does not require these "old style" assignment operators to be defined. This
version may allow these "old style" assignments. Usethel i m t s statement to see if the

installed version supports them. If it does support the "old style" assignment operators,
the statement a =- 1 will decrement a by 1 instead of setting a to the value —1.

spaces in nunbers
Other implementations of bc allow spaces in numbers. For example, x=1 3 would
assign the value 13 to the variable x. The same statement would cause a syntax error in
this version of bc.

SR-2011 10.0

BC(1)

BC(1)

errors and execution

Interrupts

Limits

This implementation varies from other implementations in terms of what code will be
executed when syntax and other errors are found in the program. If a syntax error is
found in a function definition, error recovery tries to find the beginning of a statement and
continue to parse the function. Once a syntax error is found in the function, the function
will not be callable and becomes undefined. Syntax errors in the interactive execution
code will invalidate the current execution block. The execution block is terminated by an
end-of-line that appears after a complete sequence of statements. For example,

a=1
b =2

has two execution blocks and

{a=1
b=2}

has one execution block. Any run-time error will terminate the execution of the current
execution block. A run-time warning will not terminate the current execution block.

During an interactive session, the SI G NT signal (usually generated by the

<CONTROL- c> character from the terminal) will cause execution of the current execution
block to be interrupted. It will display a run-time error indicating which function was
interrupted. After all run-time structures have been cleaned up, a message will be printed
to notify the user that bc is ready for more input. All previously defined functions remain
defined, and the value of all nonauto variables are the value at the point of interruption.
All auto variables and function parameters are removed during the cleanup process.

During a noninteractive session, the SI G NT signal will terminate the entire run of bc.

The following are the limits currently in place for this bc processor. Some of them may have been changed

by an installation.
BC_BASE_MAX
BC_DI M_MAX

BC_SCALE_MAX

Usethel i mi ts statement to see the actual values.
The maximum output base is currently set at 999. The maximum input base is 16.

This is currently an arbitrary limit of 65,535 as distributed. Your installation may be
different.

The number of digits after the decimal point is limited to | NT_MAX digits. Also, the
number of digits before the decimal point is limited to | NT_MAX digits.

BC_STRI NG_MAX The limit on the number of charactersin a string is | NT_MAX characters.

exponent

mul tiply

SR-2011 10.0

The value of the exponent in the raise operation (*) is limited to LONG_MAX.

The multiply routine may yield incorrect results if a number has more than
LONG_MAX / 90 total digits. For 32-bit longs, this number is 23,860,929 digits.

63

BC(1) BC(1)

code size Each function and the "main" program are limited to 10,240 bytes of compiled byte
code each. This limit (BC_MAX_SEGS) can be changed easily to have more than 10

segments of 1024 bytes.

vari abl e nanes The current limit on the number of unique names is 32,767 for each of simple
variables, arrays, and functions.

EXAMPLES
Example 1: In/ bi n/ sh, the following will assign the value of pi to the shell variable pi .

pi =$(echo "scal e=10; 4*a(1)" | bc -I)

64 SR-2011 10.0

BC(1)

Example 2: The following is the definition of the exponentia function used in the math library. This
function is written in POSIX bc.

scale = 20

/* Uses the fact that e*x = (eM(x/2))"2
When x is small enough, we use the series:
erx =1 + x + x"2/2 + x"3/3! + ...
*/

define e(x) {
auto a, d, e, f, i, m v, z

/* Check the sign of x. */
if (x<0) {

m=1

X = -X

}

/* Precondition x. */
z = scal e;
scale = 4 + z + .44*x;
while (x > 1) {

f += 1;

X = 2;
}

* Initialize the variables. */
1+x

X

1

/

v
a
d

for (i=2; 1; i++) {
e =(a*=x)/ (d*=1i)

if (e ==0) {
if (f>0) while (f--) v = v*v;
scale = z

if (m return (1/v);
return (v/1);

}

v += €

SR-2011 10.0

BC(1)

65

BC(1)

BC(1)

Example 3: The following is code that uses the extended features of bc to implement a simple program for

calculating checkbook balances. This program is best kept in afile so that it can be used many times

without having to retype it at every use.

scal e=2
print "\ nCheck book program\n"

print " Remenber, deposits are negative transactions.\n"
print * Exit by a 0 transaction.\n\n"
print "lInitial balance? "; bal = read()
bal /=1
print "\n"
while (1) {
"current bal ance = "; bal
"transaction? "; trans = read()
if (trans == 0) break;
bal -= trans
bal /=1
} .
qui t

The following is the definition of the recursive factorial function:
define f (x) {
if (x <= 1) return (1);
return (f(x-1) * x);
}

FILES

In most installations, bc is completely self-contained. Where executable size is of importance or the C

compiler does not deal with very long strings, bc will read the standard math library from the file

lfusr/lib/lib.b.

DIAGNOSTICS

If any file on the command line cannot be opened, bc will report that the file is unavailable and terminate.

Also, there are compile-time and run-time diagnostics that should be self-explanatory.

SEE ALSO
awk (1), obc (1), odc(1)

66

SR-2011 10.0

BDIFF(1) BDIFF(1)

NAME

bdi ff — Compares very large files for differences

SYNOPSIS
bdi ff filel file2 [n] [- s]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The bdi f f utility is used in a manner analogous to that of di f f (1) to find lines that must be changed in
two files to bring them into agreement. Its purpose is to allow the processing of files that are too large for
di ff. Thebdi ff utility ignores lines common to the beginning of both files, splits the remainder of each
file into n-line segments, and invokes di f f upon corresponding segments.

The bdi f f utility accepts the following arguments and options:
filel First file to compare; required.
file2 Second file to compare; required. If filel or file2 is -, bdi f f reads the standard input.

n Causes bdi f f to split remainder of file into n-line segments, rather than the default 3500-line
segments. n must be numeric. This option is useful when 3500-line segments are too large for
di ff, causing bdi f f to fail.

-S Specifies that diagnostics are not to be printed by bdi f f (however, this does not suppress possible
exclamations by di f f (1)).

If both optional arguments are specified, they must appear in the order indicated in the SYNOPSIS section.

The bdi f f utility’s output is exactly like that of di f f, with line numbers adjusted to account for the
segmenting of the files (that is, to make it look as if the files had been processed whole). Because of the
segmenting of the files, bdi f f does not necessarily find the smallest sufficient set of file differences.

NOTES

The bdi f f utility will exit with a nonzero status even if there are differences between the input files. This
behavior is necessary because bdi f f isinvoked by del t a(1).

MESSAGES
Use hel p(1) for explanations.

SR-2011 10.0 67

BDIFF(1) BDIFF(1)

FILES
/[t mp/ bdname Temporary working file

SEE ALSO
del ta(1), di f f (1), hel p(2)

68 SR-2011 10.0

BFTP(1B) BFTP(1B)

NAME

bf t p — Provides user interface to the background file transfer program

SYNOPSIS
/usr/ucb/bftp

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The bf t p command is the user interface to the background file transfer program (BFTP). You can use
bf t p to submit a request for a future file transfer by using the standard Internet file transfer protocol (FTP),
which is described in RFC 959.

Because bf t p makes use of third-party FTP, the source and the destination hosts do not have to be
operational at the time the request is submitted. Transfers are scheduled locally through the system batch
processor using the at (1) utility. Therefore, the exact time at which a file transfer occurs depends on how
often jobs are run from the system batch queue.

For more information on BFTP, see RFC 1068.
The bf t p command recognizes the following commands:

append true | false
Appends the transferred file to the existing file if the destination file exists and this option is
true. If this option is false and the file name is already in use, the existing file is replaced if
write permission on the destination host is enabled.

conmand copy | delete | nove
Sets the source file disposition to copy, move (which is equivalent to copy and del et e), or
simply del et e the source file. The default is copy. These commands set the file transfer
mode.

d- di r destination-directory
Establishes the destination directory into which the file will be transferred. The directory name
must end with a directory-delimiter character.

d-fil e filename
Sets the destination file name, which is the name of the file when the transfer is complete.

d- host hostname
Sets the destination host name, which is the host to which the file will be transferred.

d- passwor d password
Specifies the password on the destination host.

SR-2011 10.0 69

BFTP(1B) BFTP(1B)

70

d- user user
Specifies the user name (login) on the destination host.

expl ai n Displays a short explanation on the use of bf t p.

find Locates and displays a previously submitted BFTP job. bf t p prompts for the (optional)
RequestID and the RequestKeyword. After a request is located and displayed, you can change
and resubmit it, or cancel it.

hel p-al |
Displays a description of each command.

hel p [command]
Prints an informative message about the meaning of command. If you do not specify an
argument, bf t p prints alist of the commands and their descriptions.

init Discards all information about a request. This command resets bf t p to the default startup
values.

i nterval
Displays starting retry interval (in minutes) and number of retries.

mai | box mailbox-name
Sends the completion notification message to this address.

node stream | block | conpress
Sets the FTP mode. The default value is st r eam

multiple true | false
When t r ue, transfers all files that match the pattern set in s- f i | e to be transferred. Matching
is performed on the source host.

prompt Prompts for all of the necessary information to set up a transfer.
qui t Ends the current bf t p session.

r- del et e request-file

r-1ist

r - 1 oad request-file

r - st or e request-file
The request commands manage request files, which are used to save BFTP requests for future
use.

s-acct and d- acct
Sets the login account name for the transaction. Usually, this option is not needed.

s-di r source-directory
Sets the source directory from which the file will be transferred. The directory name must end
with a directory-delimiter character.

s-fi | e source-filename
Sets the source file name of the file to be transferred.

SR-2011 10.0

BFTP(1B) BFTP(1B)

s- host hostname
Sets the source host name, which is the host from which the file will be transferred.

s- passwor d password
Specifies the password on the source host.

s-port | d-port n
Sets the FTP transaction source or destination port number, which is usually 21.

S-user user
Specifies the user name (login) on the source host.

show Displays the current parameter values.

si mpl e- exampl e
Displays an example that shows how to submit a request.

stru file | record | page
Sets the FTP structure.

submt Places the request in the batch queue. bft p prompts for the SartTime and the
RequestKeyword.

time SartTime
Sets the date and time at which the file will be transferred.

transfer
Performs the requested transfer now.

type inage | ascii | ebcdic | local | binary
Sets the FTP file type. Theasci i and ebcdi ¢ types have further parameters of nonpri nt,
tel net,and carri age-control . The default typeisascii nonprint. The
representation type may be one of network ASCII, EBCDIC, image, or local byte size with a
specified byte size (usually for PDP-10s and PDP-20s). The network ASCII and EBCDIC types
have a further subtype that specifies whether vertical format control (new-line characters, form
feeds, and so on) will be passed through (nonprint), provided in TELNET format, or provided in
ASA carriage control format.

uni que true | false
Sets unique mode. If uni que ist rue, the destination file name is guaranteed to be unique.
This prevents the replacement of old files with new files of the same name.

verbose true | false
Sets verbose mode. When ver bose ist rue, bf t p prints each command used in the
transaction during the verify and the transfer operations.

verify Validates the request. The current request is checked to determine whether or not all needed
information was entered. Then bf t p connects to the specified hosts to determine whether or
not the specified parameters are supported.

SR-2011 10.0 71

BFTP(1B) BFTP(1B)

FILES

The bf t p command creates the following files that keep track of requests that are in progress:

b123456789. cnd
b123456789. | i s
b123456789. nsg
b123456789. r eq

The following files are saved by using the r - st or e command:
S. request-name

Usually, bf t p stores request files in the home directory of the user who is logged on. To have bf t p store
these files in another directory, use the system set env command to set $BFTPDI R. For example:

setenv BFTPDI R ~yourname/.bftp

SEE ALSO

72

at (1), cront ab(2), ft p(1B)

cron(8), ft pd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2011 10.0

BG(1) BG(1)

NAME
bg — Runs jobs in the background

SYNOPSIS
bg [job_id ...

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The bg utility resumes suspended jobs from the current shell execution environment (see sh(1)) by running
the jobs as background jobs. If the job specified by job_id is already a running background job, the bg
utility has no effect and exits immediately.

Using bg to place a job into the background causes its process ID to become "known in the current shell
execution environment," as if it had been started as an asynchronous list.

The bg utility supports the following operand:

job_id Specifies the job to be resumed as a background job. If you omit job_id, the most recently
suspended job is used. For a description of the job_id format, see sh(1).

For information about running a job in the foreground, see f g(1).
NOTES

The bg utility is a built-in utility to the standard shell (sh(1)). An executable version of this utility is
available in / usr/ bi n/ bg.

EXIT STATUS

The bg utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

SEE ALSO
fg(1), j obs(1), sh(1)

SR-2011 10.0 73

BLD(1) BLD(1)

NAME
bl d — Maintains relocatable libraries

SYNOPSIS

bl d key[opts] [position-obj] bldname [args]
bl d R bldname old-obj-name new-obj-name

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The bl d utility collects relocatable modules into a relocatable library. The library can be maintained and
manipulated with the bl d utility.

The bl d utility line has two formats as shown in the SYNOPSIS section. The first format is used to
physically manipulate modules in a library. The second fomrat is used to change the names of modules in
the library; only the <R> key (without opts) is used in this version.

A position-obj or any other object is defined as filemodule. file may be a full path name. For example, the
following refers to the module MODULE that came from the filefi | e. o:

file. o: MODULE
In the example, file.o (orfile.o:) referstoal modulesinthefilefil e. o, and : MODULE refers to

the module MODULE, which has no file name associated with it. If MODULE containsa’ $’ , the’ $ must
be escaped so it is protected from being expanded by the shell.

The bl d utility accepts the following arguments:
key Keyletters are as follows:
d Deletes the named objects from the library.

m Moves the named modules to the end of the library. If a positioning character is
present, the position-obj argument must be present and specifies where the modules are
to be moved.

Prints the named modules in the library in binary format to st dout .

Takes the relocatable modules specified in args and appends them to the end of the
library. Optional positioning characters are not valid. The command does not check
whether the added modules are already in the library.

r Takes the relocatable modules specified in args and replaces them in the library.
WARNING: The command does not check for duplicate names in the argument list.

74 SR-2011 10.0

BLD(1)

opts

SR-2011 10.0

BLD(1)

Prints a table of contents of the library. If no names are specified, all modules in the
library are used for the table of contents. If names are specified, only those modules
are used for the table of contents.

Extracts the named modules. If no names are specified, all modules in the library are
extracted. The modules are placed in a file whose name is the same as the file or, if
none, the module. In neither case does x alter the library file.

Renames an object. (This key is used only with the second form of the command line;
no opts may be used.) This lets users change the name of an object or part of the
name of an object. For example:

bld R bld.a foo.o bar. o changes the file name of every module that came
from f 0o0. o to bar . o.

bld R bl d.a foo.o: BAR bar. o changes the file name associated with the
module BAR to bar . o.

bld R bl d.a : BAR f 00. 0: BAR adds the file name f 00. o to module BAR.

bld R bl d.a foo. o: BAR : BAR removes the file name f 0o. o from module
BAR

Keeps files in sync and ensures that there is a one-to-one mapping with an ar (1)
library. It may add, replace, or delete modules in the build library based on the ar

library.

Option letters are as follows:

a

Places new modules after position-obj. This option works only with the <r > and <n»
keys.

Places new modules before position-obj. This option works only with the <r > and
<ne keys.

Suppresses the message that is produced by default when bldname is created.

Displays all entry points in the specified modules. This option works only with the
<t > key.

Places new modules before position-obj. This option works only with the <r > and
<np keys.

Places temporary files in the local current working directory / t np. By default,
temporary files are placed in the directory specified by TMPDI R.

Gives a verbose module-by-module description of the making of a new library file
from the old library and the constituent modules. When used with t , this option gives
along listing of al information about the modules. When used with x, it precedes
each module with a name.

75

BLD(1)

NOTES

BLD(1)

z Inhibits the association of a file from which the module comes. This feature allows for
the replacement of a module of the same name from a different compilation unit (. 0).
This is useful in Fortran applications in which subroutines are generated by cft 77 as
multiple module units. This option may be used only when ther and q options are
specified. This option should be used only to emulate the operation of the COS
BUI LD utility. Its use is inappropriate within the context of a UNICOS makefile or
nmakefile. See the EXAMPLES section.

position-obj Specifies that new modules are to be placed after (a) or before (b or i) position-obj.

Otherwise, new files are placed at the end. position-obj is required when the a, b, or i
options are used.

bldname Specifies the library. If the library file bldname exists, it must be a bl d-formatted archive.
If theq, r, or s keys are specified and bldname does not exist, bl d will create the library
bldname.

args Names of files containing relocatable modules when using the r or g keys. Otherwise,

names of modules in the library, bldname.

old-obj-name Old name of the module.

new-obj-name New name of the module.

The bl d utility has the following limitations:

Currently, the bl d utility does not interpret CRAY T3D object files. Use ar (1) to process CRAY T3D
object files.

If the file names in the bl d archive have subdirectories and if the subdirectories do not exist, bl d will
error exit when extracting files from a bl d archive.

When the default (no z opt) is used, a file name is permanently associated with the one or more modules
contained in the file. Once generated into a bl d archive, the file name is retained, even after extraction.
To clear the file name from the module, use the <R> key.

The - z option is not supported with Fortran 90.

If bl d cannot access one of the files in an argument list, then none of the files will be added to the
library. This behavior differs from the ar (1) utility, which adds all of the files on the argument list that
can be successfully accessed.

EXAMPLES

76

Example 1: The following example shows the use of the z opt in a Fortran application in which subroutines
are generated by as multiple module units. In this example, fi | ea. o contains the modules SUBA and
SUBB:

$ bld qvz bldnarme filea.o

SR-2011 10.0

BLD(1) BLD(1)

Example 2: By compiling filefi | eb. f, which contains subroutine modules SUBB and SUBC, SUBB and
SUBC can be replaced using the following command:

$ bld rvz bldname fileb.o

This will overlay SUBB even though it was created in a different . o file. When the default (no z opt) is
used, a file name is permanently associated with the one or more modules contained in the file. Once
generated into a bl d archive, the file name is retained, even after extraction. To clear the file name from
the module, use the <R> key.

Example 3: The following example shows a variety of bl d uses. The shell prompt is indicated by a $.

$1s

mal | oc. ¢ memmyr.c nmemgr. h

$ cc -c mlloc.c

$ #lnitial insertion of malloc.o
$ bldglib.a mlloc.o

bld: creating lib.a

$ cc -c memmyr.c

$ #lnitial insertion of memur.o
$ bld g lib.a memmgr.o
$ #Tabl e of contents

$bldt lib.a
mal | oc. o: mal | oc$c

memmyr . o: memgr $c

$ #Ver bose table of contents
$ bldtvlib.a

Dat e Ti me Conpi l er Version OGS Vers. (bject Nane
01/27/91 10:59:28 Std C 2X065406 7.0 mal | oc. o: mal | oc$c
01/27/91 11:00:41 std C 2X065406 7.0 menmgr . o: nenmgr $c
$ #Assune that malloc.c has changes
$ cc -c malloc.c
$ #Ver bose repl ace

$ bldrv Ilib.a malloc.o
r - malloc.o:nmalloc$c

$ #Ver bose table of contents
$ bldtvlib.a

Dat e Ti me Conpi l er Version S Vers. (bject Nanme
01/27/91 11:04:08 sStd C 2X065406 7.0 mal | oc. o: mal | oc$c
01/27/91 11:00:41 std C 2X065406 7.0 menmgr . o: menmgr $c
$ #Noti ce the updated time of only malloc.o
$ rmmall oc. o memmr. o
$1s
lib.a malloc.c memmgr.c nemmgr. h
$ #Extracti on of menmyr.o

$ bld x lib.a memmgr.o

SR-2011 10.0 77

BLD(1)

FILES

BUGS

SEE ALSO
ar (1), nm), segl dr ()

a. out (5), bl d(5), r el o(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

78

$1s
lib.a malloc.c memmygr.c nemmgr.h menmgr. o
$ #The extraction did not nodify lib.a
$ bldtvlib.a

Dat e Ti me Compi | er Version OS Vers.
01/27/91 11:04:08 sStd C 2X065406 7.0
01/27/91 11:00:41 std C 2X065406 7.0
$ #Move malloc.o after nmemor. o
$ bld ma mermygr. o: nenmmgr\$c lib.a malloc.o
$ bldtvlib.a

Dat e Ti me Conmpi | er Version OS Vers.
01/27/91 11:00:41 std C 2X065406 7.0
01/27/91 11:04:08 Std C 2X065406 7.0
$ #Renovi ng nmenmyr. o
$ bld dlib.a mermygr.o
$ bldtvlib.a

Dat e Ti me Conmpi | er Version OS Vers.
01/27/91 11:04:08 sStd C 2X065406 7.0

TWVPDI R/ bl d* Temporary files

hj ect
mal | oc
menmyr

hj ect

menmyr
mal | oc

hj ect
mal | oc

If the same file is mentioned twice in an argument list, it may be put in the library twice.

