HPM(1)

NAME

HPM(1)

hpm— Monitors hardware performance during program execution

SYNOPSIS
hpm [-d] [-g group] [-o file] [-p] [-r] [-V] program [args]

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

358

The hpmutility monitors machine performance while your program executes. Y our program can be written
in any language available under the UNICOS operating system, though it cannot make use of Paralel Virtua
Machine (PVM) message-passing software. hpmgives results for only whole programs and writes its output
to standard error.

The hpmutility accepts the following options:

-d

- g group

- o file

Displays additional rates as though run in dedicated mode; some rates are based on wall-clock
time, not CPU time.

These times give a rough estimate of concurrency when the user’s program is autotasked,
microtasked, or macrotasked. The displayed rates should not be considered to be exact. The
extra wall-clock time required to execute the code to be monitored, combined with the extra
wall-clock time needed to notify the hpmutility that the user’s command is done, can easily
exceed the wall-clock time needed to actually execute the code.

If you need more precise measurements of execution time versus wall-clock time, use the

at expert (1) command or the j a(1) command. It is possible to run your program on a
dedicated machine or under the ded(8) command. However, even running under ded or on a
dedicated machine still cannot guarantee exact dedicated timings.

Number of the hardware monitor group to be used. This option does not apply to the CRAY C90
or the CRAY T90 series because they have only one Hardware Performance Monitor (HPM)
group. The group argument can be one of the following values:

0 Execution summary (default)

1 Hold issue conditions

2 Memory activity

3 Vector events and instruction summary

By default, hpmwrites its output to standard error. If this option is specified, hpmwrites its
output to the file name specified as file.

Displays results for just the program and excludes all performance information for any child
processes.

SR-2011 10.0

HPM(1) HPM(1)

-r Generates a raw-format output, suitable for postprocessing by tools such as per f vi ew(1) and
awk(1). Seethe Guide to Parallel Vector Applications, Cray Research publication SG-2182, for
a description of this format.

-V Displays the current version of hpm as well as a short copyright notice.
program Executable file to be run.

args Arguments to program.

NOTES
HPM does not work with Parallel Virtual Machine (PVM) code on Cray PVP systems.

The default counter hardware monitor group is 0, the group most commonly run by typical users (does not
apply to the CRAY C90 or CRAY T90 series).

The performance utility Perftrace also uses the hardware performance monitor device. Using the
I i bperf. a library with hpmmay generate unusable results for both.

On Cray PVP (except CRAY C90 and CRAY T90 series) systems, groups 0 and 3 report megaflop rates.
By default, these megaflop rates do not reflect concurrent execution of an autotasked, microtasked, or
macrotasked program, since they are calculated per CPU second and not per wall-clock second. When
running a multitasked program, you can obtain more informative rates that use wall-clock seconds by
specifying the - d option. However, note the special considerations for using this option, as described under
the - d option previously.

The meanings of the HPM statistics and their implications are discussed in detail in the Guide to Parallel
Vector Applications, Cray Research publication SG—2182.

Because of variations in system overhead and other factors, hpm statistics may not be precisely repeatable.
The statistics gathered and displayed by the hpmutility should not be construed as accounting information,
nor should they be considered to be exact.

EXAMPLES

Example 1: For Cray PVP systems, the following examples execute a program four times to receive all four
hardware monitor groups in the file pr og. hpm The last example shows that only one program execution is
needed on the CRAY C90 and CRAY T90 series.

Standard shell or Korn shell (except on the CRAY C90 or CRAY T90 series):

f90 prog.f

hpm -g0 ./a.out 2>> prog. hpm
hpm -gl1 ./a.out 2>> prog. hpm
hpm -g2 ./a.out 2>> prog. hpm
hpm -g3 ./a.out 2>> prog. hpm

LR o

SR-2011 10.0 359

HPM(1) HPM(1)

C shell (except on the CRAY C90 or CRAY T90 series):

% f90 prog.f

% (hpm-g0 ./a.out) > & prog. hpm
% (hpm-gl ./a.out) >> & prog. hpm
% (hpm-g2 ./a.out) >> & prog. hpm
% (hpm-g3 ./a.out) >> & prog. hpm

CRAY C90 or CRAY T90 series (al shells):

$ f90 prog.f
$ hpm ./a. out

Example 2: The following standard shell example (not for the CRAY C90 or CRAY T90 series) generates
raw-format data and then processes the output with the per f vi ew(1) command. After these command
lines, per f vi ew(1) runs interactively.

$ cc prog.c

$ hpm-g0 -r ./a.out 2> raw data
$ hpm-g3 -r ./a.out 2>> raw. data
$ perfview raw data

Example 3: The following example (not for the CRAY C90 or CRAY T90 series) writes the hpmdata to a
file for processing by per f vi ew(1):

CC prog.c

hpm -g0 -0 data.0 -r ./a.out
hpm -g3 -0 data.3 -r ./a.out
cat data.0 data.3 >perf.data
perfvi ew

LR o

SEE ALSO

360

at expert (1), ank(1), csh(d), j a(2), perfvi em1), sh(1)

hpm(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

per f or mance(7), per ftrace(7) (avalable only online)
ded(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

Guide to Parallel Vector Applications, Cray Research publication SG—2182, for descriptions of al the
performance tuning tools

The following manuals are Cray Research Proprietary; dissemination of this documentation to non-CRI
personnel requires approva from the appropriate vice president and a nondisclosure agreement. Export of
technical information in this category may require a Letter of Assurance.

SR-2011 10.0

ICONV/(1) ICONV/(1)

NAME

i conv — Codeset conversion

SYNOPSIS

i conv -f fromcode -t tocode [file...]

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

Thei conv utility converts the encoding of characters in file from one codeset to another and writes the
results to standard output.

Character encodings in either codeset may include single-byte values (for example, for the 1SO 8859-1:1987
standard characters) or multibyte values (for example, for certain characters in the 1SO 6937:1983 standard).
The results of specifying invalid characters in the input stream (either those that are not valid members of
the fromcode or those that have no corresponding value in tocode) are specified in the system documentation.

Thei conv utility accepts the following options and operands:

-f fromcode Identifies the codeset of the input file. Valid values for fromcode are specified in the system
documentation.

-t tocode Identifies the codeset to be used for the output file. Valid values for tocode are specified in
the system documentation.

file A path name of the input file to be trandated. If file is omitted, the standard input is used.
The following environment variables affect the execution of i conv:

LANG Provides a default value for the internationalization variables that are unset or null. |If
LANG is unset or null, the corresponding value from the implementation-specific default
locale will be used. If any of the internationalization variables contains an invalid setting,
the utility will behave as if none of the variables had been defined.

LC ALL If set to a nonempty string value, overrides the values of all the other internationalization
variables.
LC _CTYPE Determines the locale for the interpretation of sequences of bytes of text data as characters

(for example, single- as opposed to multibyte characters in arguments). During translation
of the file, this variable is superseded by the use of the fromcode option-argument.

LC _MESSAGES Determines the locale that should be used to affect the format and contents of diagnostic
messages written to standard error.

SR-2011 10.0 361

ICONV/(1) ICONV/(1)

NLSPATH Determines the location of message catalogs for the processing of LC_MESSAGES.

EXIT STATUS
The following exit values are returned:
0 Successful completion.

>0 An error occurred.

EXAMPLES

The following example converts the contents of file mai | . x400 from the SO 6937:1983 standard codeset
to the 1SO 8859-1:1987 standard codeset, and stores the resultsin the file mai | . | ocal :

iconv -f 1S6937 -t 1S8859 mail.x400 > mail .|l ocal

SEE ALSO
gencat (1)

362 SR-2011 10.0

ID(1) ID(1)
NAME

i d — Prints user and group IDs and names
SYNOPSIS

id [user]

id-GI[-n] [user]

id-g [-n] [-r] [user]

id-ul[-n][-r] [user]

id-a [user]
IMPLEMENTATION

All Cray Research systems
STANDARDS

POSIX, XPG4

CRI extensions (- a option)
DESCRIPTION

If no user is specified, the i d utility writes the user and group I1Ds and the corresponding user and group
names of the invoking process to standard output. When the effective and real 1Ds do not match, both are
written.

If user is specified and the invoking process has the appropriate privileges, the user and group IDs of the
selected user are written. In this case, effective IDs are assumed to be identical to real IDs.

If multiple groups are supported by the underlying system, the supplementary group affiliations are also
written.

Thei d utility accepts the following options:

-a
-9
-G

Prints the current account ID and name.
Prints only the effective group ID.

Prints all different group 1Ds (effective, real, and supplementary) only. If more than one distinct group
affiliation exists, the utility prints each affiliation.

Prints the name of the user or group, rather than the numeric ID.
Prints the real 1D, rather than the effective ID.
Prints the only the effective user ID.

SR-2011 10.0 363

ID(1) ID(1)

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm In a privileged administrator shell environment, allowed to write shell-redirected
output to any file.

sysadm Shell-redirected output is subject to security label restrictions.
If the PRI V_SU configuration option is enabled, the super user can write shell-redirected output to any file.

WARNINGS

Thei d - Gh command produces the same output as/ usr/ ucb/ gr oups. Users should use thei d utility
because the gr oups utility may be removed in a future UNICOS release.

EXIT STATUS
Thei d utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

EXAMPLES

The following example prints your user and group IDs and names:
$id
ui d=1054(mary) gi d=101(acct) groups=508(allgrp), 717(conpilers), 24(source)

FILES
/et c/udb User validation file that contains user control limits
[etc/group Group files that contain group names and group 1Ds
SEE ALSO
groups(1B)

get ui d(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

gr oup(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

364 SR-2011 10.0

IPCRM(1)

NAME

IPCRM(1)

i pcr m— Removes a message queue, semaphore set, or shared memory 1D

SYNOPSIS

i pcrm[- mshmid] [- M shmkey] [- g msqid] [- Q msgkey] [-s semid] [- S semkey]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The i pcr mcommand removes one or more message queues, semaphore sets, or shared memory identifiers.

The i pcr mcommand accepts the following options:

- mshmid

- M shmkey

- q msgid
- Q msgkey
- s semid

- S semkey

Removes the shared memory identifier shmid from the system. The shared memory segment
and data structure associated with it are destroyed after the last detach operation.

Removes the shared memory identifier, created with key shmkey, from the system. The shared
memory segment and data structure associated with it are destroyed after the last detach
operation.

Removes the message queue identifier msgid from the system and destroys the message queue
and data structure associated with it.

Removes the message queue identifier, created with key msgkey, from the system and destroys
the message queue and data structure associated with it.

Removes the semaphore identifier semid from the system and destroys the set of semaphores
and data structure associated with it.

Removes the semaphore identifier, created with key semkey, from the system and destroys the
set of semaphores and data structure associated with it.

The details of the remove operations are described in msgct | (2), shntt ! (2), and senct | (2). Usethe
i pcs(1) command to find the identifiers and keys.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to remove any identifier.

sysadm

SR-2011 10.0

Allowed to remove any identifier, subject to security label restrictions on the
identifier's path. Shell-redirected 1/0O is subject to security label restrictions.

365

IPCRM(1) IPCRM(1)

If the PRI V_SU configuration option is enabled, the super user is alowed to remove any identifier.

SEE ALSO

i pcs()

nmsgct | (2), nsgget (2), msgr cv(2), msgsnd(2), senct | (2), senget (2), senop(2), shmat (2),
shnct | (2), shndt (2), shiget (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

st di pc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

i pc(5), meg(5), sen5), shm5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

i pc(7) Online only

366 SR-2011 10.0

IPCS(1) IPCS(1)

NAME

i pcs — Reports interprocess communication (1PC) facilities status

SYNOPSIS

ipcs [-a] [-b] [-c] [-e] [-m [-o] [-p] [-q] [-s] [-t]
IMPLEMENTATION

All Cray Research systems

DESCRIPTION

Thei pcs command prints information about active interprocess communication (IPC) facilities. Without
options, information is printed in short format for message queues, shared memory, and semaphore sets that
are currently active in the system.

The information that is displayed is controlled by the options supplied.
-m Prints information about active shared memory segments.

-q Prints information about active message queues.

-s Prints information about active semaphore sets.

If -q,-mor-s are specified, information about only those indicated is printed. If none of these three are
specified, information about all three is printed subject to the following options. For detailed information
about an i pcs listing, seethe i pcs Listing Information section.

-a Usesadl print options. (Thisis a shorthand notation for - b, -c,-0,-p,and-t.)

-b Prints information on biggest allowable size: maximum number of bytes in messages on queue for
message queues, size of segments for shared memory, and number of semaphores in each set for
semaphores.

-c Prints creator’s login name and group name.

-e Provides the access control list (ACL) flag, security level, and compartment flag as the fields
immediately following the mode field. When at |east one compartment is set, the facility’s
compartment flag is displayed as a plus sign (+) adjacent to the facility’s security level. When a
facility has an associated ACL, its ACL flag appears as a letter a adjacent to the mode field. A
facility that has a wildcard security level has an asterisk (*) displayed for its security level.

-0 Prints information on outstanding usage: number of messages on the queue and total number of bytes
in those messages and number of processes attached to shared memory segments.

-p Prints process number information: process ID of last process to send a message, process ID of last
process to receive a message on message queues, process ID of creating process, and process ID of last
process to attach or detach on shared memory segments.

SR-2011 10.0 367

IPCS(1) IPCS(1)

-t Prints time information: time of the last control operation that changed the access permissions for all
facilities, time of last msgsnd(2) and last msgr cv(2) on message queues, time of last shmat (2) and
last shmdt (2) on shared memory, time of last senop(2) on semaphores.

i pcs Listing Information

368

This section lists the column headings in an i pcs listing and describes the information produced by the

i pcs command. The default headings and informtion produced by this command are as follows except for
those described with options in parentheses (for example, CREATOR). In these exceptions, the options
named cause the corresponding heading to appear.

Heading Description
T Type of the facility:
q Message queue
m Shared memory segment

s Semaphore
I D The identifier for the facility entry.
KEY The key used as an argument to msgget (2), senget (2), or shnget (2) to create the facility
entry.

NOTE: The key of a shared memory segment is changed to | PC_PRI VATE when the segment
has been removed until all processes attached to the segment detach it.

MODE The facility access modes and flags: The mode consists of 12 characters that are interpreted as
follows. The first three characters are one of the following:

P The persistent facility is enabled for the message queue, semaphore set, or shared memory
segment.

R A processis waiting on a msgr cv(2) operation.
S A process is waiting on a msgsnd(2) operation.
- The corresponding specia flag is not set.

The next 9 characters are interpreted as three sets of 3 bits each. The first set refers to the
owner’s permissions; the next set refers to permissions of others in the user group of the facility
entry; and the last set refers to al others. Within each set, the first character indicates
permission to read, the second character indicates permission to write or alter the facility entry,
and the last character is currently unused.

The permissions are indicated as follows:
r Read permission is granted.
w Write permission is granted.
a Alter permission is granted.

- The indicated permission is not granted.

SR-2011 10.0

IPCS(1) IPCS(1)

OMNER The login name of the owner of the facility entry.

GROUP The group name of the group of the owner of the facility entry.
CREATOR (- a, - ¢) The login name of the creator of the facility entry.

CGROUP (- a, - ¢) The group name of the group of the creator of the facility entry.

CBYTES (- a, - 0) The number of bytes in messages currently outstanding on the associated message
queue.

Q\NUM (- a, - 0) The number of messages currently outstanding on the associated message queue.

MBYTES (- a, - b) The maximum number of bytes allowed in messages outstanding on the associated
message queue.

LSPI D (-a, - p) The process ID of the last process to send a message to the associated queue.

LRPI D (-a, - p) The process ID of the last process to receive a message from the associated queue.

STI ME (- a, -t) The time the last message was sent to the associated queue.

RTI ME (- a, -t) The time the last message was received from the associated queue.

CTI ME (- a, - t) The time when the associated entry was created or changed.

NATTCH (- a, - 0) The number of processes attached to the associated shared memory segment.

SEGSZ (- a, - b) The size of the associated shared memory segment.

CPID (- a, - p) The process ID of the creator of the shared memory entry.

LPI D (-a, - p) The process ID of the last process to attach or detach the shared memory segment.

ATI ME (-a, -t) The time the last attach was completed to the associated shared memory segment.

DTI ME (-a, -t) The time the last detach was completed on the associated shared memory segment.

NSEMS (- a, - b) The number of semaphores in the set associated with the semaphore entry.

orl ME (- a, -t) The time the last semaphore operation was completed on the set associated with the
semaphore entry.

NOTES

Things can change while i pcs is running; the information it gives is guaranteed to be accurate only when it
was retrieved.

Only an appropriately authorized user can see output for IPC facilities whose active security label is greater
than that of the user.

If this command is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the action shown:

Privilege Text Action

showal | Allowed to see output for all 1PC facilities.

SR-2011 10.0 369

IPCS(1) IPCS(1)

If the PRI V_SU configuration option is enabled, the super user is allowed to see output for all 1PC facilities.

FILES
/ dev/ Rmem Kernel data structures
[etc/ group Group names
[et c/ passwd User names
/et c/udb User database (UDB) information

[etc/udb. public User database (UDB) public information

SEE ALSO

i pcr m1)

msgct | (2), nsgget (2), msgr cv(2), msgsnd(2), senct | (2), senget (2), senop(2), shmat (2),
shnet | (2), shmdt (2), shiget (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

st di pc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

i pc(5), meg(5), sen5), shm5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

i pc(7) Online only

370 SR-2011 10.0

ISPELL (1)

NAME

i spel | — Corrects spelling for afile
SYNOPSIS

i spel | [file..]

ispell [-]1 O-D0O-F
spel | [+l ocal _file] [file..]

IMPLEMENTATION
All Cray Research systems

STANDARDS
FSF

DESCRIPTION

ISPELL (1)

Thei spel | program helps you to correct typos in afile, and to find the correct spelling of words. When
presented with a word that is not in the dictionary, i spel | offers possibilities.

The best way to usei spel | iswith GNU Emacs. For documentation about this mode, see the info topic
"i spell."

i spel | can aso be used by itself. In this case, the most common usage is "i spel | filename." If

i spel | finds aword that is not in the dictionary, the word is printed at the top of the screen. i spel |
then checks the dictionary for near misses (words that differ only by a single letter, a missing or extra letter,
or a pair of transposed letters). Any that are found are printed on the following lines, and two lines of
context containing the word are printed at the bottom of the screen. If your terminal can display reverse
video, the word is highlighted.

If you think the word is correct as is, you can press the <space> key to accept it this one time, the <a>
key to accept it for the rest of this file, or the <i > key to accept it and put it in your private dictionary. If
one of the near misses is the word you want, type the corresponding number. You can press the <r > key
and you will be prompted for a replacement word. The string you type will be broken into words, and each
one will also be checked. You can also press the <?> key for help.

i spel | accepts the following options:

-1 Produces a list of misspelled words from the standard output. This mode is compatible with the
traditional spell program, except that the output is not sorted.

-D Prints words with flags.

-E Prints expanded words as follows:

SR-2011 10.0 371

ISPELL (1) ISPELL (1)

% i spel |

wor d: i ndependant

how about: independent
word: ~D

-u ispell triesto be compatible with the traditional spell program.
file Name of file to be corrected.

If i spel | is started with no arguments, it enters a loop reading words from the standard input and printing
messages about them on the standard output. You can use this mode to find the spelling of a problem word.

There are severa other options provided so that other programs can use i spel | . See the documentation in
the i spel | source directory for details.

If i spel | is executed by using the name spel |, it tries to be compatible with the traditional spell
program. You can also get this behavior by specifying the - u option. In this case, the list of files (or
standard input) is checked, and an alphabetized list of misspellings is produced on the standard output.

FILES

fusr/lib/ispell/ispell.dict System dictionary
$HOVE/ i spel | . wor ds Private dictionary

SEE ALSO
emacs(l)

fusr/lib/emacs/infol/ispell.texinfo
/

372 SR-2011 10.0

JA(1) JA(1)

NAME

j @ — Job accounting information

SYNOPSIS
jall-f] [-o] [-s [-e]] [[-a acid] [-d] [-D] [-g d [-] jid] [-1 [-C] [-h]] [-n names]
[-p marks] [-r] [-u uid]]] [-t] [file]
ja [-n ffile]
ja[l-cl-hl] [-f] [-s [-€]] [[-a acid] [-d] [-D] [-g gid] [-] jid] [-1[- G h]] [-n names]
[-p markg] [-r] [-u uid]]] [-t] [file]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The j a command provides job- or session-related accounting information. This information is taken from
the job accounting file to which the kernel writes, provided that job accounting is enabled. The job
accounting file can be either the file you provide or the default, described in the following. j a provides
information only about terminated processes. The login shell and the current j a command being executed
are active processes and are not reported by j a. See ps(1) for information about active processes.

To enable job accounting, use the j a command. You may specify only the mark option (- n) and the
optional file name when enabling. If the job accounting file does not exist, j a createsit. If the file does
exist, accounting information is appended to the existing file. If job accounting is already enabled and the
optional file name specified is a file other than the currently active job accounting file, the newly specified
file becomes the job accounting file.

If you do not specify the optiona file name, a default name of the following form is used:

$TMPDI R/ . j acct job ID
The TVPDI R environment variable is not exported in at (1) or cr ont ab(1) jobs. You must specify the job
accounting file name in the at (1) or cr ont ab(1) commands; otherwise, j a will abort.

On normal termination of job accounting (-t specified), j a removes the job accounting file and disables job
accounting. If you specify the optional file name when enabling, specify the same name when terminating.

The j a command lets you mark the positions of various commands (processes) by writing the position of
the next accounting record to be processed to standard output. You can use these marks when generating
reports to restrict the information reported.

SR-2011 10.0 373

JA(1) JA(1)

There are three groups of options you can use with the j a command:

Report selection options
([-c], [- f]. [- o], and [- s])

Mark and disable options
(-mor[-t])

Report modifier options
(-dI.[-e], - h], [- 1], [- r], [[- & acid], [- g gid], [-] jid], [- n names], [- p marks], [- u uid]]],
[- €, and [- D))

Report Selection Options
The j a command can produce four kinds of reports by using the - ¢, - f, - 0, and - s options; these are first
summarized and then described in detail.

In summary, the four report selection options are as follows:

-C Produces the command report (- ¢ and - o are mutually exclusive).

-f Produces the command flow report.

-0 Produces the other (alternative) command report (- 0 and - ¢ are mutually exclusive).
-S Produces the summary report.

Described in detail, the four report selection options are as follows:

-C Produces a command report. The following fields are reported when you specify the - ¢ option with
the -1 option or with the - | and - h options. These fields provide statistics about individual
processes.

Command Nane First 8 characters of the name of the command that was executed.
Started At Start time of the process.

El apsed Seconds Elapsed time of the process.

User CPU Seconds Amount of CPU time the process consumed while it was executing in
user mode.

Sys CPU Seconds Amount of CPU time the process consumed while it was executing in
system mode.

I1/O Wit Sec Lck Amount of time the process waits for 1/O while it is locked in memory.
I/O wait time is the time a process is blocked until it is rescheduled.
The process is blocked while waiting for things such as raw 1/0 to
complete.

I1/O Wait sec Unl ck Amount of time the process is blocked until it is rescheduled while it is
not locked in memory. Time spent for system buffers and buffered 1/0
blocks are included.

374 SR-2011 10.0

JA(L)

SR-2011 10.0

CPU Mem Avg Mnds

[/ O Wem Avg Mwds

Kwords Xferred

Log I/ O Request

Phy 1/ 0O Request

Menory Hi Wat er

Ex St

Ni

Fl

SBUs

JA(1)

Average amount of memory that this process used. This value is
calculated by dividing the memory integral by the total CPU time
(system + user CPU time). For more information about memory
integrals, see UNICOS Resource Administration, Cray Research
publication SG—2302.

Average amount of memory that the process used while it was locked in
memory and waiting for 1/0. The value is calculated by dividing the
[/O wait memory integral by the I/O wait time while locked in memory.

Number of characters read or written by ther ead, wri t e, r eada,
witea,andlistio systemcals(seeread(2), wite(2),
reada(?2), witea(2),and!istio(2).

Number of logical 1/0 requests that the process performed. A logical
1/O request is performed each time a process callsar ead, wi t e,
reada, or witea system cal. Whenthel i sti o system call (see
l'istio(2)iscaled, the number of logical 1/0 requests is egqual to the
number of strides multiplied by the number of requests processed.

Number of times data actually was read from or written to a device.
This count does not include requests found in the buffer cache and
requests retrieved along with another 1/0 request.

Maximum amount of memory the process used at any one time. The
value is reported in units of 512 words.

Lower 8 bits from the exit status of the process. See wai t (2) for more
information.

The last nice value of the process; reported when the total CPU time
(user + system CPU time) is less than 1 second. If the total CPU time
is greater than or egqual to 1 second, the minimum nice value at 1 second
and onward is listed. The minimum nice value corresponds to the
highest priority the process was niced.

Accounting flag. The following values are available:

F The process forked but did not execute.

S The process used super-user privileges.

The accounting flags are defined in / usr /i ncl ude/ sys/ acct . h.

System billing unit (SBU) for the process. The system administrator
configures SBU calculations. For more information, see UNICOS
Resource Administration, Cray Research publication SG—2302.

When a process is multitasked, the - ¢ option produces reports that contain the following fields.
Additional lines of multitasking information follow the per-process statistics.

375

JA(L)

376

Command Nane

User CPU Seconds

JA(1)

Number of processors that were connected to the process. For example,
avaueof # 1 CPU indicates that the line contains information about
the process when only one CPU was connected to it. Likewise, # 2
CPU denotes information when two CPUs were connected.

User CPU time (in seconds) when the process was connected to the
number of CPUs specified in the Conmand Nane field. The user CPU
time reported in this field includes wait semaphore time.

Example:

Comand Started El apsed User CPU
Name At Seconds Seconds
a. out 16: 19: 18 1.1251 5. 6487

1 CPU 0.0122

2 CPU 0.0194

3 CPU 0.0125

4 CPU 0. 0028

5 CPU 0.0120

6 CPU 0.0108

7 CPU 0.8371

8 CPU 4,7813

In this example, a. out is a multitasked program. The sum of the
multitasked user CPU time is 5. 6881, which is larger than 5. 6487,
the user CPU time reported for a. out . The larger number reflects the
fact that the multitasked user CPU time includes wait semaphore time.

To calculate the wait semaphore time, subtract the per-process user CPU
time from the sum of the multitasked user CPU times. In the previous
example, the wait semaphore time is 5.6881 — 5.6487 = 0.0394 seconds.

The - ¢ and - d options produce the following additional fields that contain information about
device-specific I/O for the process in the preceding line.

Command Nane

Kwords Xferred

Log I/ O Request

Logica device accounting name. The name may span many fields. An
example value is# Bl ock devi ce dd29.

Number of characters read or written by the r ead(2), wri t e(2),
reada(2), witea(2),and!istio(2) system cals to the device
specified in the Conmmand Nane field.

Number of ther ead(2), wri t e(2), reada(2), and wri t ea(2) system
calls made to the device. When | i sti 0o(2) is called, the number of
logical 1/0O requests is equal to the number of strides multiplied by the
number of requests processed on the device.

SR-2011 10.0

JA(L)

SR-2011 10.0

JA(1)

Produces a command flow report. This report provides information on the parent/child relationships
of processes and, if you specify the - | option, CPU user and system time (in seconds).

Produces an aternative (other) command report. The - 0 option report contains the following fields,
which show statistics about individual processes. Several fields show significant values only if
performance accounting has been enabled; otherwise, the string NA is printed.

Conmand Nane
Started At

El apsed Seconds
Proc ID

Parent Procl D

Sys Call Seconds
/O Wait Secs Term

Wait Swap Seconds

Nunber of Swaps
Phy Bl ks Mvd: Buf

Phy Bl ks Mvd: Raw

Menory Hi wat er

Start fract

First 8 characters of the name of the command that was executed.
Start time of the process.

Elapsed time of the process.

Process ID of the current process.

Process ID of the parent process.

System call time (in seconds).

[/O terminal wait time; I/O wait time is the period of time starting when
a process is blocked and ending when it is rescheduled. This field
contains a significant value only if performance accounting is enabled
(see devacct (8)).

Time (in seconds) that the process waited while swapped out of
memory. This field contains a significant value only if performance
accounting is enabled (see devacct (8)).

Number of swaps for the current process.

Number of physical blocks transferred by the process from or to a block
device by using the system buffer 1/O interface. This field contains a
significant value only if performance accounting is enabled (see
devacct (8)).

Number of physical blocks transferred by the process to and from a
block device by using the raw 1/O interface. This field contains a
significant value only if performance accounting is enabled (see
devacct (8)).

Maximum amount of memory the process used at any one time. The
value is reported in units of 512 words.

Clocks since last second mark was displayed. This field contains a
significant value only if performance accounting is enabled (see
devacct (8)).

377

JA(L)

378

JA(1)

Produces a summary report. The - s option report contains the following fields, which provide
accumulated usage statistics for the reporting period.

Job Accounting File Name

Operating System
User Name (1D)
G oup Name (ID)
Account Nare (1D)

Job ID
Report Starts
Report Ends

El apsed Ti ne

User CPU Ti ne

System CPU Ti e

Name of the file to which the kernel writes the j a accounting records.
Operating system name, node name, release, version, and hardware type.
Name and user ID of the real user.

Name and group ID of the real group.

Account name and account number that this process uses. Multiple
account ID usage is listed, but not individual accounts.

Job ID associated with these processes.
Starting time of the process that began first during the reporting period.

Ending time of the process that was the last to complete during the
reporting period.

Duration of the reporting period in seconds (the difference between the
report ending and starting times).

Total CPU time (in seconds) used during the reporting session while the
processes were in user mode. (This field is expanded to report
multitasking data.)

Total CPU time (in seconds) used during the reporting session while the
processes were in system mode.

I/O Wit Time (Locked)

Cumulative time (in seconds) the system spent waiting for I/O while the
processes were locked in memory.

I/O WAt Time (Unl ocked)

CPU Ti me Menory | ntegral

Cumulative time (in seconds) the system spent waiting for 1/O while the
processes were not locked in memory.

(Mnwor d- second)

Sum of the memory integrals for al processes. For more information
on memory integrals, see UNICOS Resource Administration, Cray
Research publication SG—2302.

SDS Ti me Menory | ntegral

I/O WAt Time Menmory Integral

(Not on CRAY EL series systems) Measure of SDS use with respect to
how long the SDS space was used.

(Mnwor d- second)
Measure of how much memory was used when the processes waited for
[/O while locked in memory.

SR-2011 10.0

JA(L)

SR-2011 10.0

JA(1)

Data Transferred Total number of characters read or written by the r ead(2), wi t e(2),
reada(?2), witea(2),and!istio(2) system cals by all processesin
the reporting period.

Maxi mum nmenory used (Maor d)
Maximum amount of memory used by any process at one time.

Logi cal 1/0 Requests
Total number of r ead(2), wi t e(2), reada(2), and wi t ea(2)
system calls executed by all processes in the reporting period. The sum
of the number of strides multipled by the number of requests processed
for each | i sti 0(2) call is added to the logical /O request total.

Physi cal 1/0 Requests
Total number of times data was read to or written from a physical
device by all processes in the reporting period.

Nunber of Commands Tota number of commands that completed during the reporting period.
Billing Units Sum of the system billing units (SBUs) of all processes.

If a process uses a massively parallel processor (where there is a Cray MPP system), the report
contains the following additional information:

MPP Ti me Total number of CPU seconds that the Cray MPP system was used.
MPP Barrier Bits Total number of barrier bits used and the largest number used at one
time.

MPP Processor El enents
Total number of processing elements (PEs) used and the largest number
used at one time.

If a process is multitasked, the User CPU Ti ne section of the report using the - s option expands
to include the following information:

User CPU Time Total amount of user CPU time (seconds) used during the reporting
session while the processes were in user mode.

If the system administrator has defined weighting factors for multiple
CPU use, a weighted user CPU time is also reported. This valueisin
brackets. It is calculated by taking the sum of the weight multiplied by
the user CPU time for all concurrent CPUs used. In this instance, the
user CPU time includes the wait semaphore time.

In Example 3 of the EXAMPLES section, the total user CPU time
(excluding wait semaphore time) is 3.5826 seconds. The weighted user
CPU time is 3.4636 seconds. Therefore, an incentive exists to use
multitasking with this program.

379

JA(L)

380

JA(1)

Mul titaski ng Breakdown

Concurrent CPUs

Wei ght

Connect Seconds

CPU Seconds

Wei ghed Seconds

The first part of the breakdown shows the user CPU usage by the
number of concurrent CPUs used. The Wi ght and Wei ght ed
seconds columns appear only if the system administrator has defined
CPU weighting factors.

Number of processors simultaneously connected to the process(es). A
connected processor may be executing real work, or it may be waiting
on a blocked condition, such as a semaphore.

The weighting factor for having n CPUs connected to the process(es),
where n is given by the previous field. To determine the factor for the
nth CPU, subtract the current weighting factor from the one in the
previous line, if there is one. In Example 3 of the EXAMPLES section,
the second CPU is 90% as expensive as the first CPU.

The number of seconds that N CPUs were connected to the processes.

The number of user CPU seconds used by n concurrent processors. It
includes wait semaphore time and is the product of the number of
concurrent CPUs multiplied by the connect seconds.

Weighted CPU seconds; the product of the weight and the CPU seconds.

The final portion of the breakdown shows multitasking summary statistics.
Concurrent CPUs (Avg.)

Wei ght (Avg.)

Average number of concurrent CPUs that were connected to the
process(es). It is calculated by dividing the total CPU seconds by the
total connect seconds.

Average weighting factor. It is calculated by dividing the total weighted
seconds by the total connect seconds.

Connect seconds (total)

CPU seconds (total)

Sum of the connect seconds found in the first portion of the breakdown.

Sum of the CPU seconds found in the first portion of the breakdown.

Wei ght ed seconds (total)

Total weighted CPU seconds; the sum of the weighted seconds found in
the first portion of the breakdown.

See Example 3 of the EXAMPLES section for the multitasking breakdown, including summary statistics.

SR-2011 10.0

JA(L)

JA(1)

Mark and Disable Options
The mark and disable options are as follows:

-m

-t

Writes the position of the next accounting record to standard output. This can be used to mark
various positions within the job accounting file for later use with the - p option. The position
marked is the byte offset of the current end-of-information of the job accounting file. (- mcannot be
used with the report selection and modifier options nor with the - t disable option.)

Disables (terminates) job accounting. (- mand -t are mutually exclusive).

Report Modifier Options
Report modifier options must be used with at least one selection option. The report modifier options are as

follows:
-d

-e

SR-2011 10.0

Provides information about device-specific I/O, if available; forces - | to be selected.

Generates an extended summary report; you must use - e with the - s option. The following are
descriptions of fields produced by specifying the - e option with the - s option. These fields
provide additional accumulated statistics for the reporting period. Several fields contain values
only if performance accounting has been enabled; otherwise, the string NA is printed instead.

System Cal | Tine Total amount of time (in seconds) that the processes executed
system calls.

/O Wit Time (Term nals)
Total amount of time in seconds that the processes waited for 1/0
from and to terminals. This field contains a significant value only
if performance accounting is enabled (see devacct (8)).

Wait Tinme while Swapped
Total amount of time (in seconds) that the processes waited while
swapped out of memory. This field contains a significant value
only if performance accounting is enabled (see devacct (8)).

Number of Swaps Number of times the processes were swapped out of memory.

Physi cal Bl ocks Moved (Bufd I/0
Number of physical blocks transferred by processes to and from
block devices by using the system buffer 1/0 interface. This field
contains a significant value only if performance accounting is
enabled (see devacct (8)).

Physi cal Bl ocks Moved (Raw 1/ 0O
Number of physical blocks transferred by processes to and from
block devices by using the raw 1/O interface. This field contains a
significant value only if performance accounting is enabled (see
devacct (8)).

Replaces I/0 wait times with connect time; must be used with the - | option.

381

JA(L)

NOTES

382

- a acid
- g gid
-j jid
- u uid

- N names

- p marks

JA(1)

Replaces physical 1/0O data with the largest amount of memory the process used at one time, in
512-word units. Used only with both the - ¢ and -1 options.

Provides additional information when used with - ¢ or - f . Additionally, if the-1 and - ¢
options are used, and there is an MPP accounting record (where there is a Cray MPP system),
three MPP fields are printed:

CPU time Amount of CPU time (in seconds) used by the process for binary execution.
PEs Number of processing elements (PEs) used.
Barrier bits Number of barrier bits used to control process flow (in bits per second)

Raw mode, no headers are printed.
Report is for this account ID (acid) only.
Report is for this group 1D (gid) only.
Report is for thisjob ID (jid) only.
Report is for this user ID (uid) only.

