SETPGID(2) SETPGID(2)

NAME

set pgi d — Sets process-group-ID for job control

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <unistd. h>

int setpgid (pid_t pid, pid_t pgid);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Theset pgi d system call isused to join either an existing process group or create a new process group within
the session of the calling process. The process-group-I1D of a session leader does not change.

The set pgi d system call accepts the following arguments:
pid Specifies the existing process ID.
pogid Specifiesthe new process ID.

On successful completion, the process-group-1D of the process with a process ID that matches pid is set to pgid.
Asaspecia case, if pidis0, the process ID of the calling processis used; if pgid is0, the process ID of the
process indicated by pid is used.

RETURN VALUES

If set pgi d completes successfully, avalue of 0 isreturned; otherwise, avalue of -1 isreturned, and er r no
is set to indicate the error.

ERRORS
The set pgi d system call failsif one of the following error conditions occurs:
Error Code Description
EACCES The value of pid matches the process ID of a child process of the calling process and

the child process has successfully executed one of the exec (2) functions.

El NVAL The value of pgidislessthan 0 or isnot avalue supported by the implementation.

416 SR-2012 10.0

SETPGID(2) SETPGID(2)

EPERM The process indicated by pid isasession leader. The value of pidisvalid but matches
the process ID of achild process of the calling process and the child processis not in
the same session as the calling process. The value of pgid does not match the process
ID of the process indicated by pid and no process with a process group ID exists that
matches the value of pgid in the same session as the calling process.

ESRCH The value of pid does not match the ID of the calling process or of a child of the
calling process.
FILES
[usr/include/sys/types.h Contains types required by ANSI X3J11
{usr/include/unistd. h Contains C prototype for the set pgi d system call
SEE ALSO

exec(2), get pgr p(2), set si d(2),t cget pgr p(2),t cset pgr p(2)

SR-2012 10.0 417

SETPGRP(2) SETPGRP(2)

NAME
set pgr p — Sets process-group 1D

SYNOPSIS
#i ncl ude <unistd. h>
int setpgrp (void);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The set pgr p system call setsthe process-group ID of the calling process to the process ID of the calling
process and returns the new process-group ID.

RETURN VALUES
Theset pgr p system call returns the value of the new process-group ID.

FORTRAN EXTENSIONS

Theset pgr p system call may be called from Fortran as a function:

| NTEGER SETPGRP, |
| = SETPGRP ()

EXAMPLES

This example shows how to usethe set pgr p system call to establish a new process group. (Some system
callsin the example are not supported on Cray MPP systems.) The group includes the calling process as well as
any of its descendents (in this case, three child processes). Asaresult of theset pgr p request, the new
process group 1D (PGID) isthe process ID (PID) of the calling process.

Typically, auser’s processes terminate when the user logs off because all of the user’s processes are usually
included in the process group of the user’s shell process. In contrast, if this program isinitiated as a
background process and the interactive user logs off from UNICOS, the process and its descendents will not
terminate but continue to execute.

418 SR-2012 10.0

SETPGRP(2) SETPGRP(2)

#i ncl ude <uni std. h>

mai n()

{

int res;
set pgrp(); /* establish new process group here */

res = fork();

if (res == 0) {
execl ("childl", "childl", 0);
perror("execl for childl failed");
exit(1l);

}

res = fork();

if (res == 0) {
execl ("child2", "child2", 0);
perror("execl for child2 failed");
exit(1l);

}

res = fork();

if (res == 0) {
execl ("child3", "child3", 0);
perror("execl for child3 failed");
exit(1l);

}

/* parent programperforns its work here */

FILES
[usr/include/unistd. h Contains C prototype for the set pgr p system call

SEE ALSO
exec(2),fork(2),getpi d(2),intro(2),kill(2),signal (2

SR-2012 10.0 419

SETPORTBM(2) SETPORTBM(2)

NAME
set port bm get por t bm- Sets or gets the kernel memory port bit map

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/sysmacros. h>

int setportbm (unsigned |ong *bitmap);
int getportbm (unsigned |ong *bitmap);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The set por t bmsystem call copies bitmap into the kernel memory port bit map, which reflects the
well-known reserved port numbers defined inthe/ et ¢/ ser vi ces file.

The get port bmsystem call gets a copy of the port bit map in the kernel memory.
Theset port bmand get por t bmsystem calls accept the following argument:

bitmap Pointsto the bit map to copy into or from the kernel memory. bitmap isan array of unsigned long
integers. Its declaration should always be as follows:

u_Il ong bi t map[PORTBI TMAX] ;

NOTES

Never usethe set por t bmand get por t bmsystem callsdirectly. Only ther svpor t bm(8) administrator
command should set the kernel memory port bit map, and only the bi ndr esvport (3C) and
rresvport (3C) library routines should access the port bit map.

Only a super user or a process with PRI V_ADM N on aleast privilege system can use the set por t bmsystem
cal.

RETURN VALUES

If set port bmor get por t bmcompletes successfully, avalue of 0 isreturned; otherwise, avalue of -1 is
returned, and er r no is set to indicate the error.