BLD(1)

Name
.o:mal l oc$c
. 0: memmyr $c

Name
. 0: memmyr $c
.o:mal |l oc$c

Name
.0: mal | oc$c

SR-2011 10.0

BUILDDEFS(1) BUILDDEFS(1)

NAME

bui | ddef s — Reads a definitions file that has embedded keywords to produce a keyword file and a
definitions file without embedded keywords

SYNOPSIS
bui | ddef s infile deffile

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The bui | ddef s utility reads a definitions file that has embedded keywords to produce a keyword file and a
definitions file without embedded keywords. A pair of keywords in the form ++term marks each definition
in the input file. Synonyms for the term, if any, also begin with ++ and follow the keyword line (do not
mark synonyms in pairs). You should enter al keywords and synonyms into the definitions file and use the
correct capitalization conventions. The keywords and synonyms are recorded in the keyword file in
lowercase characters.

Example:

++access control |ist

++ACL
An access control list (ACL) contains the individual/group
identifiers and the individual/group access nodes for the subjects
who will be allowed to access the file. See also discretionary
access control .

++access control |ist

The bui | ddef s utility checks al keywords for keywording errors. The following rules apply to
keywording:

* The two ++ symbols that appear in columns 1 and 2 of the intermediate definitions file identify a
keyword. The keyword immediately follows the ++ symbols, with no intervening blank spaces or tabs.
Empty keywords (that is, ++ with no following text) are not allowed.

* A keyword consists of up to 48 characters. If a keyword is longer than 48 characters, it will be truncated.

* Each definition must have two keywords (a matching pair). The first keyword indicates the start of the
definition. The second keyword indicates the end of the definition.

¢ Synonyms for a keyword are in the form ++synonym and are limited to 48 characters. Do not mark
synonyms in pairs.

SR-2011 10.0 79

BUILDDEFS(1) BUILDDEFS(1)

The bui | ddef s utility accepts the following arguments:

infile Input file.

deffile Output file.

Running the bui | ddef s utility produces the output file deffile and a keyword file deffile_k.

NOTES

The bui | ddef s utility lets you modify the Cray Research definitions file (CRAYdef s_i) or add local
definitions files. The following subsections describe these procedures.

Modifying the Cray Research Definitions File

The following procedure shows how to use bui | ddef s to modify the Cray Research definitions file that
the def i ne(1) utility uses.

If you modify the Cray Research definitions file, your changes will be lost during the installation of a
UNICOS revision or update. In this case, back up the modified definitions file, install the UNICOS revision
or update, and then reapply the modified definitions file.

1. Copy the CRAYdef s_i definitions file, which has embedded keywords, from the default definitions
directory, / usr/ | i b/ defi ne, to your working directory.

Edit the file to make the desired changes.
Run bui | ddef s on the edited file as follows:
bui | ddefs CRAYdefs i CRAYdefs
CRAYdef s_i istheinput file, and CRAYdef s is the output file. This utility produces two files:

CRAYdef s, which is a definitions file without embedded keywords, and CRAYdef s_k, which isa
keyword file.

4. Set the DEFI NEDI R environment variable to the working directory that contains the CRAYdef s and
CRAYdef s_k files. For the Korn and standard shells, set the variable as follows:

DEFI NEDI R=directoryname
export DEFI NEDI R

For the C shell, set the variable as follows:
set env DEFI NEDI R directoryname

Test the modified file by using the def i ne(1) utility on selected terms.
Install the CRAYdef s_i , CRAYdef s, and CRAYdef s_k filesinthe/usr /I i b/ defi ne directory.

If necessary, reset the DEFI NEDI R environment variable. For the Korn and standard shells, reset the
variable as follows:

unset DEFI NEDI R

80 SR-2011 10.0

BUILDDEFS(1) BUILDDEFS(1)

For the C shell, reset the variable as follows:
unset env DEFI NEDI R
Creating a Local Definitions File
The following procedure shows how to use bui | ddef s to create a local definitions file for use by the

def i ne(1) utility. When multiple definitions files are in the definitions directory, the def i ne(1) utility
reads the files in alphabetical order; that is, it will search file aaaa before file bbbb.

Your local definitions files, installed in the default def i ne directory / usr/ | i b/ def i ne, might be
removed during the installation of a UNICOS revision or update if your site begins the installation process
from a clean partition. In this case, back up your loca definitions files, install the UNICOS revision or
update, and then reinstall your local definitions files. Prepare an input file that contains embedded keywords
according to the keywording rules contained in the DESCRIPTION section.

1. Run bui | ddef s on thelocdl file as follows:
bui | ddef s sitedefs i sitedefs
The sitedefs i argument is the input file, and sitedefs is the output file. This command produces two

files: sitedefs, which is a definitions file without embedded keywords, and sitedefs k, which is a
keyword file.

3. If you want to test how your local file works, set the DEFI NEDI R environment variable to the working
directory (directoryname) that contains the new formatted definition file. If you do not want to test the
local file, skip to step 6. For the Korn and standard shells, set the variable as follows:

DEFI NEDI R=directoryname
export DEFI NEDI R

For the C shell, set the variable as follows:
set env DEFI NEDI R directoryname

4. Copy the CRAYdef s file by using the following command:
cp CRAYdefs CRAYdefs_k directoryname/

Test the new file by using the def i ne(1) utility on selected terms.

Install the sitedefs and sitedefs k filesin the/ usr/1i b/ def i ne directory. The defi ne(1) utility
reads the files in this directory and searches them in sequence for search string matches.

7. If necessary, reset the DEFI NEDI R environment variable. For the Korn and standard shells, reset the
variable as follows:

unset DEFI NEDI RR

For the C shell, reset the variable as follows:
unset env DEFI NEDI R

SR-2011 10.0 81

BUILDDEFS(1) BUILDDEFS(1)

FILES

bui | ddef s. cat bui | ddef s message catalog
bui | ddef s. exp bui | ddef s explain message catalog
bui | ddef s. nsg bui | ddef s message text file

SEE ALSO
defi ne(l)
General UNICOS System Administration, Cray Research publication SG—2301

82 SR-2011 10.0

CAL(1) CAL(1)

NAME

cal — Prints calendar

SYNOPSIS

cal [[month] year]

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The cal utility prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. If neither is specified, a calendar for the present month is printed. year can be from 1
through 9999. month is a number from 1 through 12. The calendar produced is for England and the United
States.

NOTES

The year is aways considered to start in January.
Beware that cal 83 refers to the early Christian era, not the 20th century.

EXIT STATUS
The following exit values are returned:
0 Successful completion.

>0 An error occurred.

EXAMPLES

An unusual calendar is printed for September 1752. That is the month 11 days were skipped to make up for
lack of leap year adjustments. To see this calendar, type the following:

cal 9 1752

SR-2011 10.0 83

CALENDAR(1)

NAME

CALENDAR(1)

cal endar — Reminder service

SYNOPSIS

cal endar

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The cal endar utility consults the cal endar file in your directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as Aug. 24,
august 24, or 8/ 24 are recognized, but not 24 August or 24/ 8. On weekends, ‘‘tomorrow’’ extends
through Monday.

When you specify the argument, cal endar does its job for all users who have afile cal endar in their
login directory and sends them any positive results by mai | (1). Usually, this is done daily by
administrative facilities in the UNICOS operating system.

EXIT STATUS

The following exit values are returned:
0 Successful completion.

>0 An error occurred.

BUGS

Your calendar must have public permission (see chnmod(1)) for you to get reminder service.

The extended idea of ‘‘tomorrow’’ does not account for holidays.

EXAMPLES

In this example, suppose you have previoudly created a file named cal endar that contains the following

lines:

2/ 2
2/3
2/ 4
2/ 4
2/'5

84

Report A due
Depart nent neeting
Time card

Lunch with Lori
Report B due

SR-2011 10.0

CALENDAR(1)

If you enter the cal endar command on February 3, you will receive the following output:

2/3 Depart nent mneeting
2/ 4 Tinme card
2/ 4 Lunch with Lori

FILES
fusr/1lib/cal prog Program that figures out today’s and tomorrow’ s dates
/ et c/ passwd List of login directories
/tp/ cal * Temporary files
$HOMWE/ cal endar Persona calendar file
SEE ALSO
mai | (1)

SR-2011 10.0

CALENDAR(1)

85

CAT(1)

NAME

CAT(1)

cat — Concatenates and prints files

SYNOPSIS

cat [-s] [-u] [-v [-t] [-e]] [files]

IMPLEMENTATION

All Cray Research systems

STANDARDS

DESCR

86

POSIX, XPG4
AT&T extensions (- s, -v, -t, and - e options)

IPTION

The cat utility reads files you specify on the command line in sequence and writes them to standard output.
The cat utility accepts the following options and operand:

-S Makes cat silent about nonexistent files.

-u Causes the output to be unbuffered. The default is buffered output.

Y Causes nonprinting characters (except for <t ab>s, <newl i ne>s, and <f or m f eed>s) to be
printed visibly. ASCII control characters (octal 000—037) are printed as ~n, where n is the
corresponding ASCII character in the range octal 100137 (@ A, B, C, ..., X, Y, Z, [,\,], ", and
_); the DEL character (octal 0177) is printed ~?. Other nonprintable characters are printed as M x,
where x is the ASCII character specified by the low-order 7 bits.

When used with the - v option, the following options may be used:

-t Prints tabs as | ’s and form feeds to as *L’s when used with the - v option. If you do not specify
the - v option, cat ignores this option.

e Prints a $ character at the end of each line (before the <newl i ne> character); you must use this
option with the - v option.

If the - v option is not specified, the -t and - e options are ignored.

files If you do not specify an input file, or if you specify a hyphen (-), cat reads from standard input.
Multiple occurrences of the argument - are accepted as file operands.

SR-2011 10.0

CAT(1) CAT(1)

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm In a privileged administrator shell environment, shell-redirected 1/0 is not subject to
file protections.

sysadm Shell-redirected output is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, shell-redirected 1/0 on behalf of the super user is not
subject to file protections.

CAUTIONS
Command formats such as the following may cause the original data in filel to be lost:
$ cat filelfile2 >filel

EXIT STATUS
The cat utility exits with one of the following values:
0 All input files were output successfully.

>0 An error occurred.

EXAMPLES
Example 1: The following command line writes the contents of file to the standard output:
$ cat file

Example 2: The following command line concatenates the first two files and places the result in the third:
$ cat filel file2 >file3

SEE ALSO
cp(1), nor e(1), pg(d), pr(2)

SR-2011 10.0 87

CATERR(1) CATERR(1)

NAME

cat err — Processes message text files

SYNOPSIS
caterr [-c catfile] [-e] [-s[-P cpp_opts]] [- Y X, pathname] [msgfile]

IMPLEMENTATION
UNICOS systems
UNICOS/mk systems
IRIX systems

DESCRIPTION

A message catalog is a binary file that contains the run-time source of error messages output by UNICOS
software products. A message catalog is produced from a message text file that contains messages (tagged
with $ns g tags) and message explanations (tagged with $nexp or $exp tags).

Before it can be accessed at run time, a message text file must be converted to a message catalog binary file
by the cat er r processor and the gencat (1) catalog generator.

The cat er r utility converts the error message text source in msgfile into the format used as input to
gencat (1), the error message catalog generation utility. If msgfile is not specified or if adash (-) is
specified, cat er r reads from the standard input.

The - c option to the cat er r utility calls gencat (1) after processing is complete. Using the - ¢ option
allows a catalog to be generated from a message text file in one step. It is recommended that you use
cat err with the - ¢ option. The gencat (1) utility exists as a separate utility to maintain compatibility
with industry standards for message catalog processing. No advantage exists in calling gencat (1)
separately. By default, cat er r looks for gencat (1) in the/ usr/ bi n/ gencat file.

A single invocation of cat er r can process either the messages or the explanations in the input files, but not
both. The cat er r utility processes the messages by default. Use the - e option to specify processing of
the explanations.

The cat er r utility calls the text formatting utility nr of f (1) to process formatted explanations as part of
its processing of the message text file. nr of f (1) uses message macro definitions to format the explanation
text. By default, on UNICOS and UNICOS/mk systems, cat er r looks for nr of f (1) in the

[usr/ bin/nroff fileand for the message macrosinthe/ usr/ i b/tmac/t mac. sg file. OnIRIX
systems, cat er r looks for nr of f (1) in the/ usr/ bi n/ nr of f file and for the message macros in the
[fusr/share/lib/tmac/tmac. sg file

If no options are specified, cat er r processes msgfile by using the tools in the default locations. The
output, suitable for input to gencat (1), is sent to st dout .

88 SR-2011 10.0

CATERR(1)

CATERR(1)

The cat er r utility accepts the following options and arguments:
- ¢ catfile (Catalog) Calls gencat (1) to update or create a catalog with the information in the processed

msgfile. If the - ¢ option is used, cat err invokes gencat (1) to update the specified catalog
by using the generated output. If catfile does not exist, it is created. Using the - ¢ option makes
it unnecessary to call gencat (1) separately; the message catalog is generated in one step.

(Explanations) Processes the explanations in msgfile. Without the - e option, cat er r processes
the messages in msgfile.

- s[- P cpp_opts]

(Symbolic names) Calls the C language preprocessor (cpp(1)) to preprocess symbolic message
names into message numbers. The mapping of names to numbers must be specified in a header
file name in the input file. On UNICOS and UNICOS/mk systems, cat er r looks for cpp(1)

first in the/ usr/ gen/1i b/ cpp directory. If it does not find it there, it looksin /| i b/ cpp.
On IRIX systems, cat err looks for cpp(1) inthe/ | i b/ cpp directory.

Options can be passed to cpp by specifying the - P suboption to the - s option. Place the
options to be passed to cpp within double quotation marks (" "). The entire string within the
quotation marks is passed to cpp for execution. The - P suboption can be specified only if the
- s option also is specified.

- 'Y X, pathname

msgfile

SR-2011 10.0

Specifies the version of the nr of f (1) and gencat (1) tools and of thet mac. sg message
macros that cat err calls. If the - Y option is not specified, cat er r calls the version of

nr of f (1) in/ usr/ bi n/ nrof f, the version of gencat (1) in/ usr/ bi n/ gencat , and the
version of the message macrosin/ usr/1i b/t mac/t mac. sg (UNICOS and UNICOS/mk
systems) or / usr/ share/li b/tmac/t mac. sg (IRIX systems). If you need to specify
aternative paths for al three tools that cat er r calls, you can specify the - Y option up to three
times in the same command line.

The - Y option takes two arguments. a path name and a key letter that specifies which software
(nr of f (1), gencat (1), or the message macros) is located at that path name. The key letter is
specified first, followed by a comma (,), followed by the path name. The alternative tool path
specified with pathname must be a full path.

The - Y option accepts the following key letters:
c Specifies that the path name following the comma is the path name for gencat (1).

m Specifies that the path name following the comma is the path name for the message
macros.

n Specifies that the path name following the comma is the path name for nr of f (2).

Specifies the name of the file containing the message text source to be processed.

89

CATERR(1) CATERR(1)

EXAMPLES

90

Example 1: In the following example, cat er r processes the messages in file | dr. nsg. The output, sent
to st dout , is suitable for input to gencat (1).

caterr |dr.nmsg
Example 2: In the following example, cat er r invokes gencat (1) to update the messages in the
| dr. cat catalog with the information in file | dr . nsg.

caterr -c ldr.cat Idr.nsg
Example 3: In the following example, cat er r uses the message macros in the file

/usr/ me/ errnmsg/tmac. sg to produce a catalog of explanations suitable for processing by gencat ().
The input fileis| dr . msg; the output is sent to st dout .

caterr -e -Y m/usr/ne/errnsg/tmac.sg |dr.nsg
Example 4: In the following example, cat er r uses the message macros in the current directory and

invokes gencat (1) from / bi n/ gencat to update the explanation catalog | dr . exp with the information
inldr. msg.

caterr -e -c ldr.exp -Y mtmac.sg -Y c,/bin/gencat |dr.nsg
Example 5: In the following example, cat er r cals nrof f from /usr/ ne/ errnmsg/ nrof f and uses

the message macros in the current directory. The input fileis| dr. nsg. Explanations suitable for
processing by gencat (1) are output to st dout .

caterr -e -Y n,/usr/nme/errnmsg/nroff -Y mtnmac.sg |dr.msg
Example 6: In the following example, cat er r calls alternative versions of al three tools. It uses the
versions of nr of f (1) and the message macros in the current directory, and it calls gencat (1) from

/ bi n/ gencat . Using these tools, the explanations in the | dr . exp file are updated with the information
inthel dr. nsqg file.

caterr -e -c ldr.exp -Y c,/bin/gencat -Y mtmac.sg -Y n,nroff |dr.nmsg
Example 7: In the following example, cat er r invokes gencat (1) to update the messages in the

| dr. cat catalog with the information in the | dr . nsg file. The cat err utility calls cpp(1) to
preprocess symbolic message names, and passes the - Moption to cpp(1) for execution.

caterr -c ldr.cat -s -P "-M |dr.nsg

Example 8: In the following example, cat er r invokes gencat (1) to update the | dr . cat catalog.
Because no message text file name is specified, the input to cat er r is read from the standard input.

caterr -c ldr.cat

SR-2011 10.0

CATERR(1) CATERR(1)

SEE ALSO
cat xt (1), expl ai n(1), gencat (1), whi chcat (1)

cat get msg(3C), cat get s(3C), cat nsgf nt (3C), cat open(3C) in the UNICOS System Libraries
Reference Manual, Cray Research publication SR—2080

nl _types(5), meg(7D) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

Cray Message System Programmer’s Guide, Cray Research publication SG—2121

SR-2011 10.0 91

CATXT(1) CATXT(1)

NAME

cat xt — Extracts message explanations from a message text file

SYNOPSIS

cat xt [-n outfile] [-s[- P cpp_opts]] infile

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

92

The cat xt utility extracts the message explanations from a message text file to ready it for printing as an
error message supplement document.

Typically, the input file infile is the message text file that resides in the developer’s program library (PL).
This file usually contains the text of error messages issued to users and the text of message explanations
available to users through the expl ai n(1) command. The error messages are associated with a $nsg tag
in the message text file. The explanations are associated with a $nexp or $exp tag in the message text file.
Printed error message supplements contain the information associated with the $nexp tags.

The cat xt utility accepts the following options and arguments:

- n outfile Specifies the outfile for extracted text. To produce an error message supplement, you must
extract the text associated with $nexp tags from infile. The cat xt utility performs this
extraction. If the - n option is not specified, the output is sent to st dout .

- s[- P cpp_opts]
(Symbolic names) Calls the C language preprocessor (cpp(1)) to preprocess symbolic
message names into message numbers. The mapping of names to numbers must be specified
in an include file name in the input file. cat xt looks for cpp(2) first in the
[usr/gen/lib/cpp directory. If it does not find it there, it looksinthe/1i b/ cpp file.

Options can be passed to cpp(1) by specifying the - P suboption to the - s option. Place the
options to be passed to cpp(1) within double quotation marks (" "). The entire string within
the quotation marks is passed to cpp(1) for execution. The - P suboption can be specified
only if the - s option also is specified.

infile Specifies the message text file used as input to cat xt .

In addition to extracting explanations, cat xt also changes the $nexp string into the . M5 (message start)
macro. This macro must be present for the output file to print in the proper format.

SR-2011 10.0

CATXT(1) CATXT(1)

MESSAGES

The cat xt utility issues the following messages:

No expl anati on number processed yet.
This message is issued in conjunction with several of the warnings and errors that follow in this
section. It indicates that the problem reported in the associated message occurred at the
beginning of the file, before any explanations were processed successfully. Use this message to
locate the problem and correct it.

Last expl anation number processed is ’'num .
This message is issued in conjunction with several of the warnings and errors that follow in this
section. It indicates that the problem reported in the associated message occurred after the
specified explanation number. Use this message to locate the problem and correct it.

\WARNI NG Encountered $nexp with no expl anati on nunber.
Every $nexp tag must be followed by an explanation number. If you receive this message,
there is a $nexp tag without a number in the input file. Begin searching for this tag after the
explanation number specified in the second line of the message (one of the first two messages in
this section).

WARNI NG Encount ered $nexp foll owed by character(s),

a nunber is expected.
Each $nexp tag must be followed by an explanation number. If you receive this message, a
$nexp tag exists that is followed by characters rather than numbers. Begin searching for this
tag after the explanation number specified in the second line of the message (one of the first two
messages in this section).

WARNI NG I ncorrectly forned . ME |ine.
Each explanation must end with a. ME macro. The . ME macro must be on a line by itself. If
you receive this message, a. ME macro in the input file is followed by other characters. Begin
searching for this macro after the explanation number specified in the second line of the message
(one of the first two messages in this section).

\WARNI NG nexp nunber ndoes not have an ending ".ME"
The cat xt utility verifies that there is a closing . ME macro for each occurrence of the $nexp
tag. If it finds a $nexp tag without a. ME macro at the end of the explanation, it issues this
warning message. If you receive this warning, add the . ME macro to message humber n in the
input file infile and rerun cat xt .

ERROR | nput filefilenameis not in the nmessage text file format
The cat xt utility verifies that key elements of the message text file format are present in the
input file. If they are not present, it issues this error message. If you receive this error message,
verify that the format of the file conforms to message text file guidelines. For a detailed
description of the format of the message text file, see the Cray Message System Programmer’s
Guide, Cray Research publication SG—-2121.