Shows only commands matching names patterns that may be regular expressions, as in ed(1),
except that a + symbol indicates one or more occurrences.

Shows only commands within the marked range. This can be a list of ranges with each list item
having the following form:

First command preceding current position
First command following mark
All commands between the mark and EOF
n2 All commands between the two marks
All commands between BOF and the mark
All commands between BOF and EOF (default)

See the - moption for information on how to obtain marks.

Reports on tape daemon usage. Tape information, such as the number of bytes read and written,
is available after the tape unloads. Reservation information is available after the tape device is
released.

For multitasking breakdowns with the - ¢ and - s options, processes are considered to be multitasked if the
program was multitasked and if actual execution overlap occurred.

SR-2011 10.0

JA(1) JA(1)

CAUTIONS

In the UNICOS operating system, a system administrator has the option of choosing which accounting
records are written to the pacct file. Only the base record is required. System administrators may turn off
records in the pacct file to save disk space and the expense of keeping certain records.

If an accounting record is not turned on in the pacct file, a user cannot generate that record’s information
with the j a command. In order to generate the desired information with j a, a system administrator must
turn on the necessary record(s) in the pacct file for a specified time period.

EXAMPLES
The following two examples show the usage of the - mand - p options with standard shell and Korn shell
variables.

Example 1:
ja #enabl e job accounting

(Miscellaneous commands)

ml="j ;1 -m #mark job accounting file's current position
(Commands of special interest)

=" j ;1 -m #mark job accounting file's current position
(Miscellaneous commands)

ja-cb $ml: $m2 #print conmand report frommark ml to mark n2

ja -st #print summary report for entire session and disable
job accounting

SR-2011 10.0 383

JA(1) JA(1)

Example 2:
ja #enabl e job accounting
(Miscellaneous commands)
m="ja -m #mark job accounting file's current position

(Commands of special interest)
ja -cp $mi: #print command report frommark to EOF
(Miscellaneous commands)

ja -st #print sunmary report for entire session and disable
j ob accounting

Example 3: The following exampleisj a - s output for a multitasked process:

Job Accounting - Summary Report

Job Accounting Fil e Nane . jacct

Operating System : sn4025 hot 8.0.2ei tja.11l CRAY C90

User Name (1D) : user (100)

G oup Name (I1D) :ugrp (10)

Account Name (1D) . user (100)

Job 1D : 8271

Report Starts . 07/ 27/ 94 08:51:58

Report Ends : 07/ 27/ 94 08:52:10

El apsed Tine : 12 Seconds

User CPU Tine : 3.5826 [3.4636] Seconds

Mul titasking Breakdown

(Concurrent CPUs [Weight] * Connect seconds CPU seconds [Wi ghted seconds])

1[1.00] * 2.1793 = 2.1793 [2.1793]
2 [1.90] * 0.2464 = 0.4929 | 0. 4682]
3[2.70] * 0.2803 = 0.8410 | 0. 7569]
4 3.40] * 0.0170 = 0.0679 [0.0577]

Concurrent CPUs [Wight] * Connect seconds = CPU seconds [Wi ghted seconds])
(Avg.) (Avg.) (total) (total) (total)

1.32 [1.27] * 2.7231 = 3.5811 [3. 4622]

384 SR-2011 10.0

JA(1) JA(1)

System CPU Ti me 0.0812 Seconds

I/O Wit Tinme (Locked) 0. 0878 Seconds

/O Wit Tinme (Unlocked) 0. 0337 Seconds

CPU Time Menory | ntegral 1. 3551 Mword- seconds
SDS Time Menory | ntegral 0. 0000 Mmord- seconds
/O Wit Tine Menory Integral 0. 0424 Mnor d- seconds
Dat a Transferred 0. 0038 MMrds

Maxi mum menory used 0. 4844 MAérds

Logi cal 1/0O Requests 19

Physical |/0O Requests 12

Number of Commands 2

Billing Units 0. 0000

SEE ALSO
acct com1), at (1), cr ont ab(1), ed(1), ps(1), sh(2)

exec(2),fork(2),listio(2),read(2), reada(2),wait(2),wite(2),witea(2) inthe UNICOS
System Calls Reference Manual, Cray Research publication SR—2012

devacct (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

UNICOS Resource Administration, Cray Research publication SG—2302

SR-2011 10.0 385

JOBS(1) JOBS(1)

NAME

j obs — Displays status of jobs in the current session

SYNOPSIS
jobs [-1] [-n] [job_id ...]
jobs -p [-n] [job_id ..]
IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX, XPG4

AT&T extension (- n option)
DESCRIPTION

The j obs utility displays the status of jobs that were started in the current shell execution environment (see
sh(1)). Whenj obs reports the termination status of a job, the shell removes its process ID from the list of
those "known in the current shell execution environment.”

The j obs utility accepts the following options and operand:

-1 Lists more information about each job. This information includes the job number, current job,
process group ID, state, and the command that formed the job.

-n Displays only jobs that have stopped or exited since last notified.
-p Displays only the process IDs for the process group leaders of the specified jobs.

job_id Specifies the jobs for which the status will be displayed. If no job_id operand is given, the status
information for all jobs is displayed. See the Jobs subsection in the sh(1) man page for a
description of the format of job _id.

By default, the j obs utility displays the status of all stopped jobs, running background jobs, and al jobs
whose status has changed and have not been reported by the shell.

If you specify the - p option, the output consists of one line for each process ID:

" <process ID>\ n"

Otherwise, if the - | option is not specified, the output is a series of lines of the form:

"[<job-number>] <current> <state> <command>\ n"

The fields are as follows:

386 SR-2011 10.0

JOBS(1) JOBS(1)

<current> The character + identifies the jobs that would be used as a default for the bg(1) or f g(1)
utilities; you can also specify this job using the job_id "%+" or "%84. The character -
identifies the jobs that would become the default if the current default job were to exit; you
can also specify this job using the job_id "% ". For other jobs, this field is a <space>. At
most, one job can be identified with + and at most one job can be identified with - . If any
suspended job exists, the current job is a suspended job. If at least two suspended jobs exist,
the previous job also is a suspended job.

<job-number> A number that can be used to identify the process group to the wai t (1), f g(1), bg(1), and
kil I (1) utilities. Using these utilities, you can identify the job by prefixing the job number

with %
<state> One of the following strings (in the POSIX locale):

Runni ng Indicates that the job has not been suspended by a signal and has
not exited.

Done Indicates that the job completed and returned exit status zero.

Done (code) Indicates that the job completed normally and that it exited with
the specified nonzero exit status, code.

St opped

St opped (Sl GTSTP) Indicates that the job was suspended by the SIGTSTP signal.

St opped (SI GSTOP) Indicates that the job was suspended by the SIGSTOP signal.

St opped (SI GITI N) Indicates that the job was suspended by the SIGTTIN signal.

St opped (SI GTTQU) Indicates that the job was suspended by the SIGTTOU signal.
<command> Specifies the associated command that was given to the shell.

If you specify the - | option, afield that contains the process group ID is inserted before the <state> field.

NOTES

The j obs utility described in this man page is a built-in utility to the standard shell (sh(1)). An executable
version of this utility is availablein / usr/ bi n/ j obs.

EXIT STATUS
The j obs utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

SEE ALSO
bg(1), f g(2), ki I 1 (1), sh(1), wai t (1)

SR-2011 10.0 387

JOIN(1) JOIN(1)

NAME

j oi n — Joins specified lines of files

SYNOPSIS

join [-a file number O-v file number] [-e string] [- 0 list] [-t char] [-1 field] [- 2 field]
filel file2

Obsolescent version; may not be supported in future releases:
join [-a file number] [-e string] [-] field] [-] 1 field] [-] 2 field] [-o0 list...] [-t char] filel file2

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Thej oi n utility joins on standard output the two relations specified by the lines of filel and file2. If filel
or file2 is -, standard input will be used.

filel and file2 must be sorted in increasing ASCII-collating sequence on the fields on which they are to be
joined, usually the first in each line.

One lineis in the output for each pair of lines in filel and file2 that have identical join fields. The output
line typically consists of the common field, the rest of the line from filel, and the rest of the line from file2.

The default input field separators are a <space>, <t ab>, or <newl i ne> character. In this case, multiple
separators count as one field separator, and leading separators are ignored. The default output field separator
isa<space>.

Some of the following options use argument file_number. This argument should be 1 or 2, referring to either
filel or file2, respectively. Thej oi n utility accepts the following options:

- a file_number In addition to the typical output, produces a line for each unpairable line in file
file_number, where file_number is 1 or 2.

- e string Replaces empty output fields with string string.
-j field Equivalent to - 1 field - 2 field.

-j 1 field Equivalent to - 1 field.

-j 2 field Equivalent to - 2 field.

388 SR-2011 10.0

JOIN(1) JOIN(1)

NOTES

-0 list Each output line comprises the fields specified in list, each element of which has the form
n.m(nis afile number, and mis afield number). Element zero (0) represents the join
field. The common field is not printed unless specifically requested. list is a single
command line argument. However, in the obsolete version, the argument list can be
multiple arguments on the command line.

-t char Uses character char as a separator. Every appearance of char in aline is significant.
Character char is used as the field separator for both input and output.

- v file_number Instead of the default output, produces a line only for each unpairable line in file_number,
where file_number is 1 or 2. If you specify both-v 1 and -v 2, al unpairable lines are

output.
- 1 field Join on the fieldth field of file 1. Fields start with 1.
- 2 field Join on the fieldth field of file 2. Fields start with 1.
filel file2 The names of the input files that you specify.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to join any files. In a privileged administrator shell environment,
shell-redirected 1/O is not subject to file protections.

sysadm Allowed to join any files subject to security label restrictions. Shell-redirected 1/O is
subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to join any files. Shell-redirected
I/0 on behalf of the super user is not subject to file protections.

EXIT STATUS

BUGS

Thej oi n utility exits with one of the following values:
0 All input files were output successfully.

>0 An error occurred.

With default field separation, the collating sequence is that of sort - b; with -t , the sequence is that of a
plain sort.

The conventions of j oi n, sort (1), comm1), and uni (1) are incongruous.

SR-2011 10.0 389

JOIN(1) JOIN(1)

File names that are numeric may cause conflict when the - o option is used right before listing file names.

EXAMPLES

Example 1: The following command line joins the passwd file and the gr oup file, matching on the
numeric group D, and outputting the login name, the group name, and the login directory. It is assumed
that the files have been sorted in ASCII-collating sequence on the group ID fields.

join -14-23-0"1.12.11.6" -t: /etc/passwd /etc/group

Example 2: The following command line performs the identical task as the previous example, but using the
obsolescent version of j oi n:

join -j1 4 -j2 3 -01.12.11.6 -t: /etc/passwd /etc/group

SEE ALSO
awk (1), com(1), sort (1), uni q(1)

390 SR-2011 10.0

JSTAT(1) JSTAT(1)

NAME
j st at — Displays job status information

SYNOPSIS

jstat [-] jid]
IMPLEMENTATION

All Cray Research systems

DESCRIPTION

Thej st at command displays information pertaining to either one or all active jobs. If the-j option is
not specified, all jobs will be displayed with the following format:

npr oc sds nmenory cpu
jid owner wuse lim use lim use lim use |lim command

The fields contain the following information:

jid Job ID.

owner ASCII name of job owner.

npr oc Number of processesin use and limit.

sds Number of blocks in use and limit. A block is 512 Cray words.
menory Number of clicks in use and limit. A click is 512 Cray words.
cpu Number of CPU seconds used and limit.

conmmand Name of current command in job.

**** js used to indicate no limit for all | i mfields.
When the - j option is specified, all processes are displayed for the specified job with the following format:

pid status state utime stine size addr systemcall command

The fields contain the following information:

pi d Process ID.

st at us Current status (r un or sl eep).
state Current state.

utine User time in seconds.

stinme System time in seconds.

SR-2011 10.0 391

JSTAT(1) JSTAT(1)

si ze Size of processin clicks.
addr Address (in decimal) of process in memory.
system cal |l Last system cal made.

comand Process name.

NOTES

Output from j st at is restricted to processes running at a security label that the calling user dominates.

If this command is installed with the default privilege assignment list (PAL), a user with the showal |
privilege text is not subject to output restrictions.

If jid is not a number, zero is used for the jid.

You must have the permissions of / uni cos set to 644 in order for this command to execute correctly.

Failure to have permissions set correctly may cause j st at to issue the message per mi ssi on deni ed.
SEE ALSO

privtext (1), ps(l)

UNICOS Basic Administration Guide for CRAY J90 Model V based Systems, Cray Research publication
SG-2416

392 SR-2011 10.0

KCP(1)

NAME

KCP(1)

kcp — Copies remote files and directories

SYNOPSIS

kcp [-b] [-c bufsize] [-p] [-r] [-X] [-k realm] [-s bufsize] [- S tos] sourcelist destination

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The kcp utility copies files between machines. The sourcelist argument can refer to remote files, local files,
or directories; arguments can consist of either absolute or relative path names.

Remote files are specified in the format rhost: file; rhost is a remote host name or alias (described in

host s(5)). When the login name differs from your login name on a Cray Research system, file names on a
remote host are specified as user@host: file. If you do not specify a full path name, the path is interpreted
relative to your login directory on rhost. A path name on a remote host can be quoted (using \, ", or ‘) so
that metacharacters are interpreted remotely.

The local file name file may not contain a colon (:) unless it is preceded anywhere in the name by a slash

()

The kcp utility accepts the following options:

-b

- ¢ bufsize

SR-2011 10.0

Displays the buffer sizes for the copy buffer and socket buffer during a transfer.

Sets the copy buffer size. This buffer is used for reading and writing between the data socket
and the source or destination file. kcp automatically chooses a copy buffer size; however,
you can alter the selection. The - ¢ option requires an argument. An argument of of f turns
off copy buffer sizing and the buffer defaults to the size specified by the COPYBUFSI ZE
#def i ne inthet cp_confi g. h file. An argument of aut o sets buffer sizing to automatic
and has no effect relative to default operation. A numeric argument sets the buffer to that
size. The letter K or k can follow a humeric buffer size to specify a multiple of 1024. The
default setting is aut 0. A size of 0 is synonymous with aut o.

Preserves in its copies the modification times and modes of the source files, ignoring the user
file creation mode mask (see umask(1)). By default, the mode and owner of the destination
file are preserved if they already existed; otherwise, the mode of the source file modified by
the umask on the destination host is used.

Copies each subtree that is rooted at that name when any of the source files are directories.
The destination must be a directory. If you specify the - r option and any of the source files
are directories, kcp copies each subtree rooted at that name; in this case, the destination must
be a directory.

393

KCP(1)

BUGS

KCP(1)

- X Selects encryption of all information that is transferring between hosts. This option is not
available outside the United States and Canada. This option does not work correctly.

-k realm Specifies that kcp must obtain tickets for the remote host in realm instead of in the remote
host’s realm as determined by kr b_r eal mof host (3K).

-s bufsize Sets the socket buffer size. This kernel buffer is for data transfer in the data socket. kcp
automatically chooses a socket buffer size; however, you can alter the selection. The - s
option requires an argument. An argument of of f turns off socket buffer sizing and the
buffer defaults to the default kernel socket buffer size. An argument of aut o sets buffer
sizing to automatic and has no effect relative to default operation. A numeric argument sets
the buffer to that size. The letter K or k can follow a numeric buffer size to specify a
multiple of 1024. The default setting is aut 0. A size of 0 is synonymous with aut o.

-Stos Sets the IP Type-of-Service (TOS) option for the connection to the value tos, which can be a
numeric TOS value or a symbolic TOS name that is found in the / et ¢/ i pt os file.

sourcelist Specifies one or more remote files, local files, or directories.
destination Specifies the destination file or directory.

The kcp utility does not prompt for passwords; it uses Kerberos authentication when connecting to rhost.
Authorization is as described in kl ogi n(1).

The kcp utility handles third party copies, in which neither source nor target files are on the current
machine. Host names aso can take the form rname@rhost rather than use the current user name on the
remote host.

When only a directory is legal, the kcp utility does not detect all cases in which the target of a copy is a
file.

The kcp utility is confused by any output that is generated by commandsina. |l ogin,.profile,or
. cshr c file on the remote host.

When the destination machine is running the 4.2BSD version of kcp, you might need to specify the
destination user and host name as rhost.rname.

Kerberos is used only for the first connection of a third-party copy; the second connection uses the standard
Berkeley r cp protocol.

The - x option does not work with the current MIT code.

SEE ALSO

394

cp(d), ft p(1B) kl ogi n(2), r | ogi n(1B), r cp(1) (UCB version), r sh(1), umask(1)

ker ber os(3K), kr b_r eal nof host (3K) in the Kerberos User’s Guide, Cray Research publication
SG—2409

SR-2011 10.0

KDESTROY (1) KDESTROY (1)

NAME

kdest r oy — Destroys Kerberos tickets

SYNOPSIS

kdestroy [-f] [-n] [-q]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

BUGS

FILES

The kdest r oy utility destroys the user’s active Kerberos authorization tickets by writing zeros to the file
that contains them. If the ticket file does not exist, kdest r oy displays a message accordingly.

After overwriting the file, kdest r oy removes the file from the system. The utility displays a message that
indicates the success or failure of the operation. If kdest r oy cannot destroy the ticket file, the utility
warns you by beeping your terminal.

kdest r oy also invalidates all Kerberos credentials that are stored in the kernel for the user. These
credentials are used for network file system (NFS) requests.

For Kerberos tickets that are obtained from a Cray Research host, you probably will want to place the
kdest r oy command in your . | ogout file, so that your tickets can be destroyed automatically when you
log out.

The kdest r oy utility accepts the following options:
-f Runs without displaying the status message.

-n Keeps valid the NFS credentials that are in the kernel. They remain valid until their normal expiration
time. New credentias can only be obtained by executing another ki ni t (1) command.

-q Does not beep your terminal when it does not destroy the tickets.

Only the tickets in the user’s current ticket file are destroyed. Separate ticket files are used to hold root
instance and password changing tickets. These files must be destroyed also; otherwise, all of a user’s tickets
must be kept in a single ticket file.

Tickets are stored in the / t mp/ t kt [ui d] file unless the user has set the KRBTKFI LE environment
variable to be another file. Then, the indicated file is used.

SEE ALSO

ki ni t (), kI i st (1)

SR-2011 10.0 395

KEYLOGIN(1) KEYLOGIN(1)

NAME
keyl ogi n — Decrypts and stores a secret key

SYNOPSIS
keyl ogi n

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The keyl ogi n command informs the secure Remote Procedure Call (RPC) subsystem of your intent to use
secure RPC. keyl ogi n communicates with the local keyser v(8) process, allowing it to cache
information it will use when performing AUTH_DES style RPC authentication.

The keyl ogi n command prompts you for your secure RPC password, and it uses it to decrypt your secret
key stored in the publ i ckey(3R) database. After it is decrypted, your key is stored by the local key server
process keyser v(8), to be used by any secure network services, such as NFS.

NOTES

The | ogi n command will not call keyl ogi n directly by default; therefore, all users who want to use
secure RPC must first explicitly run keyl ogi n.

SEE ALSO
chkey(2), | ogi n(1)
Remote Procedure Call (RPC) Reference Manual, Cray Research publication SR—2089

keyser v(8), newkey(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

396 SR-2011 10.0

KILL(1) KILL(1)
NAME

ki Il — Terminates or signals processes
SYNOPSIS

kill -s signal_name pid...

kill -1 [exit_status]

kill -v

Obsolescent version; may not be supported in future releases:

kill [-signal_name] pid...
kill [-signal_number] pid...

IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The ki | | utility sends a signal to the process(es) specified by each pid operand. By default, signal number
15 (SI GTERM) is sent to the specified process(es). This usualy kills processes that do not catch or ignore

the signal.

The ki I | utility accepts the following options:

- s signal_name

- signal_name

- signal_number

SR-2011 10.0

Causes all values of signal_name supported to be written to the standard output, if no
exit_status operand is specified. If you specify an exit_status operand and it has a value of
the ? shell special parameter that corresponds to a process that was terminated by a signal,
the signal_name corresponding to the signal that terminated the process is written. If you
specify an exit_status operand and it is the unsigned decimal value of a signal number, the
signal_name that corresponds to that signal is written.

Sends signal signal_name to the process. signal_name is specified as a symbolic name
without the SI G prefix [see ki | | (2)]. The symbolic name O is recognized as
representing the signal value 0.

Causes al signal numbers and their associated signal_name to be written to the standard
output.

Equals - s signal_name.

Specifies a nonnegative decimal integer, signal_number, representing the signal to be used
instead of SI GTERM

397

KILL(1) KILL (1)

exit_status A decimal integer specifying a signal number or the exit status of a process terminated by
asignal.
pid A decimal integer specifying a process or process group to be signaled. The process(es)

selected by positive, negative, and zero values of the pid operand are the same as
described for ki | | (2). If the first pid operand is negative, it should be preceded by - - to
keep it from being interpreted as an option.

The process(es) may also be specified as a job control job ID (see sh(1)) that identifies a
background process group to be signaled. The job control job ID notation is applicable
only for invocations of ki | | in the current shell execution environment.

In the obsolescent versions, if the first argument is a negative integer, the argument is interpreted as a
- signal_number option, not as a negative pid operand specifying a process group.

The process number of each asynchronous process started with & is reported by the shell (unless more than
one process is started in a pipeling, in which case the number of the last process in the pipeline is reported).
Process numbers can also be found by using ps(1).

The details of the kill process are described in ki | | (2). For example, when process number O is specified,
all processes in the process group are signaled.

The process to be killed must belong to the current user; only an appropriately authorized user can kill a
process owned by another user.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action
system secadm Allowed to kill any process.

sysadm Allowed to kill a process owned by another user, subject to security label
restrictions. Shell-redirected 1/0 is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to kill any process.

The ki | | utility described on this man page is a built-in utility to the standard shell (sh(1)). An executable
version of this utility is availablein/ bi n/ kil | .

The csh(1) utility has a built-in ki | | utility with dlightly different characteristics. See csh(1).

EXIT STATUS

The ki | | utility exits with one of the following values:

0 At least one matching process was found for each pid operand, and the specified signal was
successfully processed for at least one matching process.

>0 An error occurred.

398 SR-2011 10.0

KILL(1) KILL (1)

EXAMPLES

Example 1: Sends the software termination signal to process ID of 3228:
kill 3228

Example 2: Same as example 1, but explicitly sends the name of the signal to the process:
kill -s TERM 3228

Example 3: Determines whether a command terminated due to a signal and the name of signal that caused
the command to terminate;

utility name argl arg2
kill -1 %2

Example 4: Sends a SI GQUI T (signal number 3) to two background processes in the current shell execution
environment:

Kill -s QUT 9% 98

SEE ALSO
csh(1), ps(1), sh(1)

kill (2),signal (2) inthe UNICOS System Calls Reference Manual, Cray Research publication SR—2012
General UNICOS System Administration, Cray Research publication SG—2301

SR-2011 10.0 399

KINIT (1) KINIT (1)

NAME

ki nit — Logs in to the Kerberos authentication and authorization system

SYNOPSIS

kinit [-irvl]
IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The ki ni t utility logs in to the Kerberos authentication and authorization system. Only registered Kerberos
users can use the Kerberos system. For information about registering as a Kerberos user, see the
ker ber os(7) man page.

When you use ki ni t without options, the utility prompts for your user name and the Kerberos password
and tries to authenticate your login with the local Kerberos server. ki ni t does not send your Kerberos
password across the network in the clear.

If Kerberos authenticates the login attempt, ki ni t retrieves your initial ticket and puts it in the ticket file
that your KRBTKFI LE environment variable specified. If this variable is undefined, your ticket is stored in
the / t np directory, in the t kt uid file; uid specifies your user identification number.

Be sure to use the kdest r oy(1) command to destroy any active tickets before you end your login session.
You can put the kdest r oy (1) command in your . | ogout file so that your tickets can be destroyed
automatically when you log out.

The ki ni t utility accepts the following options:
-i Directski ni t to prompt you for a Kerberos instance.

-r Directski ni t to prompt you for a Kerberos realm. This option lets you authenticate yourself with a
remote Kerberos server. (Interrealm authorization is cumbersome in Kerberos version 4.)

-v (Verbose mode) Directs ki ni t to print the name of the Kerberos realm, and to issue a status message
that indicates the success or failure of your login attempt.

-1 Directski ni t to prompt you for aticket lifetime in minutes. Because of protocol restrictions in
Kerberos version 4, this value must be between 5 and 1275 minutes.

BUGS

The - r option is not fully implemented.

SEE ALSO
kdestroy(2), kl i st (1)

ker ber os(7) (available only online)

400 SR-2011 10.0

KLIST(1) KLIST(1)

NAME
kl i st — Provides list of currently held Kerberos tickets

SYNOPSIS

klist [-s O-t] [-file namg] [-srvtab]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The kl i st utility prints the name of the tickets file and the identity of the principal for which the tickets
are provided (as listed in the tickets file), and it lists the principal names of all Kerberos tickets currently
held by the user, along with the issue and expire time for each authenticator. Principal names are listed in
the form name.instance@realm, with the dot (.) omitted if the instance is null, and the at sign (@) omitted if
the realm is null.

The kl i st utility accepts the following options:

-S Specifies that kI i st does not print the issue and expire times, the name of the tickets file, or
the identity of the principal.

-t Directs kl i st to check for the existence of a nonexpired ticket-granting ticket in the ticket
file. If oneis present, it exits with status O; otherwise, it exits with status 1. When you
specify this option, no output is generated.

-fil e name Specifies name as the ticket file. Otherwise, if you set the KRBTKFI LE environment variable,
this value is used. If you do not set this environment variable, the / t np/ t kt uid file is used;
uid is the current user ID of the user.

-srvtab Specifies that the file is treated as a service key file, and it prints the names of the keys that it
contains. If you do not specify the file with a-fi | e option, the default is/ et c/ sr vt ab.

BUGS

When afile is being read as a service key file, very little sanity or error checking is performed.
FILES

[et c/ krb. conf File that gets the name of the local realm

[etc/srvtab Default service key file
/trp/ tktuid Default ticket file (uid is the decimal UID of the user)
SEE ALSO

kdest roy(2), ki ni t (1)

SR-2011 10.0 401

KLOGIN(1) KLOGIN(1)

NAME

kl ogi n — Performs remote login

SYNOPSIS

kl ogi n rhost [-d] [-ec] [-k realm] [-| username] [-x] [-8] [-E] [-K] [-L] [- S tog]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

402

The kI ogi n utility connects your terminal on the current local host system to the remote host system rhost.
It uses Kerberos authentication to determine the authorization to use a remote account. Y our remote terminal
type is the same as your local terminal type (as specified in your TERM environment variable). All echoing
occurs at the remote site; therefore, the kl ogi n is transparent (except for delays). Flow control through
<CONTROL- s> and <CONTROL- g> and flushing interrupt input and output are handled properly.

Users can create a private authorization list in a . kl ogi n file in their login directories. Each line in this
file should contain a Kerberos principal name of the form principal.instance@realm. principal is either an
end user or a network service offered by a host computer; instance further qualifies the principal. If the
principal is a service, the instance specifies the name of the machine on which that service runs. If the
principal is a user name that has general user privileges, the instance is usually null.

If the originating user is authenticated to one of the principals specified in . kl ogi n, access is granted to
the account. If no . kl ogi n file exists, the principal username@localrealm is granted access; localrealm is
the name of an administration entity that maintains authentication data.

For example, if user 1 wantsuser 2 to use kl ogi n to log in to user 1's account, user 1 must create a
. kl ogi n file that contains the following:

user 1@RAY. COM
user 2@CRAY. COM
Note that user 1's user name must be put in the file; otherwise, access to the account is denied.

If kl ogi n encounters a problem obtaining the Kerberos authentication information, it prints an error
message and exits.

A line of the form ~. disconnects from the remote host; ~ is the escape character. A line of the form
~<CONTROL- z> suspends the kl ogi n process, and a line of the form ~<CONTROL- y> suspends the send
portion of the kl ogi n process, but alows output from the remote system. A line of the form ~z is the
same as ~<CONTRCL- z>.

The kI ogi n utility accepts the following options:

rhost Specifies the name of the remote host.

SR-2011 10.0

KLOGIN(1)

BUGS

FILES

-d

-ec

-k realm

-1 username

-8
-E

-K
-L
- Stos

KLOGIN(1)

Uses set sockopt (2) to turn on socket debugging on the TCP sockets that are used for
communication with the remote host.

Specifies an escape character (c). No space can separate this option flag (- €) and the new
escape character (C).

Directs kl ogi n to obtain tickets for the remote host in realm instead of in the remote host’s
realm, as determined by kr b_r eal nof host (3K).

Specifies the account name (username) to use when logging in to the remote machine. The
default is the current account name.

Turns on Data Encryption Standard (DES) encryption for all data passed during the kl ogi n
session. This option is not available outside the United States and Canada. This option
significantly reduces response time and significantly increases CPU use.

Allows the transmission of 8-bit data.

Stops any character from being recognized as an escape character. When used with the - 8
option, this provides a completely transparent connection.

The - K option turns off all Kerberos authentication.
This alows the kl ogi n processto be runin - opost mode (see st t y(1)).

Sets the IP Type-of-Service (TOS) option for the connection to the value tos, which can be a
numeric TOS value or a symbolic TOS name found in the / et ¢/ i pt os file.

More of the environment should be propagated.

/ etc/ hosts

SEE ALSO

[ogi n(2), rl

TCP/IP host name database

0ogi n(1B), rsh(1), stty(1)

set sockopt (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

ker ber 0os(3K), kr b_r eal nof host (3K), kr b_sendaut h(3K) in the Kerberos User’s Guide, Cray
Research publication SG—2409

SR-2011 10.0

403

KPASSWD(1) KPASSWD(1)

NAME

kpasswd — Changes a user’s Kerberos password

SYNOPSIS
kpasswd [-h] [-n name] [-i instance] [-r realm] [- u username].instance][@realm]]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The kpasswd command changes a Kerberos principal’s password.

kpasswd accepts the following options:

-h Prints a brief summary of the options and exits.

- n name Uses name as the principal name rather than the user name of the user running kpasswd.
(name is determined from the ticket file, if it exists; otherwise, it is determined from the
UNIX user ID.)

-1 instance Uses instance as the instance rather than using a null instance.
-r realm Uses realm as the realm rather than using the local realm.

- U username].instance][@realm]
Indicates a fully qualified Kerberos principal.

The command prompts for the current Kerberos password (printing the name of the principal for which it
intends to change the password), which is verified by the Kerberos server. If the old password is correct, the
user is prompted twice for the new password. A message is printed, indicating the success or failure of the
password-changing operation.

BUGS
The kpasswd command does not handle names, instances, or realms that have special characters in them
when the-n, -i, or - r options are used. If you specify the - u option, however, any valid user name is
accepted.

If the principal does not exist for the password you are trying to change, you will not be told until after you
have entered the old password.

The kpasswd command depends on a compatible implementation of kadm nd running on the Kerberos
server. Such a server is provided in the MIT Project Athena distribution of Kerberos version 4.
Incompatible implementations include the kpasswdd program distributed with Berkeley 4.3-Reno.

SEE ALSO
ki ni t (1), passwd(l)

404 SR-2011 10.0

KRSH(1) KRSH(1)

NAME

kr sh — Connects to the remote shell

SYNOPSIS
krsh host [-| username] [-n] [-d] [-k realm] [- S tos] [command]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The kr sh utility connects to the specified host and executes the specified command. kr sh copiesits
standard input to the remote command, copies the standard output of the remote command to its standard
output, and copies the standard error of the remote command to its standard error. Interrupt, quit, and
terminate signals are propagated to the remote command; kr sh usually terminates when the remote
command does.

The kr sh utility accepts the following options:
host Specifies the name of the host to which kr sh will connect.

-1 username Specifies the remote user name to be used. If you omit this option, your local user name is
used. Kerberos authentication is used, and authorization is determined as in kl ogi n(1).

-n Redirects input from the specia device/ dev/ nul | . See the BUGS section for more
information on redirecting input.
-d Turns on socket debugging (through set sockopt (2)) on the TCP sockets that are used for

communication with the remote host.

-k realm Directs kr sh to obtain tickets for the remote host in realm instead of in the remote host’s
realm, as determined by the kr b_r eal nmof host (3K) command.

-Stos Sets the IP Type-of-Service (TOS) option for the connection to the value tos, which can be a
numeric TOS value or a symbolic TOS name that is found in the / et ¢/ i pt os file.

command Specifies the command to be executed. If you omit command, instead of executing a single
command, you will be logged in on the remote host through r | ogi n(1B).

Shell metacharacters that are not enclosed in quotation marks are interpreted on the local machine; those that
are enclosed in quotation marks are interpreted on the remote machine. Thus, in the following example, the
first command appends the remote file r enot ef i | e to the local file |l ocal fi | e; the second command
appendsrenotefil e toot herrenotefil e:

krsh otherhost cat renptefile >> |ocalfile

krsh otherhost cat renptefile ">>" otherrenotefile

SR-2011 10.0 405

KRSH(1) KRSH(1)

BUGS

If you are using csh(1) and you put a kr sh utility in the background without redirecting its input away
from the terminal, it will block, even if the remote command posts no read operations. If no input is
desired, you should use the - n option to redirect the input of kr sh to/ dev/ nul | .

You cannot run an interactive command (such as vi (1)); use kl ogi n(2).

Stop signals stop only the local kr sh process.
FILES
[etc/ hosts TCP/IP host name database

SEE ALSO
csh(1), kl ogi n(2), | ogi n(1), rl ogi n(1B), vi (1)
set sockopt (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

ker ber os(3K), kr b_r eal nof host (3K), kr b_sendaut h(3K) in the Kerberos User’s Guide, Cray
Research publication SG—2409

406 SR-2011 10.0

KSH(1) KSH(1)

NAME
ksh, rksh, sh, rsh — Korn shell and standard shell, command and programming language

SYNOPSIS

ksh [-a] [-b] [-C] [-c sring] [-e] [-f] [-h] [-i] [-K] [-m [-n] [-0 option] [-p] [-r] [-9]
[-s] [-t] [-u] [-v] [-x] [arg]

rksh [-a] [-b] [-C] [-c sring] [-e] [-f] [-h] [-i] [-k] [-m [-n] [-o option] [-p] [-r] [-9]
[-s] [-t] [-u] [-v] [-x] [arg]

IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T extensions (- h, -k, -p,-r,and -t options)
CRI extensions (- S option)

DESCRIPTION
sh and r sh invoke the standard shell, which is functionally equivalent to the Korn shell.

ksh is a command interpreter and programming language that executes commands read from a terminal or a
file. rksh isarestricted version of the command interpreter ksh; it is used to set up login names and
execution environments whose capabilities are more controlled than those of the standard shell.

Invocation
If the shell isinvoked by exec(2), and the first character of argument 0 ($0) is -, the shell is assumed to
be al ogi n shell and commands are read from / et ¢/ pr of i | e and then from either . profi | e in the
current directory or SHOVE/ . prof i | e, if either file exists. Next, commands are read from the file named
by the ENV parameter and parameter substitution is performed, if the file exists. If the - s flag is not present
and arg is present, a path search is performed on the first arg to determine the name of the script to execute.
The arg script must have read permission and any set ui d and set gi d settings will be ignored.
Commands are then read as described below; the following flags are interpreted by the shell when it is
invoked:

- ¢ string
If the - ¢ flag is present, commands are read from string.

-s If the-s flag is present or no arguments remain, commands are read from the standard input. Shell
output, except for the output of the special commands, is written to file descriptor 2.

SR-2011 10.0 407

KSH(1) KSH(1)

-i Ifthe-i flagis present or if the shell input and output are attached to a terminal (as told by
i octl (2)), this shell is interactive. In this case, TERMis ignored (so that ki | I O does not kill an
interactive shell) and | NTR is caught and ignored (so that wai t is interruptible). In all cases, QUI T
isignored by the shell.

-r If the-r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command in the Special Commands
subsection.

rksh Only
The r ksh command is used to set up login names and execution environments whose capabilities are more
controlled than those of the standard shell. The actions of r ksh are identical to those of sh, except that the
following are disallowed:

¢ Changing directory (see cd(1))

* Setting the value of SHELL, ENV, or PATH

¢ Specifying path or command names containing /

* Redirecting output (>, >| , <>, and >>)

These restrictions are enforced after the . prof i | e and ENV files are interpreted.

When a command to be executed is found to be a shell procedure, r ksh invokes ksh to execute it. Thus, it
is possible to provide the end user with shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme assumes that the end user does not have
write and execute permissions in the same directory.

The net effect of these rules is that the writer of the . pr of i | e has complete control over user actions, by
performing guaranteed setup actions and leaving the user in an appropriate directory (probably not the login
directory).