ERRORS
Theset por t bmsystem call failsif one of the following error conditions occurs:
Error Code Description
EFAULT Cannot copy the bit map into the kernel memory.

420 SR-2012 10.0

SETPORTBM(2) SETPORTBM(2)

El NVAL The pointer to the port bit map (bitmap) is NULL.
EPERM The user is not super user.
The get por t bmsystem call failsif one of the following error conditions occurs:

Error Code Description

EFAULT Cannot get the bit map from the kernel memory.

El NVAL The pointer to the port bit map (bitmap) is NULL.
EXAMPLES

The following example shows how to usethe set por t bmand get por t bmsystem calls:

#i ncl ude <sys/types. h>
#i ncl ude <sys/sysnacros. h>

mai n()
{
u_l ong bi t map[PORTBI TMAX] ;

set port bn(&bi t map[0]);
get port bn{ &i t map[0]) ;

FILES
[etc/services Contains alist of port numbers

SEE ALSO

bi ndresvport (3C), rresvport (3C) inthe UNICOS System Libraries Reference Manual, Cray Research
publication SR-2080

r svpor t bn(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2012 10.0 421

SETPPRIV(2) SETPPRIV(2)

NAME
set ppri v — Setsthe privilege state of the calling process

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <sys/priv.h>

int setppriv (priv_proc_t *buf, int bufsize);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Theset ppri v system call setsthe privilege state of the calling process to the state contained in the buffer.
This call returns an error if an attempt is made to modify the state of any privilege that is not permitted for the
process. This system call does not set the value of the process privilege text.

Theset ppri v system call accepts the following arguments:
buf Specifies the privilege state to be set to the calling process.
bufsize Specifies the size of the buffer in bytes.

RETURN VALUES

If set ppri v completes successfully, avalue of 0 isreturned; otherwise, avalue of -1 isreturned, and er r no
is set to indicate the error.

If the return value is —1, the privilege state of the calling process is not affected.

ERRORS
Theset ppri v system call failsif one of the following error conditions occurs:
Error Code Description
EFAULT The buf argument points outside the address space of the process.
EPERM The caller attempted to modify the state of a privilege that did not exist in its permitted
privilege set.
SEE ALSO

get ppriv(2)

422 SR-2012 10.0

SETREGID(2) SETREGID(2)

NAME
setregid,setegid,setrgi d- Setsreal or effective group ID

SYNOPSIS

All Cray Research systems:
#i ncl ude <unistd. h>

int setregid (int rgid, int egid);

Cray PVP systems:
#i ncl ude <uni std. h>

int setegid (int egd);
int setrgid (int rgid);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Theset r egi d system call setsthereal and effective group IDs of the current process to the argument values
rgid and egid, respectively. It accepts the following arguments:

rgid Specifies the real group ID.
egid Specifies the effective group ID.

If rgidis—1, thereal group ID isnot changed; if egid is -1, the effective group ID is not changed. The
set egi d cal setsthe effective group ID of the current process; set egi d(egid) isequivalent to the
following:

setregid(-1, egid)

Theset rgi d cal setsthe real group ID of the current process; set r gi d(rgid) isequivalent to the
following:

setregi d(rgid, -1)

Processes with appropriate privilege can set their real and effective group IDsto any value. All other processes
can change only their effective group ID to their real group ID or their real group ID to their effective group ID.

NOTES

These calls are provided for compatibility reasons; they aid in the porting of code from other systems. Future
releases may not support them.

SR-2012 10.0 423

SETREGID(2) SETREGID(2)

A process with the effective privilege is granted the following ability:

Privilege Description

PRI V_SETA D The process may set itsreal and effective group IDs to any specified value.

If the PRI V_SU configuration option is enabled, the super user may set its real and effective group IDsto any
specified value.

RETURN VALUES

If theset regi d, set egi d, or set r gi d calls complete successfully, avalue of O is returned; otherwise, a
value of -1 isreturned, and er r no is set to indicate the error.

ERRORS
If the following condition occurs, theset r egi d, set egi d, or set r gi d system call fails.
Error Code Description
EPERM The process does not have appropriate privilege to set itsreal and effective group IDs
to the specified values.
EXAMPLES

Theset egi d request isgenerally used in setgid programs. A setgid program is one that has had its setgid
permission bit (octal 2000) set by the chnod(1) command.

When a user executes a setgid program belonging to another group, the effective group 1D and saved group ID
of the processis set to the group ID of the group owning the program. It isthe process's effective group ID that
is checked when access to afileis attempted.

Therefore, a user executing another user’s setgid program would be allowed to open files belonging to the other
user’s group for which the user possibly would not be given access permission by the normal access permission
bits. While a process's effective group ID is changed to that of another user’s group, UNICOS thinks the
process belongs to that other group.

The following program has had its setgid permission bit (octal 2000) set by the chnod(1) command. This
program shows a common usage of the set egi d request.