ERROR The message text file and the output file for nroffable

SR-2011 10.0 93

CATXT(1) CATXT(1)

expl anations are identical! Use a different output file.
If you receive this message, the cat xt utility has detected that the input file (message text file)

and the output file you have specified have the same name. Proceeding with the utility under
these circumstances will destroy the input file. To avoid the destruction of the input file, choose

a different name for the output file.

SEE ALSO
nmsg(7D) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication

SR-2014
Cray Message System Programmer’s Guide, Cray Research publication SG—2121

94 SR-2011 10.0

CB(1) CB(1)

NAME

cb — C program beautifier

SYNOPSIS
cb [-j] [-1 length] [-s] [files]

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The cb utility reads C programs either from its arguments or from the standard input and writes them on the
standard output with spacing and indentation that displays the structure of the code. Under default options,
cb preserves all user new lines.

The cb utility accepts the following options:
- Causes split lines to be put back together.

-1 length Causes cb to split lines that are longer than length. length must be between 10 and 120
characters. The default length is 120.

-S Changes the style of the code to conform to the style of Kernighan and Ritchie in The C
Programming Language.
files Specifies files to read in.
CAUTIONS

The source code that is to be run under cb should be free of compilation errors.

Punctuation that is hidden in preprocessor statements causes indentation errors.

SEE ALSO
cc(1)

SR-2011 10.0 95

CD(1)

NAME

cd — Changes working directory

SYNOPSIS

cd [directory]
cd -

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

CD(1)

The cd utility changes your working directory to directory. If you omit directory, the value of the shell
variable HOVE (your home directory) is used as the new working directory. If directory specifies a complete
path starting with / , . , or . . , directory becomes the new working directory. If neither case applies, cd
tries to find the designated directory relative to one of the paths specified by the CDPATH shell variable. If
CDPATH is not defined, the search path defaults to . (dot). CDPATH has the same syntax as, and similar
semantics to, the PATH shell variable. cd must have execute (search) permission in directory.

NOTES

The cd utility is a built-in utility to the standard shell (sh(1)). An executable version of this utility is

availablein / usr/ bi n/ cd.

EXIT STATUS

The cd utility exits with one of the following values:

0 The directory was successfully changed.

>0 An error occurred.

SEE ALSO
pwd(1), sh(1)

chdi r (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

96

SR-2011 10.0

CDC(1)

NAME

CDC(1)

cdc — Changes the delta commentary of an SCCS delta

SYNOPSIS

cdc -r 9D [- mnrlist]] [- y[comment]] files

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The cdc command changes the delta commentary of the SID specified by the - r option of each named
Source Code Control System (SCCS) file. A delta commentary is the modification request (MR) and
comment information normally specified by using the del t a(1) command (- mand - y options).

If you specify a directory, cdc behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is read (see the WARNINGS section); each
line of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of option-arguments and file names.

All described option-arguments apply independently to each named file:

-r 9D

- m{mrlist]

SR-2011 10.0

Used to specify the SCCS identification (SD) string of a delta for which the delta
commentary is to be changed.

If the SCCS file has the v flag set (see admi n(1)), alist of (MR) numbers to be added
and/or deleted in the delta commentary of the SD specified by the - r option may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of del t a(1). To delete
an MR, precede the MR number with the ! character (see the EXAMPLES section). If the
MR to be deleted is currently in the list of MRs, it is removed and changed into a comment
line. A list of all deleted MRs is placed in the comment section of the delta commentary
and preceded by a comment line stating that they were deleted.

If - mis not used and the standard input is a terminal, the prompt MRs? is issued on the
standard output before the standard input is read; if the standard input is not a terminal, no
prompt is issued. The MRs? prompt always precedes the corment s? prompt (see -y
option).

MRs in alist are separated by blanks and/or tab characters. An unescaped new-line character
terminates the MR list.

97

CDC(1) CDC(1)

If the v flag has a value (see adni n(1)), it is taken to be the name of a program (or shell
procedure) that validates the correctness of the MR numbers. If a nonzero exit status is
returned from the MR number validation program, cdc terminates and the delta commentary
remains unchanged.

- y[comment] Arbitrary text used to replace the comment(s) already existing for the delta specified by the
-r option.

files Files to be changed.

The previous comments are kept and preceded by a comment line stating that they were changed. A null
comment has no effect.

If -y isnot specified and the standard input is a terminal, the prompt coment s? is issued on the standard
output before the standard input is read; if the standard input is not a terminal, no prompt is issued. An
unescaped newline character terminates the comment text.

Permissions needed to modify the SCCS file are either (1) if you made the delta, you can change its delta
commentary or (2) if you own the file and directory, you can modify the delta commentary.

WARNINGS
If SCCS file names are supplied to the cdc command through the standard input (- on the command line),
the - mand - y options must aso be used.

MESSAGES
Error messages from SCCS are printed. Use hel p(1) for explanations.

EXAMPLES

The following example adds bl 78- 12345 and bl 79- 00001 to the MR list, removes bl 77- 54321 from
the MR list, and adds the comment t r oubl e to delta1l. 6 of s. fi |l e:

$ cdc -rl.6 -ni'bl 78-12345 ! bl 77-54321 bl 79- 00001" -ytrouble s.file

The following example does the same thing:

$ cdc -rl1.6 s.file
MRs? 1 bl 77-54321 bl 78-12345 bl 79- 00001
comment s? troubl e

FILES

x. file See del t a(1)
z. file See del t a(1)

98 SR-2011 10.0

CDC(1) CDC(1)

SEE ALSO

adm n(1), conb(1), del t a(1), get (1), hel p(1), prs(2), r ndel (1), sact (1), sccsdi f f (1), unget (1),
val (1), vc(2), what (1)

sccsfil e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2011 10.0 99

CFLOW(1) CFLOW(1)

NAME
cf | ow— Generates C-language flowgraph

SYNOPSIS
cflow [-d num| [- D name[=def]]... [-i incl] [-1 dir]... [-r] [-U dir]... file...

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The cf | ow utility analyzes a collection of C, yacc, | ex, assembler, and object files and builds a graph
charting the external function references. Files suffixed with .y, . |, and . ¢ are processed by yacc, | ex,
and the C compiler as appropriate. The results of the preprocessed files, and files suffixed with . i , are then
run through the first pass of | i nt. Files suffixed with . s are assembled. Assembled files, and files
suffixed with . 0, have information extracted from their symbol tables. The results are collected and turned
into a graph of external references that is written on the standard output.

Each line of output begins with a reference number, followed by a suitable number of tabs indicating the
level, then the name of the global symbol followed by a colon and its definition. Normally only function
names that do not begin with an underscore are listed (see the - i options). For information extracted from
C source, the definition consists of an abstract type declaration (for example, char *), and, delimited by
angle brackets, the name of the source file and the line number where the definition was found. Definitions
extracted from object files indicate the file name and location counter under which the symbol appeared (for
example, text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name contain only the reference
number of the line where the definition may be found. For undefined references, only <> is printed.

As an example, suppose the following codeisinfile. c:

100 SR-2011 10.0

CFLOW(1) CFLOW(1)

—~Q —*
—_~—~

The command

$ cflow-ix file.c

produces the output

1 main: int(), <file.c 4>

2 f: int(), <file.c 11>

3 h: <>

4 i: int, <file.c 1>
5 g <>

When the nesting level becomes too deep, the output of cf | ow can be piped to the pr (1) utility, using the
- e option, to compress the tab expansion to something less than every eight spaces.

In addition to the - D, - | , and - U options (which are interpreted just as they are by cc (1)), the following
options are interpreted by cf | ow:

-r Reverses the ‘“caller:callee’’ relationship producing an inverted listing showing the callers of each
function. The listing is also sorted in lexicographical order by callee.

-i X Includes external and static data symbols. The default is to include only functions in the
flowgraph.

- Includes names that begin with an underscore. The default is to exclude these functions (and data
if -1 X is used).

-d num The num decimal integer indicates the depth at which the flowgraph is cut off. By default this
number is very large. Attempts to set the cutoff depth to a nonpositive integer will be ignored.

SR-2011 10.0 101

CFLOW(1) CFLOW(1)

NOTES

Files produced by | ex and yacc cause the reordering of line number declarations, which can confuse
cfl ow. To get proper results, feed cf | owthe yacc or | ex input.

DIAGNOSTICS

Complains about multiple definitions and only believes the first.

SEE ALSO
cc(1), I ex(D), i nt (1), nm2), pr (1), yacc(l)

102 SR-2011 10.0

CHACID(1) CHACID(1)

NAME

chaci d — Changes account ID of disk files

SYNOPSIS
chacid [-v] [-S] [- h] files
chacid [-s id] [-v] [- h] files
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The chaci d utility allows users to set the account ID of a disk file (or symbolic link). The ID must be one
of the user’s valid accounts. Only the owner of a file may change that file's account ID. An appropriately
authorized user may set the account ID of afile that is owned by another user and may specify any account
ID value.

When used without options, chaci d displays the current account ID. Options - s and - S are mutually
exclusive.

The chaci d utility accepts the following options and arguments:

-sid Setsthe account ID of the specified files to id.

-V Operates in verbose mode.
-S Sets the account ID of files to the current user’s default account ID.
-h When this option is specified and the file is a symbolic link, the requested operation (display the

current value or change the account I1D) is done on the link; that is, it does not follow the link to
the destination file. If this option is not specified, the link is followed and the operation is done on
the destination file.

files Specifies the file (or files) whose account ID will be set.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the actions shown:

Privilege Text Action

anyown Allowed to change the account ID of afile that is owned by another user and to
specify any account 1D value.

own Allowed to change the account ID of afile that is owned by another user.

any Allowed to specify any account 1D value.

SR-2011 10.0 103

CHACID(1) CHACID(1)

If this utility is installed with a PAL, a user with one of the following active categories is allowed to
perform the actions shown:

Active Category Action
system secadm Allowed to change the account ID of any file to any value.
sysadm Allowed to change the account ID of any file to any value, subject to security label

restrictions on the file's path. Allowed to specify any account ID value.
If the PRI V_SU configuration option is enabled, the super user is allowed to change the account 1D of any
file to any value.
EXAMPLES
To determine the current account ID of the file not es, enter the following:

chaci d notes

To change the account ID of the file not es to pr oj 1, enter the following:

chacid -s proj1l notes

FILES
/etclacid Account ID information file that contains account names and account |1Ds
/ etc/udb User validation file that contains user control limits

SEE ALSO

newacct (1), pri vt ext (1)
chaci d(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012
UNICOS Resource Administration, Cray Research publication SG—2302

104 SR-2011 10.0

CHECKNR(1) CHECKNR(1)

NAME

checknr — Checksnrof f and t r of f input files; reports possible errors

SYNOPSIS
checknr [-fs][-a .x1 .yl .x2.y2xn.ynl [-Cc .x1 .x2.x3xn] [filename ...]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The checknr utility checks alist of nr of f (1) or t r of f (1) input files for certain kinds of errors involving
mismatched opening and closing delimiters and unknown commands. If no files are specified, checknr
checks the standard input. Delimiters checked are as follows:

* Font changesusing\ fx...\fP.
* Size changesusing \ sx ...\ s0.

* Macros that come in open ... close forms (for example, the . TS and . TE macros), which must always
come in pairs.

The checknr utility knows about the ns(7D) and ne(7D) macro packages.

The checknr utility is intended to be used on documents that are prepared with checknr in mind. It
expects a certain document writing style for \ f and \ s commands, in that each \ f x must be terminated
with \ f P and each \ sx must be terminated with \ sO. While it will work to go directly into the next font
or explicitly specify the original font or point size, and many existing documents actually do this, such a
practice will produce complaints from checknr . Sinceit is probably better to use the \ f P and \ sO forms
anyway, you should think of this as a contribution to your document preparation style.

The checknr utility accepts the following options:

-f Ignores \ f font changes.
-S Ignores \ s size changes.
-a .x1.yl... Addspairsof macrosto thelist. The pairs of macros are assumed to be those (such as

. DS and . DE) that should be checked for balance. The - a option must be followed by
groups of six characters, each group defining a pair of macros. The six characters are a
period, the first macro name, another period, and the second macro name. For example,
to define the pair . BS and . ES, use - a. BS. ES.

-c .x1... Defines commands that checknr would otherwise complain about as undefined.
filename nr of f file to be checked.

SR-2011 10.0 105

CHECKNR(1) CHECKNR(1)

NOTES

There is no way to define a 1-character macro name using the - a option.

SEE ALSO
eqn(l), nrof f (1), trof f (1)

me(7D), ns(7D) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

106 SR-2011 10.0

CHGRP(1) CHGRP(1)

NAME

chgr p — Changes the group ownership of afile
SYNOPSIS

chgrp [-R] [- h] group file ...
IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T extensions (- h option)

DESCRIPTION
The chgr p utility changes the group ID of each file to group.

The chgr p utility accepts the following options and operands:

-R Recursively changes file group IDs. When symbolic links are encountered, the group of the
target is changed, but no recursion takes place.

-h If the file is a symbolic link, changes the group of the symbolic link. Without this option, the
group of the file or directory referenced by the symbolic link is changed.

group May be either a decimal group ID or a group name found in the group file.

file... Files or directories to be changed. For each file operand that specifies a directory, chgr p

changes the group ID of the directory and al files in the file hierarchy below it. When symbolic
links are encountered, they are not traversed.

Only an appropriately authorized user may change the group of afile that is owned by another user. Unless
users are appropriately authorized, they must be a member of the specified group to change the group of a
file.

Unless the user is appropriately authorized, chgr p clears the set-user-ID and set-group-1D file mode bits.

NOTES

When the path name supplied to the chgr p utility specifies a multilevel symbolic link (the name of a
multilevel directory), the group is changed only on the root of the multilevel directory tree. While this
affects all subsequently created labeled subdirectories, it does not affect labeled subdirectories currently in
existence. To ensure that the group of all labeled subdirectories change, the user must manually change the
group on each labeled subdirectory found in root of the multilevel directory.

SR-2011 10.0 107

CHGRP(1) CHGRP(1)

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to change the group of any file to any value. The set-user-1D and
set-group-1D file mode bits are not cleared.

sysadm Allowed to change the group of any file to any value. The set-user-1D and
set-group-1D file mode bits are not cleared. Shell-redirected 1/0O is subject to
security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is alowed to change the group of any file to
any value. If the user is the super user or has the sui dgi d permission, the set-user-1D and set-group-1D
file mode bits are not cleared.

EXIT STATUS
The chgr p utility exits with one of the following values:
0 All requested changes were made.

>0 An error occurred.

EXAMPLES
The following example changes the group to dev for the exanpl e. c file:

chgrp dev exanple.c

FILES
/et c/udb User validation file that contains user control limits
[etc/ group Group file that contains group names and group 1Ds
SEE ALSO

chnod(1), chown(l), i d(2)
chown(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

gr oup(5), passwd(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

General UNICOS System Administration, Cray Research publication SG—2301

108 SR-2011 10.0

CHKEY (1) CHKEY (1)

NAME
chkey — Changes your encryption key

SYNOPSIS
chkey

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
The chkey command prompts users for their secure RPC password, and uses it to encrypt a new encryption
key for the user to be stored in the publ i ckey(5) database.

SEE ALSO
keyl ogi n(2)

publ i ckey(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

keyser v(8), newkey(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2011 10.0 109

CHKPNT(1) CHKPNT(1)

NAME

chkpnt — Checkpoints a process, multitask group, or job

SYNOPSIS

chkpnt -j id [-k] [-v] [-f filg]
chkpnt -p id [-k] [-v] [-f filg]

IMPLEMENTATION

DESCR

NOTES

110

Cray PVP systems

IPTION

The chkpnt utility creates a restart file containing al of the necessary state information to restart all of the
processes selected by the id option. The target id must belong to the current user, unless the current user is
the super user.

The chkpnt utility accepts the following options:

-j id

-pid Indicates whether the id specified is ajob (or interactive session) ID (-j) or aprocess ID (- p).
-k Indicates that the specified id (job or process) will be killed if the checkpoint is successful.

Y Causes additional informational messages to be printed.

-f file Indicates the path name to be used for the restart file. If the user does not specify a path name, a
default path name will be created by appending id to the name pi d orj i b.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm sysadm Allowed to checkpoint any process or jab.

If the PRI V_SU configuration option is enabled, the super user is allowed to checkpoint any process or job.
The following restrictions apply to jobs and processes that are to be checkpointed:

¢ Only an appropriately authorized user may checkpoint a process or job that is owned by another user.

* The active security label of the user must equal the active security label of every affected process.

* Processes with open pipes may be checkpointed and restarted successfully if the following two conditions
are met:

— All openings of the pipe file must be contained within the process collection being checkpointed.

SR-2011 10.0

CHKPNT(1) CHKPNT(1)

— All I/O operations on the pipe must be atomic with respect to the chkpnt system call. This
condition is a limit on the size of an 1/O operation: either Pl PE_BUF bytes, or (v_maxpi pe *
4096) bytes. Pl PE_BUF is found in the sys/ par am h file. v_naxpi pe is a member of the
var structure in the sys/ var . h file.

¢ All files that a process was using when it was checkpointed must be present when the process is restarted.

* Processes using shared memory segments (CRAY T90 series systems only) cannot be checkpointed or
restarted.

* Processes using online tapes cannot be checkpointed or restarted.

EXAMPLES

The following example illustrates how to use the chkpnt utility to checkpoint a process.

The user is running a. out in the background and enters a chkpnt utility to checkpoint the process. The

- p option specifies the PID and the - k option kills the process (pi d. 23634). The user then issuesan | s
command to list information about pi d. 23634; the capital R at the beginning of the long listing indicates a
restart file has been created.

uni cos$ a.out &
23634

uni cos$ chkpnt -p 23634 -k

unicos$ I's -1 pid. 23634
Rr-------- 1 (id) (group) (size) (date) pid.23634

Later, the user entersar est art utility to recover the process. The ps listing confirms the process has
been reactivated.
uni cos$ restart pid.23634
uni cos$ ps
PI D TTY TI ME COVMMAND
23634 pO31 0:13 a.out

23510 p031 0:00 sh
23758 p031 0:00 ps

SEE ALSO
chkpnt _util (1), chkptint (1), restart (1)

chkpnt (2), rest art (2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

General UNICOS System Administration, Cray Research publication SG—2301

SR-2011 10.0 111

CHKPNT_UTIL(1) CHKPNT_UTIL(1)

NAME
chkpnt _util — Verifies restartability of restart files

SYNOPSIS
chkpnt _util [-f filch] [-n] [-0 name] [- v] restart-file

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The chkpnt _uti | utility verifies a restart file in the same manner that the kernel would verify the file
during an attempted restart. The utility issues the same cryptic messages as the kernel, but offers a verbose

mode that locates the problem. The utility also enables you to find the name of a restart-referenced nc1 or
sf s file.

The chkpnt _uti | accepts the following options and operand:

-f filch Associates path names to the files identified by specified vnodes. Items in the filch string are
separated by commas. Each item is a pair separated by a colon. The first in the pair is the
former vnode pointer, used to identify the node within the restart file. The second in the pair
is the new file name.

-n Prints the name of every file referenced in the restart file. This option uses a lot of execution
time.

- 0 hame Writes a new restart file with the specified name.

Y Produces verbose output.

restart-file Specifies the restart file.

NOTES

Only an appropriately authorized user may provide super-user authority to write a restart file. Similarly,
authority is required for the openi (2) system call.

112 SR-2011 10.0

CHKPNT_UTIL(1)

EXAMPLES

CHKPNT_UTIL(1)

The following example shows the output produced when you specify chkpnt _uti | withthe-n and -v

options:

chkpnt _util
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:

chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:
chkpnt _util:

-n -v ofile
restart header
sessi on header, sid = 63
process executing sh
process pcomm structure, ppid

3392

task proc structure, pid 3395
process ucomm structure, uc_magi c 020001600407

vnode for executabl e text
vnode structure fromvp

-- inum 5305 on m nor 48

-- file name "/bin/sh"

= 01251570

vnode for current directory

vnode structure fromvp

-- inum 106 on minor 36

-- file nanme "/tnp/jtnmp.
open file nunber 0O

file structure, fromfp

vnode structure fromvp

-- inum 1530 on m nor 48

-- file nane "/dev/tty"

open file nunmber 31
file structure, fromfp
vnode structure fromvp

-- inum 1061919 on m nor

= 01526754

000057a"

01204253
01254320

01204551
01536764
27

-- file nane "/frost/u4/rig/.sh_history"

file has been nodified
**** condition prevents restart

To obtain detailed information about specific files, select the vnodes and associated new file names from the
verbose output and enter the following command:

chkpnt _util

SR-2011 10.0

-f 01526754:/tnp/jtnp. 000057b,

1536764: / dev/ nul

113

CHKPNT_UTIL(1) CHKPNT_UTIL(1)

SEE ALSO
chkpnt (1), restart (1)

chkpnt (2), openi (2), rest ar t (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

General UNICOS System Administration, Cray Research publication SG—2301

114 SR-2011 10.0

CHKPTINT(1) CHKPTINT(1)

NAME
chkpti nt — Registers current session to be checkpointed upon shutdown and/or periodically

SYNOPSIS

chkptint -s sec

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The chkpt i nt utility notifies the Unified Resource Manager (URM) that a checkpoint of the current
session should be taken every sec seconds and/or at shutdown, depending on the URM configuration. This
utility should be used in conjunction with the r mgr (1) utility Vi ew Rest art subcommand, which alows
you to see if you have any checkpointed interactive sessions.