Definitions
A metacharacter is one of the following characters:

;& () | < > <newine> <space> <tab>

A blank isa<t ab> or a<space>. Anidentifier is a sequence of letters, digits, or underscores starting
with a letter or underscore. ldentifiers are used as names for functions and named parameters. A word is a
sequence of characters separated by one or more metacharacters not enclosed in quotation marks.

A command is a sequence of characters in the syntax of the shell language. The shell reads each command
and carries out the desired action either directly or by invoking separate utilities. A special command is a
command that is carried out by the shell without creating a separate process. Except for documented side
effects, most special commands can be implemented as separate utilities.

408 SR-2011 10.0

KSH(1) KSH(1)

Commands
A simple command is a sequence of blank-separated words that may be preceded by a parameter assignment
list. See the Environment subsection. The first word specifies the name of the command to be executed.
Except as specified below, the remaining words are passed as arguments to the invoked command. The
command name is passed as argument O (see exec(2)). The value of a simple command is its exit status if
it terminates normally, or (octal) 200+status if it terminates abnormally (for alist of status values, see
si gnal (2)).

A pipeline is a sequence of one or more commands separated by | . The standard output of each command
but the last is connected by a pipe (see pi pe(2)) to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to terminate. The exit status of a
pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ; , & &&, or | | , and optionally terminated by ; ,
&, or | & Of these five symboals, ; , & and | & have equal precedence, which is lower than that of && and

| | . The symbols && and | | also have equal precedence. A semicolon (;) causes sequential execution of
the preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (that is,
the shell does not wait for that pipeline to finish). The symbol | & causes asynchronous execution of the
preceding command or pipeline with a two-way pipe established to the parent shell. The standard input and
output of the spawned command can be written to and read from by the parent shell by using the - p option
of the special commands r ead and pri nt described later. The symbol && (| |) causes the list following it
to be executed only if the preceding pipeline returns a value of zero for && (nonzero for | |). An arbitrary
number of new lines may appear in alist, instead of a semicolon, to delimit a command.

A command is either a simple command or one of the following. Unless otherwise stated, the value returned
by a command is that of the last smple command executed in the command.

f or identifier [i nword...]; do list; done
Each time af or command is executed, identifier is set to the next word taken from the i n word
list. If i nword ... is omitted, the f or command executes the do list once for each positional
parameter that is set (see the Parameter Substitution subsection). Execution ends when there are no
more words in the list.

sel ect identifier [i nword ...] ; do list; done
A sel ect command prints on standard error (file descriptor 2), the set of words, each preceded by
anumber. If i nword ... is omitted, the positiona parameters are used instead (see the Parameter
Substitution subsection). The PS3 prompt is printed and a line is read from the standard input. 1f
this line consists of the number of one of the listed words, the value of the parameter identifier is
set to the word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter identifier is set to null. The contents of the line read
from standard input is saved in the parameter REPLY. The list is executed for each selection until a
br eak or end-of-file is encountered.

SR-2011 10.0 409

KSH(1) KSH(1)

case wordin [[(]pattern [Opattern] ...) list;;]... esac
A case command executes the list associated with the first pattern that matches word. The form
of the patterns is the same as that used for file-name generation (see the File Name Generation
subsection).

iflist;thenlist[elif list;thenlist]...[;elselist];fi
The list following i f is executed and, if it returns a O exit status, the list following the first t hen
is executed. Otherwise, the list following el i f is executed and, if its value is O, the list following
the next t hen is executed. Failing that, the el se list is executed. If no el se list or t hen list is
executed, then thei f command returns a O exit status.

whi | e list ; do list ; done

until list; do list; done
A whi | e command repeatedly executes the whi | e list and, if the exit status of the last command
in the list is O, executes the do list; otherwise, the loop terminates. If no commands in the do list
are executed, then the whi | e command returns a 0 exit status; unt i | may be used in place of
whi | e to negate the loop termination test.

(list) Execute list in a separate environment. |If two adjacent open parentheses are needed for nesting, a
space must be inserted to avoid arithmetic evaluation as described below.

{list; } list is simply executed. Unlike the metacharacters (and), { and} are reserved words and must
come at the beginning of aline or after ; in order to be recognized.

[[expression]]
Evaluates expression and returns a O exit status when expression is true. For a description of
expression, see the Conditional Expressions subsection.

functi on identifier { list;}

identifier () { list;}
Defines a function referenced by identifier. The body of the function is the list of commands
between { and } . (See the Functions subsection.)

ti me pipeline
The pipeline is executed and the elapsed time as well as the user and system time are printed on
standard error. Because output redirection is set up within ksh after the t i ne simple command is
performed, standard error cannot be redirected to afile.

The following reserved words are recognized only as the first word of a command and when not enclosed in
guotation marks:

if then else elif fi case esac for while until do done { } function select time [[]]

Comments
A word beginning with # causes that word and all the following characters up to a new line to be ignored.

410 SR-2011 10.0

KSH(1) KSH(1)

Aliasing
The first word of each command is replaced by the text of an al i as if an al i as for this word has been
defined. The first character of an al i as name can be any nonspecial printable character, but the rest of the
characters must be the same as for a valid identifier. The replacement string can contain any valid shell
script including the metacharacters listed above. The first word of each command in the replaced text, other
than any that are in the process of being replaced, will be tested for aliases. If the last character of the alias
value is a blank, the word following the alias will also be checked for alias substitution. Aliases can be used
to redefine special built-in commands but cannot be used to redefine the reserved words listed above.
Aliases can be created, listed, and exported by using the al i as command and can be removed by using the
unal i as command. Exported aliases remain in effect for scripts invoked by name, but they must be
reinitialized for separate invocations of the shell (see the Invocation subsection).

Aliasing is performed when scripts are read, not while they are executed. Therefore, for an alias to take
effect the al i as definition command must be executed before the command that references the dias is read.

Aliases are frequently used as a short form of full path names. An option to the aliasing facility allows the
value of the alias to be set automatically to the full path name of the corresponding command. These aiases
are called tracked aliases. The value of atracked alias is defined the first time the corresponding command
is looked up and becomes undefined each time the PATH variable is reset. These aliases remain tracked so
that the next subsequent reference will redefine the value. Several tracked aliases are compiled into the
shell. The - h option of the set command makes each referenced command name into a tracked alias.

The following exported aliases are compiled into the shell but can be unset or redefined:

aut ol oad="typeset -fu’
conmand=" conmand’
false="let O
functions="typeset -f’
hash="alias -t -’
history="fc -I’

i nteger="typeset -i
| ocal =t ypeset
nohup=" nohup’

r="fc -e -’

stop="kill -STOP
suspend="kill -STOP $$’
true=":"'

type=" whence -V’

Tilde Substitution
After alias substitution is performed, each word is checked to see whether it begins with an unquoted tilde
(=). If it does, then the word up to a/ is checked to see whether it matches a user name in the
/ et c/ passwd file. If amatch is found, the ~ and the matched login name is replaced by the login
directory of the matched user. Thisis called atilde substitution. If no match is found, the original text is
left unchanged. A ~ by itself, or in front of a/, is replaced by the value of the HOVE parameter. A ~
followed by a + or - is replaced by $PWD and $OLDPWD, respectively.

SR-2011 10.0 411

KSH(1) KSH(1)

In addition, tilde substitution is attempted when the value of a variable assignment parameter begins with a

Command Substitution
The standard output from a command enclosed in parenthesis preceded by a dollar sign ($()) or a pair of
grave accents (* *) may be used as part or all of aword; trailing new lines are removed. In the second
(archaic) form, the string between the grave accents is processed for special quoting characters before the
command is executed. (See the Quoting subsection). The command substitution $(cat fil e) can be
replaced by the equivalent but faster $(<fi |) . Command substitution of most special commands that do
not perform input/output redirection are carried out without creating a separate process.

An arithmetic expression enclosed in double parentheses and preceded by a dollar sign ($(())) is replaced
by the value of the arithmetic expression within the double parenthesis.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters*, @ #, ?,-,$,and! . A named
parameter (a parameter denoted by an identifier) has a value and O or more attributes. Named parameters
can be assigned values and attributes by using thet ypeset special command. The attributes supported by
the shell are described later with the t ypeset special command. Exported parameters pass values and
attributes to the environment.

The shell supports a one-dimensional array facility. An element of an array parameter is referenced by a
subscript. A subscript is denoted by a [, followed by an arithmetic expression (see the Arithmetic
Evaluation subsection) followed by a] . To assign valuesto an array, use set - Anamevalue.... The
value of all subscripts must be in the range of 0 through 1023. Arrays need not be declared. Any reference
to a named parameter with a valid subscript is legal and an array will be created if necessary. Referencing
an array without a subscript is equivalent to referencing the element 0. Since $array and ${ arr ay[0] }
are equivalent, exporting ar r ay is equivaent to exporting ar r ay[0] .

The value of a named parameter may also be assigned as follows:

name=value [name=value] ...

If the integer attribute, - i , is set for name, the value is subject to arithmetic evaluation as described below.

Positional parameters (parameters denoted by a number) may be assigned values with the set special
command. Parameter $0 is set from argument O when the shell is invoked.

The character $ is used to introduce substitutable parameters.

412 SR-2011 10.0

KSH(1) KSH(1)

${ parameter}
The shell reads al the characters from ${ to the matching } as part of the same word, even if it
contains braces or metacharacters. Substitues the value, if any, of the parameter. The braces are
required when parameter is followed by a letter, digit, or underscore that is not to be interpreted as
part of its name or when a named parameter is subscripted. If parameter is one or more digits, it is
a positional parameter. A positional parameter of more than one digit must be enclosed in braces.
If parameter is* or @ all the positional parameters, starting with $1, are substituted (separated by
a field separator character). If an array identifier with subscript * or @is used, the value for each of
the elements is substituted (separated by a field separator character).

${ #parameter}
If parameter is* or @ substitutes the number of positional parameters. Otherwise, substitutes the
length of the value of parameter.

${ #identifier[*]}
Substitutes the number of elements in the array identifier.

${ parameter: - word}
If parameter is set and is nonnull, substitutes its value; otherwise, substitutes word.

${ parameter: =word}
If parameter is not set or is null, sets it to word; then substitutes the value of the parameter.
Positional parameters may not be assigned to in this way.

${ parameter: ?word}
If parameter is set and is nonnull, substitutes its value; otherwise, prints word and exits from the
shell. If word is omitted, prints a standard message.

${ parameter: +word}
If parameter is set and is nonnull, substitutes word; otherwise, substitutes nothing.

${ parameter#pattern}

${ parameter##pattern}
If the shell pattern matches the beginning of the value of parameter, the value of this substitution is
the value of the parameter with the matched portion deleted; otherwise, substitutes the value of this
parameter. The first form deletes the smallest matching pattern; the second form deletes the largest
matching pattern.

${ parameter¥pattern}

${ parameter %8/pattern}
If the shell pattern matches the end of the value of parameter, the value of this substitution is the
value of the parameter with the matched part deleted; otherwise, substitutes the value of parameter.
The first form deletes the smallest matching pattern; the second form deletes the largest matching
pattern.

SR-2011 10.0 413

KSH(1)

KSH(1)

In the preceding paragraph, word is not evaluated unless it is to be used as the substituted string, so that, in
the following example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, the shell checks only whether or not parameter is set.

The following parameters are set automatically by the shell:

#

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
The decimal value returned by the last executed command.

The process number of this shell.

Initially, the value _ is an absolute path name of the shell or script being executed as passed
in the environment. Subsequently it is assigned the last argument of the previous command.
This parameter is not set for commands that are asynchronous. This parameter is also used to
hold the name of the matching MAI L file when checking for mail.

The process number of the last background command invoked.

The following environment variables are set by the shell:

ERRNO

LI NENO
OLDPWD
OPTARG
OPTI ND
PPI D
PWD
RANDOM

REPLY

SECONDS

414

The value of err no as set by the most recently failed system call. This valueis
system-dependent and is intended for debugging purposes.

The line number of the current line within the script or function being executed.
The previous working directory set by the cd(1) command.

The value of the last option-argument processed by the get opt s special command.
The index of the last option-argument processed by the get opt s special command.
The process number of the parent of the shell.

The present working directory set by the cd(1) command.

Each time this parameter is referenced, a random integer uniformly distributed between 0 and
32,767 is generated. The sequence of random numbers can be initialized by assigning a
numeric value to RANDOM

This parameter is set by the sel ect statement and by the r ead special command when no
arguments are supplied.

Each time this parameter is referenced, the number of seconds since shell invocation is
returned. If this parameter is assigned a value, the value returned upon reference will be the
value that was assigned plus the number of seconds since the assignment.

SR-2011 10.0

KSH(1)

KSH(1)

The following environment variables are used by the shell:

CDPATH
COLUMWMNS

EDI TOR

ENV

FCEDI T
FPATH

I FS

H STFI LE

Hl STSI ZE

HOVE
LI NES

MAI L

MAI LCHECK

MAI LPATH

SR-2011 10.0

The search path for the cd(1) command.

If this variable is set, the value is used to define the width of the edit window for the shell
edit modes and for printing sel ect lists.

If the value of this variable ends in ermracs, grmacs, or vi and the VI SUAL variable is not
set, the corresponding option will be turned on. (See set in the Special Commands
subsection.)

If this parameter is set, parameter substitution is performed on the value to generate the path
name of the script that will be executed when the shell is invoked. (See the Invocation
subsection.) This file is typically used for al i as and f unct i on definitions.

The default editor name for the f ¢ command.

The search path for function definitions. This path is searched when a function with the - u
atribute is referenced and when a command is not found. If an executable file is found, it is
read and executed in the current environment.

Internal field separators, usually <space>, <t ab>, and <newl i ne>, that are used to
separate command words that result from command or parameter substitution and for
separating words with the special command r ead. The first character of the | FS parameter
is used to separate arguments for the " $*" substitution. (See the Quoting subsection.)

If this parameter is set when the shell is invoked, the value is the path name of the file that
will be used to store the command history. (See the Command Reentry subsection.)

If this parameter is set when the shell is invoked, the number of previously entered commands
that are accessible by this shell will be greater than or equal to this number. The default is
128.

The default argument (home directory) for the cd(1) command.

If this variable is set, the value is used to determine the column length for printing sel ect
lists. sel ect lists will print vertically until about two-thirds of LI NES lines are filled.

If this parameter is set to the name of a mail file and the MAI LPATH parameter is not set, the
shell informs the user of arrival of mail in the specified file.

This variable specifies how often (in seconds) the shell will check for changes in the
modification time of any of the files specified by the MAI LPATH or MAI L parameters. The
default value is 600 seconds. When the time has elapsed, the shell will check before issuing
the next prompt.

A colon (:) -separated list of file names. If this parameter is set, the shell informs the user of
any modifications to the specified files that have occurred within the last MAI LCHECK
seconds. Each file name can be followed by a ? and a message to be printed. The message
will undergo parameter substitution with the parameter $_ defined as the name of the file that
has changed. The default message isyou have mail in $_.

415

KSH(1) KSH(1)

PATH The search path for commands. (See the Execution subsection.) The user may not change
PATH if executing under r ksh (except in . profil e).

PS1 The value of this parameter is expanded for parameter substitution to define the primary
prompt string which by default is“‘$ '’. The character | in the primary prompt string is
replaced by the command number. (See the Command Reentry subsection.)

pPSs2 Secondary prompt string, by default **> ',

PS3 Selection prompt string used within asel ect loop, by default *‘#? .

PS4 The value of this parameter is expanded for parameter substitution and precedes each line of
an execution trace. If omitted, the execution trace prompt is *‘+ "’

SHEL L The path name of the shell is kept in the environment. At invocation, if the base name of this
variable matches the pattern * r * sh, the shell becomes restricted.

TMOUT If set to a value greater than O, the shell will terminate if a command is not entered within the

prescribed number of seconds after issuing the PS1 prompt. (The shell can be compiled with
a maximum bound for this value that cannot be exceeded.)

VI SUAL If the value of this variable ends in ermacs, gracs, or vi , the corresponding option will be
turned on. (See the Special Command set .)

The shell gives default values to PATH, PS1, PS2, MAI LCHECK, TMOUT, and | FS, while HOVE, SHELL,
ENV, and MAI L are not set at all by the shell (although HOVE is set by | ogi n(1)). On some systems MAI L
and SHELL are also set by | ogi n(1)).

Blank Interpretation
After parameter and command substitution, the results of substitutions are scanned for the field-separator
characters (those found in | FS) and split into distinct arguments where such characters are found. Explicit
null arguments (" or '’) are retained. Implicit null arguments (those resulting from parameters that have
no values) are removed.

File Name Generation
Following substitution, unless the - f option has been set , each command word is scanned for the
characters*, ?, and [. If one of these characters appears, the word is regarded as a pattern. The word is
replaced with lexicographically sorted file names that match the pattern. If no file name is found that
matches the pattern, the word is left unchanged. When a pattern is used for file-name generation, the
character . at the start of a file name or immediately following a/ , as well as the character / itself, must be
matched explicitly. In other instances of pattern matching, the/ and . are not treated specialy.

* Matches any string, including the null string.
? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by - matches any
character lexically between the pair, inclusive. If the first character following the opening "[" isa
"I ", any character not enclosed is matched. A - can be included in the character set by putting it
as the first or last character.

416 SR-2011 10.0

KSH(1) KSH(1)

A pattern-list is alist of one or more patterns separated by each other with a| . Composite patterns can be
formed with one or more of the following:

?(pattern-list) Optionally matches any one of the given patterns.

* (pattern-list) Matches 0 or more occurrences of the given patterns.

+(pattern-list) Matches one or more occurrences of the given patterns.

@ pattern-list) Matches exactly one of the given patterns.

I (pattern-list) Matches anything except one of the given patterns.
Quoting

Each of the metacharacters (see the Definitions subsection) has a specia meaning to the shell and causes
termination of a word unless quoted. A character may be quoted (that is, made to stand for itself) by
preceding it with a\ . The pair \ <newl i ne> isignored. All characters enclosed between a pair of single
guotation marks (" ') are quoted. A single quotation mark cannot appear within single quotation marks.
Inside double quotation marks (" "), parameter and command substitution occurs and \ quotes the characters
\,‘,",and $. The meaning of $* and $@is identical when not quoted or when used as a parameter
assignment value or as a file name. However, when used as a command argument, $* is equivalent to
"$1d$2d...", where d is the first character of the | FS parameter, whereas $@is equivalent to $1 $2 ...
Inside grave accents (* *) \ quotes the characters\ , * , and $. If the grave accents occur within double
guotation marks, \ aso quotes the character " .

The special meaning of reserved words or aliases can be removed by quoting any character of the reserved
word. The recognition of function names or special command names listed below cannot be atered by
guoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with the special command | et . Evaluations are
performed using long arithmetic. Constants are of the form [base#]n where base is a decimal number
between 2 and 36 representing the arithmetic base and n is a number in that base. If base is omitted, base

10 is used.
An arithmetic expression uses the same syntax, precedence, and associativity of expression of the C
language. All the integral operators, other than ++, - -, ?: , and , are supported. Named parameters can be

referenced by name within an arithmetic expression without using the parameter substitution syntax. When a
named parameter is referenced, its value is evaluated as an arithmetic expression.

An internal integer representation of a named parameter can be specified with the - i option of the

t ypeset specia command. Arithmetic evaluation is performed on the value of each assignment to a
named parameter with the - i attribute. If you do not specify an arithmetic base, the first assignment to the
parameter determines the arithmetic base. This base is used when parameter substitution occurs.

Because many of the arithmetic operators require quotation marks, an alternative form of the | et command
is provided. For any command which begins with a ((, al the characters until a matching)) are treated as
a expression enclosed in quotation marks. More precisely, ((...)) isequivdenttol et "..."

SR-2011 10.0 417

KSH(1)

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any time
anew line is typed and further input is needed to complete a command, the secondary prompt (that is, the

418

value of PS2) is issued.

Conditional Expressions

KSH(1)

A conditional expression is used with the [[compound command to test attributes of files and to compare
strings. Word splitting and file-name generation are not performed on the words between [[and]] . Each
expression can be constructed from one or more of the following unary or binary expressions:

- a file

- b file

- ¢ file

- d file

- e file
-f file

- g file

- h file

- k file

- mfile

- Mfile

- n string
- 0 option
- p file
-r file

- s file
-t fildes
- u file

- wfile

- x file

-z string

- L file

- Ofile

- Gfile

- Sfile

filel - nt file2
filel - ot file2
filel - ef file2
string = pattern
string ! = pattern
stringl < string2,
stringl > string2
expl - eq exp2

True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,

if file exists.

if file exists and is a block specia file.

if file exists and is a character special file.

if file exists and is a directory.

if file exists.

if file exists and is an ordinary file.

if file exists and is has its setgid bit set.

if file exists and is a symbolic link.

if file exists and is has its sticky bit set.

if file exists and is migrated (type IFOFL).

if file exists and is migrated (has a DMF handle).

if length of string is nonzero.

if option named option is on.

if file exists and is a fifo special file or a pipe.

if file exists and is readable by current process.

if file exists and has size greater than 0.

if file descriptor number fildes is open and associated with a terminal device.
if file exists and is has its setuid bit set.

if file exists and is writable by current process.

if file exists and is executable by current process. If file exists and is a

directory, the current process has permission to search in the directory.

True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,
True,

if length of string is 0.

if file exists and is a symbolic link.

if file exists and is owned by the effective user id of this process.

if file exists and its group matches the effective group id of this process.

if file exists and is a socket.

if filel exists and is newer than file2.

if filel exists and is older than file2.

if filel and file2 exist and refer to the same file.

if string matches pattern.

if string does not match pattern.

if stringl comes before string2 based on the ASCII value of their characters.
if stringl comes after string2 based on the ASCII value of their characters.
if explisequa to exp2.

SR-2011 10.0

KSH(1)

expl - ne exp2
expl -1t exp2
expl - gt exp2
expl - | e exp2
expl - ge exp2

KSH(1)

True, if expl is not equal to exp2.

True, if expl is less than exp2.

True, if expl is greater than exp2.

True, if expl is less than or equa to exp2.
True, if expl is greater than or equal to exp2.

In each of the preceding expressions, if file is of the form / dev/ f d/ n, where n is an integer, the test
applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of the following, listed in
decreasing order of precedence:

(expression)

True, if expression is true. Used to group expressions.

I expression True if expression is false.

expressionl && expression2 True, if expressionl and expression2 are both true.

expressionl | | expression2 True, if either expressionl or expression?2 is true.
Input/Output

Before a command is executed, its input and output may be redirected using a special notation interpreted by
the shell. The following may appear anywhere in a simple command or may precede or follow a command
and they are not passed on to the invoked command. Command and parameter substitution occurs before
word or digit is used except as noted. File-name generation occurs only if the pattern matches a single file
and blank interpretation is not performed.

<word

>word

>| word

>>word

<>word

<<[- Jword

<&digit

<&

SR-2011 10.0

Uses file word as standard input (file descriptor 0).

Uses file word as standard output (file descriptor 1). If the file does not exist, it is created.
If the file exists and the nocl obber option is on, this causes an error; otherwise, it is
truncated to O length.

Same as >, except that it overrides the nocl obber option.

Uses file word as standard output. If the file exists, output is appended to it (by first
seeking to the end-of-file); otherwise, the file is created.

Opens file word for reading and writing as standard inpuit.

The shell input is read up to aline that is the same as word, or to an end-of-file. No
parameter substitution, command substitution, or file name generation is performed on
word. The resulting document, called a here-document, becomes the standard input. |f
any character of word is enclosed in quotation marks, no interpretation is placed on the
characters of the document; otherwise, parameter and command substitution occurs,

\ <newl i ne> isignored, and \ must be used to quote the characters\ , $, * , and the first
character of word. If - is appended to <<, al leading <t ab>s are stripped from word
and from the document.

The standard input is duplicated from file descriptor digit (see dup(2)). Similarly for the
standard output using >& digit.

The standard input is closed. Similarly for the standard output using >&- .

419

KSH(1) KSH(1)

<&p The input from the co-process is moved to standard input.
>&p The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, the file descriptor number referred to is that specified by the digit
(instead of the default 0 or 1). For example:

2>&1

means that file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each redirection in terms of
the (file descriptor, file) association at the time of evaluation. For example:

1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file associated
with file descriptor 1 (that is, fname). If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and then file descriptor 1 would be
associated with file fname.

If a command is followed by & and job control is not active, the default standard input for the command is
the empty file / dev/ nul | . Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input/output specifications.

Environment

420

The environment (see envi r on(7)) is alist of name-value pairs that is passed to an executed program in
the same way as a normal argument list. The names must be identifiers and the values are character strings.
The shell interacts with the environment in several ways. On invocation, the shell scans the environment
and creates a parameter for each name found, giving it the corresponding value and marking it export.
Executed commands inherit the environment. If the user modifies the values of these parameters or creates
new ones, using the export ortypeset -x commands, the commands become part of the environment.
The environment seen by any executed command is thus composed of any name-value pairs originally
inherited by the shell, whose values may be modified by the current shell, plus any additions that must be
noted in export ortypeset -x commands.

The environment for any simple command or function may be augmented by prefixing it with one or more
parameter assignments. A parameter assignment argument is a word of the form identifier=value. As far as
the above execution of crd is concerned, the following two lines are equivalent:

TERM=450 cnd args
(export TERM TERM=450; cnd args)

If the - k flag is set, all parameter assignment arguments are placed in the environment, even if they occur
after the command name. The following first prints a=b ¢ and then c:

echo a=b c
set -k
echo a=b c

SR-2011 10.0

KSH(1) KSH(1)

This feature is intended for use with scripts written for early versions of the shell, and its use in new scripts
is strongly discouraged, because support will be discontinued in future releases.

Functions
The f unct i on reserved word, described in the Commands subsection, is used to define shell functions.
Shell functions are read in and stored internally. Alias names are resolved when the function is read.
Functions are executed like commands with the arguments passed as positional parameters (see the Execution
subsection).

Functions execute in the same process as does the caler and share al files and present working directory
with the caller. Traps caught by the caller are reset to their default action inside the function. A trap
condition that is not caught or ignored by the function causes the function to terminate and the condition to
be passed on to the caller. A trap on EXI T set inside a function is executed after the function completes in
the environment of the caller. Ordinarily, variables are shared between the calling program and the function.
However, the t ypeset special command used within a function defines local variables whose scope
includes the current function and all functions it calls.

The special command r et ur n is used to return from function calls. Errors within functions return control
to the caller.

Function identifiers can be listed with the - f or +f option of thet ypeset special command. The text of
functions will aso be listed with - f . Function can be undefined with the - f option of the unset specia
command.

Ordinarily, functions are unset when the shell executes a shell script. The - xf option of thet ypeset
command allows a function to be exported to scripts that are executed without a separate invocation of the
shell. Functions that need to be defined across separate invocations of the shell should be specified in the
ENV file with the - xf option of t ypeset .

Jobs
If the noni t or option of the set command is turned on, an interactive shell associates a job with each
pipeline. It keeps a table of current jobs, printed by the j obs command, and assigns them small integer
numbers. When a job is started asynchronously with &, the shell prints a line that looks as follows:

[1] 1234

This indicates that the job that was started asynchronously was job number 1 and had one (top-level)
process, whose process ID was 1234.

If you are running a job and want to do something else, you may press <*z> (<CONTRQOL- z>), which
sends a STOP signal to the current job. The shell will then usually indicate that the job has been stopped,
and print another prompt. You can then manipulate the state of this job, putting it in the background with
the bg command, or run some other commands and then eventually bring the job back into the foreground
with the foreground command f g. The consegquence of pressing <z > takes effect immediately and is like
an interrupt in that pending output and unread input are discarded when it is typed.

SR-2011 10.0 421

KSH(1) KSH(1)

A job being run in the background will stop if it tries to read from the terminal. Background jobs are
usually allowed to produce output, but this can be disabled by entering the command stty t ost op. If
you set thist t y option, background jobs will stop when they try to produce output like they do when they
try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the process ID of any
process of the job or by one of the following:

Yumber The job with the given number

Ystring Any job whose command line begins with string
%@string Any job whose command line contains string
%0 Current job

%o Equivalent to %86

% Previous job

This shell learns immediately whenever a process changes state. It usualy informs you whenever a job
becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is done
so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that completes triggers any trap set for CHLD.

If you try to leave the shell while jobs are running or stopped, you will be warned that

You have stopped(running) jobs. Youmay usethejobs command to see what they are. If
you do this or immediately try to exit again, the shell will not warn you a second time, and the stopped jobs
will be terminated.

Signals
The | NT and QUI T signals for an invoked command are ignored if the command is followed by & and job
noni t or option is not active. Otherwise, signals have the values inherited by the shell from its parent (but
see also the t r ap command).

Execution
Each time a command is executed, the above substitutions are carried out. |f the command name matches
one of the commands listed in the Special Commands subsection, it is executed within the current shell
process. Next, the command name is checked to see whether or not it matches one of the user-defined
functions. If it matches, the positional parameters are saved and then reset to the arguments of the
function cal. When the function completes or issues ar et ur n, the positional parameter list is restored
and any trap set on EXI T within the function is executed. The value of a function is the value of the last
command executed. A function is also executed in the current shell process. If a command name is not a
special command or a user-defined function, a process is created and an attempt is made to execute the
command by using exec(2).

422 SR-2011 10.0

KSH(1) KSH(1)

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is/ bi n: / usr/ bi n: /usr/ ucb
(specifying / bi n, / usr/ bi n, / usr/ ucb, and the current directory, in that order). The current directory
can be specified by two or more adjacent colons, or by a colon at the beginning or end of the path list. If
the command name contains a/ , the search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is not a directory or an a. out file, or
if the file does not begin with characters #! (see exec(2)), it is assumed to be a file containing shell
commands. A subshell is spawned to read it. All nonexported aliases, functions, and named parameters are
removed in this case. The shell command file must have read permission and any set ui d and set gi d
settings will be ignored. A parenthesized command is executed in a subshell without removing nonexported
guantities.

Command Reentry
The text of the last H STSI ZE (default 128) commands entered from a terminal device is saved in a history
file. The file SHOVE/ . sh_hi st ory isused if the Hl STFI LE variable is not set or is not writable. A
shell can access the commands of all interactive shells that use the same named HI STFI LE. The special
command f ¢ is used to list or edit a portion of this file. The portion of the file to be edited or listed can be
selected by number, or you can specify the first character or characters of the command. A single command
or range of commands can be specified. If you do not specify an editor program as an argument to f c, the
value of the parameter FCEDI T is used. If FCEDI T is not defined, / bi n/ ed isused. The edited
command(s) is printed and reexecuted upon leaving the editor. The editor name - is used to skip the editing
phase and to reexecute the command. In this case, a substitution parameter of the form old=new can be used
to modify the command before execution. For example, if r isaliasedto’ fc -e -’ then typing
r bad=good c will reexecute the most recent command that starts with the letter ¢, replacing the first
occurrence of the string bad with the string good.

Inline Editing Options
Usually, each command line entered from a terminal device is simply typed followed by a newline
(KRETURN> or <LI NE FEED>). If either the emacs, gmacs, or vi option is active, the user can edit the
command line. To be in either of these edit modes, set the corresponding option. An editing option is
automatically selected each time the VI SUAL or EDI TOR variable is assigned a value ending in either of
these option names.

The editing features require that the user’s terminal accept <RETURN> as carriage return without line feed
and that a space () must overwrite the current character on the screen. ADM terminal users should set the
"space - advance' switch to ‘space’. Hewlett-Packard series 2621 terminal users should set the straps to
bcGHXZ et X

The editing modes implement a concept in which the user is looking through a window at the current line.
The window width is the value of COLUMNS, if it is defined; otherwise the width is 80. The window height
is set at the value of LI NES, if it is defined; otherwise the height is 24. If the line is longer than the
window width minus two, a mark is displayed at the end of the window to notify the user. As the cursor
moves and reaches the window boundaries, the window will be centered about the cursor. The mark is a >
(<, *)if the line extends on the right (left, both) side(s) of the window.

SR-2011 10.0 423

KSH(1) KSH(1)

The search commands in each edit mode provide access to the history file. Only strings are matched, not
patterns, although aleading ~ in the string restricts the match to begin at the first character in the line.

Emacs Editing Mode
This mode is entered by enabling either the emacs or gnacs option. The only difference between these
two modes is the way they handle <*T>. To edit, the user moves the cursor to the point needing correction
and then inserts or deletes characters or words as needed. All the editing commands are control characters
or escape sequences. The notation for control charactersis caret () followed by the character. For
example, <*F> is the notation for pressing <CONTROL- f >. This is entered by pressing the f key while
holding down the <CONTROL> key. The <SHI FT> key is not pressed. (The notation ~? indicates the
 (delete) key.)

The notation for escape sequences is M followed by a character. For example, M f (pronounced Metaf) is
entered by depressing ESC (ASCII 033) followed by f. (M F would be the notation for ESC followed by
SHI FT (capital) F.)

All edit commands operate from anyplace on the line (not just the beginning). Neither the <RETURN> nor
the <Ll NE FEED> key is pressed after edit commands except when noted.

NE Moves cursor forward (right) 1 character.

M f Moves cursor forward 1 word. (To the emacs editor, a word is a string of characters
consisting of only letters, digits, and underscores.)

"B Moves cursor backward (left) 1 character.

M b Moves cursor backward 1 word.

A Moves cursor to start-of-line.

"E Moves cursor to end-of-line.

A char Moves cursor forward to character char on current line.

M "] char Moves cursor back to character char on current line.

AXNX Interchanges cursor and mark.

erase (User-defined erase character as defined by the st t y(1) command, usually “H or #.) Deletes
previous character.

"D Deletes current character.

M d Deletes current word.

M ~H (<Met a- BACKSPACE>) Deletes previous word.

M h Deletes previous word.

M A? (<Met a- DEL>) Deletes previous word. (If your interrupt character is ~? (, the

default), this command does not work.)

AT Transposes current character with next character in emacs mode. Transposes two previous
characters in gnmacs mode.

424 SR-2011 10.0

KSH(1)

~C
M c
M 1
K

W
M p
kill

Y
AL
n@
M <space>
N
"M
eof
P

M <
M >
N

NRstring

O

M digits

SR-2011 10.0

KSH(1)

Capitalizes current character.
Capitalizes current word.
Changes the current word to lowercase.

Deletes from cursor to end-of-line. If preceded by a numerical parameter whose value is less
than the current cursor position, deletes from given position up to the cursor. If preceded by a
numerical parameter whose value is greater than the current cursor position, deletes from
cursor up to given cursor position.

Kills from the cursor to the mark.
Pushes the region from the cursor to the mark on the stack.

(User-defined kill character as defined by the stty command, usually *Gor @) Kills the entire
current line. If two kill characters are entered in succession, all kill characters from then on
cause a line feed (useful when using paper terminals).

Restores last item removed from line. (Yanks item back to the line.)

Line feed and prints current line.

(Null character) Sets mark.

(<Met a SPACE>) Sets mark.

(New line) Executes the current line.

(<RETURN>) Executes the current line.

End-of-file character, usually ~D, is processed as an end-of-file only if the current line is null.

Fetches previous command. Each time AP is entered, the previous command back in time is
accessed. Moves back one line when not on the first line of a multiline command.

Fetches the least recent (oldest) history line.
Fetches the most recent (youngest) history line.

Fetches next command line. Each time AN is entered, the next command line forward in time
is accessed.

Reverses search history for a previous command line containing string. If a parameter of 0 is
given, the search is forward. String is terminated by a RETURN or NEW LI NE. If string is
preceded by a”, the matched line must begin with string. If string is omitted, the next
command line containing the most recent string is accessed. |n this case a parameter of 0
reverses the direction of the search.

(Operates) Executes the current line and fetches the next line relative to current line from the
history file.

(Escape) Defines numeric parameter; the digits are taken as a parameter to the next command.
The commands that accept a parameter are ~F, B, erase, ~C, D, *K, "R, *P, *N, "] , M .,
M2, M_,Mb,Mc,Md, Mf, Mh, MI,and M "H.

425

KSH(1) KSH(1)

M letter (Soft-key) Your alias list is searched for an alias by the name _letter and if an alias of this
name is defined, its value will be inserted on the input queue. The letter must not be one of
the previous meta-functions.

M [letter (Soft-key) Your alias list is searched for an alias by the name __letter and if an alias of this
name is defined, its value will be inserted on the input queue. This can be used to program
functions keys on many terminals.

M . Inserts the last word of the previous command is inserted on the line. If preceded by a
numeric parameter, the value of this parameter determines which word to insert rather than the
last word.

M Sameas M . .

M * Attempts file-name generation on the current word. An asterisk is appended if the word does

not match any file or contain any special pattern characters.

M ESC File name completion. Replaces the current word with the longest common prefix of all
filenames matching the current word with an asterisk appended. If the match is unique, a/ is
appended if the file is a directory and a space is appended if the file is not a directory.