424 SR-2012 10.0

SETREGID(2) SETREGID(2)

#i ncl ude <uni std. h>

mai n()

{
int gid, egid;

gid = getgid();
egid = getegid();

printf("real group ID of process (before setegid()) is %l\n", gid);
printf("effective group ID of process (before setegid()) is %\ n", egid);

/* Open any files that have restricted access here. That is, this
program (assunming it can be executed by any user) needs to open files
bel onging to the same group as the owner of this program but those
files have no general access permnission for any other user. Assum ng
this programis a setgid program these open(2) requests are permitted
since the effective group ID of this process has been changed to the
group I D of the owner of the program */

setegid(getgid()); [/* for security reasons, set effective group IDto
val ue of real group ID */

printf("real group ID of process (after setegid()) is %\n", getgid());
printf("effective group ID of process (after setegid()) is %\ n",

getegid());
}
FILES
[fusr/include/unistd.h Contains C prototype for theset r egi d, set egi d, and
setrgi d systemcals
SEE ALSO

get gi d(2), set gi d(2), setreui d(2), set ui d(2)
chnod(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR-2011

SR-2012 10.0 425

SETREUID(2) SETREUID(2)

NAME

setreui d, set eui d, setrui d —Setsreal or effective user ID

SYNOPSIS

#i ncl ude <unistd. h>

int setreuid (int ruid, int euid);
int seteuid (int euid);

int setruid (int ruid);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

NOTES

426

Theset r eui d system call setsthereal and effective user IDs of the current process according to the
argument values ruid and euid, respectively. It accepts the following arguments:

ruid Specifies the real user 1D.
euid Specifies the effective user ID.

If ruid or euid is—1, thereal or effective user ID remains unchanged. The set eui d call sets the effective user
ID of the current process; set eui d(euid) isegquivalent to the following:

setreuid(-1, euid)

Theset r ui d call setsthereal user ID of the current process; set r ui d(ruid) isequivaent to the following:
setreui d(ruid, -1)

Processes with appropriate privilege can set their real and effective user IDs to any value. Any other processis
restricted to changing only its effective user 1D to either itsreal user ID or saved user ID.

These calls are provided for compatibility reasons; they aid in the porting of code from other systems. Future
releases might not support these calls; therefore, use set ui d(2), which will continue to be supported.

A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_SETUI D The process may set itsreal and effective user IDs to any specified value.

SR-2012 10.0

SETREUID(2) SETREUID(2)

If the PRI V_SU configuration option is enabled, the super user may set its real and effective group IDs to any
specified value.

RETURN VALUES

If theset r eui d, set eui d, or set r ui d call completes successfully, avalue of O is returned; otherwise, a
value of =1 isreturned, and er r no is set to indicate the error.

ERRORS

BUGS

If the following error condition occurs, theset r eui d, set eui d, or set r ui d system call fails.

Error Code Description

EPERM The process does not have appropriate privilege to set it real and effective user IDsto
the specified values.

If NFS block io daemons are running (bi od for asynchronous write operations) and the write request is
handled by abi od, thewr i t e() will appear to succeed. The bi od will get an error back, but will be unable
to return the error to the user, because it was an asynchronous operation. The server isleft with an empty file,
and the error islisted in the error return following the cl ose().

EXAMPLES

Theset eui d request isgenerally used in setuid programs. A setuid program is one that has had its setuid
permission hit (octal 4000) set by the chnod(1) command.

When a user executes a setuid program belonging to another user, the effective ID and saved ID of the process
is set to the ID of the user owning the program. It isthe process's effective ID that is checked when accessto a
fileis attempted.

Therefore, a user executing another user’ s setuid program would be alowed to open files belonging to the other
user for which the user possibly would not be given access permission by the normal access permission bits.
While a process's effective ID is changed to that of another user, UNICOS thinks the process bel ongs to that
other user.

The following program has had its setuid permission hit (octal 4000) set by the chnod(1) command. This
program shows common usages of the set eui d request.

SR-2012 10.0 427

SETREUID(2) SETREUID(2)

#i ncl ude <uni std. h>

mai n()

{

FILES

428

int uid, euid;

uid = getuid();
euid = geteuid();

printf("real 1D of process (before setuid()) is %\ n", uid);
printf("effective ID of process (before setuid()) is %\ n", euid);

/* Open any files that have restricted access here. That is, this
program (assunming it can be executed by any user) needs to open files
bel onging to the same user as the owner of this program but those
files have no general access permnission for any other user. Assum ng
this programis a setuid program these open(2) requests are pernitted
since the effective Id of this process has been changed to that of the
owner of the program */

seteuid(getuid()); [/* for security reasons, set effective ID to value
of real 1D */

printf("real 1D of process (after setuid()) is %\ n", getuid());
printf("effective ID of process (after setuid()) is %@\n", geteuid());

set eui d(eui d); /* set effective ID back to the effective ID the
process originally had since another restricted
file needs to be opened now */

/* open the restricted file here */
seteuid(getuid()); /* for security reasons, set effective IDto

value of real ID- will automatically occur
when process dies */

[usr/include/unistd.h Contains C prototype for theset r eui d, set eui d, and

setrui d systemcals

SR-2012 10.0

SETREUID(2) SETREUID(2)
SEE ALSO

get ui d(2), set regi d(2), set ui d(2)
chnod(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR-2011

SR-2012 10.0 429

SETSID(2) SETSID(2)

NAME

set si d — Creates session and sets process group 1D

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <unistd. h>

pidt setsid (void);
IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

If the calling processis not a process group leader, the set si d system call creates anew session. The calling
process is the session leader of this new session, the process group leader of anew process group, and has no
controlling terminal. The process group ID of the calling processis set equal to the process ID of the calling
process. The calling processisthe only process in the new process group and the only process in the new
session.