The purpose of the URM checkpoint feature is to improve user recoverability by allowing you to periodically
checkpoint your active session to protect against lost work due to an uncontrolled system shutdown and to
request that an interactive session be checkpointed as part of a controlled system shutdown.

The chkpt i nt utility requires the following options:

-s sec A positive integer sec indicates that a checkpoint of the current session should be done at shutdown
and the frequency at which periodic checkpoints should be taken. Zero sec indicates that
checkpointing should not be done for the current session.

The units of the - s option are either wall-clock or CPU seconds; the unit selected is specified in a
URM configuration parameter.

NOTES

The URM checkpoint facility is disabled by default; checkpointing of sessions is not performed unless this
facility is enabled in URM. A URM configuration parameter, chkpt _swi t ch, can be set to select whether
checkpointing is done at shutdown only or both periodically and at shutdown. If URM is running with
checkpoint at shutdown only, a nonzero value for sec aso indicates that checkpointing is desired at
shutdown. For information on enabling checkpointing in URM, see UNICOS Resource Administration, Cray
Research publication SG—2302.

The checkpointing of sessions through chkpt i nt follows all the current limitations of chkpnt (2). For a
list of restrictions, see chkpnt (2).

If you restart a saved session, this session does not show up in the output of the f i nger (1B) or who(1)
utility. The reason isthat i ni t (8) is the process that updates the tables used by these commands and
restarting a previously running session does not notify the i ni t (8) process.

SR-2011 10.0 115

CHKPTINT(1) CHKPTINT(1)

MESSAGES

chkptint: Could not obtain the current session ID
using the getjtab systemcall.

chkptint: The current session ID returned by the getjtab system call
does not match the job table data.

chkptint: The current user ID returned by the getjtab system call
does not match the job table data.

EXAMPLES
To set a checkpoint interval frequency of 30 minutes:
$ chkptint -s 1800

To automatically turn off checkpointing:
$ chkptint -s O

SEE ALSO
chkpnt (1), fi nger (1B), rest art (1), r ngr (1), who(1)

chkpnt (2), getj t ab(2), rest art (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

i nit(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
UNICOS Resource Administration, Cray Research publication SG—2302

116 SR-2011 10.0

CHMOD(1) CHMOD(1)

NAME

chnod — Changes mode of files or directories

SYNOPSIS

chnod [- R] mode files

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION
The chnod utility changes the mode of the specified files (or directories) according to mode.
The chnrod utility accepts the following option and operands:

-R Recursively descends through directory arguments, setting the mode for each file. When symbolic
links are encountered, the mode of the target is changed, but no recursion occurs.

mode Specifies the permissions and other attributes of afile. The mode may be absolute or symbolic.
files Filesto be changed.
Absolute changes to modes are stated with octal humbers:

chnmod nnnn files

n is a number from O through 7.

An absolute mode is given as an octal number constructed from the OR of the following modes:
Code Description

4000 Sets user ID on execution.

20#0 Sets group 1D on execution if #is7, 5, 3, or 1.
Enables mandatory locking if #is 6, 4, 2, or 0.
(Secure sites: see secure site information that follows.) If the file is a directory, this bit is
ignored; you may set or clear it using only the symbolic mode.

1000 Sticky bit (applicable only to directories). See chnod(2) for more information.

0400 Sets read permission for owner.

0200 Sets write permission for owner.
0100 Sets execute (search in directory) permission for owner.
0070 Sets read, write, and execute (search in directory) permission for group.

SR-2011 10.0 117

CHMOD(1) CHMOD(1)

118

0007 Sets read, write, and execute (search in directory) permission for others.
Symbolic changes are stated with mnemonic characters:

chnod [who] operator [permissions(s)] files

who is one or more characters that corresponds to user, group, or other (u, g, or o, respectively); operator is
+, —, or =, signifying the assignment of permissions; and permission(s) is one or more characters that
correspond to type of permission.

Symbolic changes are stated using letters that correspond both to access classes and to the individual
permissions themselves. Permissions to a file may vary, depending on your user identification number (UID)
or group identification number (GID). Permissions are described in three sequences, each having three
characters:

User Group Other

r wx r wx ' WX

The preceding lines (meaning that user, group, and others al have reading, writing, and execution permission
to a given file) demonstrate two categories for granting permissions: the access class and the permissions
themselves.

A command making file readable and writable by the group using the symbolic method would appear as
follows:

chnmod g+rw file

who can be stated as one or more of the following letters:
u User’'s permissions

g Group's permissions

o] Others permissions

a All (equivalent to specifying ugo).

If you omit who, chrrod will use the file creation mask (see unask) to determine whose permissions are to
be changed.

operator is one of +, -, or =, signifying how permissions are to be changed:
+ Adds permissions.

- Removes permissions.

= Assigns permissions absolutely.

SR-2011 10.0

CHMOD(1) CHMOD(1)

Unlike other symbolic operations, = has an absolute effect in that it resets all other bits. Omitting
permission(s) is useful only with = to remove all permissions.

permission(s) is any compatible combination of the following letters:
r Reading permission
Writing permission

Execution permission

X X =

Search/execute permission if the file is a directory or if current mode has at least one of the execute
bits set.

S User or group set-1D is turned on
I Mandatory locking occurs during access (if any execution bits are set, group set-ID is turned on).
t Sets the sticky bit (see chnod(2) for more information)

Multiple symbolic modes separated by commas can be specified, although no spaces may intervene between
these modes. Operations are performed in the order given. Multiple symbolic letters following a single
operator cause the corresponding operations to be performed simultaneously. The letter s is meaningful only
with u or g; thus, if a is used with s, only u and g are affected. t works only with u.

Mandatory file and record locking refers to a file's ability to have its read or write permissions locked while
a program is accessing that file. You cannot permit group execution and enable a file to be locked on
execution at the same time. You can turn on the set-group-I1D and enable a file to be locked on execution at
the same time.

The following examples are, therefore, illegal usages and will €licit error messages:
chnmod g+x, +l file

chnmod g+s, +l file

Only an appropriately authorized user may change the mode of a file that he or she does not own. Only an
appropriately authorized user may alter thet permission (mode 1000). Otherwise, chnod clears the t
permission, but does not return an error. To enable a file's set-group-1D mode bit, you must belong to the
file's owning group and group execution must be allowed.

NOTES

The chirod utility permits you to produce useless modes if they are not illegal (for example, making a text
file executable).

When the path name supplied to the chnod utility specifies a multilevel symbolic link (the name of a
multilevel directory), the mode is changed only on the root of the multilevel directory tree. While this
affects all subsequently created labeled subdirectories, it does not affect labeled subdirectories currently in
existence. To ensure that the mode of all labeled subdirectories change, the user must manually change the
mode on each labeled subdirectory found in root of the multilevel directory.

SR-2011 10.0 119

CHMOD(1) CHMOD(1)

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to change the mode of any file. The set-user-ID and set-group-1D file
mode bits are not cleared.

sysadm Allowed to change the mode of any file. The set-user-ID and set-group-1D file
mode bits are not cleared. Shell-redirected 1/0 is subject to security label
restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to change the mode of any file. If
the user is the super user or has the sui dgi d permission, the set-user-1D and set-group-1D file mode bits
are not cleared.

EXIT STATUS
The chnod utility exits with one of the following values:
0 All requested changes were made.

>0 An error occurred.

EXAMPLES

Example 1: The following examples show how to deny execution permission to all. The absolute (octal)
example permits only reading permissions:

chnod a-x file
chnod 444 file
Example 2: The following examples make a file readable and writable by the group and others:
chnod go+rw file
chnod 066 file
Example 3: The following example locks a file during access:
chnod +l file
Example 4: The following examples enable all to read, write, and execute the file; and they turn on the
set-group-1D:

chnmod +rwx, g+s file
chmod 2777 file

120 SR-2011 10.0

CHMOD(1) CHMOD(1)
SEE ALSO

[s(1), umask(1)
chnod(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2011 10.0 121

CHOWN(1) CHOWN(1)

NAME

chown — Changes owner of files or directories

SYNOPSIS

chown [-h] [- R] owner[:group] files...

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T extensions (- h option)

DESCRIPTION

NOTES

122

The chown utility changes the owner of each file to owner. The optional group operand changes the group.
The chown utility accepts the following options and operands:

-h If the file is a symbolic link, changes the owner of the symbolic link. Without this option, the
owner of the file or directory referenced by the symbolic link is changed.

-R Recursively changes file user 1Ds, and if the group operand is specified, group IDs. When
symboalic links are encountered, the owner of the target is changed, but no recursion takes place.
For each file operand that specifies a directory, chown changes the user and group ID of the
directory and al files in the file hierarchy below it.

owner[:group]
owner may be either a decimal user ID or alogin name found in the password file. group may
be either a decimal group ID or a group name found in the group file.

files... Files or directories to be changed.

Only an appropriately authorized user may change the owner of afile.

Unless the user is appropriately authorized, chown clears the set-user-ID and set-group-1D file mode bits.

When the path name supplied to the chown utility specifies a multilevel symbolic link (the name of a
multilevel directory), the owner is changed only on the root of the multilevel directory tree. While this
affects all subsequently created labeled subdirectories, it does not affect labeled subdirectories currently in
existence. To ensure that the owner of all labeled subdirectories change, the user must manually change the
owner on each labeled subdirectory found in root of the multilevel directory.

SR-2011 10.0

CHOWN(1) CHOWN(1)

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to change the owner of any file. The set-user-ID and set-group-ID file
mode bits are not cleared.

sysadm Allowed to change the owner of any file. The set-user-ID and set-group-ID file
mode bits are not cleared. Shell-redirected 1/0 is subject to security label
restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to change the owner of any file.
If the user is the super user or has the sui dgi d permission, the set-user-ID and set-group-1D file mode bits
are not cleared. A user with the chown permbit is allowed to change the ownership of his or her files.

EXIT STATUS

The chown utility exits with one of the following values:
0 All requested changes were made.

>0 An error occurred.

FILES
/et c/udb User validation file that contains user control limits
/ et c/ passwd Password file that contains login names and user IDs
[etc/ group Group file that contains group names and group 1Ds
SEE ALSO

chgr p(1), chnod(1)
chown(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

gr oup(5), passwd(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

General UNICOS System Administration, Cray Research publication SG—2301

SR-2011 10.0 123

CHSH(1B) CHSH(1B)

NAME

chsh — Changes default login shell

SYNOPSIS

[usr/ucb/ chsh name [shell]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

124

The chsh utility is similar to passwd(1) except that it changes the login shell field of your password file
rather than the password entry.

The name argument is your login name.

The shell argument is compared with the list of legal user shells obtained from the get user shel | (3C)
library routine. Possible shells, depending on site configuration, may be one of the following:

/ bi n/ sh
/ bi n/ csh

The full path name is not necessary. Only an appropriately authorized user can specify a shell that is not in
the allowed list of user shells or change the shell for another user. If you do not specify a shell, the login
shell defaultsto / bi n/ sh.

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the action shown:

Privilege Text Action
chgany Allowed to change the shell of any user to any value.

If this utility is installed with a PAL, a user with one of the following active categories is allowed to
perform the action shown:

Active Category Action
system secadm sysadm Allowed to change the shell of any user to any value.

If the PRI V_SU configuration option is enabled, the super user is allowed to change the shell of any user to
any value.

SR-2011 10.0

CHSH(1B) CHSH(1B)

EXAMPLES

chsh bill /bin/csh
chsh jim /bin/sh

SEE ALSO
csh(l), passwd(1), pri vt ext (1), sh(2)

get user shel | (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

shel I s(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

General UNICOS System Administration, Cray Research publication SG—2301

SR-2011 10.0 125

CKSUM(1) CKSUM(1)

NAME

cksum-— Writes file checksums and sizes

SYNOPSIS

cksum [files..]

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The cksumutility calculates and writes to standard output a cyclic redundancy check (CRC) for each input
file, and it also writes to standard output the number of octets in each file. The CRC used is based on the
polynomial used for CRC error checking in the networking standard 1SO 8802-3. The standard input is used
only if no file operands are specified.

For each file processed successfully, the cksumutility writes in the following format:
" <checksum> <# of octets> <path name>\ n"

If you omit the file operand, the path name and its leading space is omitted.

The cksumutility accepts the following operand:

files... A path name of afile (any type) to be checked. If no file operands are specified, the standard
input is used.

NOTES

The generating polynomial defines the encoding, as follows:

G = X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

Mathematically, the CRC value that corresponds to a given file is defined by the following procedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2 polynomial M(x) of degree
n-1. These n bits are the bits from the file, with the most-significant bit being the most significant bit of
the first octet of the file and the last bit being the least-significant bit of the last octet, padded with zero
bits (if necessary) to achieve an integral number of octets, followed by one or more octets representing
the length of the file as a binary value, least-significant octet first. The smallest number of octets that
can represent this integer is used.

2. M(x) is multiplied by x32 (for example, shifted left 32 bits) and divided by G(x) using mod 2 division,
producing a remainder R(x) of degree < 31.

126 SR-2011 10.0

CKSUM(1) CKSUM(1)

3. The coefficients of R(X) are considered to be a 32-bit sequence.
4. The bit sequence is complemented, and the result is the CRC.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to generate a checksum of any file. In a privileged administrator shell
environment, shell-redirected 1/O is not subject to file protections.

sysadm Allowed to generate a checksum of any file subject to security label restrictions.
Shell-redirected 1/O is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to generate a checksum of any
file. Shell-redirected 1/0 on behalf of the super user is not subject to file protections.

EXAMPLES
Generate a checksum for each of the filesa. out, fil e. c, and obj . o:

cksum a.out file.c obj.o

EXIT STATUS
The cksumutility exits with one of the following values:
0 All files were processed successfully.

>0 An error occurred.

SEE ALSO

SO 8802-3: 1989, Information processing systems — Local area networks — Part 3: Carrier sense multiple
access with collision detection (CSMA/CD) access method and physical layer specification.

A Tutorial on CRC Computations, Ramabadran and Gaitonde, IEEE Micro, August, 1988, p. 62.

Computation of Cyclic Redundancy Checks Via Table Lookup, Sarwate, Dilip V, Communications of the
ACM, August, 1988, p. 1011.

SR-2011 10.0 127

CLEAR(1B) CLEAR(1B)

NAME

cl ear — Clears termina screen

SYNOPSIS

/usr/ucb/cl ear

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The cl ear command clears your screen. It looks in the environment for the terminal type and then in
{fusr/lib/term nfo todetermine how to clear the screen.

FILES
fusr/lib/termnfo Terminal capability database
NOTES
Usethet put cl ear command, because the cl ear command might be removed in a future UNICOS 9.0
release.
SEE ALSO
t put (1)

128 SR-2011 10.0

CMP(1) CMP(1)

NAME

cnp — Compares two files

SYNOPSIS
cmp [-1] filel file2
cnp -s filel file2
cnp - w filel file2
IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

CRI extension (- w option)
DESCRIPTION

The cnp utility compares filel and file2. Under default options, cnp makes no comment if the files are the
same; if they differ, cnp displays the byte and line number at which the difference occurs. If one file is an
initial subsequence of the other, that fact is noted.

The cnp utility accepts the following options:

-1 Displays the byte number (decimal) and the differing bytes (octal) in three columns for each
difference.

-S Displays nothing for files that differ; returns exit status only.

-w Word mode. Displays differences between 64-bit words. The octal offset of the word from the
beginning of the file, an octal representation of the words, and an ASCII representation of the words
are displayed for each word that differs.

filel
file2 The path names of the two files to be compared. If - is specified, the standard input is used.
NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm In a privileged administrator shell environment, shell-redirected 1/0 is not subject to
file protections.

sysadm Shell-redirected output is subject to security label restrictions.

SR-2011 10.0 129

CMP(1) CMP(1)

If the PRI V_SU configuration option is enabled, shell-redirected 1/0 on behalf of the super user is not
subject to file protections.

EXIT STATUS
The cnp utility exits with one of the following values:
0 Files are identical.
1 Files are different.
2 An error occurred.

SEE ALSO
comm(l), di f f ()

130 SR-2011 10.0

COL(1)

NAME

col — Filters reverse line feeds
SYNOPSIS

col [-b] [-f] [-p] [-X]
IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

COL(1)

The col utility filters reverse line feeds, reading from the standard input and writing to the standard output.
It performs the line overlays implied by reverse line feeds (ASCII code ESC- 7), and by forward and reverse
half-line feeds (ESC- 9 and ESC- 8). col is particularly useful for filtering multicolumn output made with
the . rt command of nr of f (1) and output resulting from use of the t bl (1) preprocessor.

The col utility accepts the following options:

-b Indicates that the output device is incapable of backspacing.
-f Enables half-line vertical motion.

-p Enables output of escape sequences as regular characters.
-X Suppresses output of tabs rather than white space.

If the - b option is given, col assumes that the output device in use is incapable of backspacing. In this
case, if 2 or more characters are to appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit them on output. Instead, text
that would appear between lines is moved to the next lower full-line boundary. This treatment can be
suppressed by the - f (fine) option; in this case, the output from col may contain forward half-line feeds
(ESC-9), but will still never contain either kind of reverse line motion.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start and end text in an
alternate character set. The character set to which each input character belongs is remembered; on output Sl
and SO characters are generated as appropriate to ensure that each character is printed in the correct character
Set.

On input, the only control characters accepted are <space>, <backspace>, <t ab>, <carri age-
return>, <new i ne>, S, SO, <vertical tab> (\013), and ESC followed by 7, 8, or 9. The
<verti cal tab> character isan aternative form of full reverse line feed, included for compatibility with
some earlier programs of this type. All other nonprinting characters are ignored.

SR-2011 10.0 131

COL(1) COL(1)

Normally, col ignhores any unknown escape sequences found in its input; the - p option may be used to
cause col to output these sequences as regular characters, subject to overprinting from reverse line motions.
The use of this option is highly discouraged unless you are fully aware of the textual position of the escape
sequences.

Unless the - x option is given, col will convert white space to tabs on output wherever possible to shorten
printing time.
NOTES

The input format accepted by col matches the output produced by nr of f (1) with either the - T37 or - Tl p
options. Use - T37 (and the - f option of col) if the ultimate disposition of the output of col will be a
device that can interpret half-line motions; otherwise, use - Tl p.

EXIT STATUS

The following exit values are returned:
0 successful completion.

>0 An error occurred.

BUGS

The following are known col bugs:
* Thecol utility cannot back up more than 128 lines.
¢ Up to 800 characters, including backspaces, are allowed on a line.

¢ Local vertical motions that would result in backing up over the first line of the document are ignored. As
a result, the first line must not have any superscripts.

SEE ALSO
nrof f (1), t bl (2)

132 SR-2011 10.0

COMB (1) COMB (1)

NAME
conb — Combines SCCS deltas

SYNOPSIS
conb [-clist] [-0] [- psid] [-s] files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The comb command generates a shell procedure (see sh(1)) which, when run, reconstructs the given Source
Code Control System (SCCS) files.

The reconstructed files should be smaller than the original files. The options may be specified in any order,
but all options apply to all named SCCS files. If a directory is named, conmb behaves as though each file in
the directory were specified as a named file, except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If adash (-) is given as a name, the
standard input is read; each line of the input is taken to be the name of an SCCS file to be processed;
non-SCCS files and unreadable files are silently ignored. If no options are specified, cormb will preserve
only leaf deltas and the minimal number of ancestors needed to preserve the tree.

The generated shell procedure is written on the standard output.

The options are as follows. Each is explained as though only one named file is to be processed, but the
effects of any option apply independently to each named file.

- clist Prints a list (see get (1) for the syntax of alist) of deltas to be preserved. All other deltas
are discarded.
-0 Causes the reconstructed file to be accessed at the release of the delta to be created for each

get - e generated. Otherwise, the reconstructed file would be accessed at the most recent
ancestor. Use of the - 0 option may decrease the size of the reconstructed SCCS file. It
may also alter the shape of the delta tree of the original file.

- psid Provides the SCCS identification string (sid) of the oldest delta to be preserved. All older
deltas are discarded in the reconstructed file.

-S Causes conb to generate a shell procedure which, when run, produces a report. This report
gives for each file: the file name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by the following:

100* (original—combined)/original

Y ou should use this option to determine exactly how much space is saved by the combining
process before any SCCS files are actually combined.

filelfile2 Filesto becompared.

SR-2011 10.0 133

COMB (1) COMB (1)

MESSAGES
Error messages from SCCS are printed. Use hel p(1) for explanations.

BUGS

The comb command may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is
possible for the reconstructed file to actually be larger than the original.

The comb command may produce shell scripts that contain adimi n commands which have an argument to
the - f i option containing white space. This will cause the shell script to fail. To alow the shell script to
work, place single quotes around the argument to the - f i option.