M = Lists files matching current word pattern if an asterisk were appended.
U Multiplies parameter of next command by 4.
\ Escapes next character. Editing characters, the user’s erase, kill and interrupt (usualy ~?)

characters may be entered in a command line or in a search string if preceded by a\. The\
removes the next character’s editing features (if any).

Y Displays version of the shell.

M # Inserts a # at the beginning of the line and executes it. This causes a comment to be inserted
in the history file.

The vi Editing Mode
Thevi editor has two typing modes. When you enter a command, you are in input mode. To edit, you
enter control mode by typing ESC (033), move the cursor to the point needing correction, and then insert or
delete characters or words as needed. Most control commands accept an optional repeat count prior to the
command.

In vi mode on most systems, canonical processing is initially enabled and the command will be echoed
again if the speed is 1200 baud or greater and it contains any control characters or less than one second has
elapsed since the prompt was printed. The ESC character terminates canonical processing for the remainder
of the command, and the user can then modify the command line. This scheme has the advantages of
canonical processing with the type-ahead echoing of raw mode.

426 SR-2011 10.0

KSH(1)

KSH(1)

If the option vi r aw is also set, the termina will always have canonical processing disabled. This mode
may be helpful for certain terminals and is implicit for systems that do not support two alternative
end-of-line delimiters (as defined by RFC-1184). If the shell can determine that this functionality is
supported, the vi r aw option will be off by default. Otherwise, the vi r aw option will be on by default. If
the shell can determine that this functionality is not supported, efforts to turn the vi r aw option off will be
silently ignored.

Input Edit Commands
By default, the editor is in input mode.

erase

"W
D
NV

\

(User-defined erase character as defined by the st t y command, usually “H or #.) Deletes
previous character.

Deletes the previous blank separated word.
Terminates the shell.

Escapes next character. Editing characters, the user’s erase or kill characters may be entered
in a command line or in a search string if preceded by a”V. The "V removes the next
character’s editing features (if any).

Escapes the next erase or kill character.

Motion Edit Commands
The following commands move the cursor:

[count]l
[count]w
[count]W
[count]e
[count]E
[count]h
[count]b
[count] B
[count]|
[count]f c
[count]Fc
[count]t c
[count] Tc
[count];
[count],

0

AN

$

SR-2011 10.0

Moves cursor forward (right) 1 character.

Moves cursor forward 1 alphanumeric word.

Moves cursor to the beginning of the next word that follows a blank.
Moves cursor to end-of-word.

Moves cursor to end of the current blank delimited word.

Moves cursor backward (left) 1 character.

Moves cursor backward 1 word.

Moves cursor to preceding blank separated word.

Moves cursor to column count.

Finds next character ¢ in the current line.

Finds previous character ¢ in the current line.

Equivalent to f followed by h.

Equivalent to F followed by | .

Repeats count times, the last single character find command, f, F, t, or T.
Reverses the last single character find command count times.

Moves cursor to start of line.

Moves cursor to first nonblank character in line.

Moves cursor to end-of-line.

427

KSH(1) KSH(1)

Search Edit Commands
The following commands access your command history:

[count]k Fetches previous command. Each time k is entered, the previous command back in time is
accessed.

[count]- Equivalent to k.

[count]j Fetches next command. Each timej is entered, the next command forward in time is
accessed.

[count] + Equivalent to j .

[count] G Fetches the command number count. The default is the least recent history command.

/ string Searches backward through history for a previous command containing string. string is

terminated by a <RETURN> or <NEWLI NE>. If string is preceded by a”, the matched line
must begin with string. If string is null, the previous string will be used.

?string Same as/ except that search will be in the forward direction.
n Searches for next match of the last pattern to / or ? commands.
N Searches for next match of the last patternto / or ?, but in reverse direction. Searches

history for the string entered by the previous/ command.

Text Modification Edit Commands
The following commands modify the line:

a Enters input mode and enters text after the current character.
A Appends text to the end of the line. Equivalent to $a.

[count]cmotion
c[countlmotion Deletes current character through the character to which motion would move the cursor
and enter input mode. If motion is c, the entire line will be deleted and input mode

entered.

C Deletes the current character through the end-of-line and enter input mode. Equivalent to
c$.

S Equivalent to cc.

D Deletes the current character through the end-of-line. Equivalent to d$.

[count]dmotion
d[count]motion Deletes current character through the character to which motion would move. 1f motion
is d, the entire line will be deleted.

[Enters input mode and inserts text before the current character.
I Inserts text before the beginning of the line. Equivalent to Oi .

[count]P Places the previous text modification before the cursor.

428 SR-2011 10.0

KSH(1)

[count]p
R

[count]r c

[count]x
[count] X
[count].

[count]~

[count]

KSH(1)

Places the previous text modification after the cursor.

Enters input mode and replaces characters on the screen with characters you type overlay
fashion.

Replaces the count character(s) starting at the current cursor position with ¢, and
advances the cursor.

Deletes current character.
Deletes preceding character.
Repeats the previous text modification command.

Inverts the case of the count character(s) starting at the current cursor position and
advances the cursor.

Causes the count word of the previous command to be appended and input mode entered.
The last word is used if count is omitted.

Causes an * to be appended to the current word and file-name generation attempted. |If
no match is found, it rings the bell. Otherwise, the word is replaced by the matching
pattern and input mode is entered.

File name completion. Replaces the current word with the longest common prefix of all
file names matching the current word with an asterisk appended. If the match is unique,
a/ isappended if the file is a directory and a space is appended if the file is not a
directory.

Other Edit Commands
Miscellaneous commands.

[count]y motion
y[count]motion

Y
u
U

[count]v

AL
N
"M
#

SR-2011 10.0

Y anks current character through character that motion would move the cursor to and puts
them into the delete buffer. The text and cursor are unchanged.

Yanks from current position to end-of-line. Equivalent to y$.
Undoes the last text modifying command.
Undoes all the text modifying commands performed on the line.

Returns the command f ¢ -e ${ VI SUAL: - ${ EDI TOR - vi }} count in the input
buffer. If count is omitted, the current line is used.

Line feed and prints current line. Has effect only in control mode.
(SNEWLI NE>) Executes the current line, regardless of mode.
(<RETURN>) Executes the current line, regardless of mode.

Sends the line after inserting a# in front of the line. Useful for causing the current line
to be inserted in the history without being executed.

Lists the file names that match the current word if an asterisk were appended to it.

429

KSH(1) KSH(1)

@etter Your alias list is searched for an alias by the name _letter and if an aias of this name is
defined, its value will be inserted on the input queue for processing.

Special Commands
The following simple commands are executed in the shell process. Input/output redirection is permitted.
Unless otherwise indicated, the output is written on file descriptor 1 and the exit status, when there is no
syntax error, is 0. Commands that are preceded by one or two 1 are treated specially in the following ways:

1. Parameter assignment lists preceding the command remain in effect when the command completes.
2. 1/O redirections are processed after parameter assignments.

3. Errors cause a script that contains them to abort.
4

. Words, following a command preceded by 1t that are in the format of a parameter assignment, are
expanded with the same rules as a parameter assignment. This means that tilde substitution is performed
after the = sign and word splitting and file name generation are not performed.

The special commands are as follows:
t:lag...] The command only expands parameters.

t. file[arg...] Readsthe complete file and then executes the commands. The commands are executed in
the current shell environment. The search path specified by PATH is used to find the
directory containing file. If any arguments arg are given, they become the positional
parameters. Otherwise, the positional parameters are unchanged. The exit status is the
exit status of the last command executed.

ttalias [-tx] [namg =value]] ...
Alias with no arguments prints the list of aliases in the form name=value on standard
output. An aliasis defined for each name whose value is given. A trailing space in
value causes the next word to be checked for alias substitution. The-t flag is used to
set and list tracked aliases. The value of atracked dlias is the full path name
corresponding to the given name. The value becomes undefined when the value of PATH
is reset but the aliases remained tracked. Without the - t flag, for each name in the
argument list for which no value is given, the name and value of the dlias is printed. The
- x flag is used to set or print exported aliases. An exported dlias is defined for scripts
invoked by name. The exit status is nonzero if a name is given, but no value, for which
no alias has been defined. See al i as(2).

bg [job...] This command is only on systems that support job control. Puts each specified job into
the background. The current job is put in the background if job is not specified. See the
Jobs subsection for a description of the format of j ob. See bg(1).

tbreak [n] Exits from the enclosing f or , whi | e, unti |, or sel ect loop, if any. If nis
specified, it breaks n levels.

430 SR-2011 10.0

KSH(1)

cd[arg]
cd old new

KSH(1)

This command can be in either of two forms. In the first form, it changes the current
directory to arg. If argis- , the directory is changed to the previous directory. The
shell parameter HOVE is the default arg. The parameter PWD is set to the current
directory. The shell parameter CDPATH defines the search path for the directory
containing arg. Alternative directory names are separated by a colon (:). The default
path is <nul | > (specifying the current directory). The current directory is specified by a
null path name, which can appear immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If arg begins with a/ , the search path is not
used. Otherwise, each directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, PVD, and tries to change to this new directory.

The cd command may not be executed by r ksh. See cd(1).

conmand [- pW] command_name [argument .. .]

tcontinue[n]

dmmode n

echo[arg...]

See conmand(1) for information on using this command.

Resumes the next iteration of the enclosing f or, whi |l e, unti |, or sel ect loop. If n
is specified, it resumes at the nth enclosing loop.

Sets the data migration recall mode to n. For usage and description, see dnmode(1).

For usage and description, see echo(1).

t eval [arg...] The arguments are read as input to the shell and the resulting command(s) executed.

texec [arg...] If arg is given, the command specified by the arguments is executed in place of this shell

texit [n]

without creating a new process. |nput/output arguments may appear and affect the
current process. If no arguments are given, the effect of this command is to modify file
descriptors as prescribed by the input/output redirection list. In this case, any file
descriptor numbers greater than 2 that are opened with this mechanism are closed when
invoking another program.

Causes the shell to exit with the exit status specified by n. If n is omitted, the exit status
is that of the last command executed. An end-of-file will also cause the shell to exit
except for a shell that has the i gnor eeof option (see set) turned on.

Tt export [name[=valug]] ...

The specified names are marked for automatic export to the envi r onnent of
subsequently executed commands.

fc[-eename J[-nlr J[first[last]]

SR-2011 10.0

431

KSH(1) KSH(1)

fc -e - [old=new] [command]
In the first form, a range of commands from first to last is selected from the last
HI STSI ZE commands that were typed at the terminal. The arguments first and last may
be specified as a number or as a string. A string is used to locate the most recent
command starting with the given string. A negative number is used as an offset to the
current command number. If the flag - | is selected, the commands are listed on
standard output. Otherwise, the editor program ename is invoked on a file containing
these keyboard commands. If ename is not supplied, the value of the parameter FCEDI T
(default / bi n/ ed) is used as the editor. When editing is complete, the edited
command(s) is executed. If last is not specified, it will be set to first. If first is not
specified, the default is the previous command for editing and —16 for listing. The flag
- r reverses the order of the commands and the flag - n suppresses command numbers
when listing.

In the second form, the command is reexecuted after the substitution old=new is
performed. Seef c(1).

fgl[job...] This command is only on systems that support job control. Each job specified is brought
to the foreground. Otherwise, the current job is brought into the foreground. For a
description of the format of j ob, see the Jobs subsection. See f g(1).

get opt s optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional parameters are used. An
option-argument begins with a+ or a-. An option not beginning with + or - or the
argument - - ends the options. optstring contains the letters that get opt s recognizes.
If aletter is followed by a: , that option is expected to have an argument. The options
can be separated from the argument by blanks.

get opt s places the next option letter it finds inside variable name each time it is
invoked with a + prepended when arg begins with a +. The index of the next arg is
stored in OPTI ND. The option-argument, if any, is stored in OPTARG.

A leading : in optstring causes get opt s to store the letter of an invalid option in
OPTARG, and to set name to ? for an unknown option and to : when a required option
ismissing. Otherwise, get opt s prints an error message. The exit status is nonzero
when there are no more options. See get opt s(1).

jobs[-Inp][job...]
Lists information about each given job, or al active jobs if job is omitted. The -1 flag
lists process IDs in addition to the normal information. The - n flag displays only jobs
that have stopped or exited since last notified. The - p flag causes only the process group
to be listed. For a description of the format of job, see the Jobs subsection. See

j obs(1).
kill -s signal_name pid...
kill -1 [exit_status]

kill -v

432 SR-2011 10.0

KSH(1)

KSH(1)

kill [-signal_name] pid...
kill [-signal_number] pid...

let arg ...

For usage and description, see ki | | (1).

Each arg is a separate arithmetic expression to be evaluated. For a description of
arithmetic expression evaluation, see the Arithmetic Evaluation subsection.

If the value of the last expression is nonzero, the exit status is O; otherwise it is 1.

print [-Rnaprsu[n]][arg...]

pwd

The shell output mechanism. With no flags or with flag - or - -, the arguments are
printed on standard output as described by echo(1). Inraw mode, - Ror - r, the escape
conventions of echo are ignored. The - R option will print al subsequent arguments and
options other than - n. The - p option causes the arguments to be written onto the pipe
of the process spawned with | & instead of standard output. The - s option causes the
arguments to be written onto the history file instead of standard output. The - u flag can
be used to specify a one-digit file descriptor unit number n on which the output will be
placed. The default is 1. If the flag - n is used, no <new i ne> is added to the output.

Prints the working directory. Equivalenttoprint -r - $PWD

read [-prsu[n]][name?prompt] [name...]

The shell input mechanism. One line is read and is broken up into fields, using the
charactersin | FS as separators. Inraw mode, - r, a\ at the end of aline does not
signify line continuation. The first field is assigned to the first name, the second field to
the second name, and so on, with leftover fields assigned to the last name. The - p
option causes the input line to be taken from the input pipe of a process spawned by the
shell using | & If the - s flag is present, the input will be saved as a command in the
history file. The - u flag can be used to specify a one-digit file descriptor unit from
which to read. The file descriptor can be opened with the exec special command. The
default value of nis 0. If name is omitted, REPLY is used as the default name. The exit
status is O, unless an end-of-file is encountered. See r ead(1). An end-of-file with the

- p option causes cleanup for this process so that another can be spawned. If the first
argument contains a ?, the remainder of this word is used as a prompt on standard error
when the shell is interactive. The exit status is 0, unless an end-of-file is encountered.

Tt readonl y [name[=valug]] ...

treturn[n]

The specified names are marked read only, and these names cannot be changed by
subsequent assignment.

Causes a shell function to return to the invoking script with the return status specified by
n. If nisomitted, the return status is that of the last command executed. If return is
invoked while not in a function or a. script, it isthe sameasanexi t.

set [tabCef hkrmopsSt uvx][zo option]...[tAname] [arg ...]

SR-2011 10.0

Sets options for the shell. The flags for this command have the following meanings:

433

KSH(1)

434

-f
-h
-k

KSH(1)

Array assignment. Unsets the variable name and assigns values sequentially from
the list arg. If +Ais used, the variable name is not unset first.

Automatically exports all subsequent defined parameters.

Causes the shell to notify the user asynchronously of background job completion.

Prevents redirection > from truncating existing files. Reguires >| to truncate afile
when turned on.

Executes the ERR trap, if set, and exits. Used with a command that has a honzero
exit status. This mode is disabled while reading profiles.

Disables file name generation.

Each command becomes a tracked alias when first encountered.

Places all parameter assignment arguments in the command environment. All
parameter assignment arguments are placed in the environment for a command, not
just those that precede the command name.

Runs background jobs in a separate process group. A line will print upon
completion. The exit status of background jobs is reported in a completion
message. On systems with job control, this flag is turned on automatically for
interactive shells.

Reads commands and checks them for syntax errors, but does not execute them.
Ignored for interactive shells.

The following argument can be one of the following option names:

al | export
errexit
bgni ce

enmacs
gnmacs
i gnor eeof

keywor d
markdirs

noni t or
nocl obber
noexec
nogl ob
nol og
notify
nounset

Same as - a.

Same as - e.

All background jobs are run at a lower priority. This is the default
mode.

Puts you in an enacs-style inline editor for command entry.

Puts you in a grmacs-style inline editor for command entry.

The shell will not exit on end-of-file. The command exi t must be
used.

Same as - k.

All directory names resulting from file name generation have a
trailing / appended.

Same as-m

Same as - C.

Same as - n.

Sameas-f.

Does not save function definitions in history file.

Same as - b.

Same as - U.

SR-2011 10.0

KSH(1)

setucat cat
setusrv

set ucnp cmp

set ul vl level

SR-2011 10.0

KSH(1)
privil eged Sameas-p.
ver bose Same as - v.
trackal | Same as - h.
Vi Puts you in insert mode of a vi -style inline editor. Continues until

you hit escape character (033). This puts you in move mode. A
return sends the line.

Vi raw Processes each character as it is typed in vi mode.
xtrace Same as - X.

For ksh - o, the option argument is required. For set - o, if no option name is
supplied, the current option settings are printed.

Disables processing of the $HOVE/ . profi | e file. Uses the file
/etc/suid_profil e instead of the ENV file. This mode is on whenever the
effective uid (gid) is not equal to the real uid (gid). Turning this off causes the
effective uid and gid to be set to the real uid and gid.

Prefixes commands with a date and time stamp of the form
day month date hh:mm:ss.

Sorts the positional parameters lexicographically.
Note: For adecsription of ksh - s, see the Invocation subsection.

Exits after reading and executing one command.

Treats unset parameters as an error when substituting.

Prints shell input lines as they are read.

Prints commands and their arguments as they are executed.

Turns off - x, - v, and - S flags and stops examining arguments for flags.

Does not change any of the flags. This flag is useful in setting $1 to a value
beginning with - . If no arguments follow this flag, the positional parameters are
unset.

Using + rather than - causes these flags to be turned off. These flags can also be used
upon invocation of the shell. The current set of flags may be found in $-. Unless- A is
specified, the remaining arguments are positional parameters and are assigned, in order, to
$1 $2 If no arguments are specified, the names and values of al named parameters
are printed on the standard output.

Sets the active category. For usage and description, see set ucat ().

Sets the user’s security attributes. For usage and description, see set usr v(1).

Sets active compartments. Available only to the lowest-level login shell. For usage and
description, see set ucnp(1).

Raises the security level. Available only to the lowest-level login shell. For usage and
description, see set ul vI (1).

435

KSH(1)

436

tshift [n]

ttines

KSH(1)

The positional parameters from $n+1 ... arerenamed $1 ...; default nis 1. The
parameter n can be any arithmetic expression that evaluates to a nonnegative number less
than or equal to $#.

Prints the accumulated user and system times for the shell and for processes run from the
shell.

ttrap[arg][sig] ...

arg is a command to be read and executed when the shell receives signal(s) sig. (Note
that arg is scanned once when the trap is set and once when the trap is taken.) Each sig
can be specified as a number or as the name of the signal. Trap commands are executed
in order of signal number. Any attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective. If arg is omitted or is -, al trap(s) sig are reset
to their original values. If arg is the null string, this signa is ignored by the shell and by
the commands it invokes. If sig is ERR, arg will be executed whenever a command has
a nonzero exit status. If sig is DEBUG, arg will be executed after each command. If sig
isO or EXI T and the t r ap statement is executed inside the body of a function, the
command arg is executed after the function completes. If sigisO0 or EXI T for atrap
set outside any function, the command arg is executed on exit from the shell. Thetrap
command with no arguments prints a list of commands associated with each signal
number.

tttypeset [tHLRZf il rtux[n]] [name =value]] ...

Sets attributes and values for shell parameters. When invoked inside a function, a new
instance of the parameter name is created. The parameter value and type are restored
when the function completes. The following list of attributes may be specified:

-H Thisflag provides UNIX system to host-name file mapping on non-UNIX system
machines.

-L Left justifies and removes leading blanks from value. If n is nonzero, it defines the
width of the field; otherwise, it is determined by the width of the value of first
assignment. When the parameter is assigned to, it is filled on the right with blanks
or truncated, if necessary, to fit into the field. Leading O's are removed if the - Z
flag is also set. The - Rflag is turned off.

- R Right justifies and fills with leading blanks. If n is nonzero, it defines the width of
the field; otherwise, it is determined by the width of the value of first assignment.
The field is left-filled with blanks or truncated from the end if the parameter is
reassigned. The L flag is turned off.

-Z Right justifies and fills with leading O's, if the first nonblank character is a digit
and the - L flag has not been set. If nis nonzero, it defines the width of the field;
otherwise, it is determined by the width of the value of first assignment.

SR-2011 10.0

KSH(1) KSH(1)

-f The names refer to function names rather than parameter names. No assignments
can be made and the only other valid flagsare-t, -u and - x. The-t flag turns
on execution tracing for this function. The - u flag causes this function to be
marked undefined. The FPATH variable will be searched to find the function
definition when the function is referenced. The - x flag allows the function
definition to remain in effect across shell procedures invoked by name.

-i Specifies that parameter is an integer. This makes arithmetic faster. If nis
nonzero, it defines the output arithmetic base; otherwise, the first assignment
determines the output base.

-1 Converts al uppercase characters to lowercase. The uppercase flag, - u is turned
off.

-r The given names are marked read only; these names cannot be changed by
subsequent assignment.

-t Tags the named parameters. Tags are user-definable and have no special meaning
to the shell.

-u Converts al lowercase characters to uppercase characters. The lowercase flag, - | ,
is turned off.

-x Marks the given names for automatic export to the environment of
subsequently-executed commands.

Using + rather than - causes these flags to be turned off. If no name arguments are
given but flags are specified, a list of names (and optionally the values) of the parameters
that have these flags set is printed. (Using + rather than - keeps the values from being
printed.) 1f no names and flags are specified, the names and attributes of all parameters
are printed.

ulimt [-f][n] Imposes asize limit of n blocks. The - f option imposes a size limit of n 4096-byte
blocks on files written by child processes (files of any size may be read). With no
argument, the current limit in 4096-byte blocks is printed. Seeul i m t (2). If no option
is specified, - f is assumed.

umask [mask] The user file-creation mask is set to mask (see umask(2)). mask can either be an octal
number or a symbolic value as described in chnod(1). If a symbolic value is specified,
the new umask value is the complement of the result of applying mask to the
complement of the previous umask value. If mask is omitted, the current value of the
mask is printed.

unal i as name....
The parameters given by the list of names are removed from the alias list. See
unal i as(2).

SR-2011 10.0 437

KSH(1) KSH(1)

unset [-f] name...
The parameters given by the list of names are unassigned; that is, their values and
attributes are erased. Read-only variables cannot be unset. If the - f flag is set, the
names refer to function names. Unsetting ERRNO, LI NENO, MAI LCHECK, OPTARG,
OPTI ND, RANDOM SECONDS, TMOUT, and _ removes their special meaning, even if
they are subsequently assigned to.

twait [job] Waits for the specified job and reports its termination status. If job is not specified, all
currently active child processes are awaited. The exit status from this command is that of
the process awaited. For a format description of job, see the Jobs subsection. See
wai t (1).

whence [- pv] name...
For each name, indicates how it would be interpreted if used as a command name.

The - v flag produces a more verbose report.

The - p flag does a path search for name, even if name is an aias, a function, or a
reserved word.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

secadm system Can redirect to or from any file using the facilities described in the Parameter
Substitution, Quoting, and Input/Output subsections of this man page; change to any
directory using the cd(1) command described in the File Name Generation
subsection of this man page; kill any user process using the ki | | (1) command;
arbitrarily set the shell process security attributes using the set ul vl (1),
set ucnp(l), and set usr v(1) commands,; and change process limits to any value
using the ul i mi t (2) command.

sysadm Constrained by security label restrictions but not by ownership, mode, and ACL
considerations when redirecting to or from files using the facilities described in the
Parameter Substitution, Quoting, and Input/Output sections of this man page; can
change to directories using cd(1) command; can expand path names using the
patterns described in the File Name Generation subsection of this man page; or can
kill user processes using the ki | | (1) command. The sysadmadministrator can
change process limits to any value using the ul i m t (2) command. However, this
user can only set the shell process security attributes using set ul vl (1),
set ucnp(l), or set usr v(1) in ways that are allowed to nonadministrative users.

438 SR-2011 10.0

KSH(1)

KSH(1)

sysops Constrained by security label restrictions but not by ownership considerations when
killing processes using the ki | | (1) command and can change process limits to any
value using the ul i mi t (2) command. The sysops administrator is treated as a
nonadministrative user with respect all other shell activities.

If the PRI V_SU configuration option is enabled, the super user can override all ksh restrictions.

If a command that is a tracked alias is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was found, the shell will
continue to exec the original command. Use the -t option of the al i as(1) command to correct this
situation.

Some very old shell scripts contain a” as a synonym for the pipe character (|).

Using the f ¢ built-in command within a compound command will cause the entire command to disappear
from the history file.

The built-in command . file reads the entire file before any commands are executed. Therefore, al i as and
unal i as commands in the file will not apply to any functions defined in the file.

Traps are not processed while a job is waiting for a foreground process. Thus, a trap on CHLD will not be
executed until the foreground job terminates.

EXIT STATUS

Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status. If a
specified shell script could not be found by a noninteractive shell, the shell exits with 127. Otherwise, the
shell returns the exit status of the last command executed (see also the exi t command). If the shell is
being used noninteractively, execution of the shell file is abandoned. Run-time errors detected by the shell
are reported by printing the command or function name and the error condition. If the line number that the
error occurred on is greater than one, the line number is also printed in square brackets ([]) after the
command or function name.

EXAMPLES

Example 1: The following is an example of setting up . pr of i | e, which is the initialization file for ksh.
It is executed once at login, and then executes the file to which ENV is set.

CDPATH=. : . .:~:/ #path that cd uses

FCEDI T=vi #conmmand |ine editor

ENV=~/ . env #environment file

HI STSI ZE=32 #ksh saves | ast 32 conmands

MAI LCHECK=300 #ksh checks for mail every 5 nminutes
set -0 ignoreeof #ignore "D on | ogin shell

TERMF tset - -Q ‘?anpex230‘’

stty erase '~?" kill "~u” intr ¢’ echo

export CDPATH EDI TOR FCEDI T CRAY ENV HI STSI ZE MAI LCHECK TERM

SR-2011 10.0 439

KSH(1) KSH(1)

Example 2: The following is an example of a. env file that is executed each time a new ksh is run; it
allows all aliases to be carried to all new shells.

#

alias -x Isf="/bin/ls -CF

alias -x Isl="/bin/ls -1gF

alias -x h="fc -Ir’

alias -x hf="fc -1 $H STSIZE | nore’
alias -x pe=printenv

FILES
[etc/profile File containing system default shell startup commands
$HOVE/ . profile File containing user’s shell startup commands
$TMPDI R/ sh* Temporary working files
/ dev/ nul | Zero-length file
a. out Executable binary file

SEE ALSO

al i as(1), bg(1), cd(1), chown(1), command(l), echo(l), emacs(1), env(l), f c(1), f g(2),
get opt s(1), j obs(2), ki I I (2), I ogi n(1), pwd(2), r ead(1), set ucat (1), set ucnp(l), set usrv(l),
test (1), unal i as(1), vi (1), wai t (1)

dup(2), exec(2), execve(2), f or k(2), pi pe(2), set ui d(2), si gnal (2), umask(2), ul i m t (2),
wai t (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

a. out (5), profil e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

dmmode(1) Online only

envi r on(7) Online only

Learning the Korn Shell, Bill Rosenblatt, O’ Reilly & Associates, Inc., 1990

The KornShell Command and Programming Language, Morris Bolsky and David Korn, Prentice Hall, 1989
General UNICOS System Administration, Cray Research publication SG—2301

440 SR-2011 10.0

KSRVTGT(1) KSRVTGT(1)

NAME

ksrvt gt — Uses a service key to fetch and store a Kerberos ticket-granting ticket

SYNOPSIS
ksr vt gt name instance [[realm] srvtab]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The ksr vt gt utility retrieves a ticket-granting ticket with a lifetime of 5 minutes for the principal
name.instance@realm. It uses the service key found in the srvtab file to decrypt the response and stores the
ticket in the standard ticket cache.

The ksr vt gt utility accepts the following options:

name instance
Specifies the principal for which the ticket-granting ticket is retrieved.

reAlm Specifies the realm of the principal for which the ticket-granting ticket is retrieved. If you omit
realm on the command line, the local realm is used.

srvtab Specifies the file that contains the service key that decrypts the response. If you omit srvtab on the
command line, the/ et ¢/ srvt ab fileis used.

The ksr vt gt utility is primarily for use in shell scripts and other batch-type facilities.
MESSAGES

The Generic kerberos failure (kfailure) message can indicate a whole range of problems, the
most common of which is the inability to read the service key file.

FILES

[etc/krb.conf Filethat gets the name of the local ream
/etc/srvtab Default service key file
[t np/ t kt [uid] Default ticket file

SEE ALSO
kdest roy(2), ki ni t (1)

ker ber os(7) (available only online)

SR-2011 10.0 441

KSU(1) KSU(1)

NAME

ksu — Uses Kerberos to substitute user 1D

SYNOPSIS

ksu [-] [name [argd]]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
The ksu utility allows you to become another user without logging off. The default user name is r oot .

To use ksu, the appropriate password must be supplied (unless you are an appropriately authorized user). If
the password is correct, ksu executes a new shell with the real and effective user ID set to that of the
specified user. The new shell is the optional program named in the shell field of the specified user's
password file entry (see udb(5)), or / bi n/ sh if none is specified (see sh(1)). To restore your original user
identity, exit the new shell.

Any additional arguments specified on the command line are passed to the program invoked as the shell.
For example, when sh(1) is used, an argument of the form - ¢ string executes string via the shell and an
option of - r gives the user a restricted shell.

The following statements are true only if the optional program named in the shell field of the specified user’s
password file entry is like sh(1). If the first argument to ksu is a -, the environment is changed to what
would be expected if the user actually logged in as the specified user. This is done by invoking the program
used as the shell with an arg0 value whose first character is - , causing the system’s profile

(/ etc/ profile) and then the specified user’s profile (. pr of i | e in the new home directory) to be
executed. Otherwise, the environment is passed along, with the possible exception of $PATH, which is set
to/bin:/etc:/usr/binforroot. If theoptional program used as the shell is/ bi n/ sh, the user’'s

. profil e can check arg0 for - sh or - ksu to determine whether it was invoked by | ogi n(1) or ksu,
respectively. If the user’s program is not / bi n/ sh, the program is invoked with an arg0 of - program by
both | ogi n and ksu.

The ksu utility accepts the following options:
- Changes environment to that of specified user name.
name Indicates user name to log on to (default is r oot).

args Specifies shell arguments for new login.

442 SR-2011 10.0

KSU(1) KSU(1)

Only users with root instances listed in the . kl ogi n file can use the ksu utility to change to r oot (the
kl ogi n(2) utility describes the format of this file). When you attempt root access, ksu attempts to fetch a
ticket-granting ticket for username.root@localrealm; username is the user name of the process. If possible,
the tickets are used to obtain, use, and verify tickets for the r cnd. host @ocalrealm service; host is the
canonical host name of the machine (which is the first field, lower case, of the domain name). If this
verification fails, the ksu utility is disallowed. If ther crd. host @ocalrealm service is not registered, the
ksu utility is allowed.

By default (unless the prompt is reset by a startup file), the super-user prompt is set to #.

When not attempting to switch to the r oot user, ksu behaves exactly like su(1).

SEE ALSO
csh(1), kl ogi n(2), | ogi n(1), passwd(1), sh(1), su(l)

gr oup(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

envi r on(7) (available only online)

SR-2011 10.0 443

LAST(1B) LAST(1B)

NAME

| ast — Indicates the last logins of users and teletypes

SYNOPSIS

[fusr/uchb/last [-number] [-f file] [names] [ttys]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The |l ast utility looks in the / et ¢/ wt np file for information about a user, a teletype, or any group of
users and teletypes. The wt np file records all logins and logouts that have occurred since the last
initialization of the file. Arguments specify names of users or teletypes of interest. Names of teletypes can
be specified fully or abbreviated. For example, | ast 0 isthe sameas| ast tty0. If you specify
multiple arguments, | ast prints the information applying to any of the arguments. Thel ast utility prints
the sessions of the specified users and teletypes, most recent first, indicating the times at which the session
began, the duration of the session, and the teletype on which the session occurred. | ast indicates whether
the session is still continuing or was cut short by a reboot.

The pseudo-user r eboot logs in when the system is rebooted. Thus, the following command line indicates
the mean time between reboots:

| ast reboot

The | ast utility accepts the following options:
- number Limits the number of entries displayed to number.
-f file Uses file as the name of the accounting file instead of / et ¢/ wt np. file must be in wt np(5)

format.
names Logins to be checked.
ttys Teletypes to be checked.

EXAMPLES

444

Example 1: To list al of the super user’s sessions, as well as all sessions on the console terminal, enter the
following:

| ast root consol e

Example 2: To print a record of all logins and logouts in reverse order, enter the following without
arguments:

| ast

SR-2011 10.0

LAST(1B) LAST(1B)

FILES
[etc/wnmp Login database

SEE ALSO

ut np(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2011 10.0 445

LD(1) LD(1)

NAME
| d — Invokes the link editor

SYNOPSIS
| d [-Ddirstring] [-e name] [-F] [-9] [-i1] [-] names] [-] names] [-L Idirs] [-m [-n]
[- o outfile] [-r] [-s] [-u unames] [-V] [-Z] [-z filg] files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The | d command links rel ocatable object modules to produce an executable program. This command
invokes the same loader as does segl dr (1), but with a traditional UNIX | d invocation.

The files specified on the command line may be either sequential object files created by the compilers or
assembler, object libraries created by bl d(1) or files containing loader directives. Files ending with . o will
be treated as bi n files. Files ending with . a will be treated as| i b files. You can intersperse file names
with options on the command line.

The | d command accepts the following options:

-Ddirstring Specifies a character string composed of loader directives separated by semicolons. The
loader processes directives supplied with - D before it processes any directives files.

- € name Sets the program entry address to the value of the symbol name.
-F Enables default library processing. The standard system libraries are processed after any

user-supplied libraries. Processing of the system libraries is disabled by default.

-g Generates the Debug Symbol tables and appends them to the executable program. This
option is enabled by default. See the - s option.

- Generates a shared-text program on Cray PVP systems. This option is equivalent to the - n
option.

-] names List of directives file names, separated by commas. When a name begins with adot (.) or a
dash (/), | d assumesit is a complete path name and uses it without modification.
Otherwise, | d checks for a segdi r s/name file in the list of search directories and uses the
first one found. See the - L option for the list of search directories.

-1 names Identifies library files. When a name begins with adot (.) or aslash (/), it is assumed be a
complete path name and is used without modification. Otherwise, the | d command checks
first for files/ opt/ctl/craylibs/craylibs/libname aand/Iib/libname. a,
and then for file/ usr/ i b/ 1i bname. a. It uses the first file it finds. See the - L option.

446 SR-2011 10.0

LD(1)

- L Idirs

-m

-Nn

- 0 outfile

-r

-S

- U unames

-V
-Z

-z file

files

LD(1)

Changes the - | option search algorithm to look for library files in directories Idirs before
looking inthe/ opt/ctl/craylibs/craylibs,/lib,or/usr/lib directories. If
the - F option is used to include the system default directories, the loader searches directories
Idirs for those libraries before searching the / opt / ct I / crayl i bs/craylibs,/lib, or
[usr/1ib directories. Multiple - L options are cumulative.

Generates a load map of the executable program and writes it to the st dout file.
Generates a shared-text program on Cray PVP systems. This option is equivalent to the - i
option.

Writes the executable program to outfile. The default outfile name is a. out .

Produces a relocatable output from . o files. That is, instead of generating an executable, it

generates one relocatable combining the .o files named. The output is suitable for use by
another invocation of | d. Equivalent to using the following directives:

OUTFORM=REL
USX=NOTE
SYSTEM=STDAL ONE
ZSYNB=CFF

Inhibits the generation of the Debug Symbol tables.

Enters unames as undefined symbols. This is useful for loading from a library, because
undefined symbols are needed to force the loading of desired routines.

Lists the SEGLDR version line on the st der r file.

Inhibits the loader from reading the default directives file. The default directives file is either
[opt/ctl/craylibs/craylibs/segdirs/opt_defld or
/1ibl/segdirs/def_|d. The default directives file is required for configuring programs
correctly for execution under the UNICOS operating system. The - Z option should be used
only by special-purpose programs.

Specifies an alternative default directives file. The alternative directives must configure the
program correctly for execution under the UNICOS operating system.

Specifies the files to be loaded.

ENVIRONMENT VARIABLES

The | d command looks for and processes the following environment variables:

LDDI R

TMPDI R
LPP

SR-2011 10.0

Contains one or more strings separated by semicolons. Each string may be either al d
directive or the name of afile containing | d directives.