RETURN VALUES

If set si d completes successfully, it returns the process group ID of the calling process; otherwise, a value of
—lisreturned, and er r no is set to indicate the error.

ERRORS
Theset si d system call failsif the following condition occurs:
Error Code Description
EPERM The calling process is already a process group leader, or the process ID of the calling
process equals the process group ID of a different process.
FILES
/usr/include/unistd.h Contains C prototype for the set si d system call
SEE ALSO

exec(2), exit (2),fork(2),get pi d(2), kil l (2),set pgi d(2),si gaction(2)
t t y(4) UNICOSFile Formats and Special Files Reference Manual, Cray Research publication SR-2014

430 SR-2012 10.0

SETSYSV(2) SETSYSV(2)

NAME

set sysv — Sets minimum and maximum level range, authorized compartments, and security auditing options

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/sysv. h>

int setsysv (struct sysv *buf, int bufsize);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Theset sysv system call setsthe authorized compartments, and minimum and maximum security level range
for the UNICOS system.

Theset sysv system call accepts the following arguments:

buf Pointsto asysv structure in which the security values are stored.
bufsize Specifies the size of the sysv structure in bytes.

The sysv structure includes the following members:

short sy_mnlvl; /* mnimum security level */
short sy_max| vl ; /* maxi mum security level */
| ong sy_val cnp; /* authorized conpartnents */

Theset sysv system call can be used by a properly privileged process to change the selection of the security
audit options. To change the options, the optionsand thesy_audi t _chng flag are set inthe sysv structure,
which is passed via the buf argument.

Only a process with appropriate privilege can use this system call.

NOTES
A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_ADM N The processis allowed to use this system call.

If the PRI V_SU configuration option is enabled, the super user is allowed to use this system call.

The set sysv system call sets the security boundary conditions (the minimum and maximum security levels,
and authorized compartments) for execution within the system.

SR-2012 10.0 431

SETSYSV(2) SETSYSV(2)

Theset sysv system call does not force termination of tasks initiated at the original system security levels;
therefore, the system can still have processes outside of the new level range and authorized compartments.

When the MLS_0OBJ_RANGES configuration option is enabled, a check is made to ensure that the new
minimum and maximum levels and authorized compartments do not conflict with any of the mounted file
system labels. Therefore, it is most effective to use set sysv at system startup, before the file systems are
mounted. The file systems of other companies are treated as if they have a security label of a maximum and
minimum security level of 0, and no authorized security compartments.

When the set sysv system call is used to change the security auditing options, the new option values are
saved into the kernel low memory tables (I ownem c¢)

All set sysv requests are recorded in the security log, indicating success or failure.

RETURN VALUES

If set sysv completes successfully, avalue of O isreturned; otherwise, avalue of -1 isreturned, and er r no
is set to indicate the error.

ERRORS

Theset sysv system call failsif one of the following error conditions occurs:

Error Code Description

ECOVPV If the MLS_OBJ_RANGES configuration option is enabled, and the requested
authorized compartments are not within the authorized UNICOS system set.

ECOVPV The requested authorized compartments conflict with those of a mounted file system.

EFAULT The buf argument points outside the process address space.

El NVAL The bufsize argument is less than the size of the sysv structure. If bufsize is greater
than the size of the sy sv structure, bufsize is bounded silently by the actual size.

El NVAL The requested minimum security level is greater than the requested maximum security
level.

ESECADM The process does not have appropriate privilege to use this system call.

ESYSLV The requested minimum and maximum security level range falls outside the allowable
UNICOS system range.

ESYSLV If the MLS_OBJ_RANGES configuration option is enabled, and the requested
minimum and maximum security level range conflicts with that of a mounted file
system.

432 SR-2012 10.0

SETSYSV(2) SETSYSV(2)

FILES
/usr/include/sys/param h Defines configuration files
[usr/include/sys/sysv.h Defines structure for system security values
[usr/include/sys/types.h Contains types required by ANSI X3J11
SEE ALSO

get sysv(2)
spset (1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

sl 0g(4), sl r ec(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research
publication SR-2014

General UNICOS System Administration, Cray Research publication SG-2301

SR-2012 10.0

433

SETUCAT(2) SETUCAT(2)

NAME

set ucat — Setsactive categories of a process

SYNOPSIS

#i ncl ude <unistd. h>
int setucat (long cat);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

Theset ucat system call setsthe active categories of the process to the value specified by the category bit
mask. The category bit mask isthe union of bit values corresponding to each category to be activated. The
requested categories must be authorized for the process. A process with appropriate privilege can set its active
categories to any value within the authorized category range of the system.