FILES

s. COVB Name of the reconstructed SCCS file
conb????? Temporary file
SEE ALSO

adm n(1), cdc(1), del t a(2), get (1), hel p(2), pr s(1) r ndel (1), sact (1), sccsdi f f (1), sh(2),
unget (1), val (1), vc(1), what (1)

sccsfil e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

134 SR-2011 10.0

COMM(1) COMM(1)

NAME

conm-— Selects or rejects lines common to two sorted files

SYNOPSIS
comm[-1] [- 2] [- 3] filel file2

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The commutility reads filel and file2, which should be ordered in ASCII collating sequence (see sort (1)),
and produces a three-column output: lines only in filel; lines only in file2; and lines in both files. File name
- means that standard input is used.

The commuutility accepts the following options:

-1

-2

-3 Suppresses printing of the corresponding column. Thus, conm - 12 prints only the lines common to
the two files, comm - 23 prints only lines in the first file but not in the second, and comm - 123
prints nothing.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to manage any sorted files. In a privileged administrator shell environment,
shell-redirected 1/O is not subject to file protections.

sysadm Allowed to manage any sorted files subject to security label restrictions.
Shell-redirected 1/O is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to manage any sorted files.
Shell-redirected 1/O on behalf of the super user is not subject to file protections.

SR-2011 10.0 135

COMM(1) COMM(1)

EXIT STATUS

The commuutility exits with one of the following values:
0 All input files were successfully output as specified.

>0 An error occurred.

SEE ALSO
crp(l), di f f (1), sort (1), uni q(1)

136 SR-2011 10.0

COMMAND(1) COMMAND(1)

NAME

conmand — Executes a simple command

SYNOPSIS

conmand [- p] command name [argument...]

conmand [-v] command _name

conmand [- V] command _name
IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The command utility causes the shell to treat the arguments as a ssmple command, suppressing the shell
function lookup (see sh(2)).

In every other respect, if command_name is not the name of a shell function, the effect of command is the
same as omitting command.

The command utility accepts the following options and operands:

-p Performs the command search using a default value for PATH that will find all of the
standard utilities.

-V Writes a string to standard output that indicates the path name or command that the shell
will use in the current shell execution environment, to invoke command_name.

-V Writes a string to standard output that indicates how the shell will interpret the name given
in the command_name operand in the current shell execution environment.

argument A string treated as an argument to command_name.

command_name The name of a utility or a special built-in utility.

NOTES

The command utility described in this man page is a built-in utility to the standard shell (sh(1)). An
executable version of this utility is available in / usr/ bi n/ comand.

SR-2011 10.0 137

COMMAND(1) COMMAND(1)

EXIT STATUS
The command utility exits with one of the following values:
0 Successful completion.
>0 The command_name cannot be found or an error occurred.
126 The utility specified by command_name was found but could not be invoked.

127 An error occurred in the command utility or the utility specified by command_name could not be
found.

Otherwise, the exit status of conmand is that of the simple command specified by the arguments to
conmand.

SEE ALSO
sh(1)

138 SR-2011 10.0

COMPRESS(1) COMPRESS(1)

NAME

conpr ess — Compresses expanded files

SYNOPSIS
conpress [-c] [-f] [-Vv] [- b bitg [filename]
conpress [-f] [-Vv] [-b bitg] [filename ...]

IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T

DESCRIPTION

The conpr ess utility reduces the size of the named files using adaptive Lempel-Ziv coding. A . Z
extension is added to the compressed file name. The ownership modes, access time, and modification time
stay the same. If no files are specified, the standard input is compressed to the standard output.

The amount of compression obtained depends on the size of the input, the number of bits per code, and the
distribution of common substrings. Usually, text such as source code or English is reduced by 50 to 60%.
Compression is generally much better than that achieved by Huffman coding (as used in pack(1)), and takes
less time to compute. The bits parameter specified during compression is encoded within the compressed
file, along with a magic number to ensure that neither decompression of random data nor recompression of
compressed data is subsequently allowed.

Compressed files can be restored to their original form using the unconpr ess utility.
The conpr ess utility accepts the following options:

- b bits Sets the upper limit (in bits) for common substring codes. bits must be between 9 and 16 (16 is
the default). Lowering the number of bits will result in larger, less-compressed files. For a
portable application, bits must be between 9 and 14, inclusive.

-C Writes to the standard output; no files are changed. The nondestructive behavior of zcat is
identical to that of specifying unconpress -c.

-f Forces compression, even if the file does not actually shrink, or the corresponding . Z file
already exists. When running in the background (under / bi n/ sh), and - f is not specified,
prompt to verify whether an existing . Z file should be overwritten.

-V Verbose. Displays the percentage reduction for each file compressed.

filename File to be compressed.

SR-2011 10.0 139

COMPRESS(1) COMPRESS(1)

NOTES

Although compressed files are compatible between machines with large memory, - b 12 should be used for
file transfer to architectures with a small process data space (64 Kbytes or less).

The conpr ess utility should be more flexible about the existence of the . Z suffix.

EXIT STATUS

The following exit values are returned:
0 Successful completion.
1 An error occurred.

2 One or more files were not compressed because they would have increased in size (and the - f options
was not specified).

>2 An error occurred.
MESSAGES

Usage: conpress [-fvc] [-b maxbit s] [filename..]
Invalid options were specified on the command line.

M ssing maxbits
Maxbits must follow - b.

filename: not in conpressed format
The file specified to unconpr ess has not been compressed.

filename: compressed with xxbits, can only handl e yybits
filename was compressed by a program that could deal with more bits than the compress code on
this machine. Recompress the file with smaller bits.

filename: al ready has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try again.

filename: al ready exists; do you wish to overwite (y or n)?
Respond y if you want the output file to be replaced; n if not.

Conpr essi on: xx.xx%
Percentage of the input saved by compression. (Relevant only for - v.)

-- not a regular file: unchanged
When the input file is not a regular file, (such as a directory), it is left unaltered.

-- has xxother 1inks: unchanged
The input file has links; it is left unchanged. See | n(1) for more information.

-- file unchanged
No savings are achieved by compression. The input remains uncompressed.

140 SR-2011 10.0

COMPRESS(1) COMPRESS(1)

SEE ALSO
pack(1), sh(1), unconpr ess(l), zcat (1)

““*A Technique for High Performance Data Compression,”” Terry A. Welch, IEEE Computer, vol. 17, no. 6
(June 1984), pp. 8-19.

SR-2011 10.0 141

CP(1)

NAME

CP(1)

cp — Copies files

SYNOPSIS

cp [-f1 [-i1[-p] [-r] [- R filel [file2 ..] target

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

142

The cp utility copies the contents of a file to another path name, or copies the contents of one or more files
into path names in another directory.

The cp utility accepts the following options:
-f If an existing file cannot be overwritten, unlinks the existing file and re-creates it.

- Prompts for confirmation whenever the copy overwrites an existing target. To proceed with the
copy, specify y. Any other answer prevents cp from overwriting target.

-p Duplicates not only the contents of file, but also preserves the modification time and permission
modes. The access control list (ACL) is preserved also.

-r,-R |If fileis adirectory, cp will copy the directory and all its files, including any subdirectories and
their files; target must be a directory.

files A path name of afile (any type) to be checked. If no file operands are specified, the standard input
is used.

target A path name of atarget file where the files will be copied.

The cp utility copies file to target. file and target may not have the same name. (Care must be taken when
using shell metacharacters.) If target is not a directory, only one file may be specified before it; if target is
a directory, more than one file may be specified. If target does not exist, cp creates a file named target. If
target exists and is not a directory, its contents are overwritten. If target is a directory, the file(s) are copied
to that directory.

If file is a directory, target must be a directory in the same physical file system. target and file do not have
to share the same parent directory.

If fileis afile and target is a link to another file with links, the other links remain and target becomes a new
file.

SR-2011 10.0

CP(1) CP(1)

If target does not exist, cp creates a new file named target, which has the same mode as file except that the
sticky bit is not set unless the user is a privileged user; the owner and group of target are those of the user.

If target is afile, its contents are overwritten, but the mode, owner, and group associated with it are not
changed. The last modification time of target and the last access time of file are set to the time the copy
was made.

If target is a directory, a new file with the same mode is created in the target directory for each file named;
the file's user ID is set to the effective user ID of the process, and the file's group ID is set to the group ID
of the directory in which the file is copied.

NOTES

A - - permits users to mark the end of any command line options explicitly, thus allowing cp to recognize
file name arguments that begin with a-. If a-- and a- both appear on the same command line, the
second is interpreted as a file name.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to copy any file. The values of set-user-ID and set-group-ID mode bits are
preserved.

sysadm Allowed to copy any file, subject to security label restrictions on the source and

destination file paths. The values of set-user-ID and set-group-ID mode bits are
preserved. Shell-redirected 1/0 is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to copy any file. The values of
set-user-1D and set-group-1D mode bits are preserved.

EXIT STATUS

The cp utility exits with one of the following values:
0 No error occurred.

>0 An error occurred.

WARNINGS

Beware of a recursive copy that copies the contents of a directory to one of its subdirectories. For example:

$ cp -r ~/src ~/src/bkup

will keep copying files until it fills the entire file system.

SR-2011 10.0 143

CP(1) CP(1)

EXAMPLES

Example 1: Use the following command line to copy file copyone to copyt wo, which already exists:

$ cp -i copyone copytwo
overwite copytwo? y

$

Example 2: Use the following command line to copy al files in your working directory that begin with the
letter b to subdirectory copi esher e:

$ cp b* copieshere
Example 3: Use the following command line to copy file fi | e. ¢ to subdirectory newdi r. The copy will
have the name copy. c.

$ cp file.c newdir/copy.c

Example 4: Use the following command line to make a copy of the directory di r 1, naming it di r new:

$ cp -r dirl dirnew

SEE ALSO
cat (1), chnod(1), cpi o(2), | n(2), m/(1), rcp(2), r M)

chnod(2), cr eat (2), open(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

General UNICOS System Administration, Cray Research publication SG—2301

144 SR-2011 10.0

CPIO(1) CPIO(1)

NAME

cpi o — Copies file archives in and out
SYNOPSIS

cpio -o [-a] [-c] [-e] [-v] [-x] [-z [-x] [-M [-P]] [- B]

cpio-i [-6] [-c] [-d] [-h hdr-type] [-f] [-m] [-r] [-t] [-u] [-v] [-x] [-z [-x] [-M [-P]]
[- B] [- E filename] [patterns]

cpio-p[-a] [-d] [-e] [-1] [-m [-u] [-v] [-x] [-Z [-x] [-M [- P]] directory
IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The cpi o utility, invoked with the - o option, reads the standard input to obtain alist of path names and
copies those files onto the standard output together with path name and status information.

Output is padded to a 512-byte boundary. Using the - z option outputs security information, access control
lists (ACLS), and privilege assignment lists (PALS) corresponding to those files.

The - i option extracts files from the standard input, which is assumed to be the product of a previous

cpi 0 -o0. Only files with names that match patterns are selected. Patterns are given in the
name-generating notation of sh(1). In patterns, metacharacters ?, *, and [...] match the slash (/)
character. Use double quotation marks ("), single quotation marks(’), or backslashes (\) to protect the
metacharacters from being expanded by the shell. Multiple patterns may be specified and if no patterns are
specified, the default for patternsis * (that is, select all files). The extracted files are conditionally created
and copied into the current directory tree based upon the options described in the following. The
permissions of the files will be those of the previous cpi o - 0. The owner and group of the files will be
that of the current user, unless the user is appropriately authorized to make cpi o retain the owner and group
of the files of the previous cpi 0 - 0; see the NOTES section. When reading an input created with the - z
option, specifying the - z option on input preserves security information, ACLs, and PALSs.

The - p option reads the standard input to obtain a list of path names of files that are conditionally created
and copied into the destination directory tree directory based upon the options described in the following.
Using the - z option preserves security information, ACLs, and PALSs to copied files.

Only files with security levels and compartments that are dominated by the user’s active security levels and
compartments may be copied. Appropriately authorized users can copy any file; see the NOTES section.

SR-2011 10.0 145

CPIO(1) CPIO(1)

146

Only authorized users can copy special files; see the NOTES section.

On UNICOS systems using multilevel security labels, any user can archive data to a single-level medium.
Only appropriately authorized users can archive data to a multilevel medium. Data restored from any
medium is assigned the original ACL, no PAL, and the mandatory access control security attributes of the
invoking user. An appropriately authorized user can restore the original file attributes and PAL by using the
- Moption. Only appropriately authorized user can restore data from a multilevel medium; see the NOTES
section.

The available options are as follows. A dash (-) may precede the following options; dashes may be omitted
if the options are concatenated without spaces.

-6 Processes a UNIX System Sixth Edition format file. Useful only with the -1 option (copy in).
-a Resets access times of input files after they have been copied.

-B Blocks input/output at 5120 bytes to the record (does not apply to the - p option; useful only with
data that will be stored on tape).

-C Writes header information in ASCII character form for portability. This option is necessary to
transfer a cpi o archive between a Cray Research mainframe and another machine. Only an
appropriately authorized user can copy restart files by using this option; see the NOTES section. This
option is not valid when using the (- 0z) option.

-d Creates directories as needed.

-e Verifies al parameters of the st at structure (st at (2)) are within certain limits. If any value is

invalid, the file is not copied into the archive. This option is not guaranteed to exist in future
UNICOS releases. By default, afile is copied regardless of its st at structure contents.

- E filename
Specifies an input file that contains a list of file names to be extracted from the archive (one file name
per line).

-f Copies in all files except those in patterns.

- h hdr-type
By default, cpi o attempts to automatically interpret the cpi 0 non-ASCII header that precedes each
file in the cpi o archive (see cpi 0(5)). The - h option alows control over the interpretation of this
non-ASCII header. If hdr-typeis o, cpi o interprets the headers as having been created in a pre-6.0
UNICOS release. If hdr-type is n, cpi o interprets the headers as having been created in a UNICOS
6.0 or later release. If hdr-type is incorrectly chosen, a phase error will most likely occur and
cpi o will not read the archive. Use this option if cpi o does not automatically interpret the
non-ASCII header correctly. Use only with the -i option.

-1 Whenever possible, link files rather than copying them. Use only with the - p option.

-m Retains previous file modification time. This is ineffective on directories that are being copied.
-M Preserves all security attributes of al files. Useful only with the - z option.

-P Excludes copy or preservation of PALs. Useful only with the - z option.

SR-2011 10.0

CPIO(1) CPIO(1)

-r Interactively renames files. The user will be prompted with the name of the file. If the user types a
null ling, the file is skipped. If the line consists of a single period, the file is processed with no
modification to its name. Otherwise, it’s name will be replaced with the contents of the line. Use
only with the - i option.

-t Prints table of contents of the input. No files are created.
-u Copies unconditionally. (Usually, an older file does not replace a newer file with the same name).

-V (Verbose) Causes a list of file names to be printed. When used with the - t option, the table of
contents looks like the output of anl's -1 command (see |l s(1)).

- X Excludes copy or preservation of ACLs. Useful only with the - z option.

-Z Copies security information and ACLSs.

NOTES

The - x, -M - P and - z options are valid only when used with the - z option.
Files generated with the - z option can be processed only using the - z option.

Appropriately authorized users are users that are assigned the following privilege text:

Privilege Text Action Allowed

LKSU Retains owner/group of a file and copies special files or restart files
UPI P Restores security attributes from unnamed pipe

ALL Restores security attributes from any medium

ALLLKSU Combined behavior of ALL and LKSU privilege texts

UPI PLKSU Combined behavior of UPI P and LKSU privilege texts

Note that the LKSU privilege text is the only one used in the PAL supplied by default. The UPI P, ALL,
ALLLKSU, and UPI PLKSU privilege texts are supported if your site wants to use site-defined PALSs.

If the PRI V_SU configuration option is enabled, root is an appropriately authorized user.

BUGS

Path names are restricted to 256 characters. If there are too many unique linked files, the program runs out
of memory to keep track of them and, thereafter, linking information is lost.

EXAMPLES

Example 1: This example copies the contents of a directory into an archive.

Is | cpio -0 >archivel/file

SR-2011 10.0 147

CPIO(1) CPIO(1)

Example 2: This example duplicates a directory hierarchy.

cd olddir
find . -depth -print | cpio -pdl newdir

Example 3: The following example uses the online tape subsystem to write and read cpi o tapes:

rsv
tprmt -1 nl -p /tnp/tapedev -v vsn -b 4096
find . -print | cpio -cov > /tnp/tapedev

cd newdirectory
dd if=/tnp/tapedev bs=4096 | cpio -civd
ris -a

SEE ALSO

148

ar (1), cp(D), fi nd(2), | s(1), pax(d), pri vtext (1), rl s(1), rsv(d), spset (1), tar (1), t prmt (1)

chown(2), get pal (2), get ppri v(2), set devs(2), set pal (2), set ppri v(2) in the UNICOS System
Calls Reference Manual, Cray Research publication SR—2012

acl (5), cpi o(5) in the UNICOS File Formats and Secial Files Reference Manual, Cray Research
publication SR—2014

Tape Subsystem User’s Guide, Cray Research publication SG—2051
UNICOS Resource Administration, Cray Research publication SG—2302

SR-2011 10.0

CRONTAB (1) CRONTAB (1)

NAME

cr ont ab — Creates or modifies the user’s cr ont ab file

SYNOPSIS

cront ab [file]
crontab -e
crontab -I
crontab -r

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

The cr ont ab utility creates, replaces, or edits a user’s cr ont ab entry, which is alist of commands and
the times at which they are to be executed. To input the new cr ont ab entry, specify file on the command
line. If you omit file, standard input is used. Use the - e to invoke an editor for the cr ont ab file.

The cr ont ab utility accepts the following options and operands:

-e Edits a copy of the invoking user’s cr ont ab entry, or creates an empty entry to edit if the
cront ab entry does not exist. When editing is complete, the entry is installed as the user’s
cront ab entry.

-1 Lists the invoking user's cr ont ab entry.
-r Removes a user’s cr ont ab entry from the cr ont ab directory.
file Name of the file that contains the cr ont ab entry.

Users who are permitted to use cr ont ab are those whose names appear in the
fusr/lib/cron/cron.all owfile. If that file does not exist, the/ usr/1i b/ cron/cron. deny file
is checked to determine whether a user should be denied access to cr ont ab. If neither file exists, only
root is allowed to submit ajob. The null file cr on. al | ow would mean that no users are allowed to use
cron; null file cr on. deny would mean that no users are denied the use of cron. The al | ow deny
files consist of one user name per line.

A cront ab file consists of lines of six fields each. The fields are separated by <space>s or <t ab>s.
The first five are integer patterns that specify the following:

SR-2011 10.0 149

CRONTAB (1) CRONTAB (1)

NOTES

150

minute (0- 59)

hour (0- 23)

day of the month (1- 31)

month of the year (1- 12)

day of the week (0- 6 with 0=Sunday)

Each of these patterns may be either an asterisk (meaning all legal values) or a list of elements separated by
commas. An element is either one number or two numbers separated by a minus sign (meaning an inclusive
range). The specification of days may be made by two fields (day of the month and day of the week). If
you specify both as a list of elements, both are followed. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as well as on every Monday. To specify days by only
one field, the other field should be set to * (for example, 0 0 * * 1 would run a command only on
Mondays).

The sixth field of alinein acr ont ab file is a string that is executed by the shell at the specified times. A
percent character (%99 in this field (unless escaped by \) is trandlated as a <new i ne> character. The shell
executes only the first line (up to a %or end-of-line character) of the command field. The other lines are
made available to the command as standard inpuit.

The shell is invoked from your $HOVE directory with an ar g0 of sh. Users who want to have their

. profil e file executed must so state that explicitly in the cr ont ab file. cr on(8) supplies a default
environment for every shell, defining HOVE, LOGNANME, SHELL (=/ bi n/ sh), and

PATH(=:/ bi n: /usr/ bin:/usr/ucb). You will probably want to set the TZ environment variable.

Blank lines and lines that begin with # are ignored.

At the time of submission, cr ont ab files are run at the user’s current security label.

Redirect the standard output and standard error files of commands; otherwise, al generated output and errors
will be mailed to you.

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the action shown:

Privilege Text Action
showal | Allowed to manage al jabs.

If this utility is installed with a PAL, a user with one of the following active categories is allowed to
perform the action shown:

Active Category Action
system secadm sysadm sysops Allowed to manage all jobs.
If the PRI V_SU configuration option is enabled, the super user is allowed to manage al jobs.