Specifies the directory that the loader uses for its temporary file.

Specifies the number of lines to print on each page of listing output. The value must be
between 15 and 999, and the default is 57.

447

LD(1) LD(1)

MBG_FORMAT Describes a format specification similar to that of the C library routine pri nt f ; this
specification can be used to alter | d error message displays.

NLSPATH Specifies a list of aternate directories that the loader should search for its error message
catalog. It is used to select aternate catalogs for debugging, or when different versions of
| d are operating on the same system. NLSPATH is not needed for normal operations.

TARGET Specifies the machine characteristics of the system on which the program will execute. If
the TARGET variable has not been specified, the program will be adapted to the host
system.

The following defaults for loader directives are automatically used when you invoke | d:

force=on
dupor der =on
nodeflib

dupent ry=cauti on: note: note
usx=war ni ng
MESSAGES

The full range of error messages and the proper responses are listed in the Segment Loader (SEGLDR) and
Id Reference Manual, Cray Research publication SR—0066.

FILES
a. out Executable program
file. o Relocatable object file
[opt/ctl/craylibs/craylibs/libf.a Fortran library
[opt/ctl/craylibs/craylibs/libfi.a Fortran intrinsic library
[opt/ctl/craylibs/craylibs/libma Math library
[opt/ctl/craylibs/craylibs/libsci.a Scientific library
/[1ib/libc.a C library
fopt/ctl/COCCIlib/libC a C++ library (only if your site has a C++ license)
[1ibllibp.a Pascal library

[opt/ctl/craylibs/craylibs/libu.a Utility library

/1ibl/lsegdirs/def_|d and
[opt/ctl/craylibs/craylibs/segdirs/opt_defld
Default directives files

448 SR-2011 10.0

LD(1) LD(1)

SEE ALSO

ar (1) archive and library maintainer for portable archives

bl d(1) maintains relocatable libraries

nm(1) prints name list from load modules

segl dr (1) invokes the Cray Research segment loader (SEGLDR)

cc (1) invokes the Cray Standard C compiler and is described in the Cray Standard C Reference Manual,
Cray Research publication SR—2074

f 90(1) invokes the CF90 compiler and is described in the CF90 Commands and Directives Reference
Manual, Cray Research publication SR—3901

a. out (5) describes the loader output file

r el o(5) describes the relocatable object table format under the UNICOS operating system

t askcom(5) describes the task common table format

in the UNICOS File Formats and Secial Files Reference Manual, Cray Research publication SR—2014

Segment Loader (SEGLDR) and Id Reference Manual, Cray Research publication SR—0066

SR-2011 10.0 449

LEX(1) LEX(1)

NAME

| ex — Generates programs for simple lexical tasks

SYNOPSIS

lex [-t] [-r] [-n] [fileg]
lex [-t] [-r] [-Vv] [fileg]

Obsolescent version; may not be supported in future releases:
lex -c [-t] [-r] [-n] [fileg]
lex -c [-t] [-r] [-Vv] [fileg]
IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX, XPG4

AT&T extensions (- r option)
DESCRIPTION

The | ex utility generates programs to be used in simple lexical analysis of text.

The input files (standard input by default) contain strings and expressions for which to search and C text to
be executed when strings are found.

The | ex utility accepts the following options and operand:

-t Causes the | ex. yy. c program to be written to standard output.
-r Indicates RATFOR actions (RATFOR, a Rational Fortran compiler, is not supported by
Cray Research.)
-n Does not print the - v summary.
Y Provides a one-line summary of statistics of the machine generated. Multiple files are treated as a

single file. When files are not specified, standard input is used.
-C (Obsolescent) Indicates C-language actions and is the default.

files A path name of one or more input files. If more than one such file is specified, al files are
concatenated to produce a single | ex program. If no files are specified, or if the operand is -, the
standard input is used.

450 SR-2011 10.0

LEX(1)

LEX(1)

A file, | ex. yy. c, is generated; when loaded with the library, it copies the input to the output except when
a string specified in the file is found. Then the corresponding program text is executed. The actua string
matched is left in yyt ext , an external character array. Matching is done in order of the strings in the file.
The strings may contain brackets to indicate character classes, as in [abx- z] to indicate a, b, X, y, and z.
The *, +, and ? operators mean, respectively, any nonnegative number of, any positive number of, and either
zero or one occurrence of, the previous character or character class. The . character is the class of all

ASCII characters except newline characters.

Parentheses for grouping and the vertical bar for aternation are also supported. The notationr {d, e} ina
rule indicates between d and e instances of extended regular expression r . It has higher precedence than | ,
but lower than (, **, ? , +, and concatenation. Thus, [a- zA- Z] + matches a string of letters. The "
character at the beginning of an expression permits a successful match only immediately after a newline
character, and $ at the end of an expression requires a trailing newline character.

The/ character in an expression indicates trailing context; only the part of the expression up to the slash is
returned in yyt ext , but the remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol when it is enclosed by " symbols or preceded by \ .

Three subroutines defined as macros are expected: i nput () to read a character; unput (c) to replace a
character read; and out put (c) to place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named yyl ex(), and the library contains a
mai n() routine that callsit. The REJECT action on the right side of the rule causes this match to be
rejected and the next suitable match executed; the yynor e() function accumulates additional characters
into the same yyt ext array; and the yyl ess(p) function pushes back the portion of the string matched
beginning at p, which should be between yyt ext and yyt ext +yyl eng. Thei nput and out put
macros, defaulted to st di n and st dout , respectively, use filesyyi n and yyout to read from and write
to, respectively.

Any line beginning with a <bl ank> is assumed to contain only C text and is copied; when it precedes %84
it is copied into the external definition area of the | ex. yy. c file. All rules should follow a 9%®%(as is done
inyacc(l)). Linesthat precede %®%and begin other than a <bl ank> character define the string on the left
as the remainder of the line; the string can be called out later if it is surrounded with {} . Braces do not
imply parentheses; only string substitution is done.

Certain table sizes for the resulting finite-state machine can be set in the definitions section as follows:
% n Number of positions is n (default is 2000).

% n Number of statesis n (default is 500).

% n Number of parse tree nodes is n (default is 1000).

% n Number of transitions is n (default is 3000).

The use of one or more of these automatically implies the - v option, unless the - n option is used.

SR-2011 10.0 451

LEX(1)

NOTES
The external names generated by | ex all begin with the prefix yy or YY.

EXIT STATUS
The | ex utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

BUGS
Extended Regular Expressions (ERES) are currently not supported in | ex.

EXAMPLES
Example 1: The following example is an input program for | ex:
D [0-9]
9
if printf("IF statenentO);

[a-z]+ printf("tag, value %0, yytext);
0{ D} + printf("octal nunber %0, yytext);
{D} + printf("deci mal nunber %0, yytext);

R printf("unary op0);
"t printf("binary op0);
"/ O skipconmts();
9
ski pcommt s()
{
for (;;)
{
while (input() !'= '0)
if (input() !'="/")

unput (yytext[yyl eng-1]);

el se
return;

452

LEX(1)

SR-2011 10.0

LEX(1) LEX(1)

SEE ALSO
yacc(l)
lex & yacc, Doug Brown and Tony Mason, O’'Reilly & Associates, Inc., 1992.
The UNIX Programming Environment, Brian W. Kernighan and Rob Pike, Prentice-Hall, Inc., 1984.

SR-2011 10.0 453

LIMIT(1) LIMIT(1)

NAME

| i mt — Setsresource limits

SYNOPSIS
limt [-j jid] [-c cputimelim] [- m memorylim] [- e mpppelim] [-t mpptimelim] [- s socketbuflim]
[-v]
[imt -p pid [-c cputimelim] [- m memorylim] [-d corelim] [-f openfilelim] [-t mpptimelim]
[- s socketbuflim] [- v]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
Thelimt utility establishes limits on resource usage for a process or a job.
Thelim t utility accepts the following options:

- ¢ cputimelim Indicates a limit on CPU time. The cputimelim argument refers to CPU seconds. A
cputimelim of 0 indicates an unlimited amount of CPU time. If the - ¢ option is not
specified, the CPU time limit is not modified. (See the CAUTIONS section.)

-d corelim Indicates a limit on core file sizes. The corelim argument refers to memory words and is
rounded up to the nearest click boundary. There are 512 decimal words per click on
Cray Research systems. A corelim of O indicates the maximum core file size alowed.
Specifying a corelim value less than the size of the process will result in a truncated core
file that consists only of the user common structure and the user area. Specifying a corelim
of nocor e will inhibit the creation of a core file altogether. This option is supported
only for processes.

- e mpppelim Indicates a limit on the number of PEs. This option may be specified only with the - j
option.

- f openfilelim Indicates a limit on the maximum number of files that a process can have open at any
given time. This limit is supported only with the - p option. The limit may be from 64

through the user’s defined limit in the user database (UDB); the default is 64. This limit
is applied only to the children of the process specified.

-j jid Indicates a particular job. A jid of O means the current job. The-j option may not be
specified with the - p option. If neither the - p nor the - j option is specified, a default of
-j 0 isused.

454 SR-2011 10.0

LIMIT(1) LIMIT(1)

-mmemorylim Indicates a limit on memory size. The memorylim argument refers to memory words. The
given memorylim is rounded up to the nearest click boundary. There are 512 decimal
words per click on Cray Research systems. A memorylim of 0 indicates the maximum
memory size available. If the - moption is not specified, the memory size limit is not
modified.

- p pid Indicates a particular process. A pid of O means the current process. The - p option may
not be specified with the - j option.

- s socketbuflim Indicates a limit on per session socket buffer (sockbuf) space. The per session sockbuf
space is the sum of the sockbuf space requested by all of the sockets used by the session.
The socketbuflim argument refers to memory clicks. There are 512 decimal words per
click on Cray Research systems. A socketbuflim of O indicates no space limit. If the-s
option is not specified, the sockbuf space limit is not modified.

-t mpptimelim Indicates a limit on processing element (PE) time.
-V Writes the previous time, memory size, and core file size limits to standard output in a
more verbose mode.

Any user may change a limit to be more restrictive. Only an appropriately authorized user can increase
resource limits. Only an appropriately authorized user can set the resource limits of another user, process, or
session. Limits are inherited by child processes.

The pid, jid, cputimelim, corelim, memorylim, and socketbuflim arguments have the following characteristics
in common. All must be nonnegative integer values. If the argument contains a leading Ox or 0X; it is
evaluated as hexadecimal. If the argument contains a leading zero, it is evaluated as octal. Otherwise, it is
evaluated as decimal.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to raise or lower the resource limits of any user, process, or session.

sysadm Allowed to raise or lower the resource limits of any user, process, or session, subject
to security label restrictions. Shell-redirected 1/O is subject to security label
restrictions.

If the PRI V_SU configuration option is enabled, the super user is allowed to raise or lower the resource
limits of any user, process, or session.

If a process exceeds the process CPU time limit, SI GCPULI Mis sent to the offending process. By defaullt,
the SI GCPULI Mwill terminate the process and the parent shell will recognize the SI GCPULI Mand send an
error message to standard error. If the job CPU time limit is exceeded, SI GCPULI Mis sent to all processes
in the job, which includes the parent shell. In this case, no error message will be sent to standard error.

SR-2011 10.0 455

LIMIT(1)

LIMIT(1)

CAUTIONS

If more than one call ismadeto | i m t at nearly the same time to modify the same entity, there is potential
for unpredictable results. The CPU time limit does not apply when running as root.

EXIT STATUS

If I'i mt succeeds, severa decimal integers (separated by a newline character) are written to st dout . If
core files are disabled, the string nocor e is printed.

When the job mode (- j) option is specified, the following values are written to st dout :

CPU seconds
Words of memory
Socket buffer limit
Number of PE limit
PE time limit

When the process mode (- p) option is specified, the following values are written to st dout :

CPU seconds
Words of memory
Core file limit

File descriptor limit
Socket buffer limit
PE time limit

Thelimt utility returns an exit status of O upon success.

If 1imt fails, an appropriate error message is written to st der r, and a nonzero exit status is returned.
When | i mi t fails, none of the limits are modified, if possible.

SEE ALSO
nlimt(l)
['imt(2)inthe UNICOS System Calls Reference Manual, Cray Research publication SR—2012

456

SR-2011 10.0

LINE(1) LINE(1)

NAME

| i ne — Reads one line

SYNOPSIS

i ne

IMPLEMENTATION

All Cray Research systems

STANDARDS

XPG4

DESCRIPTION

NOTES

Thel i ne utility copies one line (up to a <new i ne> character) from the standard input and writes it on
standard output.

It returns an exit code of 1 on EOF and always prints at least a <newl i ne> character. It is often used in
shell scripts to read from the user’'s terminal.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm In a privileged administrator shell environment, shell-redirected 1/0 is not subject to
file protections.

If the PRI V_SU configuration option is enabled, shell-redirected 1/0 on behalf of the super user is not
subject to file protections.

The r ead(2) utility is the preferred method of obtaining input from a user’s terminal.

EXIT STATUS

Thel i ne utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

SR-2011 10.0 457

LINE(1) LINE(1)

EXAMPLES

The following standard shell (sh(1)) script reads input lines from st di n and writes them to file of i | e:

echo "Enter text. End with CONTROL-d"
while REC=""line™"
do
echo "${REC}" >> ofile
done

SEE ALSO
read(l), sh(1)
r ead(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

458 SR-2011 10.0

LINT(1) LINT(1)

NAME

i nt — A C-language program checker

SYNOPSIS

lint [-a] [-b] [-c] [- D name = valueg] [- F] [-
[-o X [-p] [-s] [-u] [-U name] [-X] [-Vv] [-V]

IMPLEMENTATION

h] [-1 directory] [- k] [-L directory] [- n] [- n]
[-y] files

All Cray Research systems

STANDARDS
XPG4 AT&T extensions (- F, - h, -k, -m -s, -V, and - y options)

DESCRIPTION

| i nt detects features of C program files that are likely to be bugs, nonportable, or wasteful. It also checks
type usage more strictly than the compiler. | i nt issues error and warning messages. Among the things it
detects are unreachable statements, loops not entered at the top, automatic variables declared and not used,
and logical expressions whose value is constant. | i nt checks for functions that return values in some
places and not in others, functions called with varying numbers or types of arguments, and functions whose
values are not used or whose values are used but none returned.

Arguments whose names end with . ¢ are taken to be C source files. Arguments whose names end with

. I n are taken to be the result of an earlier invocation of | i nt, with either the - ¢ or the - o option used.
The . | n files are analogous to . 0 (object) files that are produced by the cc(1) utility when given a. c file
asinput. Files with other suffixes are warned about and ignored.

[int takesal the.c,.ln,andl1ib-Ix 1| n (specified by - | X) files and processes them in their
command-line order. By default, | i nt appends the standard C | i nt library (I 1'i b-1 c. | n) to the end of
the list of files. When the - ¢ option isused, the. | n andthel | i b-1 x. | n files are ignored. When the

- ¢ option is not used, the second pass of | i nt checksthe .| n andthel i b-1x. I n list of files for
mutual compatibility.

Any number of | i nt options may be used, in any order, intermixed with file name arguments. The
following options are supported:

-a Suppresses complaints about assignments of long values to variables that are not long.

-b Suppresses complaints about br eak statements that cannot be reached.

-h Does not apply heuristic tests that attempt to intuit bugs, improve style, and reduce waste.

-m Suppresses complaints about external symbols that could be declared static.

-u Suppresses complaints about functions and external variables used and not defined, or defined and

not used. (This option is suitable for running | i nt on a subset of files of alarger program.)

SR-2011 10.0 459

LINT(1)

460

-V

- X

LINT(1)

Suppress complaints about unused arguments in functions.

Does not report variables referred to by external declarations but never used.

The following arguments alter | i nt ’s behavior:

- | directory

Searches for included header files in the directory directory before searching the current directory
and/or the standard place.

Includesthel i nt library I I i b-1x. I n. For example, you can include al i nt version of the
math library | I i b-1 m | n by inserting - | mon the command line. This argument does not
suppress the default use of [1'i b-1c. I n. Thesel i nt libraries must be in the assumed
directory. This option can be used to reference local | i nt libraries and is useful in the
development of multi-file projects.

- L directory

-Nn

-p

-F

-C

-0X

Searches for | i nt librariesin directory before searching the standard place.
Does not check compatibility against the standard C | i nt library.

Attempts to check portability to other dialects of C. Along with stricter checking, this option
causes all nonexternal names to be truncated to 8 characters and al external names to be truncated
to 6 characters and one case.

Produces one-line diagnostics only. | i nt occasionaly buffers messages to produce a compound
report.

Alters the behavior of / * LI NTED [message] */ directives. Normally, | i nt will suppress
warning messages for the code following these directives. Instead of suppressing the messages,
I i nt prints an additional message containing the comment inside the directive.

Specifies that the file being checked by | i nt will be treated as if the / * LI NTLI BRARY*/
directive had been used. A | i nt library is normally created by using the / * LI NTLI BRARY*/
directive.

Prints path names of files. | i nt normally prints the file name without the path.

Causes| i nt to producea. | n file for every . ¢ file on the command line. These . | n files are
the product of | i nt ’s first pass only, and are not checked for interfunction compatibility.

Causes| i nt tocreateal i nt library with thenamel Ii b-1x. I n. The - ¢ option nullifies any
use of the - o option. Thel i nt library produced is the input that is givento | i nt 's second pass.
The - 0 option simply causes this file to be saved in the named | i nt library. To produce a

I'1'i b-1x 1 n without extraneous messages, use of the - x option is suggested. The - v option is
useful if the source file(s) for the | i nt library are just external interfaces.

Some of the above settings are also available through the use of "l i nt comments" (see below).

Writes to standard error the product name and release.

SR-2011 10.0

LINT(1)

LINT(1)

The following options are not for general use:

-Rfile Writesa. |l n fileto file, for use by cxr ef (1).
- Wfile Writesa. | nfileto file, for use by cf | om1).

I i nt recognizes many cc(1) command-line options, including - D, - U, - g, and - O, although - g and - O
are ignored. Unrecognized options are warned about and ignored. The predefined macro | i nt is defined to
allow certain questionable code to be altered or removed for | i nt. Thus, the symbol | i nt should be
thought of as a reserved word for all code that is planned to be checked by | i nt .

Certain conventional comments in the C source will change the behavior of | i nt :

[* ARGSUSEDN* /

[* CONSTCOND*/ or
[* CONSTANTCOND* / or

Makes | i nt check only the first n arguments for usage; a missing n is taken
to be O (this option acts like the - v option for the next function).

/ * CONSTANTCONDI TI ON*/ Suppresses complaints about constant operands for the next expression.

[* EMPTY*/

[*FALLTHRU*/ or
[* FALLTHROUGH* /
[* LI NTLI BRARY*/

/ * L1 NTED [message]* /

[* NOTREACHED* /

[* PRI NTFLI KEn*/

SR-2011 10.0

Suppresses complaints about a null statement consequent on an if statement.
This directive should be placed after the test expression, and before the
semicolon. This directive is supplied to support empty if statements when a
valid else statement follows. It suppresses messages on an empty el se
consequent.

Suppresses complaints about fall through to a case or def aul t labeled
statement. This directive should be placed immediately preceding the label.

At the beginning of a file, shuts off complaints about unused functions and
function arguments in this file. Thisis equivalent to using the - v and - x
options.

Suppresses any intrafile warning except those dealing with unused variables
or functions. This directive should be placed on the line immediately
preceding where the | i nt warning occurred. The - k option alters the way
in which | i nt handles this directive. Instead of suppressing messages,

I'i nt will print an additional message, if any, contained in the comment.
This directive is useful in conjunction with the - s option for post-1 i nt
filtering.

At appropriate points, stops comments about unreachable code. (This
comment is typically placed just after calls to functions like exi t (2)).

Makes | i nt check the first (n—1) arguments as usual. The nth argument is
interpreted as apri nt f format string that is used to check the remaining
arguments.

461

LINT(1) LINT(1)

[*PROTOLI Bn*/ Causes| i nt to treat function declaration prototypes as function definitions
if nis nonzero. This directive can only be used in conjunction with the
LI NTLI BRARY directive. If nis zero, function prototypes will be treated

normally.

[* SCANFLI KEn* / Makes | i nt check the first (n—1) arguments as usual. The nth argument is
interpreted as a scanf format string that is used to check the remaining
arguments.

[* VARARGSN* / Suppresses the usual checking for variable numbers of arguments in the

following function declaration. The data types of the first n arguments are
checked; a missing n is taken to be 0. The use of the ellipsis terminator (.. .)
in the definition is suggested in new or updated code.

I i nt producesits first output on a per-source-file basis. Complaints regarding included files are collected
and printed after all source files have been processed, if - s is not specified. Findly, if the - ¢ option is not
used, information gathered from all input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one of its included files, the source file
name will be printed followed by a question mark.

The behavior of the - ¢ and the - o options alows for incremental use of | i nt on a set of C source files.
Generally, one invokes | i nt once for each source file with the - ¢ option. Each of these invocations
produces a . | n file that corresponds to the . ¢ file, and prints all messages that are about just that source
file. After al the source files have been separately run through | i nt , it is invoked once more (without the
- ¢ option), listing al the . | n files with the needed - | x options. This will print al the interfile
inconsistencies. This scheme works well with make(1); it allows make(1) to be used to | i nt only the
source files that have been modified since the last time the set of source files were checked by | i nt .

FILES
LI BDI R The directory where the | i nt libraries specified by the - | x option must exist
(defaultis/ usr/1ib/lint)
LIBDI R/ lint[12] First and second passes
LIBDIR/ I lib-lc.In Declarations for C library functions (binary format; source is in

LIBD R/ I lib-1c)

LI BPATH I lib-Imln Declarations for math library functions (binary format; source is in
LIBDOR/ I lib-1m

TWPDI R/ **[i nt * Temporary files

SEE ALSO
cc(1), cf I owm1), cxref (1), make(l)
exi t (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

462 SR-2011 10.0

LMCKSUM(1) LMCKSUM(1)

NAME

| ntksum— Checksums the FLEXIm license file

SYNOPSIS

I rcksum [- ¢ license filg] [- K]

IMPLEMENTATION
All supported platforms

DESCRIPTION

The | ntksumcommand computes the checksum of the portions of the flexible license manager (FLEXIm)
license file that end users cannot change. | ntksumcomputes a checksum for each line in the license file
and an overall checksum of the license file. The following fields are used when creating the checksum:

* hostid on the server lines
¢ daemon_name on the daemon lines

¢ feature _name, version, daemon_name, expiration_date, number_of_licenses, encryption_code,
vendor_string, and hostid on feature lines

The | ntksumcommand is available only in the FLEXIm v2.4 release and later. | ncksumis either alink
to or acopy of thel mut i | (1) utility.

The | ntksumcommand accepts the following options:

- ¢ license file
Uses the specified license file as input. If you omit the - ¢ option, | ntksumuses the
LM LI CENSE_FI LE environment variable to find the license file to use. |If that environment variable
isnot set, | ntksumusesthe/usr/ 1 ocal /flexl mlicenses/license. dat file. If you omit
the license file argument, | ntksumuses the LM LI CENSE_FI LE environment variable. If that
environment variable is not set, | nrcksumuses the
/fusr/local/flexlnllicenses/license.dat file

-k Case-sensitive checksum; computes the checksum by using the exact case of the feature ling(s)
encryption codes.

SEE ALSO
[muti| (1) for information about the core FLEXIm utility

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

SR-2011 10.0 463

LMDOWN(1) LMDOWN(1)

NAME

| mdown — Shuts down all FLEXIm license daemons gracefully

SYNOPSIS

| rdown [-c license file] [-q]

IMPLEMENTATION

All supported platforms

DESCRIPTION

The | ndown command sends a message to all flexible license manager (FLEXIm) license daemons asking
them to shut down. The license daemons write out their last messages to the log file, close the file, and exit.
All licenses that the license daemons have provided are rescinded, so that the next time a client program
verifies the license, it will not be valid. In the FLEXIm v2.4 release and later, | ndown is either alink to or
acopy of thel nuti | (1) utility.

The | ndown command accepts the following options:

- ¢ license file
Uses the specified license file as input. On UNICOS systems, to avoid affecting other license
managers, aways use the - ¢ option or the LM LI CENSE_FI LE environment variable. 1f you omit
the - ¢ option, | ndown uses the LM LI CENSE_FI LE environment variable to find the license file to
use. If that environment variable is not set, | ndown uses the
/fusr/local/flexlnllicenses/license.dat file If youomit the license file argument,
| mdown uses the LM LI CENSE_FI LE environment variable. If that environment variable is not set,
| mdown usesthe/usr/local /flexl mlicenses/license. dat file

-q (Quiet mode) If you specify this option, | ndown will not ask for confirmation before asking the
license daemons to shut down. If you omit this option, | mdown asks for confirmation before asking
the license daemons to shut down.

SEE ALSO

464

| mgr d(1) for information about invoking the FLEXIm daemon

| nr er ead(1) for information about instructing the FLEXIm license daemon to reread the license file
| mst at (1) for information about reporting status of FLEXIm license daemons and feature usage

[mutil (1) for information about the core FLEXIm utility

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

SR-2011 10.0

LMGRD(1)

NAME

LMGRD(1)

I mgr d — Invokes the FLEXIm license daemon

SYNOPSIS

I mgrd [-2] [-b] [-c license file] [-d] [-1 lodfile] [- p] [-s interval] [-t timeout]

IMPLEMENTATION

All supported platforms

DESCRIPTION

The | ngr d command invokes the flexible license manager (FLEXIm) license daemon and is the main
daemon program for the FLEXIm distributed license management system. When you invoke | mgr d, it
looks for a license file that contains all required information about vendors and features.

The | ngr d command accepts the following options:

-2

-b

- ¢ license file

-1 lodfile
-p

- s interval

SR-2011 10.0

Specifies startup arguments; if you use the - p option, the - 2 option is required. The - 2
option is the opposite of the - b option. Availablein | ngr d v2.4 and later.

Specifies backward-compatibility mode. In FLEXIm v2.4 or later, the - b option is the
default. If you are running av2.1 or later version of | ngr d with av1.5 or earlier
vendor daemon, use this option.

Uses the specified license file as input. If you omit the - ¢ option, | ngr d uses the
LM LI CENSE_FI LE environment variable to find the license file to use. If that
environment variable is not set, | mgr d uses the
/fusr/local/flexlnmlicenses/license.dat file If youomit the license file
argument, | ngr d uses the LM LI CENSE_FI LE environment variable. If that
environment variable is not set, | mgr d uses the
/fusr/local/flexlmlicenses/|icense. dat file

Specifies that the host names that are read from the license file should have the local
domain name appended to them before sending to a client. This option is useful when
clients are accessing licenses from another domain. Available in | ngr d v2.4 and later.

Specifies the output log file to use; the output log file is sent to st dout by default.

Specifies that the | mdown(1) and | mr enove(1) commands can be run only by alicense
administrator; if you use the - p option, the - 2 option is required. A license
administrator is a member of the | madni n group, or, if the | madm n group does not
exist, a member of group 0. Availablein | ngrd v2.4 and later.

Specifies the log file time-stamp interval (in minutes). The default value is 360 minutes.

465

LMGRD(1) LMGRD(1)

-t timeout Specifies the time-out interval (in seconds) during which daemons must complete their
connections to each other. The default value is 10 seconds. |If the daemons are being

run on busy systems or a very heavily loaded network, you may want to use a larger
value.

SEE ALSO

I mdown(1) for information about shutting down al FLEXIm license daemons gracefully
| mst at (1) for information about reporting status of FLEXIm license daemons and feature usage

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

466 SR-2011 10.0

LMHOSTID(1) LMHOSTID(1)

NAME
| mhost i d — Displays the host ID of a system

SYNOPSIS
| mhostid

IMPLEMENTATION
All supported platforms

DESCRIPTION

The | mhost i d command calls the flexible license manager (FLEXIm) version of get host i d(2) and
displays the results. In the FLEXIm v2.4 release and later, | mhost i d is either alink to or a copy of the
[mutil (1) utility.

The output of | mhost i d looks like the following display:

| mhostid - Copyright (C 1989-1994 G obetrotter Software, Inc.
The FLEXI m host I D of this nachine is "3e9"

SEE ALSO
[muti| (1) for information about the core FLEXIm utility

SR-2011 10.0 467

LMREMOVE (1)

NAME

LMREMOVE(1)

| nr emrove — Removes specific FLEXIm licenses and returns them to license pool

SYNOPSIS

| nr erove [-c license file] feature user host_name display

IMPLEMENTATION

All supported platforms

DESCRIPTION

The | nt enbve command lets the system administrator remove a single user’s flexible license manager
(FLEXIm) license for a specified feature. This removal might be required if the licensed user was running
the software on a node that subsequently crashed. This situation sometimes causes the license to remain
unusable. | nr enove alows the license to return to the pool of available licenses. In the FLEXIm v2.4
release and later, | nt enove is either alink to or a copy of the | muti | (1) utility.

The | nt enbve command accepts the following arguments:

- ¢ license file

feature

user

host_name

display

SEE ALSO

Uses the specified license file as input. If you omit the - ¢ option, | nr enpve uses the
LM LI CENSE_FI LE environment variable to find the license file to use. If that
environment variable is not set, | nr enmove uses the
/fusr/local/flexlnlicenses/license.dat file If youomit the license file
argument, | nT enove uses the LM LI CENSE_FI LE environment variable. If that
environment variable is not set, | nr enove uses the
/fusr/local/flexlnllicenses/license.dat file

Specifies the feature name from the FLEXIm license file. You must enter it exactly as
the | st at (1) command displays it.

Specifies the user name of the license to be removed. You must enter it exactly as the
| mst at (1) command displays it.

Specifies the name of the system user from which the user is using the license. You
must enter it exactly asthe | nst at (1) command displays it.

Specifies the name of the user’s X Windows System display. You must enter it exactly
asthel mst at (1) command displays it.

| mst at (1) for information about reporting status of FLEXIm license daemons and feature usage
[muti | (1) for information about the core FLEXIm utility

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

468

SR-2011 10.0

LMREREAD(1) LMREREAD(1)

NAME

| nT er ead — Instructs the FLEXIm license daemon to reread the license file

SYNOPSIS

| nreread [-c license file]

IMPLEMENTATION
All supported platforms

DESCRIPTION

The | nt er ead command lets the system administrator instruct the flexible license manager (FLEXIm)
license daemon to reread the FLEXIm license file, which can be useful if the data in the license file has
changed. You can load the new data into the FLEXIm license daemon without shutting down and restarting
it.

The | nT er ead command uses the license file from the command line (or the default file if license file is
not specified) only to find the license daemon to send it the command to reread the license file. The license
daemon always rereads the original file that it loaded. If you must change the path to the license file read by
the license daemon, you must shut down the daemon and restart it with the new license file path.

If the server line node names or port numbers have been changed in the license file, you cannot use
| nr eread. In this case, you must shut down the daemon and restart it for the changes to take effect.

The | ntr er ead command does not change any option information specified in an options file. 1f the new
license file specifies a different options file, the information is ignored. If you changed your license file and
must reread the options file, you must shut down the daemon by using the | nrdown(1) command and restart
it by using the | ngr d(1) command. In the FLEXIm v2.4 release and later, | nr er ead is either alink to or
acopy of thel muti | (1) utility.

The | nT er ead command accepts the following option:

- ¢ license file Uses the specified license file as input. If you omit the - ¢ option, | nT er ead uses the
LM LI CENSE_FI LE environment variable to find the license file to use. If that
environment variable is not set, | nr er ead uses the
/fusr/local/flexlnlicenses/license.dat file If youomit the license file
argument, | nT er ead uses the LM LI CENSE_FI LE environment variable. If that
environment variable is not set, | nr er ead uses the
/fusr/local/flexlnlicenses/license.dat file

SR-2011 10.0 469

LMREREAD(1) LMREREAD(1)

SEE ALSO

I mdown(1) for information about shutting down al FLEXIm license daemons gracefully
| mgr d(1) for information about starting up FLEXIm license daemons
[mutil (1) for information about the core FLEXIm utility

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

470 SR-2011 10.0

LMSTAT(1) LMSTAT(1)

NAME

| mst at — Reports status of FLEXIm license daemons and feature usage

SYNOPSIS
| mstat [-a] [-A] [-c license file] [-f feature] [-1 regular_expression] [-s server] [- S daemon]
[-t timeout]

IMPLEMENTATION

All supported platforms

DESCRIPTION

The |l nmst at command provides information about the status of the flexible license manager (FLEXIm)
license daemon server nodes, vendor daemons, vendor features, and users of each feature. Optionally, you
can qualify information by specific server nodes, vendor daemons, or features. In the FLEXIm v2.4 release
and later, | st at is either alink to or a copy of thel mut i | (1) utility.

The |l nmst at command accepts the following options:

-a Displays all active users of all features. You should not use the | nst at - a command
too often because if there are many active users, the | nst at - a command can generate
alot of network activity.

-A Lists all active licenses.

- ¢ license file Uses the specified license file as input. If you omit the - ¢ option, | st at uses the
LM LI CENSE_FI LE environment variable to find the license file to use. If that
environment variable is not set, | st at uses the
/fusr/local/flexlnlicenses/license.dat file If you omit the license file
argument, | mst at uses the LM LI CENSE_FI LE environment variable. If that
environment variable is not set, | st at uses the
/fusr/local/flexlnllicenses/license.dat file

- f feature Lists all users of the specified feature.

-1 regular_expression
Lists all users of the features who match the specified regular expression.

- S server Displays the status of the specified server (server node).
- S daemon Lists all users of the specified daemon’s features.
-t timeout Specifies the time-out interval (in seconds) during which daemons must complete their

connections to each other. The default value is 10 seconds. |If the daemons are being
run on busy systems or a very heavily loaded network, you may want to use a larger
value.

SR-2011 10.0 471

LMSTAT(1) LMSTAT(1)

SEE ALSO

| mgr d(1) for information about starting up FLEXIm license daemons
[muti | (1) for information about the core FLEXIm utility

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

472 SR-2011 10.0

LMUTIL (1) LMUTIL (1)

NAME
[mutil — Core FLEXIm utility

SYNOPSIS

[mutil [-c license file] command

IMPLEMENTATION
All supported platforms

DESCRIPTION

Thel nuti | utility is the core flexible license manager (FLEXIm) utility. Usually, end users will not use
[muti| directly; they use the individual commands, which are either a copy of or alink to the | mut i |
utility.

Thel muti | utility accepts the following arguments:

- ¢ license file Uses the specified license file as input. If you omit the - ¢ option, | muti | usesthe
LM LI CENSE_FI LE environment variable to find the license file to use. If that
environment variable is not set, | mut i | uses the
/fusr/local/flexlnmlicenses/license.dat file If you omit the license file
argument, | muti | usesthe LM LI CENSE _FI LE environment variable. If that
environment variable is not set, | mut i | uses the
/usr/local/flexlnlicenses/license.dat file

command Links to the specified command. command may be | nrcksum | nrdown, | mhosti d,
| nrenove, | nreread, | nstat, or |l nver.

SEE ALSO

I rcksum(1) for information about computing a checksum for the FLEXIm license file

I mdown(1) for information about shutting down al FLEXIm license daemons gracefully

| mhost i d(1) for information about how to display the FLEXIm host ID of a system

I nr ermove(1) for information about removing specific FLEXIm licenses and returning them to the pool

| nr er ead(1) for information about instructing the FLEXIm license daemon to reread the FLEXIm license
file

| mst at (1) for information about reporting status of FLEXIm license manager daemons and feature usage
I mver (1) for information about how to display the FLEXIm version being used

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

SR-2011 10.0 473

LMVER(1) LMVER(1)

NAME
| mver — Displays the FLEXIm version being used

SYNOPSIS

| mver filename

IMPLEMENTATION
All supported platforms

DESCRIPTION

The | nver command scans the contents of a binary or library file for the flexible license manager
(FLEXIm) version string and displays it. On UNICOS systems, you must use the filename operand to
display the correct FLEXIm version. If you omit the filename operand, | nver assumes the file name is

| mgr . a and tries to find and display the version from the | ngr . a file. In the FLEXIm v2.4 release and
later, | mver iseither alink to or acopy of thel muti | (1) utility.

The | nver command accepts the following operand:

filename Specifies the file to scan to display the FLEXIm version being used. On UNICOS systems, you
must use filename, and it must be / usr/1ib/1i bcrayl m a.

SEE ALSO
[mut il (1) for information about the core FLEXIm utility

474 SR-2011 10.0

LN(1)

NAME

I n — Links files
SYNOPSIS

In[-f] [-n] [-s] file.. target
IMPLEMENTATION

All Cray Research systems

STANDARDS

LN(1)

POSIX, XPG4
AT&T extension (- s option)
CRI extension (- moption)

DESCRIPTION

The | n utility creates a link between file and target. A link is a directory entry that refers to a file; the same
file may have several links to it. Under no circumstance can file and target be the same (take care when
using sh(1) metacharacters).