Theset ucat system call accepts the following argument:

cat Specifies the value of the category bit mask, which is used to set the active categories of the process.

All set ucat requests are recorded in the security log, indicating success or falure.
A process with the effective privilege shown is granted the following ability:
Privilege Description

PRI V_VMAC RELABEL_ SUBJECT The process is allowed to set its active categories to any value
within the authorized category range of the system.

If the PRI V_SU configuration option is enabled, the super user is allowed to set its active categories to any
value within the authorized category range of the system.

RETURN VALUES

If set ucat completes successfully, avalue of O isreturned; otherwise, avalue of -1 isreturned, and er r no
is set to indicate the error.

ERRORS

434

Theset ucat system call failsif one of the following error conditions occurs:
Error Code Description
El NTCATV The requested categories are not authorized for use on the UNICOS system.

SR-2012 10.0

SETUCAT(2) SETUCAT(2)

El NTCATV The requested categories are not a subset of the caller’s authorized categories, and the
process does not have appropriate privilege.
FILES
[usr/include/unistd.h Contains C prototype for the set ucat system call
SEE ALSO

get usrv(2), set ucnp(2), set ul vl (2), set usrv(2)
set ucat (1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

sl 0g(4), sl r ec(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research
publication SR-2014

General UNICOS System Administration, Cray Research publication SG-2301

SR-2012 10.0 435

SETUCMP(2) SETUCMP(2)

NAME

set ucnp — Sets active compartments of the process

SYNOPSIS

#i ncl ude <unistd. h>
int setucnp (long cmp);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

436

The set ucnp system call sets the active compartments of the process to the value specified by the
compartment bit mask. The compartment bit mask is the union of bit values corresponding to each
compartment to be activated. The cmp argument must include all compartments that were active for the process
prior to thiscall.

Each compartment specified by cmp must be authorized for the process. A process with appropriate privilege
can set its active compartments to any value within the authorized compartment range of the system.

The set ucnp system call accepts the following argument:

cmp Specifies the value of the compartment bit mask, which is used to set the active compartments of the
process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRI V_VMAC RELABEL_ SUBJECT The processis allowed to set its active compartments to any value
within the authorized compartment range of the system.

PRI V_MAC_RELABEL_SUBJECT The process is not restricted to the login shell process.

PRI V_MAC_RELABEL_SUBJECT The process environment may contain additional background
processes.

PRI V_MAC RELABEL_SUBJECT The process is allowed to override security compartment access

violations with open files.

If the PRI V_SU configuration option is enabled, the super user is allowed to set its active compartments to any
value within the authorized compartment range of the system. The super user is not restricted to the login shell
process. The super user environment may contain additional background processes. The super user is allowed
to override security compartment access violations with open files.

SR-2012 10.0

SETUCMP(2) SETUCMP(2)

Because of standard I/O buffering, data may be lost when a subject’s security label is changed. This occurs if
the subject does not have MAC access to the file when the buffer is flushed.

RETURN VALUES

If set ucnp completes successfully, avalue of 0 isreturned; otherwise, avalue of —1 isreturned, and er r no
is set to indicate the error.

ERRORS
Theset ucnp system call failsif one of the following error conditions occurs:
Error Code Description
EMANDV The requested compartments are not authorized for use on the UNICOS system.
EMANDV The requested compartments are not a subset of the caller’ s authorized compartments,

and the process does not have appropriate privilege.

EMANDV Activating the requested compartments creates an access violation with existing open
files (open character special files owned by the caller are a specia case), and the
process does not have appropriate privilege.

EMANDV The request is not issued from the login shell process, and the process does not have
appropriate privilege.
EMANDV There was more than one multitask group in the job (there are background processes),
and the process does not have appropriate privilege.
EMANDV The requested compartment set does not include all compartments that were active
prior to this call, and the process does hot have appropriate privilege.
FILES
[usr/include/unistd.h Contains C prototype for the set ucnp system call
SEE ALSO

get usrv(2), set ucat (2), set ul vl (2), set usrv(2)
set ucnp(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR-2011

sl 0g(4), sl r ec(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research
publication SR-2014

General UNICOS System Administration, Cray Research publication SG-2301

SR-2012 10.0 437

SETUID(2) SETUID(2)

NAME

set ui d, set gi d — Setsuser or group IDs

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <unistd. h>

int setuid (uid_t uid);
int setgid (gid_t gid);

IMPLEMENTATION
Cray PVP systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The set ui d system call setsthe real user ID, effective user ID, and saved user 1D of the calling process;
set gi d setsthereal group ID, effective group ID, and saved group ID of the calling process. Theset ui d
and set gi d system calls accept the following arguments:

uid Specifies the real user ID, effective user ID, and saved user ID.
gid Specifies the real group ID, effective group ID, and saved group ID.