SR-2011 10.0

CRONTAB (1) CRONTAB (1)

EXIT STATUS
The cr ont ab utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

EXAMPLES

Example 1: The following contents appear in afilein the/ usr/1i b/ cron/ cront abs directory. The
/u/ t om bi n/ hskp file is executed by the shell at 3:00 A.M. every day of the month, every month of the
year, Tuesday through Saturday:

0O 3 * * 2-6 /u/tom bin/hskp
Example 2: The following contents appear in afilein the/ usr/1i b/ cron/ cront abs directory. The
file $HOVE/ di skwat ch is executed by the shell every half-hour, Monday through Friday:

0,30 * * * 1-5 $HOVWE/ di skwatch

FILES
fusr/lib/cron Main cr on directory
{fusr/lib/cron/cron.allow List of allowed users
[usr/ spool /cron/cront abs Spool area
fusr/1lib/cron/cron.deny List of denied users
fusr/lib/cron/log Accounting information
SEE ALSO
sh(l)

gueuedef s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

cron(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2011 10.0 151

CRYPT(1) CRYPT(1)

NAME

crypt — Encodes or decodes afile

SYNOPSIS

crypt [-Q [password]
crypt [-k] [-Q

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

152

The crypt utility reads from standard input and writes on standard output. If the password argument is not
specified, cr ypt demands a key from the terminal and turns off printing while the key is being typed. If
the - k option is used, cr ypt uses the key assigned to the environment variable Cr YpTKEy.

The cr ypt utility accepts the following options:
-0 Decrypts files previously encrypted on a UNICOS system before release 5.0.
password Specifies a key that selects a particular transformation.
-k Causes cr ypt to use the key assigned to the Cr YpTkEy environment variable.
The crypt utility encrypts and decrypts with the same key:
crypt key <cl ear >cypher
crypt key <cypher | pr
Files encrypted by cr ypt are compatible with those treated by the ed(1), edi t (1), ex(1), and vi (1)
editors in encryption mode.

The security of encrypted files depends on three factors: 1) the fundamental method must be hard to solve;
2) direct search of the key space must be infeasible; 3) ‘‘sneak paths’ by which keys or clear text can
become visible must be minimized.

The crypt utility implements a one-rotor machine designed along the lines of the German Enigma, but with
a 256-element rotor. Methods of attack on such machines are known, but not widely; moreover, the amount
of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to be expensive,
that is, to take a substantial fraction of a second to compute. However, if keys are restricted to three
lowercase letters, encrypted files can be read in only a substantial fraction of 5 minutes of machine time.

If the key is an argument to the cr ypt utility, it is potentially visible to users executing ps(1) or a
derivative. To minimize this possibility, cr ypt takes care to destroy any record of the key immediately
upon entry. The choices of keys and key security are the most vulnerable aspect of cr ypt .

SR-2011 10.0

CRYPT(1) CRYPT(1)

NOTES

The inclusion of encryption code requires a special license for sites outside the United States. If these
encryption functions are not available on your system, check with your system support staff.

BUGS

If output is piped to nr of f and the encryption key is not specified on the command line, cr ypt can leave
terminal modes in a strange state (see st t y(2)).

EXAMPLES

Example 1: The following example encrypts file secr et s into file secur e. A key must be provided
(note that printing is turned off while the key is being entered). User input is shown in bold type:

$ crypt < secrets > secure
Ent er key:

Example 2: To print the file to st dout , enter the following by using the same key as you did to encrypt
the previous file:

$ crypt < secure
Ent er key:
This is the text of the file secret s.

FILES
/dev/tty Controlling input terminal for typed key

SEE ALSO
ed(1), edi t (2), ex(1), makekey(1), ps(1), stty(1), vi (1)

SR-2011 10.0 153

CSH(1) CSH(1)

NAME
csh — Invokes the C shell

SYNOPSIS

csh [-b] [-c] [-e] [-f] [-i] [-n] [-s] [-t] [-v] [-x] [-S] [-VM] [- X] [args]
IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The C shell is a command interpreter that has a syntax similar to that of the C language. The csh utility
incorporates a history mechanism (see the History Substitution subsection) and job control facilities.

A session with csh begins with the execution of commands from file . cshr ¢ in your home directory.
However, if thisis alogin shell, csh executes commands from file / et ¢/ cshr ¢ firgt, then . cshr c and
. 1 ogi n in your home directory.

The shell begins reading commands from the terminal after the %prompt; it then repeatedly performs the
following actions:

1. Reads aline of command input

2. Breaks the line of command input into words (described under Lexical Structure)

3. Puts the sequence of words in the command history list (described under History Substitution)
4. Parses the command history list

5. Executes each command on the current line

When a login shell terminates, csh executes commands from the . | ogout file in the user’s home
directory.

If argument O to the shell is adash (-), thisis alogin shell.
The csh utility accepts the following options:

-b Forces a break from option processing. Subsequent command-line arguments are not interpreted as C
shell options. This allows the passing of options to a script without confusion. The shell does not run
a set-user-1D or set-group-1D script unless this option is present.

-c Reads a single command or file of commands from args. Any remaining arguments are placed in the
argv variable. If no argument is specified, this option will have no effect.

-e Exits when an invoked command terminates abnormally or yields a nonzero exit status.

-f Suppresses startup processing, which consists of searching for and executing the . cshr ¢ file in your
home directory. This makes the transition into the shell faster.

154 SR-2011 10.0

CSH(1) CSH(1)

-i Specifies an interactive shell and prompts for its top-level input, even if it appears to not be a terminal.
Shells are interactive without this option when their inputs and outputs are terminals.

-n Parses but does not execute commands. This helps check for accuracy in the syntax of shell scripts.
-s Takes command input from the standard input.

-t Reads and executes one line of input. Use a backdlash (\) to escape the new-line character at the end
of this line and continue to another line.

-v Setsthe ver bose variable, so that command input is echoed after history substitution.
-X Setsthe echo variable, so that commands are echoed immediately before execution.

-S Setstheti mest anp variable. Prefixes commands with a date and time stamp in the form day month
date hh:mm:ss.

-V Setsthe ver bose variable even before . cshr ¢ is executed.
- X Setsthe echo variable even before .cshr ¢ is executed.

After argument processing, if arguments (args) remain but you did not specify the-c, -i,-s, or -t option,
the first argument is taken as the name of a file of commands to be executed. The shell opens this file and
saves its name for possible resubstitution by $0. Remaining arguments initialize the argv variable.

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following exceptions. The &, |, ;, <, >,
(, and) characters form separate words. If the &, | , <, or > characters are doubled to &&, | | , <<, or >>,
respectively, the pairs form single words. Y ou can use these parser metacharacters as part of other words or
override their special meaning by preceding them with \ . (A new line preceded by \ is equivalent to a
blank.)

In addition, strings enclosed in matched pairs of quotation marks’ or "), form parts of a word;
metacharacters in these strings, including blanks and tabs, do not form separate words. Quotation mark
semantics are described in the Quotations with and " subsection. Within pairs of * or " characters, a
newline preceded by a\ produces a true newline character.

When the shell’s input is not a terminal, the # character introduces a comment, which continues to the end
of the input line. To override this special meaning, precede the # with a\ and use *, *, and " in quotation
marks.

Commands
A simple command is a sequence of words, the first of which specifies the command you want to execute.
A simple command or a sequence of simple commands separated by | characters forms a pipeline. The
output of each command in a pipeline is connected to the input of the next. You can separate sequences of
pipelines with a semicolon (;). The piped commands are then executed sequentially. You can execute a
seguence of pipelines without waiting for the sequence to terminate by following it with an ampersand (&).

SR-2011 10.0 155

CSH(1)

156

CSH(1)

You can put any of the preceding characters in parentheses to form a ssimple command (which can be a
component of a pipeling). You can also separate pipelines with | | or &&, indicating, as in the C language,
that the second is to be executed only if the first fails or succeeds, respectively. (See the Expressions

subsection.)

Built-in commands
The csh utility accepts the following list of built-in commands (execution of nonbuilt-in commands is
described later). When a built-in command occurs as any component of a pipeline except the last, it is
executed in a subshell.

alias
al i as name

al i as name wordlist

bg %ob...

br eak

br eaksw
case labdl:

cd

cd name
chdir

chdi r name

conti nue

defaul t:

dirs

dmode

The first form prints all aliases. The second form prints the alias for name. The fina
form assigns the specified wordlist as the alias of name; wordlist is command and file
name substituted. name cannot be al i as or unal i as. The C shell restricts the
number of nested alias substitutions on a line to 20.

Runs the current or specified jobs in the background.

Causes execution to resume after the end of the nearest enclosing f or each or whi | e.
The remaining commands on the current line are executed. You can thus produce
multilevel breaks by writing them all on one line.

Causes a break from swi t ch, resuming after endsw.

Labels aswi t ch statement, as discussed under the def aul t command.

Changes the shell’s working directory to directory name. If no argument is specified, it
changes to the home directory of the user. If name is not found as a subdirectory of the
current directory (and does not begin with /, ./, or . . /), each component of the variable
cdpat h is checked to see whether it has a subdirectory name. Finally, if all else fails but
name is a shell variable with a value that begins with / , then this is tried to see whether
it is a directory.

Continues the execution of the nearest enclosing whi | e or f or each. The rest of the
commands on the current line are executed.

Labels the default case in aswi t ch statement. The default should come after all case
labels.

Prints the directory stack. The top of the stack is at the left; the first directory in the stack
is the current directory.

SR-2011 10.0

CSH(1)

dmmode n

echo wordlist

CSH(1)

Sets the data migration recall mode to n. See drmode(1) for usage and description.

echo -n wordlist

el se
end
endi f
endsw

eval ,arg...

exec command

exit
exit (expr)

fg
fg %ob...

Writes the specified words to the shell’s standard output, separated by spaces and
terminated with a new-line character unless the - n option is specified.

See the description of the f or each, i f, swi t ch, and whi | e statements.

Asin sh(1), the arguments are read as input to the shell and the resulting commands are
executed in the context of the current shell. This is usually used to execute commands
generated as the result of command or variable substitution, because parsing occurs before
these substitutions.

Executes the specified command in place of the current shell.

Exits the shell with either the value of the status variable (first form) or the value of the
specified expr (second form).

Brings the current or specified jobs into the foreground, continuing them if they were
stopped.

f or each name (wordlist)

end

gl ob wordlist

got o word

SR-2011 10.0

Successively sets the variable name to each member of wordlist and executes the sequence
of commands between this command and the matching end. (Both f or each and end
must appear alone on separate lines.)

The cont i nue statement is used to continue the loop prematurely and br eak to
terminate it prematurely. When this command is read from the terminal, the loop is read
once, prompting with ? before any statements in the loop are executed. If you make a
mistake typing in a loop at the terminal, you can delete it.

Similar to echo, but words are delimited by null characters in the output. gl ob is useful
for programs that use the shell to file-name-expand a list of words.

The specified word is file-name-expanded and command-expanded to yield a string of the
form | abel . The shell rewinds its input as much as possible and searches for a line of
the form | abel : possibly preceded by blanks or tabs. Execution continues after the
specified line.

157

CSH(1) CSH(1)

hi story

hi storyn

history -r n

hi story - h n Displays the history event list. If nis specified, only the n most recent events are printed.
The - r option reverses the order of printout so that the most recent is first instead of the
oldest first. The - h option causes the history list to be printed without leading humbers.
This is used to produce files suitable to the sour ce command, using the - h option to
sour ce.

i f (expr) command
If the specified expression evaluates true, the single command with arguments is executed.
Variable substitution (see the Variable Substitution subsection) on command happens
simultaneousdly with the rest of thei f command. command must be a simple command
(not a pipeline), a command list, or a parenthesized command list. Pipelines and
command lists are executed outside the i f command. 1/O redirection occurs when
command is not executed, even if expr is false (this is a bug).

i f (expr) then

el se if (expr2) t hen

el se

endi f If the specified expr is true, the commands up to the first el se are executed; if expr2 is
true, the commands up to the second el se are executed, and so on. Any number of
el se-if pairs are possible; only one endi f isneeded. The el se part is likewise
optional. (The words el se and endi f must appear at the beginning of input lines; the
i f must appear alone on its input line or after an el se; i f,then, el se, and endi f
must be separate words.)

j obs

j obs -1 Lists the active jobs. The -1 option lists the process IDs in addition to the normal
information.

Kill %job

kill -sig%oab ...

kill id

kill -sigpid...

kill -1 Sends either the SI GTERM (terminate) signal or the specified signal to the specified jobs
or processes. Signals are given either by number or by names (as given in
[usr/incl ude/signal . h, stripped of the prefix SI G. The signal names are listed
by ki Il -1. Thereis no default; ki | | aone does not send a signal to the current job.

| ogout Terminates a login shell. Especialy useful if thei gnor eeof variableis set.

158 SR-2011 10.0

CSH(1) CSH(1)

ni ce
ni ce +number
ni ce command

ni ce +numbercomrand

The first form adds 4 to the current ni ce value for this shell. The second form adds
number to the current ni ce value. The fina two forms run command at priority 4 plus
the current ni ce value, and number plus the current ni ce value, respectively. Super
users may specify negative niceness by using ni ce - number The command is
always executed in a subshell, and the restrictions placed on commands in simple i f
statements apply. The system imposes a maximum ni ce vaue of 39 and a minimum
ni ce value of 0.

nohup When used in shell scripts, causes hangups to be ignored for the remainder of the script.
All processes detached with an ampersand (&) can effectively use nohup.
notify

notify %job...

Causes the shell to notify the user asynchronously when the status of the current or
specified job changes; usually notification is presented before a prompt. This is automatic
if the shell variable not i fy is set.

onintr

onintr -

oni ntr label Controls the action of the shell on interrupts. The first form restores the default action of
the shell on interrupts, which is to terminate shell scripts and return to the terminal
command input level. The second form, oni ntr -, causes al interrupts to be ignored.
The final form causes the shell to execute agot o | abel when it receives an interrupt or
when a child process terminates because it was interrupted.
If the shell is running detached and interrupts are being ignored, none of the forms of
oni nt r have meaning, and interrupts continue to be ignored by the shell and al invoked
commands.

popd

popd +n Pops the directory stack, returning to the new top directory. With the argument +n, popd
discards the nth entry in the stack. The elements of the directory stack are numbered from
0, starting at the top.

pushd

pushd name

pushd +n The first form, without arguments, exchanges the top two elements of the directory stack.

SR-2011 10.0

The second form changes to the new directory (as does cd) and pushes the old current
working directory onto the directory stack. The last form, pushd with a numeric
argument, rotates the nth argument of the directory stack so that it is the top element and
changes it. The members of the directory stack are numbered from the top, starting at 0.

159

CSH(1)

160

r ehash

CSH(1)

Recomputes the internal hash table of the contents of the directories in the path variable.
This is needed if new commands are added to directories in the path while you are logged
in. This should be necessary only if you add commands to one of your own directories, or
if a systems programmer changes the contents of one of the system directories.

repeat count command

set
set name

set name=word

Executes the specified command, which is subject to the same restrictions as command in
the one-linei f statement, count times. |/O redirections occur once, even if count is 0.

set name[index]=word
set name=(wordlist)

set env

The first form of the command shows the value of all shell variables. Variables that have
a value other than a single word print as a parenthesized word list. The second form sets
name to the null string. The third form sets name to the single word. The fourth form
sets the index component of name to word; this component must already exist. The final
form sets name equal to the list of words in wordlist. In al cases, the value is command
and file-name-expanded.

These arguments may be repeated to set multiple values in a single set command. Note
however, that variable expansion is done for all arguments before any setting occurs.

The name argument can be a maximum of 18 characters long and must begin with a letter.
(The underscore character is considered a letter.) When entering the command line,
include either one or more spaces on both sides of the = sign or no space on either side.

You can repeat these arguments to set multiple values in a single set command. Variable
expansion is done for all arguments before any setting occurs.

set env name value

set env name

setucat cat

set ucnp cmp

setul vl level

The first form lists all current environment variables. The second form sets the value of
environment variable name to value, a single string. The last form sets name to an empty
string. The most commonly used environment variables (USER, TERM and PATH) are
automatically imported to and exported from the csh variables user, t er m and pat h;
there is no need to use set env for these.

The name argument can be a maximum of 18 characters long and must begin with a letter.
The underscore character is considered a letter.

Sets the active category. See set ucat (1) for usage and description.

Sets active compartments. Available only to the lowest-level login shell. See
set ucnp(1) for usage and description.

Raises the security level. Available only to the lowest-level login shell. See set ul vl (1)
for usage and description.

SR-2011 10.0

CSH(1)

setusrv

shift
shi ft variable

sour ce name

CSH(1)

Sets the user’s security attributes. See set usr v(1) for usage and description.

Shifts the members of argv to the left, discarding argv. It is an error not to have argv set
or to have less than 1 word as the value. The second form performs the same function on
variable.

sour ce - h name

stop %job ...

suspend

swi t ch (string)
case labdl:

br eaksw

defaul t:

br eaksw
endsw

SR-2011 10.0

Reads commands from name. sour ce commands can be nested; however, if they are
nested too deeply, the shell may run out of file descriptors. An error in asour ce at any
level terminates all nested sour ce commands. Input during sour ce commands is not
placed on the history list; the - h option causes the commands to be placed in the history
list without being executed.

Stops the specified job that is executing in the background.

Causes the shell to stop abruptly, much as if it had been sent a stop signal with
<CONTROL- Z>. Thisis most often used to stop shells started by su(1).

Matches each case label successively against string, which is the first command and file
name expanded. File metacharacters*, ?, and[. . .] may be used in the case labels,
which are variable expanded. If none of the labels match before a default label is found,
execution would begin after the default label. Each case label and default label must
appear at the beginning of aline. The br eaksw command causes execution to continue
after the endsw; otherwise, control may fall through case labels and default labels as in
C. When no label matches and no def aul t exists, execution continues after endsw.

161

CSH(1)

162

CSH(1)

time

ti me command With no argument, the shell prints a summary of time used by this shell and its child
processes. When the argument is specified, the shell times the specified simple command
and prints a time summary as described under the t i me variable. If necessary, an extra
shell will be created to print the time statistic when the command compl etes.

umask

umask value The first form of the command displays the file creation mask. The second form sets the
file creation mask to the specified value. The mask is specified in octal values. Common
values for the mask are 002, which gives all access to the group and read and execute
access to others, or 022, which gives all access except write to users in the group and to
others.

unal i as pattern
Discards all aliases with names that match pattern. All aliases are removed by
unal i as *. The omission of pattern is acceptable.

unhash Disables the use of the internal hash table. The internal hash table speeds the locating of
executed programs.

unset pattern Removes al variables with names that match pattern. To remove all variables, use
unset *; this has noticeably negative side-effects. The omission of pattern is
acceptable.

unset env pattern
Removes from the environment all variables with a name that matches pattern. See aso
the preceding set env command and pri nt env(1B).

wai t Waits for all background jobs. If the shell is interactive, an interrupt can disrupt the wait.

whi ch name ... Searches for the file that would be executed had name been specified as a command.
name is expanded if it is aliased, and searched for along your path.

whi | e (expr)

end Although the specified expression evaluates nonzero, the commands between the whi | e
and the matching end are evaluated. Built-in commands br eak and cont i nue may be
used to terminate or continue the loop prematurely. (whi | e and end must appear alone
on their input lines.) If the input is a terminal, prompting occurs here the first time
through the loop as it does with the f or each statement.

% job] [& Brings the current or indicated job to the foreground. When & is included, the job
continues to run in the background.

SR-2011 10.0

CSH(1) CSH(1)

Q@

@name=expr

@name] index] =expr
The first form prints the values of all shell variables. The second form sets name to the
value of expr. If the expression contains <, >, &, or | , this part of the expression must be
put in parentheses. The third form assigns the value of expr to the index argument of
name. Both name and its index component must already exist.

The operators * =, +=, and so on, are available asin C. You must include either one or
more spaces on both sides of the = symbol or no space on either side. Spaces are
mandatory in separating components of expr that would otherwise be single words.

Special postfix ++ and - - operators increment and decrement name respectively (that is,
@i ++).
Nonbuilt-in command execution
When a command to be executed is found not to be a built-in command, the shell attempts to execute the
command by using execv (see exec(2)). Each word in the PATH variable names a directory from which
the shell will attempt to execute the command. When it is not given a- ¢ or -t option, the shell hashes the
names in these directories into an internal table so that it executes an exec(2) in a directory only if thereis
a possibility that the command resides there. This greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has been turned off (using unhash), or if the
shell was givena-c or -t option (and for each directory component of PATH that does not begin with /),
the shell will concatenate with the given command name to form a path name of a file, which it will then
attempt to execute.

Parenthesized commands are always executed in a subshell. For example, the following command prints the
hone directory; leaving you where you were (printing this after the home directory).

(cd ; pwd) ; pwd

The following command leaves you in the horre directory. Parenthesized commands are most often used to
prevent chdi r from affecting the current shell.

cd ; pwd

When a path name that has proper execution permissions is found, the shell forks a new process and passes
it, along with its arguments to the kernel (using the execv(2) system call). The kernel then attempts to
overlay the new process with the desired program. When the file is an executable binary file (see

a. out (5)), the kernel succeeds and begins executing the new process. If the file is a text file, and the first
line begins with #! , the next word is taken to be the path name of a shell (or command) to interpret that
script. Subsequent word(s) on the first line, usually only 1 if any, are used as a single option to that shell.
The kernel invokes (overlays) the original shell with the indicated shell, using the name of the script as an
argument, which is preceded by the previously mentioned option, if any, and followed by the original
user-supplied arguments, again if any. If the indicated shell is a set ui d executable file (see set ui d(2)),
the kernel will not overlay the original shell.