If more than one file is specified, target must be an existing directory. If target is an existing directory, for
each specified file, alink of the same name is created in the target directory. If target is not a directory, it is
created as a link to file. If target is an existing file, it will not be overwritten unless the - f option is
specified.

The | n utility accepts the following options and operands:

-f Forces files to be linked, even if the target exists. This option works only for hard links.
-m Creates a multilevel symboalic link.
-S Creates symbolic links.

file The path name of afile to be linked.

target The path name of the new link to be created, or the pathname of an existing directory in which the
new links are to be created.

There are three kinds of links: hard links, symbolic links, and multilevel symbolic links.

A hard link (the default) can be made only to an existing file. To remove a file with more than one hard
link, you must remove al links (including the name by which it was created). Hard links cannot span file
systems or refer to directories.

A symbolic link contains the name of the file or directory to which it is linked. Symbolic links may span
file systems and may refer to directories.

SR-2011 10.0 475

LN(1) LN(1)
A multilevel symbolic link is a symbolic link that imposes a multilevel directory structure on any directory
to which it points. It works much the same way a symbolic link works, with the exception that it causes the
path name search to be deflected into a labeled subdirectory under the directory named in the symboalic link
file. Creation of multilevel symbolic links is a privileged operation.

Your active security label must be equal to the file's security label (hard links only) and the parent directory
for the new file entry (target) (unless the parent directory has a wildcard security level; then a file with any
security level may be linked to the wildcard directory).

NOTES
If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm Allowed to link any file or directory.

sysadm Allowed to link any file or directory, subject to security label restrictions.
Shell-redirected 1/O is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, the super user is alowed to link any file or directory.

EXIT STATUS
The | n utility exits with one of the following values:

0 All the specified files were linked successfully.
>0 An error occurred.

EXAMPLES
Example 1: The following example links the existing file exanpl e. ¢ to ex. c:

$ In exanple.c ex.c
Example 2: The following example creates a symbolic link:
$ In -s [fusr/include incl
$1Is -l incl
[rwxrwxrwx 1 jtk 12 May 10 14:59 incl -> /usr/include
SEE ALSO

476

cp(d), cpi o(1), m/(1), r m1), sh(1)
chnod(2), | i nk(2), readl i nk(2), st at (2), sym i nk(2) in the UNICOS System Calls Reference
Manual, Cray Research publication SR—2012

General UNICOS System Administration, Cray Research publication SG—2301

SR-2011 10.0

LOCALE(1) LOCALE(1)

NAME

| ocal e — Gets locale-specific information

SYNOPSIS

locale [-a O-m

| ocal e [-c] [- k] name ...

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

NOTES

The |l ocal e utility writes information about the current locale environment, or all public locales, to the
standard output. A public locale is one that is accessible to the application.

When you use | ocal e without any arguments, it summarizes the current locale environment for each locale
category determined by the settings of the LC_CTYPE, LC_COLLATE, LC_TI Mg, LC_NUMERI C,
LC MONETARY, and LC_MESSAGES environment variables

When you specify a keyword name, | ocal e selects the named keyword and the category containing that
keyword. When a category name is specified, | ocal e selects the named category and all keywords in that
category.

The |l ocal e utility accepts the following options and operands:

-a Writes information about al available public locales. The available locales include POSI X, which
represents the POSIX locale.

-m Writes names of available charmaps.
-C Writes the names of selected locale categories.
-k Writes the names and values of selected keywords.

name The name of a locale category, the name of a keyword in alocale category, or the reserved name
char map. The specified category or keyword is selected for output. You can specify both category
and keyword names as name operands, in any sequence.

If this utility is installed with the default privilege assignment list (PAL), a user with an active secadmor
sysadmcategory may override mandatory write access protections on afile, any directory in the file path,
or, in a privileged administrator shell environment, any file to which input or from which output is being
redirected.

SR-2011 10.0 477

LOCALE(1) LOCALE(1)

EXAMPLES

In the following examples, the assumption is that locale environment variables are set as follows:

LANG=I ocal e_x
LC COLLATE=l ocal e_y

Example 1: Invoking | ocal e with no arguments results in the following:

$ locale

LANG=I ocal e_x

LC CTYPE="1ocal e_x"

LC COLLATE=l ocal e_y
LC TI ME="| ocal e_x"

LC NUMERI C="1 ocal e_x"
LC MONETARY="I| ocal e_x"
LC MESSAGES="I ocal e_x"
LC ALL=

Example 2: Set the LC_ALL environment variable to the POSI X locale and print out the value of the
keyword deci mal _poi nt :

$ LC ALL=PCSI X | ocal e -ck deci mal _poi nt
LC _NUMERI C
deci mal _poi nt="."

EXIT STATUS

The |l ocal e utility exits with one of the following values:
0 All the requested information was found and output successfully.
>0 An error occurred.

SEE ALSO
| ocal edef (1)
General UNICOS System Administration, Cray Research publication SG—2301

478 SR-2011 10.0

LOCALEDEF(1) LOCALEDEF(1)

NAME

| ocal edef — Defines locale environment

SYNOPSIS

| ocal edef [-c] [-f charmap] [-i sourcefile] name

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Thel ocal edef utility converts source definitions for locale categories into a format usable by the
functions and utilities whose operational behavior is determined by the setting of the locale environment
variables.

Thel ocal edef utility reads source definitions for one or more locale categories that belong to the same
locale from the file specified in the - i option (if specified) or from standard output.

Each category source definition is identified by the corresponding environment variable name and terminated
by an END category-name statement. The following categories are supported.

LC COLLATE Defines collation rules.

LC CTYPE Defines character classification and case conversion.

LC_MESSAGES Defines the format and values of affirmative and negative responses.

LC_MONETARY Defines the format and symbols used in formatting of monetary information.

LC NUMERI C Defines the decimal delimiter, grouping, and grouping symbol for nonmonetary numeric
editing.

LC TI ME Defines the format and content of date and time information.

Thel ocal edef utility accepts the following options and operands:

-C Creates permanent output even if warning messages have been issued.

-f charmap Specifies the path name of afile that contains a mapping of character symbols and collating
element symbols to actual character encodings. If symbolic names (other than collating
symbols defined inacol | ati ng- synbol keyword) are used, you should specify this
option.

-1 sourcefile Specifies the path name of a file that containis the source definitions.

SR-2011 10.0 479

LOCALEDEF(1) LOCALEDEF(1)

name Identifies the target locale. The utility supports the creation of public, or generally accessible
locales, as well as private, or restricted access locales. If the name contains one or more
dlash (/) characters, name is interpreted as a pathname where the created locale definition(s)
will be stored. If the name does not contain any slash characters, the locale will be public.
The ability to create public localesis restricted to users with appropriate privileges. If you
omit this option, source definitions are read from standard input.

EXIT STATUS
Thel ocal edef utility exits with the following value:
3 The capability to create new locales is not supported.

SEE ALSO

| ocal e(1)

480 SR-2011 10.0

LOGGER(1) LOGGER(1)

NAME
| ogger — Makes entries in the system log

SYNOPSIS
| ogger [-d] [-f file] [-h host] [-i] [-] logname] [-p pri] [-t tag] [- P port] [- T] [messages|

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4
AT&T extensions (-f,-i,-p,and -t options)
CRI extensions (-d, - h, -1, - P, and - T options)
DESCRIPTION

The |l ogger utility provides a program interface to the sysl og(3C) system log routine. A message can be
given on the command line, which is logged immediately, or afile is read and each line is logged.

The |l ogger utility accepts the following options:

-d Opens the pipe to sysl ogd(8) without the O_NDELAY flag.

-f file Logs the specified file.

- h host Sends message to the daemon on the remote host, rather than the daemon on the local
machine.

- Logs the process ID of the log process with each line.
-1 logname Alternates name for the named pipe interface to the sysl og(3C) daemon.

-p pri Enters the message with the specified priority (pri). The priority may be a number from 0
through 7, or a corresponding word, as follows:

emerg
alert
crit
err
war ni ng
notice
info
debug

No o br~WNPEO

pri may be preceded by a facility, in the form facility. pri. Valid facilities include the
following:

SR-2011 10.0 481

LOGGER(1)

kern
daenon
| pr

| ocal 2
| ocal 5

user
aut h

local O
| ocal 3
|l ocal 6

mai |

sysl og
local 1
| ocal 4
| ocal 7

LOGGER(1)

For a discussion of these facilities, see sysl 0g(3C). For example, - p daenon. i nf o logs
messages as informational (level 6) in the daemon facility. The default isuser . noti ce.

-t tag Marks every line in the log with the specified tag.
- P port Uses the specified TCP/IP port, rather than the one specified in / et ¢/ ser vi ces.
-T Uses TCP/IP socket, rather than the named pipe interface to the local sysl 0g(3C) daemon.

messages The messages to log. If not specified, the file specified with - f or standard input is logged.

EXIT STATUS

The |l ogger utility exits with one of the following values:

0 Successful completion.

>0 An error occurred.

EXAMPLES

Example 1: If you restart a daemon in the middle of the day, you could log this event with the following

command:

$ logger -p user.info restarted devel opnment copy of syslog daenpn

The message is as follows:

restarted devel opment

copy of syslog daenon

Example 2: If you are a system operator and have cleaned out filesin / t np, you could log this event in the
system log maintained by sysl ogd(8), using the following command:

$ logger /tnp was cleaned out by hand when it filled up.

Joe Qper at or

The message is as follows:

/tmp was cl eaned out
Joe Qper at or

482

by hand when it filled up.

SR-2011 10.0

LOGGER(1) LOGGER(1)

SEE ALSO

sysl 0g(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

I 0g(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

sysl ogd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2011 10.0 483

LOGIN(1) LOGIN(1)

NAME

| ogi n — Signson

SYNOPSIS

| ogi n [name - L requested label [env-varg]]

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

484

The |l ogi n utility is used at the beginning of each terminal session and lets you identify yourself to the
system. It isinvoked by the system when a connection is first established.

Also, it is invoked by the system when a previous user has terminated the initial shell by pressing
<CONTROL- d> to indicate an end-of-file.

The |l ogi n utility invokes the centralized identification and authorization library routines to validate the user
ID and password.

| ogi n accepts the following options:
name Your login name.

- L requested_label
Security label with which you want to log in. The format of the requested label is
level[,compartment[,compartment]]. The requested label must immediately follow the name.

env-vars Environment variable that you can set.

The | ogi n command requests your user name (if not supplied as an argument), and, if appropriate, your
password. Echoing is turned off (where possible) during the typing of your password, so it will not appear
on the written record of the session.

After a successful login, accounting files are updated, the procedure / et ¢/ pr of i | e is performed, the
message-of-the-day, if any, is printed, the user ID, the group 1D, the working directory, and the command
interpreter (usually sh(1)) are initialized, and the file . pr of i | e in the working directory is executed, if it
exists. In addition, if executing in a secure UNICOS environment, the user’s default and maximum class,
default and authorized categories, default and authorized compartments, minimum and maximum security
levels, default security level, and security permissions are set. These specifications are found in the user’s

[et c/ udb file entry. The name of the command interpreter is - followed by the last component of the
interpreter’s path name (that is, - sh). If thisfield in the udb file is empty, the default command interpreter,
[bin/sh,isused. If thisfieldis*, achr oot (2) is performed to the directory named in the directory field
of the entry. At that point, | ogi n is reexecuted at the new level, which must have its own root structure,
including / bi n/ 1 ogi n and / et c/ udb.

SR-2011 10.0

LOGIN(1) LOGIN(1)

The basic environment (see sh(1)) is initialized to the following:

HOVE=your-login-directory

PATH=: / bi n: / usr/ bi n:/usr/uch
SHEL L =last-field-of-udb-ue_shell field
MAI L=/ usr / mai | / your-login-name

L OGNAME=your-login-name

You may modify the environment by supplying additional argumentsto | ogi n, either at execution time or
when | ogi n requests your login name. The env-vars arguments may take either the form xxx or xxx=yyy.
Arguments without an equal sign are placed in the environment as follows:

Ln=xxx

The n argument is a number starting at 0 and is incremented each time a new variable name is required.
Variables containing = are placed into the environment without modification. If they already appear in the
environment, they replace the older value. There are two exceptions. the variables PATH and SHEL L
cannot be changed. Users logging into restricted shell environments are thus prevented from spawning
secondary shells that are not restricted.

The |l ogi n utility understands simple single-character quoting conventions. Typing a backslash (\) in front
of a character quotes it and allows the inclusion of such characters as spaces and tabs.

NOTES

It is not possible to exec(2) login from a normal user ID.

The number of unsuccessful login attempts that will be allowed before | ogi n terminates is configurable.
This parameter is set in the / et ¢/ confi g/ conf val file with the following line:

login.login_attenpts: "3

" 3" isthe number of unsuccessful login attempts allowed. This line is retrieved with the
get conf val (3C) library call. If this line does not exist (the default) or the number is set to O, no limit
will be placed on the number of unsuccessful login attempts.

If the IP security option is not enabled, login requests are validated to ensure that the remote host or
workstation’s security levels and compartments as defined in the / et ¢/ confi g/ spnet . conf file are
included in the security level range and authorized compartment range for the UNICOS system. Y our
security values are set to the most restrictive boundary conditions as defined by the network access list
(NAL) and the user database (UDB).

If the IP security option is enabled, the checks for the / et ¢/ confi g/ spnet . conf file are done by the
kernel. The socket’s security label is set by the kernel when this check is done. | ogi n sets the user’'s
security label to the most restrictive boundary conditions as defined by the socket’s security label (as defined
by the NAL) and the UDB.

SR-2011 10.0 485

LOGIN(1) LOGIN(1)

Your active security level and active compartments are obtained from the dev/ t t yp file, which contains
the security label present with an IP security option. If dev/ttyp has anull security label, the user session
is restricted to operating with a null security label, and you are not allowed to change the active security
level and active compartments set by | ogi n.

The login process also validates your right to access the UNICOS system from the host or workstation
issuing the login request. Access to UNICOS is granted or denied based upon the workstation access list
(WAL) check performed by the login process.

You cannot log in if you exceed the MAXLOGS setting.
The results of user validation are recorded in the security log.

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action
system Allowed to use this utility.

If the PRI V_SU configuration option is enabled, the super user is allowed to use this utility.

MESSAGES

486

Logi n incorrect
Y our name and the password may not match. This is a generic message for any of severa login
failure causes. No more information is given. The user name may be invalid or the password may
be wrong. You may have been denied access by the WAL check. Your login can be locked,
disabled, or invalidated for security violations.

No shel |
Bad account 1D
Bad group IDIist
Bad user 1D
Unabl e to change to | ogin root
No Root Directory
Account may not be set up correctly; consult a system administrator.

No utnp entry
You must execute | ogi n from the lowest-level shell. You attempted to execute | ogi n as a
command without using the shell’s exec internal command or from other than the initial shell.

Unable to give N shares to user
The set shar es call failed. Contact your system support staff.

Unable to create new job
The set j ob call failed. Contact your system support staff.

Unabl e to nake job tenporary directory
The makej t np call failed. Contact your system support staff.

SR-2011 10.0

LOGIN(1) LOGIN(1)

Unable to | ock the UDB
Thel ockudb call failed. Contact your system support staff.

Unabl e to update the UDB
The rewrite udb call failed while attempting to write the last login record. Contact your system
support staff.

Last| og update error
Unable to reread the udb entry to write the last login record. Contact your system support staff.

Login not allowed at this node
You are not allowed to log in at this network node for security reasons. Use an authorized
terminal for logging in.

Unabl e to get host by name
The host name that accompanies the login request is not defined in / et ¢/ host s or is null.

Coul d not access NAL
An error was detected when / et ¢/ confi g/ spnet . conf was opened. Contact your system
support staff.

No | ogin without NAL entry
The user does not have an NAL entry for this remote node.

Can't set default security |evel
Can't set default security conpartments

urm job exceeds menory maxi mum
The job would exceed the memory oversubscription amount configured in the Unified Resource
Manager (URM).

urm job exceeds job nmaximm
The job would exceed the number of allowed jobs configured in the Unified Resource Manager
(URM).

Invalid requested | abel
The requested label is not valid.

FILES
/ bi n/ passwd Program that changes passwords
/ bi n/sh Standard shell
[dev/tty* Login devices
[etc/dial ups List of devices that need a dial-up password
/etc/d_passwd Dial-up passwords for / et ¢/ di al ups
[etc/utmp Accounting file

SR-2011 10.0 487

LOGIN(1) LOGIN(1)

[etc/wnmp Accounting file

[usr/ mai | / $LOGNAVE Mailbox for account $LOGNAVE

[et c/udb User validation file containing user control limits

[etc/confi g/ confval Number of bad login attempts after which | ogi n terminates

[etc/config/spnet. conf Network access list (NAL) and workstation access list (WAL)
SEE ALSO

mai | (1), passwd(1), sh(1), su(l)
chr oot (2), exec(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

get confval (3C),ia_failure(3C),ia_m suser(3C),i a_success(3C), i a_user (3C) in the
UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

cshrc(b5), profil e(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

chr oot (8), get t y(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

checkwal (), f et chnal () (library routinesin/ | i bc/ gen)
General UNICOS System Administration, Cray Research publication SG—2301

488 SR-2011 10.0

LOGNAME(1) LOGNAME (1)

NAME

| ognane — Gets user’s login name

SYNOPSIS

| ognane

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The | ognane utility uses get | ogi n(3C) to find the login name of the user and writes that name to
standard output.

EXIT STATUS
The | ognane utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.

SEE ALSO
env(1), | ogi n(1), sh(1)
get | ogi n(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2011 10.0 489

LORDER(1) LORDER(1)

NAME

| or der — Finds ordering relation for an object library

SYNOPSIS

| or der files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The input is one or more abject or library archive files (see ar (1)). The standard output is a list of pairs of
object file or archive member names, meaning that the first file of the pair refers to external identifiers
defined in the second. The output may be processed by t sort (1) to find an ordering of a library suitable
for one-pass access by | d(1).

Link editor | d(1) is capable of multiple passes over an archive in the portable archive format (see ar (5))
and does not require that | or der be used when building an archive. The usage of the | or der utility may,
however, allow for a dightly more efficient access of the archive during the link edit process. The use of
this utility is not recommended.

The |l or der utility accepts the following option:

files Names of object or library archive files you specify.

NOTES

When given a nonexistent file, | or der returns an exit status of O.

WARNINGS

The |l or der utility accepts as input any object or archive file, regardless of its suffix, provided that there is
more than one input file. If there is only one input file, its suffix must be . o.

EXAMPLES
The following example builds a new library from existing . o files:

bar cr library ‘lorder *.0 | tsort"’

FILES

TWMPDI R/ * symndef Temporary file
TWMPDI R/ * synr ef Temporary file

490 SR-2011 10.0

LORDER(1) LORDER(1)

SEE ALSO
ar (1), 1d(2), tsort (1)
t npnam(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

ar (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

t sar (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2011 10.0 491

LP(1) LP(1)

NAME
| p — Sends files to a printer

SYNOPSIS
[p [-c] [-d dest] [-n copied] [-s] [file...]

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The | p utility copies the input files to an output device. The actua writing to the output device occurs after
the | p utility successfully exits.

The | p utility accepts the following options:

-C Exits only after further access to any of the input files is no longer required. The application
can then safely delete or modify the files without affecting the output operation.

- d dest Specifies a string that specifies the output device or destination. The - d dest option takes
precedence over the LPDEST environment variable, which in turn takes precedence over the
PRI NTER environment variable.

- n copies Writes copies humber of copies of the files; copies is a positive decimal integer.
-S Suppress printing Request id is ... message to standard output.

file Denotes a path name of afile to be output. If you omit file operands, or if a file operand is -,
the standard input is used. If afile operand is used, but you omit - ¢ option, the process
performing the writing to the output device may have user and group permissions that differ
from that of the process invoking | p.

ENVIRONMENT VARIABLES

LPDEST Thisvariable is interpreted as a string that names the output device or destination. If the
LPDEST environment variable is not set, the PRI NTER environment variable is used. The
- d dest option takes precedence over LPDEST.

PRI NTER This variable is interpreted as a string that names the output device or destination. If the
LPDEST and PRI NTER environment variables are not set, a system default printer is used. The
- d dest and the LPDEST environment variable take precedence over PRI NTER.

492 SR-2011 10.0

LP(1) LP(1)

EXIT STATUS

The | p utility exits with one of the following values:
0 All input files were processed successfully.

>0 No output device was available, or an error occurred.

SEE ALSO
[pr (1B), sh(1)

SR-2011 10.0 493

LPQ(1B) LPQ(1B)

NAME

| pq — Spool queue examination program

SYNOPSIS
[fusr/ucb/1pqg [+[n]] [-1] [- Pprinter] [jobnums] [users]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The | pq utility examines the spooling area used by | pd(8) for printing files on the line printer, and reports
the status of the specified jobs or all jobs associated with a user. If you invoke | pq without any arguments,
it reports on any jobs currently in the queue. Thel pq utility prints only those jobs at the current security
label.

The | pq utility accepts the following options:

+[n] Displays the spool queue. When n (a number) is specified, | pq sleeps for n seconds between
scans of queue.

-1 Causes information for each file comprising a job to be printed.

- Pprinter Specifies a particular printer. When P is not specified, either the default line printer or the
value of the PRI NTER variable in the environment is used.

jobnums Specifies job numbers that should be examined.
users Specifies user names that should be examined.

For each job submitted (that is, each invocation of | pr (1B)), | pq reports the user’s name, the current rank
in the queue, the names of files that compose the job, the job identifier (a number that may be supplied to
| pr m(1B) for removing a specific job), and the total size (in bytes). Unlessthe -1 option is used, only as
much information as will fit on one line is displayed. Job ordering depends on the agorithm used to scan
the spooling directory and is supposed to be FIFO (first-in, first-out). File names composing a job may be
unavailable (when | pg is used as a sink in a pipeline), in which case, the file is indicated as standard inpuit.

If | pg warns that no daemon present (that is, because of some malfunction), the | pc(8) command can be
used to restart the printer daemon.

NOTES

If users try to remove files other than their own, permission will be denied.

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the action shown:

494 SR-2011 10.0

LPQ(1B) LPQ(1B)

BUGS

Privilege Text Action

adm n Allowed to see the status of all jobsin a print queue. Other users may only see jobs
in the print queue at the same label as the user.

If this command is installed with a PAL, a user with one of the following active categories is alowed to
perform the action shown:

Active Category Action
sysadm sysadm Allowed to see the status of all jobsin a print queue.
If the PRI V_SU option is enabled, the super user is allowed to see all jobs in the print queue.

The output of | pg may be somewhat unreliable because of the dynamic nature of the information in the
spooling directory.

Output formatting is sensitive to the line length of the terminal; this can result in widely spaced columns.

The | pq utility is sometimes unable to open various files because the lock file is malformed.

FILES
[etc/printcap To determine printer characteristics
/etc/terncap To manipulate the screen for repeated display
[usr/spool / * Spooling directory, as determined from pri nt cap
[usr/spool /*/cf* Control files specifying jobs
[usr/spool /*/1 ock Lock file to obtain the currently active job

SEE ALSO

[pr (1B), | pr n(1B)
print cap(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

I pc(8), | pd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2011 10.0 495

LPR(1B) LPR(1B)

NAME
| pr — Prints off-line

SYNOPSIS

[usr/ucb/| pr [-Pprinter] [-#num] [- C class] [-J job] [- T title] [-R] [-i [numcolg]]

[- 1] 2| 3] 4font] [-wnum] [-p] [-1] [-t] [-n] [-d] [-9] [-v] [-c] [-f] [-r] [-m [-h] [-s] [files]
IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The |l pr utility uses a spooling daemon to print the files specified by files when facilities become available.
If no files are specified, standard input is assumed.

The |l pr utility accepts the following option to specify a printer:

- Pprinter Forces output to a specific printer. Usually, the default printer is used (site-dependent), or the
value of the PRI NTER environment variable is used.

The following single-letter options are used to notify the line printer spooler that the files are not standard
text files. The spooling daemon uses the appropriate filters to print the data accordingly.

-p Uses pr (1) to format the files (equivalent to pri nt).

-1 Uses a filter that allows control characters to be printed and suppresses page breaks.

-t Assumes that the files contain data from t r of f (cat phototypesetter commands).

-n Assumes that the files contain data from di t r of f (device-independent t r of f).

-d Assumes that the files contain data from t ex (DVI format from Stanford).

-g Assumes that the files contain standard plot data as produced by the pl ot routines (for the
filters used by the printer spooler).

Y Assumes that the files contain a raster image for devices such as the Benson Varian.

-C Assumes that the files contain data produced by ci f pl ot .

-f Uses afilter that interprets the first character of each line as a standard Fortran carriage control
character.

You can use the following options:

496 SR-2011 10.0

LPR(1B) LPR(1B)

- #num Prints multiple copies of output; num is the number of copies desired of each file specified. For
example, the following command line would result in three copies of file f 0o. c, followed by
three copies of file bar . ¢, and so on.

| pr -#3 foo.c bar.c nore.c
On the other hand, the following command line would produce three copies of the concatenation
of the files:

cat foo.c bar.c nmore.c | lpr -#3

-Cclass Uses class arguments as a job classification for use on the burst page. For example, the
following command line would cause the system name (the name returned by host name(1)) to
be replaced on the burst page by EECS, and file f 00. ¢ to be printed:

| pr -C EECS foo.c

-J job Uses job as the job name to print on the burst page. Usually, the name of the first file is used.

- T title Uses title as the title used by pr (1), instead of the file name.

-R Writes a message to standard output containing the unique number which is used to identify this
job. This number can be used to cancel (see | pr m(1B)) or find the status (see | pq(1B)) of the
job.

- i [numcolsg]

Indents the output. If numcols is numeric, it will be used as the number of blanks to be printed
before each line; otherwise, 8 characters are printed.

- 1] 2| 3| 4font
Specifies a font to be mounted on font position 1, 2, 3, or 4. The daemon constructs a
. rail mag file referencing file / usr/1i b/ vf ont / nane. si ze.

- wnum Sets the page width to num.

-r Removes the file on completion of spooling or on completion of printing (with the - s option).

-m Sends mail on completion.

-h Suppresses the printing of the burst page.

-S Links data files rather than trying to copy them so that large files can be printed.

files Files to be printed. This means that the files must not be modified or removed until they have
been printed.

NOTES

If you try to spool afile that is too large, it will be truncated.

SR-2011 10.0

497

LPR(1B) LPR(1B)

| pr objects to printing binary files.

If a user other than r oot prints afile and spooling is disabled, | pr will print a message saying this and
will not put jobs in the queue.

If a connection to | pd(8) on the local machine cannot be made, | pr will indicate that the daemon cannot
be started. Messages can be printed in the daemon’s log file regarding missing | pd spool files.

BUGS

Fonts for t r of f and t ex reside on the host with the printer. Currently, local font libraries cannot be used.

FILES
[etc/printcap Printer capabilities database
[et c/udb User validation file containing user control limits
[fusr/1lib/lpd* Line printer daemons
fusr/1lib/lpf Sample | pr output filtering program
[usr/1ib/necf Sample | pr output filtering program
[usr/spool / * Directories used for spooling
[usr/spool /*/cf* Daemon control files
[usr/ spool / */ df * Data files specified in cf files
[usr/spool /*/tf* Temporary copies of cf files

SEE ALSO

I p(1), I pa(1B), I pr n(1B), pr (1)
I pc(8), | pd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

498 SR-2011 10.0

LPRM(1B) LPRM(1B)

NAME

| pr m— Removes jobs from the line printer spooling queue

SYNOPSIS

[fusr/ucb/ | prm[-Pprinter] [-] [jobnums] [users]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The | pr mutility removes a job, or jobs, from a printer’s spool queue. Because the spooling directory is
protected from users, using | pr mis typically the only method by which you may remove a job.

If you specify | pr mwithout any arguments, it deletes the currently active job if it is owned by the user who
invoked | prm

The | pr mutility accepts the following options:

- Pprinter Specifies the queue associated with a specific printer; otherwise, the default printer or the
value of the PRI NTER environment variable is used.

- Removes all jobs that a user owns. |f the super user uses this option, the spool queue will be
emptied entirely.

jobnums Used to dequeue an individual job.
users Removes any jobs queued belonging to the user (or users).

You may dequeue an individua job by specifying its job number. This number may be obtained from the
| pq(1B) program. For example, if you use the following program, | pr mwill announce the names of any
files it removes; it will remain silent if there are no jobs in the queue that match the request list:

$ Ipqg -1

1st: ken [j ob #013ucbar pa]
(standard i nput) 100 bytes

$ lprm 13

The | pr mutility kills an active daemon, if necessary, before removing any spooling files. If a daemon is
killed, a new one is automatically restarted upon completion of file removal.

NOTES

If users try to remove files other than their own, permission will be denied.

SR-2011 10.0 499

LPRM(1B) LPRM(1B)

BUGS

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the action shown:

Privilege Text Action
adm n Allowed to remove any job in a print queue. Other users may only remove their
own jabs.

If this command is installed with a PAL, a user with one of the following active categories is alowed to
perform the action shown:

Active Category Action
sysadm sysadm Allowed to remove any job in a print queue.

If the PRI V_SU option is enabled, the super user is allowed to remove any job in a print queue.

Because race conditions are possible in the update of the lock file, the currently active job may be incorrectly
identified.

FILES
[usr/spool / * Spooling directories
[etc/printcap Printer characteristics file
[usr/spool /*/1 ock Lock file used to obtain the process identification number (PID) of the current
daemon and the job number of the currently active job
SEE ALSO

500

| pq(1B), | pr (1B)

SR-2011 10.0

LS(1) LS(1)

NAME
| s — Lists contents of directory

SYNOPSIS

I's [-1] [-a] [-A] [-b] [-B] [-c] [-C [-d] [-e] [-f] [-F] [-9] [-i] [-k] [-1] [-1] [-L] [-m
[-n] [-o]l [-p] [-P] [-a] [-r] [-R] [-s] [-t] [-u] [-x] [file ..]

IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX, XPG4
AT&T extensions (- b option)
CRI extensions (- A, - B, - e, -k, -1, and - P options)

DESCRIPTION

For each directory argument, | s lists the contents of the directory; for each file argument, | s repeats the file
name and any other information requested. By default, the output is sorted alphabetically. When no
argument is specified, the current directory is listed. When several arguments are specified, the arguments
are first sorted appropriately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a terminal is multi-column
with entries sorted down the columns. The - 1 option alows single-column output, and the - moption
enables stream output format in which files are listed across the page, separated by commas.

To determine output formats for the - C, - x, and - moptions, | s uses the COLUMNS environment variable,
which determines the number of character positions available on one output line. If this variable is not set,
the system is prompted by using the i oct | (2) system call to acquire the current window size. When this
information cannot be obtained, 80 columns are assumed.

Use the - e option to display security information.

The | s utility accepts the following options:

-1 (Number one) Forces output format of one entry per line. This is the default format when the
output is not directed to a terminal.

-a Lists all entries, including entries whose names begin with a dot (.), which usually are not listed.

-A Lists all entries, including entries whose names begin with a dot (.), except for the dot (.) and

dot-dot (. .) files.
-b Forces the printing of nongraphic characters to be in the octal \ ddd notation.

-B Writes the number of file system blocks a file occupies, as specified by the -1 and - s options, in
4096-byte units, rather than the default 512-byte units.

SR-2011 10.0 501

LS(1)

502

LS(1)

Uses time of last modification of the inode (file created, mode changed, and so on) for sorting (- t)
or printing (- |).

Specifies multicolumn output with entries sorted down the columns. This is the default format when
the output is directed to a terminal.

If the files argument is a directory, lists only its name (not its contents); often used with - | to get
the status of a directory.

Provides the access control list (ACL) flag, integrity label flag, security level, and compartment flag
as the last fields before the file name, or, when used with - | , as the fields immediately following
the mode field. When at least one file compartment is set, the file's compartment flag is displayed
as aplus sign (+) adjacent to the file's security level. Ani indicates that the file has an integrity
class or category assigned to it; ask your security administrator to relabel these valuesto 0. When a
file has an associated ACL, its ACL flag appears as an a adjacent to the mode field (if present), or
following any other selected fields. A file or directory that has a wildcard security level has an
asterisk (*) displayed for its file level. A trusted facility management file or directory hasa T
displayed for its file level; if this symbol is displayed, ask your security administrator to relabel the
file with the proper security label. The file's security level is displayed as a question mark (?) if it
is outside the user’s allowable range, or if any of the file's compartments are not in the user’s set of
valid compartments. No security information is displayed when a question mark is shown.

Forces each argument to be interpreted as a directory and lists the name found in each dot. This
option turns off - A, -1, -t, -s, and - r, and turns on - a; the order is the order in which entries
appear in the directory.

Adds a dash (/) after each file name that is a directory, adds an asterisk (*) after each file name
that is executable, adds an at sign (@ after each file name that is a symbolic link, adds an eguals
sign (=) after each file name that is a socket, and a vertical line (|) after each file name that is a
FIFO.

The same as - | , except that the owner is not printed.
For each file, prints the inode number in the first column of the report.

Writes the number of file system blocks a file occupies, as specified by the - | and - s options, in
1024-byte units, rather than the default 512-byte units.

Same as - i , but the inode is printed as two 32-bit values.

Lists in long format, specifying mode, number of links, owner, group, size in bytes, and time of last
modification for each file. See the EXAMPLES section. If the file is a special file, the size field
will contain the major and minor device numbers rather than a size. If the file is a symbolic link,
the path name of the linked-to file will be printed, preceded by - >; or, if the file is a multilevel
symbolic link and the - e option is used, the pathname will be preceded by * >. If file is a directory,
each list of files within the directory is preceded by a status line that indicates the number of file
system blocks occupied by files in the directory in 512-byte units (rounded up, if necessary).

SR-2011 10.0

LS(1)

-L

-m

-Nn

-0
-p
-P
-q

-R

-S

-u

- X

files

LS(1)

If an argument is a symbolic link, lists the file or directory the link references rather than the link
itself.

Specifies stream output format.

The same as - | , except that the owner’s UID and GID numbers (and account ID numbers for - P),
rather than the associated character strings, are printed.

The same as - | , except that the group is not printed.

Puts a dlash (/) after each file name if that file is a directory.

Lists the account ID associated with each file.

Forces printing of nongraphic characters in file names as the character ?.
Reverses the order of sort to get reverse alphabetic or oldest first, as appropriate.
Recursively lists subdirectories encountered.

Gives size of each file in terms of file system blocks. The size is given in 512-byte units by default,
and may be changed by the - k or - B options.

Sorts by time modified (latest first) rather than by name.

Uses time of last access rather than last modification for sorting (with the -t option) or printing
(with the - | option).

Specifies multi-column output with entries sorted across rather than down the page.

Files to be listed. If no files are specified, al files in the current directories are listed.

The mode printed under the - | option consists of 10 characters. The first character is one of the following:

'U);U'UB_Q_OD'

Block special file

Character speciad file

Directory.

Symbolic link

Migrated file

FIFO (named pipe) specia file

Restart file; for more information on the restartability of core files, seer est art (1) and cor e(5).
Type socket

Ordinary file

The next 9 characters are interpreted as three sets of 3 bits each. The first set refers to the owner’s
permissions, the next to permissions of others in the user-group of the file, and the last to all others. Within
each set, the three characters indicate permission to read, to write, and to execute the file as a program,
respectively. For a directory, execute permission is interpreted as permission to search the directory for a
specified file. The permissions are indicated as follows:

r The file is readable.
w Thefile is writable.
X Thefileis executable.

SR-2011 10.0

503

LS(1) LS(1)

- Theindicated permission is not granted.

I Mandatory locking occurs during access (the set-group-1D it is on, and the group execution bit is off).

t Setsthe sticky bit (see chnod(2) for more information). Only the super user or owner of the directory
can dter thet permission (mode 1000).

s The set-user-1D or set-group-1D bit is on, and the corresponding user or group execution bit is also on.

S Undefined bit-state (the set-user-ID bit is on and the user execution bit is off).

For user and group permissions, the third position is sometimes occupied by a character other than x or -. s
may also occupy this position; it refers to the state of the set-1D bit, whether it be the user’s or the group’s.

The ability to assume the same ID as the user during execution is, for example, used during login when you
begin as r oot but must assume the identity of the user stated at login.

In the case of the sequence of group permissions, | may occupy the third position. | refersto mandatory
file and record locking. This permission describes a file's ability to allow other processes to lock its reading
or writing permissions during access.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is
printed.