The following conditions determine the setting of an ID. They are checked in the order given, and the first
condition that is true is the one that applies:

e |If the process has appropriate privilege, the real, effective, and saved IDs are all set to uid (or gid).
e |f uidisegual to either thereal user ID or the saved user ID, the effective user ID is set to uid.
e If gidisequal to either the real group ID or the saved group 1D, the effective group ID is set to gid.

NOTES
A process with the effective privileges shown is granted the following abilities:
Privilege Description
PRI V_SETA D The process may set the real group 1D, effective group ID, and saved group ID.
PRI V_SETU D The process may set the real user 1D, effective user ID, and saved user ID.

If the PRI V_SU configuration option is enabled, the super user may set the real, effective, and saved IDs.

438 SR-2012 10.0

SETUID(2) SETUID(2)

RETURN VALUES

If set ui d or set gi d completes successfully, avalue of 0 isreturned; otherwise, avalue of —1 is returned,
and er r no is set to indicate the error.

ERRORS

Theset ui d or set gi d system call failsif one of the following error conditions occurs:

Error Code Description

El NVAL The uid isout of range.

EPERM The real user or group ID of the calling process is not equal to uid or gid, and the

process does not have appropriate privileges.

FORTRAN EXTENSIONS

BUGS

Theset ui d system call can be called from Fortran as a function:

| NTEGER uid, SETUID, |
| = SETUI D (uid)

Theset gi d system call can be called from Fortran as a function:

| NTEGER gid, SETG D, |
| = SETG D (gid)

If ashell script is made set uid or set gid and startswith "#!" and the name of the shell to execute the shell
script, exec(2) in the kernel should execute the shell with the specified effective gid or effective gid. Instead,
exec(2) checksthe shell for set uid and set gid, even though the set uid and set gid of the shell script should
take precedence.

EXAMPLES

Theset ui d request isgenerally used in setuid programs. A setuid program is one that has had its setuid
permission bit (octal 4000) set by the chnod(1) command.

When a user executes a setuid program belonging to another user, the effective ID and saved ID of the process
is set to the ID of the user owning the program. It isthe process's effective ID that is checked when access to a
fileis attempted.

Therefore, a user executing another user’ s setuid program would be alowed to open files belonging to the other
user for which the user possibly would not be given access permission by the normal access permission bits.
While a process's effective ID is changed to that of another user, UNICOS thinks the process belongs to that
other user.

SR-2012 10.0 439

SETUID(2) SETUID(2)

The following program has had its setuid permission hit (octal 4000) set by the chnod(1) command. This
program shows common usages of the set ui d request. It behaves differently if the owner isa privileged user.

#i ncl ude <uni std. h>

mai n()

{

int uid, euid;

uid = getuid();
euid = geteuid();

printf("real ID of process (before setuid()) is %l\n", uid);
printf("effective ID of process (before setuid()) is %\ n", euid);

/* Open any files that have restricted access here. That is, this
program (assuning it can be executed by any user) needs to open files
bel onging to the sanme user as the owner of this program but those
files have no general access permission for any other user. Assum ng
this programis a setuid program these open(2) requests are pernitted
since the effective ID of this process has been changed to that of the
owner of the program */

setuid(getuid()); /* for security reasons, set effective ID to val ue
of real ID */

printf("real ID of process (after setuid()) is %@\ n", getuid());
printf("effective ID of process (after setuid()) is %\n", geteuid());

set ui d(eui d); /* set effective ID back to the effective ID the
process originally had since another restricted
file needs to be opened now */

/* open the restricted file here */

setuid(getuid()); /* for security reasons, set effective ID to
value of real ID - wll automatically occur

when process dies; call fails if programis
owned by a privileged user */

FILES

fusr/include/sys/types.h Contains types required by ANSI X3J11
/usr/include/unistd.h Contains C prototype for the set ui d system call

440 SR-2012 10.0

SETUID(2) SETUID(2)
SEE ALSO

exec(2),getui d(2),i ntro(2),setregi d(2),setreui d(2)
chnod(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR-2011

SR-2012 10.0 441

SETULVL(2) SETULVL(2)

NAME

set ul vl — Setsthe active security level of the process

SYNOPSIS

#i ncl ude <uni std. h>

int setulvl (int leve);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

442

Theset ul vl system call raises the active security level of the calling process. A process with appropriate
privilege can raise or lower its active security level to sysl ow, syshi gh, or to any value within the security
level range of the system.

Theset ul vl system call accepts the following argument:

level Specifiesthe value of the active security level of the calling process. This argument must fall within
the authorized security level range of the process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRI V_NMAC RELABEL SUBJECT The process is allowed to raise or lower its active security level to
syshi gh, sysl ow, or to any value within the security level range
of the system.

PRI V_VMAC RELABEL_ SUBJECT The process is not restricted to the login shell process.

PRI V_MAC_RELABEL_SUBJECT The process environment may contain additional background
processes.

PRI V_MAC_RELABEL_SUBJECT The process is allowed to override security level access violations

with open files.