SR-2011 10.0 163

CSH(1) CSH(1)

If neither of the preceding conditions holds, the kernel cannot overlay the file (the execv call will fail); the
C shell then attempts to execute the file by spawning a new shell, as follows:

¢ |f the first character of the file is #, a C shell will be invoked.
¢ Otherwise, a standard shell (/ bi n/ sh) will be invoked.

When there is an alias for shell, the words of al i as are prepended to the argument list to form the shell
command. The first word of al i as should be the full path name of the shell (for example, $shel |). This
is a special, late-occurring case of al i as substitution, and it allows only words to be prepended to the
argument list without modification.

Jobs
The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the j obs
command, and assigns them small integer numbers. When a job is started asynchronoudly with &, the shell
prints the following line:

[1] 1234

This line indicates that the job that was started asynchronously, was job number 1, and it had one (top-level)
process, with a process ID of 1234.

The shell redirects standard input to / dev/ nul | for ajob being run in the background. This results in the
receipt of an end-of-file if such ajob tries to read from the terminal. Background jobs are usually allowed to
produce output.

There are several ways to refer to jobs in the shell. The character %introduces a job name. If you wish to
refer to job number 1, you can name it 9%d. Jobs can also be named by prefixes of the string entered in to
start them if these prefixes are unambiguous. It is also possible to enter % string, which specifies a job with
text that contains string if there is only one such job.

The shell maintains the current and previous jobs. In output pertaining to jobs, the current job is marked
with a + symbol and the previous job with a- symbol. The abbreviation %+ refers to the current job, and
% refers to the previous job. The characters %®oare a synonym for the current job.

Status Reporting
The shell learns immediately whenever a process changes state. It usually informs you, just before it prints a
prompt, whenever a job becomes blocked so that no further progress is possible. This is done so that it does
not otherwise disturb your work. If you set shell variable not i f y, the shell notifies you immediately of
changes of status in background jobs. There is also a shell command called not i f y, which marks a single
process so that its status changes are immediately reported. By default, not i f y marks the current process;
simply enter not i fy after starting a background job to mark it.

Substitutions
The following subsections describe the various transformations the shell performs on input. The shell
performs these in the following order:

* History substitution

¢ Alias substitution

164 SR-2011 10.0

CSH(1) CSH(1)

¢ Variable substitution
¢ Command substitution
¢ File-name substitution

History substitution

History substitutions place words from previous command input as portions of new commands, making it
easy to repeat commands, repeat arguments of a previous command in the current command, and correct
spelling mistakes in the previous command with little typing and a high degree of confidence. History
substitutions begin with ! and may begin anywhere in the input stream (as long as they do not nest.) The!
can be preceded by \ to override its special meaning; for convenience, ! is passed unchanged when it is
followed by a blank, tab, new-line character, =, or (. Notethat ! ~ isacsh operator and cannot be used for
history substitution. (History substitutions also occur when an input line begins with a carat (*), described
later.) Any input line that contains history substitution is echoed on the terminal before it is executed
because it could have been typed without history substitution.

Commands input from the terminal consisting of 1 or more words are saved in the history list. The history
substitutions reintroduce sequences of words from these saved commands into the input stream (the size of
which is controlled by the hi st ory variable). The previous command is always retained, regardless of its
value. Commands are humbered sequentially from 1.

Consider the following output from the hi st or y command:

9 wite mchael

10 ex wite.c

11 cat oldwite.c
12 diff *wite.c

The commands are shown with their event numbers. It is not usually necessary to use event numbers, but
you can make the current event number part of the prompt by placing ! in the prompt string.

With the current event 13, you can refer to previous events by event number, such as! 11; relatively, asin

I - 2 (referring to the same event); by a prefix of a command word, asin! d for event 12 or ! wri for event
9; or by a string contained in a word in the command asin ! ?m c¢?, which also refersto event 9. These
forms, without further modification, reintroduce the words of the specified events, each separated by a blank
character. Asaspecial case, ! ! refers to the previous command; thus ! ! alone is essentialy r edo.

To select words from an event, add a colon (:) and a designator for the desired words to the event
specification. The words of an input line are numbered starting at 0. The first (usually command) word is O,
the second (first argument) is 1, and so on. The basic word designators are as follows:

0 First (command) word

n nth argument

n First argument, that is, 1
$ Last argument

% Word matched by (immediately preceding) ?s? search

SR-2011 10.0 165

CSH(1) CSH(1)

X=y Range of words

-y Abbreviation 0- y

* Abbreviation ~- $, or nothing if only 1 word in event
X* Abbreviation x-$
X— Like x* but omits word $

The colon separating the event specification from the word designator can be omitted if the argument
selector begins with ~, $, *, -, or % After the optional word designator, you can place a sequence of
modifiers, each preceded by a colon. The following modifiers are defined:

h Removes trailing path name component, leaving the head
r Removes trailing .xxx component, leaving the root name
e Removes al but the extension .xxx

s/l Substitutes r for |
Removes al leading path name components, leaving the tail

Repeats the previous substitution

Prints the new command but does not execute it

t

&

g Applies the change globally, prefixing & (for example, g&)

p

q Places quotation marks around the substituted words, preventing further substitutions
X

Like q, but breaks into words at blanks, tabs, and new-line characters

Unless preceded by g, the modification is applied to only the first modifiable word. With substitutions, it is
an error for no word to be applicable.

The left-hand side of substitutions are strings rather than regular expressions in the sense of the editors. Any
character may be used as the delimiter in place of the/ symbol; a\ places quotation marks around the
delimiter in the | and r strings. The character & in the right-hand side is replaced by the text from the |eft.
A\ quotes & aso. A null I" uses the previous string, either from al" or from a contextual scan string s in
I ?7s?. The trailing delimiter in the substitution may be omitted if a new line follows immediately, as may
the trailing ? in a contextual scan.

A history reference may be given without an event specification (for example, ! $). In this casg, the
reference is to the previous command unless a previous history reference occurred on the same line, in which
case this form repeats the previous reference. For example,! ?f 00?”* |'$ gives the first and last arguments
from the command matching ?f 007?.

166 SR-2011 10.0

CSH(1)

CSH(1)

A specia abbreviation of a history reference occurs when the first nonblank character of an input line is a
caret (*). Thisisequivalentto!: s”, providing a convenient shorthand for substitutions in the text of the
previous line. For example, *l bl i b fixes the spelling of | i b in the previous command. Finaly, a
history substitution may be surrounded with braces {} if necessary to insulate it from the characters that
follow. For example, after s -1d ~paul ,ifyouuse!{l}atodols -1d ~paul a,!l a will look for
a command starting with | a.

Quotations with * and
You can put single and double quotation marks around strings (' and ") to override all or some of the
remaining substitutions. Strings enclosed in’ are prevented from any further interpretation. Strings
enclosed in " may be expanded as described in the following.

In both cases, the resulting text becomes (all or part of) a single word; only in one special case (see the
Command Substitution subsection) does a string enclosed in " yield parts of more than 1 word. Strings
enclosed in’ never yield parts of more than 1 word.

Alias substitution

The shell maintains a list of aliases that can be established, displayed, and modified by the al i as and
unal i as commands. After a command line is scanned, it is parsed into distinct commands, and the first
word of each command is checked left-to-right to see whether it has an alias. If it does, the text that is the
alias for that command will be reread, with the history mechanism available as though that command were
the previous input line. The resulting words replace the command and argument list. If no referenceis
made to the history list, the argument list will remain unchanged.

For example, if the diasfor| s werel s -1, thecommand| s /usr wouldmaptols -1 /usr;the
argument list would be undisturbed. Similarly, if the alias for | ookup weregrep !~ /etc/ passwd,
| ookup bill wouldmaptogrep bill /etc/passwd.

When an dlias is found, the word transformation of the input text is performed and the aliasing process
repeats on the new input line. If the first word of the new text is the same as the old, looping is prevented
by flagging it to prevent further aliasing. Other loops are detected and cause an error.

The mechanism allows aliases to introduce parser metasyntax. Thus, you can use
alias print "pr \I* | exlp tomakeacommand that pr’s its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as its value a list of zero or more words. Some of
these variables are set by the shell or referred to by it. For instance, the argv variable is an image of the
shell’s argument list, and words of this variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of the
variables referred to by the shell, several are toggling; the shell disregards their value, checking only to see
whether they are set. For instance, toggling the ver bose variable causes command input to be echoed.
The setting of this variable results from the - v.command-line option.

SR-2011 10.0 167

CSH(1) CSH(1)

Other operations treat variables numerically. The @command permits numeric calculations to be performed
and the result assigned to a variable. Variable values are, however, aways represented as zero or more
strings. For the purposes of numeric operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable substitution is
performed by the $ character. You can prevent this expansion by preceding the $ with a\ except within
double quotation marks (") where it always occurs, and within single quotation marks (') where it never
occurs. Strings enclosed by © are interpreted later (see the Command Substitution subsection); $ substitution
does not occur there until later, if a al. $ is passed unchanged if it is followed by a blank, tab, or
end-of-line character.

Input/output redirections are recognized before variable expansion, and they are variable expanded separately.
Otherwise, the command name and entire argument list are expanded together. It is possible for the first
command word to this point to generate more than 1 word, the first of which becomes the command name,
and the rest of which become arguments.

Unless enclosed in " or given the : g modifier, the results of variable substitution may eventually be
command and file-name-substituted. A variable within ", whose value consists of multiple words, expands
to a portion of a single word, with the words of the variable’'s value separated by blanks. When the : g
modifier is applied to a substitution, the variable expands to multiple words, with each word separated by a
blank and enclosed in quotation marks to prevent later command or file name substitution.

The following metasequences introduce variable values into the shell input. Except as noted, it is an error to
reference a variable that is not set.

$name

${ name} Replaced by the words of the value of variable name, each separated from the others by a
blank. Braces insulate name from following characters, which would otherwise be part of it.
Shell variables have names consisting of up to 18 letters and digits starting with a letter. The
underscore character is considered a letter. If name is not a shell variable, but is set in the
environment, that value will be returned (but : modifiers and the other forms specified are not
available in this case).

$name] selector]

${ name[selector] }
May be used to select only some of the words from the value of name. The selector is
subjected to $ substitution and may consist of either a single number or two numbers
separated by a- symbol. The first word of a variable's value is numbered 1. If the first
number of arange is omitted, it defaults to 1. If the last member of a range is omitted, it
defaults to $#name. The selector * selects all words. It is legal for arange to be empty if
the second argument is omitted or in range.

$#name
${#name} Specifies the number of words in the variable. Thisis useful later in [selector] .

$0 Substitutes the name of the file from which command input is being read. An error occurs if
the name is unknown.

168 SR-2011 10.0

CSH(1) CSH(1)

$number
${ number} Equivalent to $ar gv[number] .
$* Equivalent to $ar gv[*] .

Modifiers: h, : t, :r,:q, and : x may be applied to the preceding substitutions (except for $0) as may
:gh,:gt,and: gr. If braces{ } appear in the command form, the modifiers must appear within the
braces. The current implementation allows only one : modifier on each $ expansion.

The following substitutions may not be modified with : modifiers:

$?name

${?name} Substitutes 1 if name is set, O if it is not.

$20 Substitutes 1 if the current input file name is known, O if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

$< Substitutes a line from standard input, with no further interpretation thereafter. It can be used

to read from the keyboard in a shell script.

Command and file-name substitution

Command and file-name substitution are applied selectively to the arguments of built-in commands. That is,
portions of expressions that are not evaluated are not subjected to these expansions. For commands that are
not internal to the shell, the command name is substituted separately from the argument list. This occursin
a child of the main shell after input-output redirection is performed.

Command substitution

Command substitution is indicated by a command enclosed in single quotation marks (7). The output is
broken into separate words at blanks, tabs, and new lines, and null words are discarded. This text then
replaces the original string. Within double quotation marks ("), only new lines force new words; blanks and
tabs are preserved.

In any case, the single final new line does not force a new word. Note that this makes it possible for a
command substitution to yield only part of a word, even if the command outputs a complete line.

File-name substitution

If aword contains any of the characters*, ?, [, or {, or begins with the character ~, that word is a
candidate for file-name substitution (also known as globbing). This word is then regarded as a pattern and is
replaced with an alphabetically sorted list of file names that match the pattern. In alist of words specifying
file name substitution, it is an error if no pattern matches an existing file name, but it is not required that
each pattern match. Metacharacters*, ?, and [are the only ones that imply pattern matching; the characters
~ and { are more akin to abbreviations.

In matching file names, the dot character (.) at the beginning of a file name or immediately following a/ ,
as well as the character / , must be matched explicitly. The character * matches any string of characters,
including the null string. The character ? matches any single character. The sequence[. . .] matches any
one of the characters enclosed. Within[. . .], apair of characters separated by - , matches any character
lexically between the two.

SR-2011 10.0 169

CSH(1) CSH(1)

The ~ character at the beginning of a file name is used to refer to home directories. When the ~ is alone, it
expands to the user’s home directory as reflected in the value of the variable home. When followed by a
name consisting of letters, digits, and - characters, the shell searches for a user with that name and
substitutes that user’s home directory; for example, ~ken might expand to / usr/ ken and ~ken/ chmach
to/ usr/ ken/ chmach. If the ~ character is followed by a character other than a letter or / , or does not
appear at the beginning of a word, it is left undisturbed.

Metanotation a{ b, c, d} e is shorthand for abe ace ade. Left-to-right order is preserved, with results of
matches being sorted separately at a low level to preserve this order. This construction may be nested. For
example, ~sour ce/ s1/{ol dl s, 1s}.c expandsto/usr/source/sl/oldls.c

[usr/sourcel/sl/1s. c, whether or not these files exist, without any chance of error if the home
directory for sour ce is/ usr/source. Similarly . . /{neno, *box} might expandto. ./ neno

../ box ../ mbox. (Notethat nenmo was not sorted with the results of matching * box.) As a special
case {,},and{} are passed undisturbed.

Input/Output
The standard input and output of a command may be redirected with the following syntax:

< name Opens file name (which is first variable, command, and file-name expanded) as the standard
input.

<< word Reads the shell input up to aline that is identical to word. word is not subjected to variable,
file-name, or command substitution, and each input line is compared to word before any
substitutions are done on this input line. Unless a quoting \ , ", *, or * appears in word,
variable and command substitution are performed on the intervening lines, alowing \ to add
quotation marksto $, \ , and °. Commands that are substituted have all blanks, tabs, and new
lines preserved, except for the final new line, which is dropped. The resultant text is placed in
an anonymous temporary file that is given to the command as standard input.

> name

>l name

>& name

>&! name The file name is used as standard output. If the file does not exist, it will be created; if the
file exists, it will be truncated, losing its previous contents.

If the variable nocl obber is set, the file must not exist or be a character special file (for
example, aterminal or / dev/ nul |); if it is, an error will result. This helps prevent
accidental destruction of files. In this case, the! forms can be used to suppress this check.

The forms involving & route the diagnostic output into the specified file as well as the
standard output. name is expanded in the same way as < input file names are expanded.

>> name

>>& name

>>! name

>>&! name Uses file name as standard output, for example, >, but places output at the end of the file. If
the variable nocl obber is set, the file must not exist unless one of the ! forms is specified;
otherwise, it is similar to >.

170 SR-2011 10.0

CSH(1) CSH(1)

A command receives the environment in which the shell was invoked, as modified by the input-output
parameters and the presence of the command in a pipeline. Unlike the case in some previous shells,
commands run from a file of shell commands have no access to the text of the commands by default; instead
they receive the original standard input of the shell. The << mechanism should be used to present in-line
data. This permits shell command scripts to function as components of pipelines and alows the shell to
block read its input. The default standard input for a command run detached remains as the original standard
input of the shell. If thisis aterminal and if the process attempts to read from the terminal, the process will
block and the user will be notified.

Diagnostic output may be directed through a pipe with the standard output by using the form | & rather than
| .

Expressions
A number of the built-in commands take expressions, in which the operators are similar to those of C, with
the same precedence. Within an individual precedence group, however, the expressions are evaluated from
right to left, as opposed to the standard left to right. These expressions appear inthe @ exi t, i f, and
whi | e commands. The following operators are available:

[] & | "~ & == 1= =~ I~ <= >= < > << >> + - * [9% | ~ ()
The precedence increases to the right, ==, ! =, =~, and ! ~, <=, >=, <, and >, <<, and >>, +,and -, *, / ,
and %being, in groups, at the same level. The==,! =, =~, and ! ~ operators compare their arguments as
strings; all others operate on numbers. The operators =~ and ! ~ are like ! = and == except that the
right-hand side is a pattern (containing, for example, *, ?, and instancesof [. . .]) against which the

left-hand operand is matched. This reduces the need for the switch statement in shell scripts when all that is
really needed is pattern matching.

Strings that begin with O are octal numbers; valid octal digits are O through 7. Strings that begin with Ox or
0X are hexadecimal numbers; valid hexadecimal digits are O through 9, a through f, and A through F. Null
or missing arguments are considered 0. The results of all expressions are strings, which represent decimal
numbers.

No two components of an expression can appear in the same word; except when adjacent to components of
expressions that are syntactically significant tothe (& | < > ()) parser, they are surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in braces { } and file
inquiries of the form - Iname;

| is one of the following:

Read access
Write access
Execute access
Existence
Symbolic link
Ownership
Zero size

Plain file

“NO—®X s —

SR-2011 10.0 171

CSH(1) CSH(1)

m Migrated file (type IFOFL)
M Migrated file (has a DMF handle)
d Directory

The specified name is command and file name expanded and then tested to see whether it has the specified
relationship to the real user. If the file does not exist or is inaccessible, all inquiries return false (that is, 0).
Successful command executions return the value 1 if true or O if false. If more detailed status information is
required, the command should be executed outside an expression and the variable st at us examined.

Control Flow
The shell contains a number of commands that can be used to regulate the flow of control in command files
(shell scripts) and, in limited but useful ways, from terminal input. These commands al operate by forcing
the shell to reread or skip in its input and, because of the implementation, restrict the placement of some of
the commands.

The f or each, swi t ch, and whi | e statements, as well asthei f -t hen- el se form of thei f statement
require that the major keywords appear in a single simple command on an input line.

If the shell’s input is to be searched, the shell buffers input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent allowed,
backward got o statements succeed on nonseekable inputs.)

Predefined and Environment Variables
Some variables have special meaning to the shell. Of these, the shell always sets ar gv, cwd, hone, pat h,
shel I , and st at us. The pr onpt variable is always set in an interactive shell. Except for cwd and
st at us, these variables are set only at initialization; therefore, if you wish to modify these, you must do so
explicitly.

The shell copies the environment variable LOGNAME into the variable user , TERMinto t er m and HOVE
into hone; these are then copied back into the environment whenever the normal shell variables are reset.
The environment variable PATH is handled likewise; you do not have to worry about its setting other than in
the . cshr c file because child csh processes reset the path variable when you use the sour ce command
on the . cshrc file

ar gv Sets the arguments to the shell. Positional parameters are substituted from this variable; for
example, $1 is replaced by $ar gv[1] .

cdpat h Provides a list of alternative directories that are searched to find subdirectories in chdi r
commands.

cwd Provides the full path name of the current directory.

echo Set when the - x command-line option is specified. Causes each command and its

arguments to be echoed just before execution. For nonbuilt-in commands, al expansions
occur before echoing. Built-in commands are echoed before command and file-name
substitution because these substitutions are then done selectively.

172 SR-2011 10.0

CSH(1)

hi stchars

hi story

hone

i gnor eeof

mai |

nocl obber

nogl ob

nonomat ch

notify

SR-2011 10.0

CSH(1)

Can be given a string value to change the characters used in history substitution. The first
character of its value is used as the history substitution character, replacing default character
. The second character of its value replaces the character in quick substitutions.

Can be given a numeric value to control the size of the history list. Any command that has
been referenced in this number of events is not discarded. If the value of hi st ory istoo
large, the shell may run out of memory. The last executed command is saved on the
history list.

The user’s home directory, initialized from the environment. The file-name expansion of ~
refers to this variable. Setting hone to a path name that begins with . or . . causes errors.

When set, the shell ignores end-of-file from input devices, which are terminals. This
prevents shells from accidentally being killed by one or more <CONTROL- d>.

Specifies the files in which the shell checks for mail. This is done after each command
completion, which results in a prompt if a specified interval has elapsed. The shell displays
You have new rmmai | if the file exists with an access time not greater than its
modification time.

When the first word of the value of mai | is numeric, it specifies a different mail checking
interval, in seconds, instead of the default, which is 10 minutes.

When multiple mail files are specified, the shell displays New mai | i n name when there
is mail in file name.

As described in the section on input/output, restrictions are placed on output redirection to
ensure that files are not accidentally destroyed, and that >> redirections refer to existing
files.

When set, inhibits file-name expansion. This is most useful in shell scripts that are not
dealing with file names, or when a list of file names has been obtained and further
expansions are not desirable.

When set, specifies that a file-name expansion does not have to match any existing files;
rather the primitive pattern is returned. It is till an error, however, for the primitive pattern
to be malformed; that is, echo [still produces an error.

When set, the shell notifies the user of job completions asynchronously. The default is to
present job completions just before printing a prompt.