If you specify the - | option, each list of files within the directory is preceded by a status line indicating the
number of file system blocks occupied by files in the directory in 512-byte units.

NOTES

If this utility is installed with a privilege assignment list (PAL), a user with one of the following active
categories is allowed to perform the actions shown:

Active Category Action

system secadm In a privileged administrator shell environment, shell-redirected 1/0 is not subject to
file protections.

sysadm Shell-redirected output is subject to security label restrictions.

If the PRI V_SU configuration option is enabled, shell-redirected 1/0 on behalf of the super user is not
subject to file protections.

EXIT STATUS

The | s utility exits with one of the following values:
0 All files were written successfully.

>0 An error occurred.

BUGS

Unprintable characters in file names may confuse the columnar output options.

504 SR-2011 10.0

LS(1) LS(1)

In file names, <newl i ne> and <t ab> are considered printing characters.
The output device is assumed to be 80 columns wide.

If hard links are among the files, the total block count will be incorrect.

EXAMPLES
Example 1: The following is an example of output from the | s utility, using the - 1 option:
total 155
dr wxr - Xr - x 2 cray 0s 96 Sep 23 12:42 onea
STW-F--r-- 1 cray 0S 3380 Cct 3 08:18 save.ftpl
-rWX------ 1 cray 0s 74912 Sep 19 09:04 testx

Example 2: The following is an example of output from the | s utility using the - | e options. The second
column that follows the mode field shows the file's security level. The plus sign (+) appended to the
security level of the second file indicates that the file has compartments. The third file has an associated
ACL, asindicated by the a in column 1 adjacent to the mode field.

total 155
dr wxr - Xr - x 1 2 cray 0s 96 Sep 23 12: 42 onea
STW-r--r-- 1+ 1 cray 0S 3380 Cct 03 08: 18 save. ftpl
-rWX------ a 1 1 cray 0s 74912 Sep 19 09: 04 testx
FILES
[etc/udb User validation file that contains user control limits
[etc/ group Group file that contains group names and group 1Ds
SEE ALSO

chnod(), fi nd(2), rest art (1), chnod(2), socket (2) in the UNICOS System Calls Reference Manual,
Cray Research publication SR—2012

cor e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2011 10.0 505

M4(1) M4 (1)

NAME

m4 — Invokes a macro processor

SYNOPSIS
md [-B int] [-D namel=val]] [-e] [-H int] [-S int] [-s] [- T int] [- U name] [files]

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The m4 utility invokes a macro processor intended for use as a general-purpose front end for any
programming language. Each of the argument files is processed in order; if there are no files, or if afile
name is -, standard input is read. The processed text is written on standard output.

The m4 command supports the following options:

-Bint Changes the size of the push-back and argument collection buffers from the default of
4096.

- Dname[=val] Defines name to val or to null in the absence of val.

-e Operates interactively. Interrupts are ignored and the output is unbuffered.

-Hint Changes the size of the symbol table hash array from the default of 199. The size should
be a prime number.

-Sint Changes the size of the call stack from the default of 100 dlots.

-S Enables line sync output for the C preprocessor (# "line .. .").

-Tint Changes the size of the token buffer from the default of 512 bytes.

- U name Undefines name. Macros take 3 slots, and nonmacro arguments take 1.

files Specifies the files to be processed.

Macro calls have the following form:

name(argl,arg?, ..., argn)

A (character must immediately follow the name of the macro. When the name of a defined macro is not
followed by (, it is considered a call of that macro with no arguments. Potential macro names consist of
alphabetic letters, digits, and underscores; the first character cannot be a digit.

506 SR-2011 10.0

M4 (1)

M4(1)

Leading unquoted blanks, tabs, and new-line characters are ignored during the collection of arguments. Left
single quotation marks (grave accent, ASCIl 96) and right single quotation marks are used to quote strings.
The value of a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by a search for a matching right parenthesis.
If fewer arguments are supplied than are in the macro definition, the trailing arguments will be considered
null. Macro evaluation proceeds normally during the collection of the arguments, and any commas or right
parentheses that appear in the value of a nested call are as effective as those in the original input text. After
argument collection, the value of the macro is pushed back into the input stream and rescanned.

The m4 command has the following built-in macros. They may be redefined, but after redefinition the
original meaning is lost. Their values are null unless otherwise stated.

defi ne

undefi ne
defn

pushdef
popdef
i fdef

shift

changequot e

changecom

SR-2011 10.0

The second argument is installed as the value of the macro whose name is the first
argument. Each occurrence of $n in the replacement text, where n is a digit, is replaced
by the nth argument. Argument O is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the number of arguments; $* is replaced by
alist of all arguments separated by commas; $@is like $*, but each argument is quoted
(with the current quotation characters).

Removes the definition of the macro named in its argument.

Returns the quoted definition of its arguments. This is useful for renaming macros,
especialy built-in macros.

Functions as does def i ne, but saves any previous definition.
Removes current definition of its arguments, exposing the previous argument if one exists.

If the first argument is defined, the value will be the second argument; otherwise it will be
the third. If there is no third argument, the value will be null. The words uni x and
CRAY are predefined on all UNICOS systems. The word CRAYYMP is predefined.

Returns al but its first argument. The other arguments are quoted and pushed back, with
commas to separate them. The quoting nullifies the effect of the extra scan that will
subsequently be performed.

Changes quote symbols to the first and second arguments. The symbols may be up to 5
characters long. changequot e without arguments restores the original values (that is,

‘ 1).

Changes left and right comment markers from the default # and new-line character.
Without arguments, the comment mechanism is effectively disabled. With one argument,
the left marker becomes the argument and the right marker becomes a new-line character.
With two arguments, both markers are affected. Comment markers may be up to 5
characters long.

507

M4 (1) M4 (1)

di vert Changes the current output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded. The fina output is the concatenation of the
streams in numeric order; initially stream O is the current stream. The di vert macro
maintains 10 output streams, numbered O through 9.

undi vert Causes immediate output of text from diversions named as arguments, or from all
diversions if no argument exists. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

di vnum Returns the value of the current output stream.
dnl Reads and discards characters up to and including the next new-line character.
ifel se Has three or more arguments. If the first argument is the same string as the second, the

value will be the third argument. If not, and if there are more than four arguments, the
process will be repeated with arguments four, five, six, and seven. Otherwise, the value
will be either the fourth string or, if it is not present, null.

i ncr Returns the value of its argument incremented by 1. The value of the argument is
calculated by the interpreting of an initial digit-string as a decimal number.

decr Returns the value of its argument decremented by 1.

eval Evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators

include +, -, *,/, % bitwise & |, ", and ~; relationals; and parentheses. Octal and
hexadecimal numbers may be specified as in C. The second argument specifies the radix
for the result; the default is 10. The third argument may be used to specify the minimum
number of digits in the result.

I en Returns the number of charactersin its argument.

i ndex Returns the position in its first argument at which the second argument begins (zero
origin), or —1 if the second argument does not occur.

substr Returns a substring of its first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first string.

translit Trandliterates the characters in its first argument from the set given by the second
argument to the set given by the third. No abbreviations are permitted.

i ncl ude Returns the contents of the file named in the argument.

si ncl ude Functions as does i ncl ude, except that it returns nothing if the file is inaccessible.

syscnd Executes the UNICOS command given in the first argument. No value is returned.

sysval Returns code from the last call to syscnd.

maket enp Fills in a string of XXXXX in its argument with the current process ID.

mdexi t Causes immediate exit from md. Argument 1, if provided, is the exit code; the default is
0.

508 SR-2011 10.0

M4 (1) M4(1)

mawr ap Pushes back argument 1 at final EOF; for example, mdwr ap(cl eanup()) .

errprint Prints its argument on the diagnostic output file.

dunpdef Prints current names and definitions, either for the named items or for al, if no arguments
are specified.

traceon Without arguments, turns on tracing for all macros (including built-in macros); otherwise
turns on tracing for named macros.

traceof f Turns off trace globally and for any macros specified. Macros specifically traced by

t raceon can be untraced only by specific callsto t r aceof f .

SEE ALSO
cc(1)

SR-2011 10.0 509

MACHID(1) MACHID(1)

NAME

machi d — Gives truth value about processor type

SYNOPSIS

crayxnp
crayynp
crayynpe

crayynpel
crayc90

crayj 90
crayts
crayt 3d
crayt 3e
pdpl1l
sparc
sun
u370
u3b
u3b5
vax

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The machi d utility gives the truth value about the processor type.

EXIT STATUS

The following will return a true value (exit code of 0) if you are on a processor that the command name
indicates:

crayc90 True if you are on a CRAY C90 system.

crayj 90 True if you are on a CRAY J90 system.

crayts True if you are on a CRAY T90 system.

crayct 3d Trueif you are on a CRAY T3D system.

crayct 3e Trueif you are on a CRAY T3E system.

crayxmp True if you are on a CRAY Y-MP or a CRAY X-MP system.
crayynp True if you are on a CRAY Y-MP system.

crayynpe Trueif you are on a system running 1OS model E.
crayynpel Trueif you are on a CRAY Y-MP EL system.

pdpl1l True if you are on a PDP-11/45 or PDP-11/70, aways false.

510 SR-2011 10.0

MACHID(1) MACHID(1)

sparc True if you are on a computer using a SPARC-family processor, always false.
sun True if you are on a Sun system, always false.

u370 True if you are on a UNIX/370 system, always false.

u3b5 True if you are on a 3B5 system, always false.

u3b True if you are on a 3B20S, always false.

vax True if you are on a VAX-11/750 or VAX-11/780, always fase.

The commands that do not apply will return a false (nonzero) value. These commands are often used within
make(1) makefiles and shell procedures to increase portability.

SEE ALSO
make(1), sh(1), t ar get (1), t est (1), t rue(l)

SR-2011 10.0 511

MAIL (1)

NAME

mai | — Invokes an electronic message system

SYNOPSIS

mai |l [-e] [-f filg]

mail [-e -p] [-q] [-r] [-f filg

mai | [-t] persons
IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

MAIL (1)

The mai | utility invokes an electronic mail system. It can be used to both send and receive mail; you can

also use it, for example, from a script.

Receiving Mail

When you log in, the system notifies you if you have mail. It also tells you if new mail arrives while you

are using mai | .

The following options control the way in which received mail is read:

-e Prevents mail from being displayed. An exit value of O is returned if the user has mail;

otherwise, an exit value of 1 is returned.
-f file Reads mai | from file (such as nbox), rather than the default mail file

(/usr/ mai | / SLOGNAME).

-p Displays all mail without prompting for disposition.

-q Terminates mai | after interrupts. Usually, an interrupt causes the termination of only the

message being displayed.

-r Displays messages in first-in, first-out order.

The mai | command without arguments prints your mail, message by message, in last-in, first-out order. For
each message, you are prompted with a ?, and your response determines the disposition of the message.

mai | aso recognizes the following commands when you are reading received mail:
<new i ne> Goes on to next message or stops if there are no more messages.

+ Functions the same as a newline character.

d Deletes the message and goes on to the next message; it deletes only messages at your

active security label.

512

SR-2011 10.0

MAIL (1)

s [files]

w files]

m[persons]

<CONTROL- d>

I command

*

MAIL (1)

Prints (displays) message again. It saves a message at your active security label, which
may cause the message to be relabeled.

Returns to previous message, even if it was deleted.

Saves the message, including its header, in the specified files (mbox is default). If the file
to which the message is being saved already exists, it appends the message to it. It saves
a message at your active security label, which may cause the message to be relabeled.

Saves the message, without its header (the line that contains the sender’s name and
postmark), in the specified files (mbox is default). It saves a message at your active
security label, which may cause the message to be relabeled.

Mails the message to the specified persons (default is to you). The message is labeled at
your active security label when it is mailed.

Puts undeleted mail back in the mail file (/ usr/ mai | / SLOGNAME) and stops. Mail
messages that are not at your security label are not modified.

Functions the same as q.

Puts all mail, including deleted mail, back unchanged in the mail file
(/ usr/ mai | / SLOGNAME) and stops.

Escapes to the shell to execute command.

Prints a command summary.

The following options control the way in which received mail is read:

-e Prevents mail from being displayed. An exit value of O is returned if the user has mail;
otherwise, an exit value of 1 is returned.

-f file Reads mai | from file (such as nbox), rather than the default mail file
(/usr/ mai | / SLOGNAME).

-p Displays all mail without prompting for disposition.
-q Terminates mai | after interrupts. Usually, an interrupt causes the termination of only the
message being displayed.
-r Displays messages in first-in, first-out order.
Sending Mail

The persons to whom you send mail (persons) are usually user names recognized by | ogi n(1). If a person
being sent mail is not recognized, or if mai | is interrupted during input, the mail is saved in the
$HOVE/ dead. | et t er file, which can be edited and resent. The dead letter file is overwritten each time

mail is mis-sent.

The following option and argument control the way in which mail is sent:

-t Includes all persons to whom mail was sent in a line in each recipient’s mail header.

SR-2011 10.0

513

MAIL (1) MAIL (1)

NOTES

514

persons When you specify persons, mai | takes the standard input up to an end-of-file (or up to aline
that consists of just a.) and adds it to each person’s mail file (/ usr/ mai | / SLOGNAME). The
message is preceded by the sender’s name and a postmark. Lines that look like postmarks in the
message (that is, From . . .) are preceded with a >.

Y ou can manipulate the mail file (/ usr/ mai | / SLOGNAME) in two ways to ater the function of nmai | .
The other permissions of the file may be read-write, read-only, or neither read nor write to allow different
levels of privacy. If changed to other than the default, the file will be preserved even when empty to
perpetuate the desired permissions. The file may aso contain the first line:

Forward to
person

This causes all mail sent to the owner of the mail file to be forwarded to person. This is especially useful
for forwarding all of a person’s mail to one machine in a multiple-machine environment. For forwarding to
work properly, the mail file should have mai | as group ID and the group permission should be read-write.

If your system is using multilevel directories (MLDs), you must define the directories that contain your
system mailbox and your user saved mailbox as a MLD. Y our security administrator should be responsible
for defining MLDs.

If your system mailbox is not set up as an MLD, mail delivery to users at more than one security label will
be disrupted.

If your saved mailbox directory is not defined as an MLD, you will be able to save mail messages only
when you are logged in at the security label of your saved mailbox directory.

Depending on system configuration, you may not be allowed to see announcements of received mail at labels
to which you do not have mandatory access control (MAC) read access. If you are alowed to receive
announcements and you have mail at a label to which you do not have MAC read access, you will be
informed that you have unreadable mail at a specific label.

If mail at a certain label is forwarded to another system, you will receive notification in the following form:

Your mail at <label> is being forwarded to <desti nation>.

This notification is given for mail at 1abels to which you have MAC read access.

Although mai | alows you to save any mail message you receive, the saved version of the mail message is
created at the label at which it was read, not necessarily the label at which it was sent.

Although you can forward or send any mail message, the message is always transmitted at your active label.
If you decided to forward a message that has a lower security label than your active security label, the
message is relabeled with your active security label and then forwarded.

SR-2011 10.0

MAIL (1) MAIL (1)

The mai | command uses sendmai | (8) as the mechanism to send mail to a remote system.

EXIT STATUS

BUGS

The mai | utility exits with the following values:
0 Successful completion when the user had mail.
1 The user had no mail or an initialization error.

>1 An error occurred after initialization.

Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; to force printing type a p.

A user’s mailbox is labeled with the security label of the mail that is contained in the mailbox. Any attempt
to send mail to a user at a different security label will fail, and mail can be lost.

EXAMPLES

FILES

The following command sends the mail message shown on the second line to usersj oe and sam

mai | joe sam
This should send mail to Joe and Sam

The following command sends the file meno to user sue:

mai | sue <meno

/et c/udb User validation file that contains user control limits
HOVE/ dead. | et t er Text that could not be mailed

HOVE/ nbox Saved mall

[t mp/ ma* Temporary file

fusr/mail/*.]ock Lock for mail directory

[usr/ mai | Juser Incoming mail for user (the mail file)

SR-2011 10.0 515

MAIL (1) MAIL (1)

SEE ALSO
 ogi n(1), wite(l)
chown(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

sendmai | (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

516 SR-2011 10.0

MAILQ(1) MAILQ(1)

NAME

mai | g — Prints the contents of the mail queue

SYNOPSIS

mai | q [-V]

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The mai | g utility prints a summary of the mail messages queued for future delivery.

The first line printed for each message includes its internal identifier used on the hogt, its size (in bytes), the

date and time it was accepted into the queue, and its envelope sender. The second line includes the error

that caused the message to be retained in the queue; an error message will not be present if the message is

being processed for the first time.

The mai | g utility isidentical to sendmai | - bp.

The mai | g command accepts the following flag:

-V Prints verbose information. The first line printed for each message will aso include the message
priority and an indicator ("+") if a warning message has been sent. Additional lines may be present,

indicating the "controlling user." These indicate the owner of any programs that are executed on
behalf of a message and the alias name (if any) that expanded the command.

The mai | q utility exits with a value of O, if successful, and >0 when an error occurs.
NOTES

If this utility is installed with a privilege assignment list (PAL), a user who is assigned the following
privilege text upon execution of this command is allowed to perform the actions shown:

Privilege Text Action
daenon Allowed to see al information in the mail queue
mai | q Allowed to see al information in the mail queue

If this utility is installed with a PAL, a user with one of the following active categories is allowed to
perform the action shown:

Active Category Action

system secadm Allowed to see al information in the mail queue

SR-2011 10.0 517

MAILQ(1) MAILQ(1)

If the PRI V_SU configuration option is enabled, the super user is allowed to see al information in the mail
queue.

SEE ALSO

sendmai | (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

518 SR-2011 10.0

MAILX (1) MAILX (1)

NAME

mai | x — Invokes an electronic message processing system
SYNOPSIS

Send Mode:
mai | X [-h number] [-r address] [-s subject] [- F] user...
Receive Mode:

mail x -e
mai | x [-d] [-H [-i] [-n] [-N] [-T file] [-u user] [-U] [-V]
mai | x -f [-d] [-H [-i] [-1] [-n] [-N] [-T filg] [-U [-V] [file]

Obsolescent version; may not be supported in future releases:

mai | x [-f [file]] [-d] [-H [-i] [-1] [-n] [-N] [-T file] [-U] [-V]
IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

AT&T extensions (-d, -1, -T, - U, and - V options)
STANDARDS

POSIX, XPG4

DESCRIPTION

The mai | x utility invokes an electronic mail system. You can use it to send and receive mail.

When you are reading mail, mai | x lets you save, delete, and respond to messages. When you are sending
mail, mai | x lets you edit, review, and perform other modifications to the messages as you enter them.

The mai | x utility stores incoming mail in a standard file (mailbox) for each user. When you call mai | x to
read messages, the mailbox is the default place to find them. As i | x reads messages, it marks them to
be moved to a secondary file for storage, unless you specify that you want something else done with them.
This secondary file is called the mbox, and it usually is located in the user’s HOVE directory (see MBOX in
the ENVIRONMENT VARIABLES section for a description of this file). Messages remain in this file until
you remove them.

You can access a secondary file by using the - f option of the mai | x utility. Messages in the secondary
file can then be read or otherwise processed using the same mai | x commands as in the primary mailbox.

SR-2011 10.0 519

MAILX (1)

MAILX (1)

The operands that follow options are assumed to be destinations (or recipients). If you do not specify
recipients, mai | x attempts to read messages from the system mailbox.

The mai | x utility accepts the following options:

-d

-e

-f [file]
-F

- h number

-n
-N

-r address
- S subject
- T file

- U user

-V
user. ..

file

520

Turns on debugging output. This option is not recommended.

Tests for presence of mail. If mail to read exists, mai | x prints nothing and exits with a
successful return code.

Reads messages from file, rather than mailbox. 1f you omit file, mbox is used.

Records the message in a file named after the first recipient. If set (see the ENVIRONMENT
VARIABLES section), this option overrides the r ecor d variable.

Specifies the number of network "hops' made so far. This option is provided for network
software to avoid infinite delivery loops.

Prints only header summary.
Ignores interrupts. See also i gnor e in the Internal Variables subsection.

Includes the newsgroup and article-ID header lines when printing mail messages. Y ou must
specify the - f option with this option.

Prevents initialization from the system default mai | x. r ¢ file.
Prevents printing of initial header summary.

Passes address to network delivery software.

Sets the subject header field to subject.

Records message-ID and article-1D header lines in file after the message is read. This option
also setsthe - 1 option.

Reads the system mailbox that belongs to user. Thisis successful only if the invoking user
has the appropriate privileges to read the system mailbox of that user.

Converts uucp style addresses to Internet standards. Overrides the conv internal variable.
Disables all tilde commands. This option is effective only if the system mailbox that belongs
to user is not read protected.

Prints the mai | X version number and exits.
Recipients of mail.

Read messages from file, rather than mailbox. If you omit file, mbox is used.

SR-2011 10.0

MAILX (1) MAILX (1)

When mail is being read, mai | x isin command mode. A header summary of the first several messages is
displayed, followed by a prompt that indicates that mai | x can accept regular commands (see the Commands
subsection). When mail is being sent, mai | x isin input mode. If you omit a subject on the command line,
a prompt for the subject is printed. As you type the message, i | x reads the message and storesit in a
temporary file. You can enter commands by beginning a line with the tilde (~) escape character, followed
by one command letter and optional arguments. See the Tilde Escapes subsection for a summary of these
commands.

At any time, mai | x’s behavior is governed by a set of internal variables. These are flags and valued
parameters that are set and cleared by using the set and unset commands. See the Internal Variables
subsection for a summary of these parameters.

Recipients listed on the command line can be of three types: login names, shell commands, or alias groups.
Login names can be any network address, including mixed-network addressing. If the recipient name begins
with a pipe (|) symbol, the rest of the name is considered a shell command through which to pipe the
message. This provides an automatic interface with any program that reads the standard input, such as

| p(2), for recording on paper outgoing mail. Alias groups, set by the alias (a) command (see the
Commands subsection) are lists of recipients of any type.

Regular commands are of the following form:

[command] [msglist] [arguments]

If you do not specify a command in command mode, the print command (p) is assumed. In input mode,
commands are recognized by the escape character, and lines not treated as commands are considered input
for the message.

Each message is assigned a sequential number, and when it is a current message, it is marked by a > in the
header summary. Many commands take an optional list of messages (msglist) on which to operate, which
defaults to the current message. A msglist is a list of message specifications separated by spaces that can
include the following:

n Message number n
Current message
n First undeleted message
$ Last message
* All messages
n-m An inclusive range of message numbers
user All messages from user

/ string All messages with string in the subject line (case ignored)

SR-2011 10.0 521

MAILX (1) MAILX (1)

i C All messages of type c; c is one of the following:
d Deleted messages
n New messages
0 Old messages
r Read messages

u Unread messages
The context of the command determines whether this type of message specification makes sense.

Other arguments are usualy arbitrary strings whose usage depends on the command involved. File names,
when expected, are expanded using the typical shell conventions (see sh(1)). Special characters are
recognized by certain commands, and are documented with the commands that follow.

At start-up time, mai | x reads commands from a system-wide file (/ usr /i b/ mai | x/ mai | x. rc)to
initialize certain parameters, then from a private start-up file (SHOVE/ . mai | r c) for personalized variables.
Most regular commands are legal inside start-up files, the most common use being to set up initial display
options and alias lists. The following commands are not lega in the start-up file: !, Copy, edi t,

fol | owup, Fol | owup, hol d, mai |, preserve, reply, Reply, shell,and vi sual . Any errorsin
the start-up file cause the remaining lines in the file to be ignored. The . mai | r ¢ file is optional, and it
must be constructed locally.

Commands

522

The following is a complete list of mai | x commands:

I command Invokes the command interpreter specified by SHELL. If you set the bang (!)
variable, each unescaped occurrence of ! in command is replaced with the command
executed by the previous! command or ~! tilde escape. See SHELL in the
ENVIRONMENT VARIABLES section.

comment Null command (comment). This might be useful in . mai | r c files.
= Prints the current message number.
? Prints a summary of commands.

a[l i as] alias names . ..
g[r oup] alias names . ..
Declares an dlias for the given names. When alias is used as a recipient, the names
will be substituted. Useful inthe . mai | r ¢ file.

al t [er nat es] names ...
Declares a list of alternative names for your login. When responding to a message,
these names are removed from the list of recipients for the response. Without
arguments, al t er nat es prints the current list of aternative names. See aso

al | net in the Internal Variables subsection.

cd [directory]
ch[di r] [directory] = Changes directory. If you omit directory, $HOVE is used.

SR-2011 10.0

MAILX (1)

clopy] [file]
clopy] [msglist] file

Clopy] [msglist]

d[el et e] [msglist]

MAILX (1)

Copies messages to the file without marking the messages as saved; otherwise, it is
equivalent to the save command. If a message is labeled at a lower security label,
the copied message is relabeled with your active security label.

Saves the specified messages in a file whose name is derived from the author of the
message to be saved, without marking the messages as saved; otherwise, it is
equivalent to the save command. If a message is labeled at a lower security label,
the copied message is relabeled with your active security label.

Deletes messages from the mailbox. If you set aut opr i nt, the next message after
the last one deleted is printed (see the Internal Variables subsection). It deletes
messages only at your active security label.

di [scar d] [header-field ...]
i g[nor e] [header-field ..]

dp [msglist]
dt [msglist]

ec[ho] string ...
e[di t] [msglist]

ex[it]
x[it]

fil[le] [fileg
f ol dler] [filg]

SR-2011 10.0

Suppresses printing of the specified header fields when displaying messages on the
screen. Examples of header fields to ignore are st at us and cc. The fields are
included when the message is saved. The Pri nt and Type commands override
this command.

Deletes the specified messages from the mailbox and prints the next message after
the last one deleted. Roughly equivalent to a del et e command, followed by a
print command. Deletes messages only at your active security label.

Echoes the given strings (such as echo(2)).

Edits the given messages. The messages are placed in a temporary file, and the

EDI TOR environment variable is used to get the name of the editor (see the
ENVIRONMENT VARIABLES section). Default editor is ed(1). Editing of a
message is done at your current security label. If the message cannot be written
back to the mail file at that label, the edited message is discarded when the mail box
is closed.

Exits from mai | x, without changing the mailbox. No messages are saved in the
nmbox (see aso qui t).

Quits from the current file of messages and reads in the specified file. Severa
special characters are recognized when used as file names, with the following
substitutions:

% The current mailbox
Quser The mailbox for user
The previous file
& The current mbox

523

MAILX (1)

524

fol ders

f o[l | owmup] [message]

Flol | owmup] [msglist]

f [rom [msglist]

MAILX (1)

+file The named file in the f ol der directory (see the f ol der variable)
The default file is the current mailbox.

Prints the names of the files in the directory set by the f ol der variable (see the
Internal Variables subsection).

Responds to a message, recording the response in a file whose name is derived from
the author of the message. Overridesthe r ecor d variable if set. See aso the

Fol I owup, Save, and Copy commands and out f ol der in the Internal Variables
subsection.

Responds to the first message in the msglist, sending the message to the author of
each message in the msglist. The subject line is taken from the first message and
the response is recorded in a file whose name is derived from the author of the first
message. See also the f ol | owup, Save, and Copy commands, and out f ol der
in the Internal Variables subsection.

Prints the header summary for the specified messages.

g[r oup] alias names . ..
a[l i as] alias names . ..

h[eader s] [message]

hel [p]

holl d] [msglist]
pre[serve] [msglist]
i [f] s

" " mail-commands

el [se]

" " mail-commands
en[di f]

i g[nor e] header-field .

Declares an dlias for the given names. When alias is used as a recipient, the names
will be substituted. Useful inthe . mai | r ¢ file.

Prints the page of headers that includes the specified message. The scr een
variable sets the number of headers per page (see the Internal Variables subsection).
See also the z command.

Prints a summary of commands.

Holds the specified messages in the mailbox.

Specifies conditional execution; s executes the following mail-commands, up to an
el se or endi f, if the program is in send mode, and r executes the mail-commands
only in receive mode. Useful inthe . mai | r ¢ file.

di [scar d] header-field ...

Suppresses printing of the specified header fields when displaying messages on the
screen. Examples of header fields to ignore are st at us and cc. When the
message is saved, al fields areincluded. The Pri nt and Type commands override
this command.

SR-2011 10.0

MAILX (1)

| i st]

nfai |] name...

Mai |] name

nmb[ox] [msglist]

n[ext] [message]

MAILX (1)

Prints all commands available. No explanation is given.

Mails a message to the specified users. It labels the mailed message at your active
security label.

Mails a message to the specified user and records a copy of it in afile with the same
name as the user.

Arranges for the specified messages to be in the standard nbox save file when
mai | x terminates normally. See MBOX in the ENVIRONMENT VARIABLES
section for a description of this file. See also the exi t and qui t commands.

Goes to next message that matches message. A msglist can be specified; however,
the first valid message in the list is the only one used. This is useful for jumping to
the next message from a specific user, because the name would be taken as a
command in the absence of area command. See the previous discussion of msglists
for a description of possible message specifications.

pi [pe] [[msglist] command]

| [[msglist] command]

pre[serve] [msglist]
holl d] [msglist]

P[ri nt] [msglist]
Tlype] [msglist]

p[ri nt] [msglist]
t[ype] [msglist]

qlui t]

Rlepl y] [msglist]
Rlespond] [msglist]

SR-2011 10.0

Pipes the message through the given command. The message is treated as if it were
read. Without arguments, the current message is piped through the command
specified by the value of the cnd variable. If the page variable is set, it inserts a
<f or m f eed> character after each message (see the Internal Variables subsection).

Preserves the specified messages in the mailbox.

Prints the specified messages on the screen, including all header fields. Overrides
suppression of fields by the i gnor e command.

Prints the specified messages. If you set crt, messages longer than the number of
lines specified by the crt variable are paged through the command specified by the
PAGER environment variable. The default command is pg() in the
ENVIRONMENT VARIABLES section.

Exits from mai | x, storing messages that were read in mbox and unread messages
in the mailbox. Deletes messages that have been explicitly saved in afile.
Messages that are saved in nbox are relabeled, if necessary, at your active security
label.

Sends a response to the author of each message in the msglist. The subject line is
taken from the first message. If you set r ecor d to afile name, the response is
saved at the end of that file (see the Interna Variables subsection). Any response to
amessage is labeled at your active security label, even if the reply is to a message
at a lower security label.

525

MAILX (1)

526

r[epl y] [message]

MAILX (1)

r [espond] [message] Replies to the specified message, including all other recipients of the message. If

Slave] [msglist]

s[ave] [filg]
s[ave] [msglist] file

selt]

se[t] name

se[t] name=string
se[t] name=number

shlel 1]

si [ze] [msglist]
sofur ce] file

to[p] [msglis]

t ou[ch] [msglist]

Tlype] [msglist]

P[ri nt] [msglist]

t [ype] [msglist]

you set r ecor d to afile name, the response is saved at the end of that file (see the
Internal Variables subsection).

Saves the specified messages in a file whose name is derived from the author of the
first message. The name of the file is taken to be the author’s name with all
network addressing stripped off. See also the Copy, f ol | owup, and Fol | owup
commands, and out f ol der in the Internal Variables subsection. Messages can be
saved only at your active security label; if a message with a lower security label is
saved, it is relabeled with your active security label.

Saves the specified messages in the given file. Thefile is created if it does not
exist, or the message is appended to it if it does exist. The message is deleted from
the mailbox when mai | x terminates, unless keepsave is set (see in the Internal
Variables subsection and the exi t and qui t commands). Messages can be saved
only at your active security label; if a message with a lower security label is saved,
it is relabeled with your active security label.

Defines a variable called name. The variable can be given a null, string, or numeric
value. set by itself prints all defined variables and their values. See the Interna
Variables subsection for detailed descriptions of the mai | x variables.

Invokes an interactive shell (see SHELL in the ENVIRONMENT VARIABLES
section).

Prints the size of the specified messages in number of characters
Reads commands from the specified file and returns to command mode.

Prints the top few lines of the specified messages. If you set the t opl i nes
variable, it is taken as the number of lines to print (see in the Internal Variables
subsection). The default is 5.

Touches the specified messages. If any message in msglist is not specifically saved
in afile, it will be placed in the mbox on normal termination. See exi t and
qui t.

Prints the specified messages on the screen, including all header fields. Overrides
suppression of fields by the i gnor e command.

SR-2011 10.0

MAILX (1)

p[ri nt] [msglist]

u[ndel et e] [msglist]

undi [scar d]
uni g[nor e]
unsfet] name...

ve[r si on]

v[i sual] [msglist]

write] [msglist] file

x[it]
ex[it]

z[+3]

Tilde Escapes

MAILX (1)

Prints the specified messages. If you set crt, messages that are longer than the
number of lines specified by the crt variable are paged through the command
specified by the PAGER environment variable. The default command is pg(1) in the
ENVIRONMENT VARIABLES section.

Restores the specified deleted messages. Will restore only messages that were
deleted in the current mail session. If you set aut opri nt, the last message of
those restored is printed (see the Interna Variables subsection).

Removes the specified header fields from the list being ignored.

Erases the specified variables. If the variable was imported from the execution
environment (that is, a shell variable), it cannot be erased.

Prints the current version and release date.

Edits the specified messages by using a screen editor. The messages are placed in a
temporary file and the VI SUAL environment variable is used to get the name of the
editor (see the ENVIRONMENT VARIABLES section). Editing of a message is
done at your current security label. If the message cannot be written back to the
malil file at that label, the edited message is discarded when the mail box is closed.

Writes the given messages on the specified file, minus the header and trailing blank

line; otherwise, it is equivalent to the save command. Messages can be saved only
at your active security label. If a message with a lower security label is saved, it is
relabeled with your active security label.

Exits from mai | x without changing the mailbox. No messages are saved in the
nmbox (see aso qui t).

Scrolls the header display forward or backward one screenful. The scr een
variable sets the number of headers displayed (see the Internal Variables subsection).

You can enter the following commands only from input mode, by beginning a line with the tilde escape
character (~). See escape (seethe Internal Variables subsection) for changing this specia character.

~!' command

~: mail-command
~_ mail-command

SR-2011 10.0

Escapes to the shell.

Simulates end of file (terminates message input). Warning: Usersusing r| ogi n
to connect to Cray Research systems should not use the tilde-dot (".) character
sequence to simulate end-of-file. The character sequence tilde-dot (.) will be
interpreted by r | ogi n first to disconnect the user from the Cray Research system.
Use <CTRL- d> to terminate message input.

Performs the command-level request. Valid only when sending a message while
reading mail.

527

MAILX (1)

528

~?

~a

~b name ...

~C name...

~e
~f [msglist]
~h

~i string
~m[msglist]
~p

~q

~r file
~< file
~< lcommand

~s dtring ...
~t name...

~V

~w file
~X

~| command

MAILX (1)

Prints a summary of tilde escapes.
Inserts the autograph string.

Inserts the autograph string si gn into the message (see the Internal Variables
subsection).

Adds the name to the blind carbon copy (Bcc) list.
Adds the name to the carbon copy (Cc) list.

Reads in the dead. | ett er file. See DEAD in the Internal Variables subsection for
a description of this file.

Invokes the editor on the partial message. See also EDI TOR in the
ENVIRONMENT VARIABLES section.

Forwards the specified messages. Inserts the messages into the message, without
alteration.

Prompts for Subj ect |i ne and To, Cc, and Bcc lists. If the field is displayed
with an initial value, you can edit it as if you had just typed it.

Inserts the value of the specified variable into the text of the message (for example,
~Aisequivdentto ~i Si gn).

Inserts the specified messages into the letter, shifting the new text to the right one
tab stop. Valid only when sending a message while reading mail.

Prints the message being entered.

Quits from input mode by simulating an interrupt. If the body of the message is not
null, the partial message is saved in dead. | ett er. See DEAD in the
ENVIRONMENT VARIABLES section for a description of this file.

Reads in the specified file. 1f the argument begins with an exclamation point (!), the
rest of the string is taken as an arbitrary shell command and is executed, with the
standard output inserted into the message.

Sets the subject line to string.
Adds the given name to the list.

Invokes a preferred screen editor on the partial message. See aso the VI SUAL
environment variable in the ENVIRONMENT VARIABLES section.

Writes the partial message onto the specified file, without the header.
Exits as with ~q, except the message is not saved in dead. | etter.

Pipes the body of the message through the specified command. If the command
returns a successful exit status, the output of the command replaces the message.

SR-2011 10.0

MAILX (1)

Internal Variables

MAILX (1)

The following variables are internal mai | x variables. You can set each internal variable by using the
mai | x set command at any time. To erase variables use the unset and set noname commands.

al | net

append

ask
asksub

askbcc
askcc

aut opri nt

bang

¢ md=command

conv=conversion

cr t =number

debug

dot

escape=c
flipr

f ol der =directory

SR-2011 10.0

Treats all network names whose last component (login name) match as identical.
This causes the msglist message specifications to behave similarly. Default is
noal | net. Seedsotheal t er nat es command and the et oo variable.