If the PRI VV_SU configuration option is enabled, the super user is alowed to raise or lower its active security
level tosysl ow, syshi gh, or to any value within the security level range of the system. The super user is
not restricted to the login shell process. The super user environment may contain additional background
processes. The super user is allowed to override security level access violations with open files.

Because of standard I/O buffering, data may be lost when a subject’s security label ischanged. This occursif
the subject does not have MAC access to the file when the buffer is flushed.

SR-2012 10.0

SETULVL(2)

RETURN VALUES

SETULVL(2)

If set ul vl completes successfully, avalue of 0 isreturned; otherwise, avalue of —1 isreturned, and er r no
is set to indicate the error.

ERRORS
Theset ul vl system call failsif one of the following error conditions occurs:
Error Code Description
EMANDV The requested level is not authorized for use on the UNICOS system.
EMANDV The requested level is not within the caller’ s authorized security level range, and the
process does not have appropriate privilege.
EMANDV The requested level isless than the current active security level of the process, and the
process does not have appropriate privilege.
EMANDV Changing to the requested level creates an access violation with existing open files
(open character special files owned by the caller are a specia case), and the process
does not have appropriate privilege.
EMANDV The request is not issued from the login shell process, and the process does not have
appropriate privilege.
EMANDV There was more than one multitask group in job (there are background processes), and
the process does not have appropriate privilege.
FILES
fusr/include/unistd.h Contains C prototype for the set ul vl system call
SEE ALSO

get usrv(2), set ucat (2), set ucnp(2), set usrv(2)
set ul vl (1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011
sl 0g(4), sl rec(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research

publication SR-2014

General UNICOS System Administration, Cray Research publication SG-2301

SR-2012 10.0

443

SETUSRV(2) SETUSRV(2)

NAME

set usr v — Sets security validation attributes of the process

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/usrv. h>

int setusrv (struct usrv *buf);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
Theset usr v system call sets security validation attributes for a process.
Theset usr v system call accepts the following argument:
buf Pointsto ausr v structure in which the attribute values are stored.
A usr v structure includes the following members:

short sv_mnlvl; /* mnimum security level */
short sv_max| vl ; /* maxi mum security level */
| ong sv_val cnp; /* authorized conpartnents */
| ong sv_savcnp; /* TFM EXEC command saved conpartnments (not used)*/
| ong sv_act cnp; /* active conpartments */
short sv_permt; /* perm ssions */
short sv_actlvl; /* active security level */
short sv_savl vl ; /* TFM EXEC saved security |l evel (not used) */
short sv_intcls; /* active integrity class (not used) */
short sv_maxcl s; /* maxi mumintegrity class (not used) */
| ong sv_intcat; /* active categories */
| ong sv_val cat; /* authorized categories */
struct { /* saved integrity paranmeters over TFM EXEC
(not used) */
i nt actcls :32; /* integrity class before TFM EXEC
(not used) */
i nt actcat :32; /* active category before TFM EXEC

(not used) */
} sv_savint;
i nt sv_audit_off
i nt sv_audit_chng

=

/* audit on/off flag */
/* audit change flag */

=

444 SR-2012 10.0

SETUSRV(2) SETUSRV(2)

A process can use this system call to expand or constrict its active and authorized security attributes. Any
process can constrict its authorized security attributes (minimum and maximum security level range, authorized
compartments, authorized categories, and so on). Only an appropriately privileged process can expand its
authorized security attributes or modify its active security attributes.

A process can enable or disable kernel auditing of its activities by settingthesv_audi t _chg flag and
setting/clearing thesv_audi t _of f flag. Any process can enable kerndl auditing for itself. Only an
appropriately privileged process can disable kernel auditing of its activities.

NOTES

The login program sets the active security level to the user’s default security level withaset ul vl (2) system
call immediately after theset usrv call.

All set usr v requests are recorded in the security log, indicating success or failure.
A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRI V_ADM N The process is allowed to change the state of theusr tr ap
permission.

PRI V_AUDI T_CONTROL The process is allowed to disable kernel auditing of its activities.

PRI V_MAC_RELABEL_SUBJECT The process is allowed to expand its authorized security attributes

and to set its active security attributes.

If the PRI V_SU configuration option is enabled, the super user is allowed to expand its authorized security
attributes and to set its active security attributes. A trusted process is allowed to change the state of the
usrtrap permission. The super user isalowed to disable kernel auditing of its activities.

Because of standard /O buffering, data may be lost when a subject’s security label is changed. This occurs if
the subject does not have MAC access to the file when the buffer is flushed.
RETURN VALUES

If set usr v completes successfully, avalue of 0 isreturned; otherwise, avalue of -1 isreturned, and er r no
is set to indicate the error.

ERRORS
Theset usr v system call failsif one of the following error conditions occurs:
Error Code Description
ECOVPV The requested active compartments are not authorized for the process.
EFAULT The buf argument points outside the process address.
El NTCATV The requested authorized categories include thear chi ve category.
El NTCATV The requested active categories are not valid for the process.

SR-2012 10.0 445

SETUSRV(2) SETUSRV(2)

El NTCLSV The requested maximum classis not equal to or greater than the authorized minimum
class.