173

CSH(1)

pat h

pr onpt

savehi st

shel |

st at us

tinme

ti mestanp

ver bose

174

CSH(1)

Each word of the path variable specifies a directory in which commands are to be sought
for execution. A null word specifies the current directory. If there is no pat h variable,
only full path names will execute. The usual search path is/ bi n, / usr/ bi n, and

[usr/ uch, but this may vary from system to system. For the super user, the default
search pathis/ et ¢, / bi n, and/ usr/ bi n. A shell that is given neither the - ¢ nor the
-t option usually hashes the contents of the directories in the pat h variable after reading
. cshr c and also each time the pat h variable is reset. If new commands are added to
these directories while the shell is active, it may be necessary to specify the r ehash
command; otherwise, the commands may not be found.

The string printed before each command is read from an interactive terminal input. If !
appears in the string, it will be replaced by the current event number unless a preceding \ is
given. The default is %or # for the super user.

Contains a numeric value that controls the number of entries of the history list that are
saved in ~/ . hi st or y when the user logs out. Any command referenced in this number
of eventsis saved. During startup, the shell sources ~/ . hi st ory into the history list,
enabling history to be saved across logins. Vaues of savehi st that are too large can
slow the shell during startup.

The file in which the shell resides. Thisis used in forking shells to interpret files that have
execute bits set that are not executable by the system. (See the description of nonbuilt-in
command execution.) Thisfile is initialized to the (system-dependent) home of the shell.

The status returned by the last command. If it terminated abnormally, 0200 is added to the
status. Built-in commands that fail return exit status 1; all other built-in commands set the
status to 0.

Controls the automatic timing of commands. If it is set, any command that takes more than
this number of CPU seconds prints a line specifying user, system, and real times. It also
prints a usage percentage, which is the ratio of user plus system times to real time that is
printed when it terminates.

Set by the - S command-line option. Causes a date and time stamp in the form
day month date hh:mm:ss to be echoed before each command is executed.

Set by the - v.command-line option, which prints the words of each command after history
substitution.

SR-2011 10.0

CSH(1)

CSH(1)

Nonbuilt-in Command Execution

When a command to be executed is found to not be a built-in command, the shell attempts to execute the
command through execv (see exec(2)). Each word in the variable path names a directory from which the
shell attempts to execute the command. If neither option - ¢ or option -t is specified, the shell will hash
the names in these directories into an internal table so that it will try an exec in a directory only if thereis
a possibility that the command resides there. This greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has been turned off (by unhash), or if - ¢ or
-t was specified, for each directory component of path that does not begin with a/ , the shell will
concatenate with the specified command name to form a path name of a file, which it will then attempt to
execute.

Signal Handling

NOTES

BUGS

The shell ignores qui t signals. Jobs running detached (either by & or thebg or % . . & commands) are
immune to signals generated from the keyboard, including hangups. Other signals have the values that the
shell inherited from its parent. oni ntr can control the shell’s handling of interrupts and terminate signals
in shell scripts. Login shells catch the t er mi nat e signal; otherwise, this signal is passed on to children
from the state in the shell’s parent. Interrupts are not allowed when a login shell is reading the . | ogout
file.

Words can be no longer than 1024 characters. The system limits argument lists to 50,000 characters. The
number of arguments to a command involving file-name expansion is limited to one-sixth the number of
characters allowed in an argument list. Command substitutions cannot substitute more characters than are
allowed in an argument list.

The csh utility does not send messages about illegal options.
The csh metacharacters will not match those characters that are greater than or equal to 0200.

The C shell will not execute the last command line in a script file if the last line is not terminated with a
newline character. Some editors, such as emacs(1), are capable of creating such files.

When a command is restarted from a stop, the shell prints the directory in which it started if this is different
from the current directory; this can be incorrect because the job may have changed directories internally.

Shell built-in functions cannot be stopped and restarted. Command sequences of theforma ; b ; c are
also not handled gracefully when stopping is attempted. If you suspend b, the shell will then immediately
execute c. Thisis especialy noticeable if this expansion results from an alias. It suffices to place the
seguence of commands in parentheses to force it to a subshell, thatis, (a ; b ; ¢).

Control over tty output after processes are started is primitive.

SR-2011 10.0 175

CSH(1) CSH(1)

Alias subsgtitution is most often used to simulate shell scripts, but this is not efficient; shell scripts should be
provided.

Commands within loops, prompted by ?, are not placed in the history list. Control structure should be
parsed rather than being recognized as built-in commands. This would allow control commands to be placed
anywhere, to be combined with | , and to be used with & and ; metasyntax.

It may be possible to use the : modifiers on the output of command substitutions. All and more than one :
modifier may be allowed on $ substitutions.

Although set and set env alow the definition of variable names that do not begin with a letter or
underscore or that are longer than 18 characters, use of such variables results in an error.

If oni ntr followsoni ntr - inashel script, interrupts continue to be ignored.

A job started asynchronously with & and containing command substitution is not protected from interrupts.

FILES
~/ . cshrc Read at beginning of execution by each shell
~/.login Read by login shell after . cshrc at login
~/ . 1 ogout Read by login shell at logout
/ bi n/sh Standard shell
[et c/ passwd Source of home directories for ~name
/etcl/cshrc Read at beginning of execution of shell, before . cshrc
[t mp/ sh* Temporary file for <<

(See the File-name Substitution subsection for a discussion of the ~ character in file names.)

SEE ALSO
set ucat (1), set ucnp(l), set ul vl (1), set usrv(l), sh(1)

access(2), exec(2), fork(2), ki Il (2), pi pe(2), set ui d(2), si gnal (2), umask(2), wai t (2) in the
UNICOS System Calls Reference Manual, Cray Research publication SR—2012

a. out (5), cshr c(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

dmmode(1) Online only

176 SR-2011 10.0

CSORT(1) CSORT(1)

NAME

csort — Sorts and/or merges blocked files

SYNOPSIS

csort [-e] [-k keyfilgl [-| datfile] [-r] outfile sortfiles
csort [-e] [-k keyfilgl [-] datfile] - m nmfiles [- n] [-r] outfile [sortfiles]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The csort utility orders records of unsorted sortfiles and/or previously sorted - mmfiles and writes the
result to the file named by the required ouitfile specification. The csort utility reads and writes files,
depending on the sort keys you provide. If every key field is either a DEC key or a CHR key, input and
output files are considered to be character files. If any key isBI N, FLT, or | NT, the input and output files
are considered to be Fortran unformatted files.

Two synopses for csor t are provided to show that csort can be invoked only with either unsorted
sortfiles, or with previously sorted mfiles and optionally one or more sortfiles. Invocation of csort with
only the outfile operand will be unsuccessful.

The csort utility accepts the following options:
-e Writes the directives from keyfile into statfile.

- k keyfile The keyfile argument names the file that contains the directives to be used to determine tuning
parameters and/or keys to determine the sorting scheme. For information about these
directives, see the DIRECTIVES section.

If the - k option is not specified, csort provides default values for the sorting process. These
defaults are as follows:

* Key typeis a character string.

¢ Ascending sort order.

* Key field starts with the first character of the first 64-bit word of the record.

* Key field ends with the last character of the first 64-bit word of the record.

* ASCII collating sequence.

When there are multiple sort keys, later keys are compared only if earlier keys are equal.

-1 datfile The statfile argument names the file to contain the listing of the statistics on the sorting
process. The default file name is SRTSTAT.

SR-2011 10.0 177

CSORT(1) CSORT(1)

-mmfiles The files specified by nfiles are assumed to be sorted and ready for merging. They will be
merged with each other and with intermediate output from the sorting process of the unsorted
sortfiles.

The files named in mfiles can be designated by using one of the following forms:
e List of files separated from one another by a comma.

e List of files enclosed in quotation marks and separated by commas and/or white space.

-n The files specified by mfiles are not checked to verify whether they have been sorted
previously. The - moption must also be specified.

-r Retains the original input order of a sequence of records with equivalent keys.

outfile Specifies the file where the results of csort are stored.

sortfiles Specifies the files to sort and/or merge.

For suitably large files, csort will require temporary files. By default, these files are created in the
directory specified by your TMPDI R environment variable. In all but the most demanding applications, this
will work well.

In some cases, however, you may need a greater degree of control over the allocation of temporary files.
You may initialize the environment variable CSORTDI R to specify the directories within which temporary
files are created.

CSORTDI Ris a colon-separated list of directory names. As temporary files are needed, they are created
round-robin within the provided list of directories. (If CSORTDI R is defined but null, temporary files will be
created in your current directory, which may or may not be desirable.

DIRECTIVES

The two csort directives are KEY and TUNE. The KEY directive lets you define the keys that determine
the magjor and minor fields on which a sort is to be performed. The TUNE directive permits you to optimize
the sort operation. Only KEY is required. The directives must be in a file specified with the - k option on
the csort command line.

KEY Directive

178

The required KEY directive defines the keys of the major and minor field on which a sort is to be performed.
The major field is the one on which csort first orders the records. If two or more records contain identical
major fields, csort uses the minor fields to order them.

The KEY directive can appear any time and as often as necessary. The number of specifications is unlimited.
Keys are given priority by the order in which they are specified.

The format of the KEY directive is as follows:
KEY, TYPE=type, ORDER=0rder, START=w: c: b, END=w: c: b, COLSEQ=colseq

TYPE=type Specifies the form in which the key appears in the record; type can be one of the
following:

SR-2011 10.0

CSORT(1)

ORDER=o0rder

START=w: c: b

SR-2011 10.0

CSORT(1)

Bl N Binary bit stream (unsigned).
FLT Floating-pont number (64-bit Cray internal format).
I NT Integer value (a maximum of 64 bits in twos complement Cray format).

CHR Character string. The string’s field is the length defined by the START and END
parameters. The default character size is 8 bits; word size is 64 bits. This key
causes csort to read the file in character mode, decompressing blanks.

DEC Decimal number (real number with a decimal point or integer) in ASCII or
EBCDIC characters. csort does not accept real numbers with exponents.
Leading and trailing blanks are insignificant; embedded blanks are interpreted as 0.
The + or — sign precedes the number or decimal point. This key causescsort to
read the file in character mode, decompressing blanks.

If you specify DEC, csort converts all numbers to floating-point humbers. Thus, 10 and
10. can be used interchangeably.

Specifies the order in which csort sorts the key; order can be either ASCEND (sorts the
records in ascending order by the key rank; default) or DESCEND (sorts the records in
descending order by the key rank).

Required parameter; no defaults. The starting position of the field containing the key.
The end position is not required for floating-point or integer keys.

If you specified FLT or | NT for the key type, the key defaults to 64 bits; therefore, you do
not need to specify an end position unless the key length is other than 64 bits. The
starting position specifiers are the only key location identifiers necessary.

Specify integer numbers as follows:
w Starting position of a word

c Starting position of a character
b Starting position of a bit

Count words, characters, and bits from the left beginning with 1, not 0. You can define a
field as a character position within a word (w:c). The following example defines the
seventh character of the third word:

START=3: 7
You can also define a field as a character position without a word position by putting an

asterisk in place of the omitted unit. The following example is equivalent to the previous
example:

START=*: 23

Because each word is 8 characters, the seventh character of the third word is the
twenty-third character.

179

CSORT(1)

END=w: c: b

COLSEQ=colseq

TUNE Directive
The optional TUNE directives optimizes csort through the efficient allocation of resources. To judge the
effect of the options, you need the statistics found in the dataset indicated by the L parameter on the csort
control statement. The TUNE directive can appear as often as necessary. If a parameter is speciefed more

than once in different directives, the last value specified takes precedence over the previous ones.

180

CSORT(1)

Similarly, you can specify a bit position directly in a word or in a character position.

Indicates the ending position of the field containing the key. The END parameter is
required only with sequence types Bl N, CHR, and DEC. END is optional with FLT and
I NT. If the type of the key is FLT or | NT, the default is the beginning of the field as
specified by the START directive plus 64 hits.

Specify integer numbers as follows:
w Ending position of a word

¢ Ending position of a character
b Ending position of a bit

Specifies the collating sequence for the CHR or DEC key type. The choices are the
following:

ASCI | Sorts according to the ASCII sequence (default).

ASCI | UP Sorts according to the ASCII sequence except that lowercase letters are
treated as if they are uppercase.

EBCDI C Sorts ASCII characters according to the EBCDIC sequence.

EBCDI CUP Sorts ASCII characters according to the EBCDIC sequence except that
lowercase letters are treated as if they are uppercase.

EBCDI C and EBCDI CUP are used when the ASCII characters in the output
file are to be trandated from ASCII to EBCDIC (for example, during transfer
to a front-end machine that used EBCDIC). The resulting trandated file then
has EBCDIC characters in EBCDIC sequence. If the Cray file contains
EBCDIC characters that have not been converted to ASCII, the ASCII or
ASCIIUP segquences (which order elements based on the numerical bit value)
yield the expected results.

The ASCI |, ASCI | UP, EBCDI C, and EBCDI CUP collating sequences are the only ones
available with the csort control statement. To define any other collating sequence, you
must use the csort subroutines and identify the collating sequence with a SAMSEQ call.

Use the TUNE directive to specify information about the files to be sorted and resources to be allocated.
When you make these specifications, accuracy is important; inaccurate estimates can degrade performance.

SR-2011 10.0

CSORT(1)

CSORT(1)

The format of the TUNE directive is as follows:

TUNE, AVRL=n, MXRL=n, NRECEST=n, DI SK=name: name..., DSLO=n,
NAMEBM=namebm, NAMESSD=namessd, NDS=n,
NDSSD=n, NBSSD=n, NDBM=n, NBBMen, NBDSK=n, M\BL=n, MXBL=n

AVRL=n
MXRL=n

NRECEST=n

DI SK=name:name...

DSLO=n
NANMEBM=namebm
NANMESSD=namessd
NDS=n

NDSSD=n
NBSSD=n
NDBM=n
NBBM=n
NBDSK=n

MN\BL=n

MXBL=n

SR-2011 10.0

Specifies the average record length. The default is the maximum record length.

Specifies the maximum record length. The default is 20 Cray words (160 bytes). If
the maximum record length is too short, csort aborts during the input phase.

An estimate of the number of records in the input files. The default is 1,000,000
records. This value is no longer used.

No longer used in this implementation. Instead, you may specify a colon-separated
list of directories in the CSORTDI R environment variable.

No longer used in this implementation.
No longer used in this implementation.
No longer used in this implementation.

Specifies the number of temporary datasets to be used during the merge phase. The
default is 10; minimum is 4. Change this parameter only if you must run Sort/Merge
in minimum memory. A large value is recommended, but many temporary datasets
are assigned smaller buffers and buffers should be large to maximize 1/O efficiency.
This makes it difficult to assign an efficient number.

No longer used in this implementation.
No longer used in this implementation.
No longer used in this implementation.
No longer used in this implementation.

Specifies the number of sort buffers to be allocated to each temporary dataset. The
size of the buffer is specified by the MNBL= and MXBL= parameters. The default
valueis 2.

Specifies the number of word blocks in each sort buffer. The default is 42 (the track
size of a DD-49). If you supply both a minimum and a maximum, the minimum
must be the smaller of the two numbers.

Specifies the number of word blocks in each sort buffer. The default is 42. If you
supply both a minimum and a maximum, the minimum must be the smaller of the
two numbers.

181

CSORT(1) CSORT(1)

NOTES

When calling any of the sort routines from within an applications program, you must specify that the sort
library, /usr/1ib/libsort, beloaded along with your program and the standard system default libraries.
To do this, you can use the following command line (provided that your program requires no other special
loading options):

segldr -1lsort your_program

EXAMPLES

Example 1: This example sorts the contents of i nfi |l el andi nfi | e2, placing the output in outfil e
and using the default sorting key:

csort outfile infilel infile2

Example 2: This example sorts, in reverse order, the records found ini nfil el andi nfil e2, placing the
output in out f i | e and using only the first character of the second word as the sort key.

csort -k keyfile outfile infilel infile2

The key information is obtained from this keyfile:
key, type=chr, or der =descend, start =2: 1, end=2: 2.

Example 3: This example merges the records of the already sorted files sort ed1 and sort ed2 along
with the sorted output from the unsorted file unsort 1, placing the output in out fi | e and using the
integer located in the first possible position of the record as the sort key.

$ csort -msortedl,sorted2 -k keyfile outfile unsortl
The key information is obtained from this keyfile:
key, type=int,start=1:1.

Example 4: This example sorts direct access files:

#!/ bin/csh
rm-rf nkdata.f srtfile outfile keyfile
cat > nmkdata.f << EOF
program nmakedat a
implicit integer (A-2)
character*8 junk
30 FORMAT(| 5)
wite(junk, (A8)') ’'srtfile L
open (unit=8, file=junk , access="direct’,
C forms" unformatted’ , status="NEW , recl=24)
iseed = I RTC()
CALL RANSET(i seed)
DO 10 1=1,10

182 SR-2011 10.0

CSORT(1) CSORT(1)

K=1 NT(RANF() *10000+10000)
x=i *4.0
y=x/2.0
WRI TE(8, REC=1) K, X, Y
10 conti nue
cl ose(8)
stop
end
EOF
#
cat > keyfile << ECF
key,type=int,start=1:1:1.
EOF
#
cf77 -o nkdata nkdata. f
#
./ mkdat a
#
assign -F ibmf:24 srtfile
assign -F ibmf:24 outfile
#
csort -k keyfile outfile srtfile

od outfile

FILES
SRTSTAT Default statfile

SEE ALSO
sort (1)

SAMKEY(3F), SAMTUNE(3F) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

SR-2011 10.0 183

CSPLIT(1) CSPLIT(1)

NAME
csplit — Splits files based on context

SYNOPSIS
csplit [-f prefix] [- k] [-n number] [-s] file args

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Thecspl it utility reads file and separates it into sections, one section for each of the args arguments. By
default, the pieces are placed in files named xx00, xx01, ..., xxn, where n is 99, by default. These
sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by argl.
01: From the line referenced by argl up to the line referenced by arg2.

n+1l: From the line referenced by argn to the end of file.
Thecspl it utility accepts the following options and operands:

-f prefix Specifies the created files prefix00, prefix01, ..., prefixn. The default is xx00, xx01, ...,
xxn. If the prefix argument would create a file name that exceeds { NAVE_MAX} bytes, an
error occurs and cspl it exits.

-k Leaves previously created files intact. By default, cspl it removes created files if an error
ocCurs.

- n number Uses number decimal digits to form file names for the file pieces. The default is 2.

-S Suppresses the printing of all character counts. The cspl it utility usually prints the character
counts for each file created.

file The path name of atext file to be split. If fileis -, the standard input is used.

args The args operands can be a combination of the following:

184 SR-2011 10.0

CSPLIT(1)

Creates afile for the piece from the current line up to (but not including) the
line that contains the regular expression rexp. The optional offset is a
positive or negative integer value preceded by a + or - . After the section is
created, the current line is set to the line that results from the evaluation of
the regular expression with any offset applied.

This argument is the same as / rexp/ , except that no file is created for the
section.

A file is to be created from the current line up to (but not including) line
number, line_no. The current line becomes line_no.

Repeat argument. This argument may follow any of the preceding
arguments. If it follows a rexp type argument, that argument is applied num
more times. If it follows Inno, the file will be split every Inno lines (num
times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful to a shell in
the appropriate quotation marks. Regular expressions may not contain embedded new lines.
cspl it doesnot affect the original file; the user must remove it.

CSPLIT(1)
/ rexpl [offset]
% expoffset]
line_no
{ num}
NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to split any file. In a privileged administrator shell environment,
shell-redirected 1/O is not subject to file protections.

sysadm Allowed to split any file subject to security label restrictions. Shell-redirected 1/0O is
subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to split any file. Shell-redirected
I/0 on behalf of the super user is not subject to file protections.

EXIT STATUS

Thecspl it utility exits with one of the following values:

0 Successful completion.

>0 An error occurred.

MESSAGES

Diagnostic messages are self-explanatory, except for the following:

arg - out of range

This message means that the given argument did not reference a line between the current position and the

end of the file.

SR-2011 10.0

185

CSPLIT(1) CSPLIT(1)

EXAMPLES
Example 1: This example creates four files, f ort 00 ... f ort 03:
csplit -f fort file.f ’'/subroutine xyz/’ ’'/function abc/’ '/blockdata/’

After editing the “*split’’ files, they can be recombined, as follows:
cat fort0[0-3] > file.f

This example overwrites the original file.

Example 2: This example splits the file at every 100 lines, up to 10,000 lines. The - k option causes the
created files to be retained if less than 10,000 lines exist; however, an error message is still printed.

csplit -k file *100" ’ {99}’

Example 3: Assuming that pr og. ¢ follows the typical C coding convention of ending routines with a} at
the beginning of the ling, this example creates a file that contains each separate C routine (up to 21) in
prog. c.

csplit -k prog.c "%min(% '/~ }/+1 '{20}’

Example 4: This example creates up to 20 chapter files from the file novel :
csplit -k -f chap. novel 'Y CHAPTERY% ' {20}’

SEE ALSO
ed(1), sh(2), split (1)

186 SR-2011 10.0