On termination, appends messages to the end of the nbox file instead of prepending
them. Default is noappend.

Prompts for the subject if it is not specified on the command line by using the - s
option. Enabled by default.

Prompts for the Bcc list after the subject is entered. Default is noaskcc.
Prompts for the Cc list after the subject is entered. Default is noaskcc.

Enables automatic printing of messages after del et e and undel et e commands.
Default is noaut opri nt .

Enables the special-casing of exclamation points (!) in shell escape command lines
asinvi (1). Default isnobang.

Sets the default command for the pi pe command. No default value.

Converts uucp addresses to the specified address style. The only valid conversion
is internet, which requires a mail delivery program that conforms to the RFC 822
standard for electronic mail addressing. By default, conversion is disabled. See also
sendmai | (8) and the - U command-line option.

Pipes messages that have more than number lines through the command specified by
the value of the PAGER environment variable (pg(1)). Disabled by default.

Enables verbose diagnostics for debugging. Messages are not delivered. Default is
nodebug.

Reads a period on aline by itself during input from a termina as end-of-file.
Default is nodot .

Substitutes ¢ for the ~ escape character.
Reverses the meanings of the R and r commands. The default is nof | i pr.

Saves standard mail files. Expands user-specified file names that begin with a plus
(+) by preceding the file name with this directory name to obtain the real file name.
If directory does not start with a slash (/), $HOVE is prepended to it. To use the
plus (+) construct on a mai | x command line, f ol der must be an exported sh
environment variable. No default exists for the f ol der variable. See aso

out f ol der in this subsection.

529

MAILX (1)

530

header
hol d

i gnore

i gnor eeof

MAILX (1)

Enables printing of the header summary when entering mai | x. Enabled by default.

Preserves all messages that are read in the mailbox instead of putting them in the
standard nbox save file. Default is nohol d.

Ignores interrupts while entering messages. Handy for noisy dial-up lines. Default
isnoi gnor e.

Ignores end-of-file during message input. Input must be terminated by a period (.)
on aline by itself or by the ~. command. Default is noi gnor eeof . See also the
dot variable in this subsection.

i ndent pr ef i x=string

keep

keepsave

et oo

onehop

out f ol der

page

pr onpt =string
qui et

r ecor d=file

save

scr een=number

A string to be prefixed to each line that is inserted into the message by the ~m
command escape. The default for this variable is one tab character.

When the mailbox is empty, truncates it to a length of O instead of removing it.
Disabled by default.

Keeps messages that have been saved in other files in the mailbox instead of
deleting them. Default is nokeepsave.

If your login appears as a recipient, prevents its deletion from the list. Default is
nomet 00.

When responding to a message that was originally sent to severa recipients, the
other recipient addresses are usually forced to be relative to the originating author’s
machine for the response. This flag disables alteration of the recipients addresses,
improving efficiency in a network where all machines can send directly to al other
machines (that is, one hop away).

Locates the files used to record outgoing messages in the directory specified by the
f ol der variable, unless the path name is absolute. Default is noout f ol der .
See f ol der in this subsection and the Save, Copy, f ol | owup, and Fol | owup
commands.

Inserts a <f or m f eed> after each message sent through the pipe, when used with
the pipe command. Default is nopage.

Sets the command mode prompt to string. Default is ?.

Refrains from printing the opening message and version when entering mai | x.
Default is noqui et .

Records all outgoing mail in file. Disabled by default. See also out f ol der in
this subsection.

Enables saving of messages in dead. | et t er on interrupt or delivery error. See
the DEAD environment variable in the ENVIRONMENT VARIABLES section for a
description of this file. Enabled by default.

Sets the number of lines in a screenful of headers for the header s command.

SR-2011 10.0

MAILX (1) MAILX (1)

sendmai | =command Alternate command for delivering messages. Default is/ usr/1i b/ sendmai | .
sendwai t Waits for background mailer to finish before returning. Default is nosendwai t .

showt o When displaying the header summary and the message is from you, prints the
recipient’s name instead of the author’s name.

Si gn=string Identifies the variable inserted into the text of a message when the ~a (autograph)
command is given. No default (see also ~i in the Tilde Escapes subsection).

Si gn=string I dentifies the variable inserted into the text of a message when the ~A command is
specified. No default (see also ~i in the Tilde Escapes subsection).

t opl i nes=number Indicates the number of lines of header to print with the t op command. Default is
5.

NOTES

If your saved mail box directory is not defined as a multilevel directory (MLD), you can save mail messages
only when logged in at the security label of your saved mail box directory.

Depending on system configuration, you may not be allowed to see announcements of received mail at labels
to which you do not have MAC read access. If you are allowed to receive announcements and you have
mail at alabel to which you do not have MAC read access, you will be informed that you have unreadable
mail at a specific label.

If mail at a certain label is forwarded to another system, you will receive notification in the following form:

Your mail at <label> is being forwarded to <desti nation>.

This notification is given for mail at labels to which you have MAC read access.

Although mai | x alows you to save any mail message you receive, the saved version of the mail message is
created at the label at which it was read, not necessarily the label at which it was sent.

Although you can forward or send any mail message, the message is transmitted at your active label. If you
decide to forward a message that has a lower label than your active label, the message is relabeled with your
active label and then forwarded.

ENVIRONMENT VARIABLES

Following are the environment variables for mai | x:

DEAD The path name of the file in which to save partial letters if untimely interrupts or delivery errors.
Default is $HOVE/ dead. | et ter.

EDI TOR The command to run when the edi t or ~e command is used. Default is ed(1).
HOVE The user’s base of operations; the user’s home directory.

LI STER A string that represents the command for writing the contents of the f ol der directory to
standard output when the f ol der s command is specified. The default is| s(1).

SR-2011 10.0 531

MAILX (1) MAILX (1)

MAI LRC The path name of the start-up file. Default is SHOVE/ . mai | r c.

MBOX The path name of the file to save messages that have been read. The exi t command overrides
this function, as does saving the message explicitly in another file. Default is $SHOVE/ mbox.

PAGER A string that represents an output filtering and/or pagination command for writing the output to
the terminal. When standard output is a terminal device, the message output is piped through
the command if the mai | x internal variable crt is set to a value less than the number of lines
in the message. Default is pg(1).

SHEL L I dentifies the name of a preferred command interpreter. Default is sh(1).

TERM If the internal variable scr een is not specified, identifies the name of the termina type to
determine the number of lines in a screenful of headers.

VI SUAL The name of a preferred screen editor. When the vi sual command or ~v command-escape is
used, this editor will be invoked. Default isvi (1).

EXIT STATUS

BUGS

FILES

532

The - e option is specified, mai | x exits with one of the following values:
0 Mail was found.

>0 Mail was not found or an error occurred.

Otherwise, mai | x exits with one of the following values:

0 Successful completion.

>0 An error occurred.

You can use the - h and - r options only if mai | x is using a delivery system program other than
fusr/bin/rmail.

When command is shown as valid, arguments are not always allowed. Experimentation is recommended.
You cannot unset Interna variables imported from the execution environment.
The mai | x utility does not fully support the full Internet addressing.

The sendmai | (8) utility (the default mail delivery program) interprets a message that is a line consisting

only of a‘*.”” asthe end of the message.

$HOVE/ . mai I rc Personal start-up file
$HOVE/ mbox Secondary storage file
[t mp/ R engsx] * Temporary files
SR-2011 10.0

MAILX (1) MAILX (1)

fusr/1ib/mailx/milx. hel p* Help message files

fusr/lib/mailx/milx.rc Global start-up file
fusr/mil/* Post office directory
SEE ALSO

[s(1), mai | (1), pg(2), sh(2)

sendmai | (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2011 10.0 533

MAKE (1) MAKE(1)

NAME

make — Maintains, updates, and regenerates groups of programs

SYNOPSIS
make [-K] [-d] [-e] [-f mekefile]... [-i] [-1] [-n] [-o] [-p] [-q] [-r] [-s] [-t]
[macro=name]... [target name...]
make [-S] [-d] [-e] [-f makefile]... [-i] [-1][-n] [-o] [-p] [-q] [-r] [-s] [-t]
[macro=name]... [target name...]

IMPLEMENTATION

Cray PVP systems

STANDARDS

POSIX, XPG4
AT&T extensions (- d option)

DESCRIPTION

The make utility executes commands in makefile to update one or more target target_names, which are
typically programs.

The make utility examines time relationships and updates those derived files (called targets) that have
modified times earlier than the modified times of the files (called prerequisites) from which they are derived.
A description file (makefile) contains a description of the relationships between files, and the commands that
must be executed to update the targets to reflect changes in their prerequisites. Each specification, or rule,
consists of atarget, optional prerequisites, and optional commands to be executed when a prerequisite is
newer than the target. There are two types of rules:

¢ Inference rules, which have one target name with at least one period (.) and no dash (/)
* Target rules, which can have more than one target name

In addition, make has a collection of built-in macros and inference rules that infer prerequisite relationships
to simplify maintenance of programs.

The system administrator may define a file named / et ¢/ MAKEFI LE, which can contain an additional set of
macros, special targets, and inference rules that modify the built-in rules or add more definitions to them.
This file enables a site to define a specific make environment valid for the entire site. The

/ et ¢/ MAKEFI LE file is automatically read in when make is invoked and before any user makefile is
processed, unless the - | option is used.

When the - f option is not present, makefil e, Makefil e, s. makefil e, ands. Makefil e aretried in
order. If makefileis -, standard input will be taken. More than one - f makefile argument pair may appear.

534 SR-2011 10.0

MAKE (1)

MAKE(1)

The make utility updates a target only if it depends on files that are newer than the target. All prerequisite
files of atarget are added recursively to the list of targets. Missing files are considered out-of-date.

After make has ensured that all of the prerequisites of a target are up-to-date, and if the target is out-of-date,
the commands associated with the target entry are executed. If there are no commands listed for the target,
the target is treated as up-to-date.

The following options are supported:

-d
-e
-f makefile

-Nn

-0
-p
-q

SR-2011 10.0

Writes to standard error detailed information on files and times examined.
Causes environment variables to override macro assignments within makefiles.

Specifies a different makefile. The argument makefile is a pathname of a description file, aso
referred to as the makefile. A file name of - denotes standard input. There can be multiple
occurrences of this option, and they are processed in the order specified. The contents of
makefile override the built-in rules if they are present.

Ignores error codes returned by invoked commands. This mode is the same as if the special
target name . | GNORE appears in the description file.

Continues to update other targets that do not depend on the current target if a non-ignored
error occurs while executing the commands to bring a target up-to-date.

Ignores the file / et ¢/ MAKEFI LE and does not read it in when make is invoked.

Writes commands to standard output, but does not execute them. Lines with a plus-sign (+)
prefix are executed. Lines with an at-sign (@ prefix are written to standard output.

Prints the contents of the / et ¢/ MAKEFI LE file (if it exists).
Writes to standard output the complete set of macro definitions and target descriptions.

Returns a zero exit value if the target file is up-to-date; otherwise, returns an exit value of 1.
Targets are not updated. A command-line (associated with the targets) with a plus-sign (+)
prefix is executed.

Clears the suffix list and does not use the built-in rules.

Does not write command lines or touch messages (see - t) before executing. This mode is the
same as entered if the special target name . SI LENT appears in the description file.

Terminates make if an error occurs while executing the commands to bring a target
up-to-date. Thisis the default and the opposite of - k.

Updates the modification time of each target as though at ouch target had been executed
(seet ouch(l1)). Targets that have prerequisites but no commands, or that are already
up-to-date, are not touched in this manner. Write messages to standard output for each target
file indicating the name of the file and that it was touched. Normally, the command lines
associated with each target are not executed. However, a command line with a plus-sign (+)
prefix is executed.

535

MAKE (1) MAKE(1)

If the - k and - S options are both specified on the command line, by the MAKEFLAGS environment variable
or by the MAKEFLAGS macro, the last one evaluated takes precedence. The MAKEFLAGS environment
variable is evaluated first and the command line is evaluated second.

The following operands are supported:
macro=name Macro definitions. See the Macros subsection.

target name Target names. If no target is specified, while make is processing the makefiles, the first target
that make encounters that is not a special target or an inference rule is used.

Makefile Syntax

A makefile can contain rules, macro definitions, and comments. There are two kinds of rules: inference rules
and target rules. The make utility contains a set of built-in inference rules. If the - r option is present, the
built-in rules are not used and the suffix list is cleared. Additional rules of both types can be specified in a
makefile. If arules or macro is defined more than once, the value of the rule or macro is that of the last one
specified. Comments start with a# symbol and continue until an unescaped newline character is reached.

The rules in makefiles consist of the following types of lines: target rules (including specia targets),
inference rules, macro definitions, empty lines, and comments.

When an escaped newline character (one preceded by a\ symboal) is found anywhere in the makefile, it is
replaced, along with any leading white space on the following line, with a single space.

Makefile Execution

536

Command lines can have one or more of the following prefixes: a dash (-), an at sign (@, or a plus sign
(+). These modify the way in which make processes the command. When a command is written to
standard output, the prefix is not included in the output.

- If the command prefix contains a dash, or the - i option is present, or the special target . | GNORE has
either the current target as a prerequisite or has no prerequisites, any error found while executing the
command is ignored.

@ If the command prefix contains an at sign and the command-line - n option is not specified, or the - s
option is present, or the special target . SI LENT has either the current target as a prerequisite or has
no prerequisites, the command is not written to standard output before it is executed.

+ If the command prefix contains a plus sign, this indicates a command line is executed even if - n, - q,
or -t is specified.

The - n option specifies printing without execution; however, if the command line contains the string

$(MAKE) , the line will be executed regardless of the - n option (see the discussion of the MAKEFLAGS
macro under the Environment subsection). The -t (touch) option updates the date of target files without
executing any commands.

Commands returning nonzero status normally terminate make. The error is ignored when the - i option is
present, . | GNORE: appears in the makefile, or the initial character sequence of the command contains a
dash. When the - k option is present, work stops on the current entry but continues on other branches that
do not depend on that entry.

SR-2011 10.0

MAKE (1) MAKE(1)

An interrupt, software termination, hangup, or quit signal received during the execution of a command line
causes the associated target to be deleted, unless the target is a prerequisite of the special target

. PRECI QUS. Text following a semicolon (;) character and all following lines that begin with a <t ab> are
shell commands to be executed to update the target.

The first nonempty line that does not begin with a <t ab> or # begins a new prerequisite or macro
definition. Shell commands may be continued across lines with the backslash character followed by a
newline character. Everything printed by make (except the initial <t ab>) is passed directly to the shell as
is.

Command lines are executed one at a time, each by its own shell. The environment for the command being
executed contains all of the variables in the environment of make. The macros from the command line to
make are added to make’s environment. If any command-line macro has been defined elsewhere, the
command-line value overwrites the existing value. By default, when make receives a nonzero exit status
from the execution of a command, it terminates with an error message to standard error.

The following example makefile indicates that pgm depends on two files, a. o and b. 0, and that they in
turn depend on their corresponding source files, a. ¢ and b. ¢, and a common file, i ncl . h:

pgm a.o b.o

cc a.o0 b.o -0 pgm
a. o: incl.h a.c

cc -c a.c
b. o: incl.h b.c

cc -c b.c

Target Rules
Target rules are formatted as follows:

target[target...]: [prerequisite...][; command]
[<tab>command
<tab>command

(line that does not begin with <tab>)

Target entries are specified by a blank-separated, nonnull list of targets, followed by a colon, and then a
blank-separated, possibly empty, list of prerequisites. Text following a semicolon, if any, and all following
lines that begin with a <t ab> are command lines to be executed to update the target. The first nonempty
line that does not begin with a <t ab> or # begins a new entry. An empty or blank line, or aline beginning
with #, may begin a new entry.

Applications may select target names from the set of characters consisting solely of periods, underscores,
digits, and aphabetics.

SR-2011 10.0 537

MAKE (1)

MAKE(1)

The following are recognized as special make targets:

. DEFAULT

. | GNORE

. POSI X

. PRECI QUS

. SI LENT

. SUFFI XES

Macros
Entries of the form stringl=string2 are macro definitions. The macro named stringl is defined as having the
value of string2, where string2 is defined as al characters, if any, after the equal sign(=), up to a comment
character (#) or an unescaped newline character. Any blanks immediately before or after the equal sign are

538

ignored.

Uses the commands associated with the name . DEFAULT if it exists, these commands are
used when a file must be made but there are no explicit commands or relevant built-in rules.

Prerequisites of this special target are targets themselves; this causes errors from commands
associated with them to be ignored in the same manner as specified by the - i option.
Subsequent occurrences of . | GNORE are added to the list of targets ignoring command errors.
If no prerequisites are specified, make behaves as if the - i option had been specified and
errors from all commands associated with all targets are ignored.

This target is specified without prerequisites or commands. |f it appears on aline by itself
anywhere in any of the makefiles specified, make processes all makefiles in a manner defined
by POSIX 1003.2. See the Suffixes subsection.

Prerequisites of this special target are not removed if make receives one of the following
signals: quit, hang up, interrupt, and software termination. Subsequent occurrences of

. PRECI QUS are added to the list of precious files. If no prerequisites are specified, all
targets in the makefile are treated as if specified with . PRECI QUS.

Prerequisites of this special target are targets themselves; this causes commands associated
with them to not be written to the standard output before they are executed. Subsequent
occurrences of . SI LENT are added to the list of targets with silent commands. If no
prerequisites are specified, make behaves as if the - s option had been specified and no
commands or touch messages associated with any target is written to standard outpuit.

Prerequisites of . SUFFI XES are appended to the list of known suffixes and are used in
conjunction with the inference rules (see the Inference Rules subsection). If . SUFFI XES
does not have any prerequisites, the list of known suffixes are cleared. Makefiles do not
associate commands with . SUFFI XES.

Subsequent appearances of $(stringl) or $(string2) are replaced by string2. The parentheses or braces are
optional if stringl is a single character. The macro $$ is replaced by the single character $.

Macro names are made up from the set of characters consisting solely of periods, underscores, digits, and
alphabetics from the portable character set (that is, ASCIl). A macro name may not contain an equal sign.

Macros can appear anywhere in the makefile. Macros in target lines are evaluated when the target line is
read. Macros in command lines are evaluated when the command is executed. Macros in macro definition
lines are not evaluated until the new macro being defined is used in a rule or command. A macro that has
not been defined evaluates to a null string without causing an error condition.

SR-2011 10.0

MAKE (1) MAKE(1)

The forms $(stringl[: subst1=[subst2]]) or ${ stringl[: subst1=[subst2]]} can be used to replace all
occurrences of substl with subst2 when the macro substitution is performed. The subst1 to be replaced is
recognized when it is a suffix at the end of aword in stringl (a word in this context is defined to be a string
delimited by the beginning of the line, a blank, or a newline character).

Macro assignments are accepted from the sources listed below, in the order shown. If a macro name already
exists at the time it is being processed, the newer definition replaces the existing definition:

1. Macros defined in make’s built-in inference rules.

2. The contents of the environment, including the variables with null values, in the order defined in the
environment.

3. Macros defined in the makefile(s), processed in the order specified.
4. Macros specified on the command line.
If the - e option is specified, the order of processing sources 2 and 3 are reversed.

The VPATH macro, consisting of alist of colon-separated directory paths, may be used to specify the
location of prerequisite files.

The SHELL macro is treated specialy. It is provided by make and set to the path name of the shell
command language interpreter, / bi n/ sh. The SHELL environment variable does not affect the value of the
SHELL macro. If SHELL is defined in the makefile or is specified on the command line, it replaces the
original value of the SHELL macro, but does not affect the SHELL environment variable.

The MAKEFLAGS environment variable, when processed by nake, is assumed to contain any legal input
option (except - f, - p, and - r) defined for the command line. Further, upon invocation, make creates the
variable if it is not in the environment, puts the current options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGS always contains the current input options. This proves very useful for
super-makes, which are master makefiles that call other makefiles (these are used for system builds). The
MAKEFLAGS environment variable may also contain option letters without the leading dashes (-) and no
separating blanks.

In fact, as noted previously, when the - n option is used, the $(MAKE) command is executed anyway;
hence, you can specify make - n recursively on a whole software system to see what would have been
executed. This is because the - n is put in MAKEFLAGS and passed to further invocations of $(MAKE) .
This is one way of debugging all makefiles for a software project without actually executing anything.

Inference Rules
Inference rules can be made shorter, as in this example:

pgm a.o b.o
cc a.o0 b.o -0 pgm
a.o b.o: incl.h

SR-2011 10.0 539

MAKE(1) MAKE(1)

The shorter form is possible because make has a set of internal rules for building files. A user may add
rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of optional matter in any
resulting commands. For example, CFLAGS and YFLAGS are used for compiler options to cc(1) and
yacc(1), respectively. The previously stated method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule for creating a file with suffix . o from afile with
suffix . ¢ is specified as an entry with . ¢. o: as the target and no prerequisites. Shell commands associated
with the target define the rule for making a . o file from a. c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

Libraries

540

If atarget or prerequisite name contains parentheses, it is assumed to be an archive library, the string within
parentheses referring to a member in the library. Thus, Ii b(file. o) and $(LI B) (fil e. 0) both refer
to an archive library that contains f i | e. o (assuming that the L1 B macro has been previously defined). The
expression $(LIB) (filel.o file2.0) isnotlegal. Rules pertaining to archive libraries have the form
XX. a, in which the XX is the suffix from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires that XX be different from the suffix of the archive member.
Thus, I i b(file.o) cannot depend onfi | e. o explicitly.

The most common use of the archive interface follows; it assumes that the source files consist of al C-type
source code:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@cho lib is now up-to-date
c.a:
$(CO -c $(CFLAGS) 3$<
$(AR) $(ARFLAGS) $@%$*.0
rm-f $*.0

The. c. a: rulelisted previoudly is built into make and is not necessary in this example. A more
interesting but more limited example of an archive library maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(7?:.0=.c)
$(AR) $(ARFLAGS) lib $?
rm $?
@cho lib is now up-to-date
c.a:;

In this example, the substitution mode of the macro expansions is used. The $? list is defined as the set of
object file names (inside | i b) whose C source files are out-of-date. The substitution mode translates . o to
. €. Note also the disabling of the . c. a: rule, which would have created each object file, one by one.
This particular construct speeds archive library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly programs and C programs.

SR-2011 10.0

MAKE (1) MAKE(1)

Internal Macros
The following macros are maintained internally and are useful in writing rules for building targets:

$* The $* macro represents the file name part of the current target name with the suffix deleted. It is
evaluated only for inference rules.

For example, in the . c. a inference rule, $* . o represents the out-of-date . o file that corresponds to
the prerequisite . ¢ file.

$@ The $@macro represents the full target name of the current target. It is evaluated only for explicitly
named dependencies.

For example, in the . c. a inference rule, $@represents the out-of-date . a file to be built. Similarly,
in a makefile target rule to build I i b. a fromfi | e. c, $@represents the out-of-date | i b. a.

$< The $< macro is evaluated only for inference rules or the . DEFAULT rule. It is the module that is
out-of-date with respect to the target (that is, the **manufactured’’ dependent file name). Thus, in the
. C. 0 rule, the $< macro would evaluate to the . ¢ file. Following are two examples for making . o
files from . c files:

.C.O0:
cc -c $.¢c

or:

cc -c $<

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the list of
prerequisites that are out-of-date with respect to the target (essentially, the modules that must be
rebuilt).

For example, in a makefile target rule to build prog fromfilel.o,file2.0,andfil e3. o0, and
where pr og is not out of date with respect to fi | el. o, but is out of date with respecttofil e2. o
andfile3.o0,$? representsfile2. oandfil e3. o.

$% The $%macro is evaluated only when the current target is an archive library member of the form
libname(member. 0) . In these cases, $@evaluates to libname and $%evaluates to member. 0. The
$%macro is evaluated for both target and inference rules.

For example, in a makefile target rule to build I i b. a(fil e. 0), $%representsfi | e. 0, as opposed
to $@ which represents | i b. a.

Each of the internal macros can have alternative forms. When an uppercase D or F is appended to any of
these macros, the meaning is changed to directory part for D and file part for F. The directory part is the
path prefix of the file without a trailing slash; for the current directory, the directory part is a period (.).
When the $? macro contains more than one prerequisite file name, the $(?D) and $(?F) (or ${ ?D} and
${ ?F}) macros expand to a list of directory name parts and file name parts respectively.

SR-2011 10.0 541

MAKE (1) MAKE(1)

For the target lib(member. 0) and the . s2. a rule, the internal macros are defined as follows:
$< member. 2

$* member
$@ lib

$? member. s2
$% member. o

Include Files

If the string i ncl ude or si ncl ude appears at the beginning of aline in a makefile and is followed by a
<bl ank> or a <t ab>, the rest of the line is assumed to be a file name and will be read by the current
invocation of make after substituting for any macros. If the file is not readable, it is a fatal error for

i ncl ude, and silently ignored by si ncl ude. After reading the i ncl ude file, the remainder of the
makefile will be read. Include files can be nested up to 16 levels.

Suffixes

542

Certain names (for instance, those ending with . 0) have prerequisites, such as. ¢ or . s, that can be
inferred. 1f no update commands for such a file appear in makefile, and if a prerequisite that can be inferred
exists, that prerequisite will be compiled to make the target. In this case, make has inference rules that
alow files to be built from other files when the suffixes are processed and the appropriate inference rule is
used.

When the special target . POSI X is used, the following rules are defined:

.C .C.a .C.0

f . f.a .f.o
.l.c .l.0
.sh

.y.C .y.0

When . POSI X is not used, al of the preceding rules, in addition to the ones following, are defined:

.c~.a .c~.c .c~.0 .C.C .Co .C~.C.C~.0.Ca .C.a
f f~ f~f f.a .f~.a .f.o .f~.o0

.F.F~ .F~.F .F.a .F~.a .F.o .F~.0

.f90 .f90~ .f90~.f90 .f90.a .f90~.a .f90.0 .f90~.0
.F90 .F90~ .F90~.F90 .F90.a .F90~.a .F90.0 .F90~.0
.h~.h

d~c . 1~1 .I~o0

.p .p~ .p.-a .p~.a .p.o0 .p~.0 .p~.p

.$.a .$s~.a .S.0 .S~.0 .S~.S

.Sh~ .sh~.sh

.y~.C .y~.0 .y~.y

SR-2011 10.0

MAKE(1) MAKE(1)

The internal rules for the make utility can be printed in a form suitable for modifications and for inclusion
in a user's makefiles. To print the make default built-in rules, use the following standard shell command:

make -fpl - 2>/dev/null </dev/null
To print the make default built-in rules as modified by the existence of the / et ¢/ MAKEFI LE file, use the
following standard shell command:

make -fp - 2>/dev/null </dev/null
Note: If the / et ¢/ MAKEFI LE file contains the special target . POSI X, this command will list make default
built-in POSIX rules as modified by the contents of / et ¢/ MAKEFI LE.
To print only the contents of / et ¢/ MAKEFI LE, use the following standard shell command:

make -fo - 2>/dev/null </dev/null
To print the make built-in POSIX rules, create a file named makef i | e containing the special target
. POSI X and execute the following standard shell command:

nmake -pl 2>/dev/null
To print the built-in POSIX rules as modified by the contents of / et ¢/ MAKEFI LE, create a file named
makef i | e containing the special target . POSI X and execute the following shell command:

nmake -p 2</dev/null
Note: If / et ¢/ MAKEFI LE already contains the special target . POSI X it is not necessary to create the
makef i | e containing this target.
The only peculiarity in this output is the (nul |) string that pri nt f (3C) prints when handed a null string.

A tilde () in the above rules refers to a Source Code Control System (SCCS) file. Thus, therule. c~. o
would transform an SCCS C source file into an object file (. 0). Because the s. of the SCCS filesis a
prefix, it is incompatible with the make suffix point of view. Hence, the tilde is a way of changing any file
reference into an SCCS file reference.

A rule with only one suffix (that is, . ¢:) is the definition of how to build x from x. c¢. In effect, the other
suffix is null. This is useful for building targets from only one source file (such as shell procedures and
simple C programs).

Additional suffixes are specified as the prerequisite list for . SUFFI XES. Order is significant; the first
possible name for which both afile and a rule exist is inferred as a prerequisite. The suffix list when the
special target . POSI X is used is as follows:

.SUFFI XES: .0 .c .y .l .a .sh .f

When . POSI X is not used, the list is as follows:
.SUFFIXES: .0 .c .c~.C.C- .f .f~ .F .F~ .f90 .f90~ .F90 .F90~ .p .p~ .y .y~ .l .I~.s .s~ .sh .sh~ .h .h~

SR-2011 10.0 543

MAKE (1) MAKE(1)

The command for printing the internal rules (shown earlier in this subsection) displays the list of suffixes
implemented on the current machine. Multiple suffix lists accumulate; . SUFFI XES: without prerequisites
clears the list of suffixes.

VPATH Macro

544

When make searches for targets and prerequisites, it expects to find them in the current (.) directory or in
the directory specified by their file names. For example, in the following rule, make would look for the file
file.cinthe. directory:

file.o: file.c

The VPATH macro alows you to specify alternate paths for the file search. The variable consists of the
directory names separated by a colon (:), in the style of the PATH environmental variable.

The following example specifies a path containing three directories: newsr ¢, sr ¢, and obj .
VPATH=newsr c: sr c: obj

The make utility will search the directories in the following order: the current (.) directory, followed by
newsr c, src, and obj for all dependencies (prerequisites) and targets. The first match will stop the search
for a given file, even if the same file exists in the directories that might still follow in the VPATH and are
newer versions of the file than the one found first. This allows you to write make rules as if al files existed
in the current directory.

With the example VPATH=newsr c: src: obj , thesamerule (fil e. o: fil e. c) would be interpreted as
if it was written like this:

obj/file.o: src/file.c

This example interpretation works only if fil e. o andfi | e. ¢ do not exist in the current directory, but are
found in the obj and sr ¢ directories, respectively, and f i | e. ¢ does not exist in the newsr ¢ directory
andfil e. o doesnot exist in the newsr c or src directories.

Use caution when writing make rules to allow make to look for dependencies and targets in aternate
directories using the VPATH variable. Typically, there is nothing wrong with the following rule:

VPATH=di r
file.o: file.c
$(CCO $(CFLAGS) -c file.c

when thefilefi | e. ¢ isfound in the current directory. Thetarget fil e. o will be created in the current
directory.

However, if fil e. c isfound in the di r directory instead of the current directory, this example would be
asking make to execute the following rule:

file.o: dir/file.c
$(CC) $(CFLAGS) -c dir/file.c

SR-2011 10.0

MAKE (1) MAKE(1)

Although make can adapt the dependency line (fil e. o: fil e. c) to the VPATH requirements, it cannot
edit the command line. The command lines have to execute as written.

The nake interna variables ($*, $@ $<, $?, $99 alow you to fully use the VPATH macro. These
variables are correctly prefixed with the directory path coming from the VPATH search (if applicable). The
following rule will execute correctly in all cases:

VPATH=di r
file.o: file.c
$(CO $(CFLAGS) -c -0 $@ $<

For example, if bothfil e. o andfil e. c arenot found in the current directory, but exist in the di r
directory, the internal variables will be set to the following, and the command line will be executed
correctly:

$@=dir/file.o
$< =dir/file.c

To take full advantage of the VPATH macro, many implicit make rules have been augmented by adding the
output file option to the compilation line, instead of using the compiler default output file. The new method
is compatible with older code. The following characteristics are maintained for implicit rules:

¢ After execution of the make command, only the input (prerequisites) and the target files remain.

¢ Should execution of an implicit rule require generation of temporary files, such as when executing the
SCCS command, | ex, yacc, and so on, the temporary files are always created in the current (.)
directory and removed at the end of the action. Thus, write permission for the user to the . directory is
required for successful execution of make in these cases.

To examine one possible use of the VPATH macro, assume that all project sources are stored in the sr ¢
directory and al object files (relocatables, binaries, and libraries) are stored in the obj directory. Three
object directories have been created: ./ obj _debug, ./ obj _normal ,and./obj _opti m These
directories contain binaries for the debug version, the standard version, and the final, highly optimized
version, respectively.

You could set three aliases (the following example is in the ksh shell), setting yourself CFLAGS as

appropriate:
al i as maked=" make CFLAGS=... VPATH=src: obj _debug’
al i as maken=" make CFLAGS=... VPATH=src:obj_normal’
al i as makeo=" make CFLAGS=... VPATH=src:obj_optim

You would then place the makefile in the . directory and, by executing the appropriate alias, generate the
version corresponding to the immediate needs. maked would generate a version suitable for use with the
debugger and would place the binaries in the corresponding directory. Likewise, maken would generate the
normal version in its own directory. All this would be done from the same sources without any change of
the makefile or the current directory.

SR-2011 10.0 545

MAKE (1) MAKE(1)

Alternately, you could copy several sources out of the sr ¢ directory, modify them, and execute the same
aliases. According to the VPATH search rules, modified versions in the . directory will be located before
the versions in the sr ¢ directory and will be used to generate the appropriate binary versions. When the
modified sources become stable, they can be moved back to the sr ¢ directory, where they are the new base
for the development process. In this manner it is easy to store the same sources for different binaries of the
same program for different purposes.

This example succeeds because make will place the target file on the same place where it found it using the
VPATH search, or in the . directory if it didn’t find it anywhere. Consequently, the first execution of make
in the program will cause al targets (usually binaries) to be put into the . directory because they do not yet
exist anywhere. The targets must be moved into the appropriate obj _. . . directory by hand. The process
described above is consistent from then on.

The same is true if, during the program development process, you add several new source files. The
corresponding binaries must be moved to the appropriate obj _. . . directory by hand after the first binaries
were generated into the . directory.

The VPATH macro does not currently work with POSIX rules.

Multiprocessing
Compilations may be multiprocessed when the environment variable NPROC is set to a value greater than 1.
NPROC determines the maximum number of processes to be run in the background. You can set NPROC to
any value, but extremely large values can overload the system. If you set NPROC in the makefile, the value
you specify will take precedence over other NPROC settings unless the - e option is used. Set NPROC=1 in
a makefile to inhibit parallel processing.

To force synchronization, include a dlash (/) in a prerequisite list. All targets preceding a slash in a
prerequisite list are completed before anything following the slash begins. The make command line is not
multiprocessed.

If adash (/) is used to force multiprocessing and the root file system has a date newer than that of the
target, the target is executed.

NOTES
File names with the characters =, : , and @do not work.
Commands executed directly by the shell, notably cd(1), are ineffectual across newline charactersin make.

You cannot build 1'i b(file.o) fromfile.o.

EXIT STATUS

When the - g option is specified, the make utility exits with one of the following values:
0 Successful completion.
1 The target was not up-to-date.

>1 An error occurred.

546 SR-2011 10.0

MAKE (1) MAKE(1)

When the - g option is not specified, the make utility exits with one of the following values:
0 Successful completion.

>0 An error occurred.
FILES

[et c/ MAKEFI LE File containing site default rules, read in before any user makefile

makefil e First file searched

Makefil e Second file searched

s. makefile Third file searched

s. Makefil e Fourth file searched
SEE ALSO

ar (1), get (1), cd(2), I ex(1), sh(1), yacc(1)

cc(1) in the Cray Sandard C Reference Manual, Cray Research publication SR—2074

print f (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080
Managing Projects with make, Talbott, Steve and Oram, Andrew, O'Reilly & Associates, Inc., 1991.

SR-2011 10.0 547

MAKEKEY (1) MAKEKEY (1)

NAME

makekey — Generates encryption key

SYNOPSIS
fusr/libl/ makekey

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The makekey utility improves the usefulness of encryption schemes that depend on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input and writes 13
bytes on its standard output. The output depends on the input in a way intended to be difficult to compute.

The first 8 input bytes (the input key) can be arbitrary ASCII characters. The last 2 characters (the salt) are
best chosen from the set of digits, . , / , uppercase letters, and lowercase letters. The salt characters are
repeated as the first 2 characters of the output. The remaining 11 output characters are chosen from the
same set as the salt and consgtitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096
cryptographic machines, which are al based on the National Bureau of Standards DES agorithm, but broken
in 4096 various ways. Using the input key as key, a constant string is fed into the machine and recircul ated
several times. The 64 bits that come out are distributed into the 66 output key bits in the result.

The makekey utility is intended for programs that perform encryption (such as ed(1), vi (1), and
crypt (1)). Usualy, its input and output are pipes.

NOTES

Inclusion of the Data Encryption Standard (DES) encryption code requires a specia license for sites outside
the United States and Canada. If these encryption functions are unavailable on your system, check with your
system administrator or site analyst.

SEE ALSO
crypt (1), ed(2), vi (1)

548 SR-2011 10.0