El NTCLSV The requested active class is not within the minimum and maximum classes for this
process.

ESYSLV The requested minimum level is greater than the requested maximum level.

ESYSLV The requested minimum and maximum level range is not included in the UNICOS
system minimum and maximum level range.

ESYSLV The requested active level is not within the minimum and maximum levels for this
process.

Additionally, when called by a process without appropriate privilege, set usr v failsif one of the following
error conditions occurs:

Error Code Description

ECOVPV Attempt was made to expand the authorized compartments.
ECOVPV Attempt was made to change active compartments.

El NTCATV Attempt was made to expand authorized categories.

El NTCATV Attempt was made to change active categories.

El NVAL Attempt was made to expand permissions.

ESYSLV Attempt was made to expand the authorized security level range.
ESYSLV Attempt was made to change active security level.

If the requested minimum and maximum security levels are outside those authorized for the UNICOS system,
they are set within the bounds of the system.

If the requested valid compartments, categories, or permissions are outside those authorized for the UNICOS
system, they are set within the bounds of the system.

If the calling process does not have sui dgi d permission, the file creation mask of the processis set to
disallow creation of setuid or setgid files.

If the calling process has no permissions, or has only user permissions, the process is assigned only the user
permissions from the requested set. If the calling process has at |east one nonuser permission, set usr v sets
the process' permissions to the requested value.

When called by a process without appropriate privilege, set usr v sets the security labels of open character
specidl files (ttys) to the process’ active security label.

SEE ALSO

set ul vl (2), get usrv(2)
set usr v(1) inthe UNICOSUser Commands Reference Manual, Cray Research publication SR-2011

446 SR-2012 10.0

SHMAT(2) SHMAT(2)

NAME

shmat — Attaches shared memory segment

SYNOPSIS
#i ncl ude <sys/shm h>
void *shmat (int shmid, void *shmaddr, int shnflg);

IMPLEMENTATION

All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS
XPG4

DESCRIPTION

Theshmat system call attaches the shared memory segment associated with the shared memory identifier. It
accepts the following arguments:

shmid Specifies a shared memory segment.

shmaddr Specifies the address of the shared memory segment.

shimflg Specifies aflag value.

The segment is attached to the address specified by one of the following criteria:

e |f shmaddr isanull pointer, the segment is attached at the first available address as selected by the system.

e |f shmaddr isnot anull pointer and shmflg&SHM RND s not O, the segment is attached at the address given
by shmaddr — (shmaddr modulus SHVMLBA).

e |f shmaddr isnot anull pointer and shmflg&SHM RNDis O, the segment is attached at the address given by
shmaddr. shmaddr must be aligned (on a MEMKLI K boundary).

The segment is attached for reading if shmflg&SHM_RDONLY is not 0 and the calling process has read
permission. Otherwise, if shmflg&SHM RDONLY is 0 and the process has read and write permission, the
segment is attached for reading and writing.

NOTES

If the user has persistence permission, shared memory segments will remain in the system. If the user does not
have persistence permission, and does not explicitly remove segments created, these segments are removed
from the system when the session terminates or after the final detach, if attached by processes from another
session.

SR-2012 10.0 447

SHMAT(2) SHMAT(2)

The user must explicitly remove shared memory segments after the last reference to them has been removed.

The alignment requirement, which varies in different machines, is determined by the mapping size of the
memory system. (To remain XPG4 compliant, SHVLBA is expressed as a byte value on UNICOS systems.
Thisallowsit to be used in expressions passed into shnget (2) to specify asize)

Processes that have attached shared memory segments cannot be checkpointed or restarted; a checkpoint
operation fails with error ESHVA.

A processis granted read permission to a shared memory segment only if the active security label of the
process is greater than or equal to the security label of the shared memory segment, and the process is granted
read access by the shared memory segment access control list (ACL) (if oneis assigned).

A process is granted write permission to a shared memory segment only if the active security label of the
processis equal to the security label of the shared memory segment, and the process is granted write access by
the shared memory segment ACL (if one is assigned).

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRI V_MAC READ The process is considered to meet the security label requirements for
being granted read permission to a shared memory segment.

PRI V_MAC WRI TE The process is considered to meet the security label requirements for
being granted write permission to a shared memory segment.

PRI V_DAC _OVERRI DE The process is considered to meet the permission mode and ACL

requirements for being granted read and write permission to a shared
memory segment.

If the PRI V_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown above. The super user is granted read and write permission to a shared memory segment.

RETURN VALUES

448

If shndt completes successfully, the value of the shm nat t ch field in the data structure associated with the
shared memory ID of the attached shared memory segment isincremented and avalue of O is returned;
otherwise, avaue of -1 isreturned, and er r no is set to indicate the error.

SR-2012 10.0

SHMAT(2) SHMAT(2)

ERRORS

Theshmat system call fails and does not attach the shared memory segment if one of the following error
conditions occurs:

Error Code Description
EACCES Operation permission is denied to the calling process (seei pc(7)).
El NVAL The shmid argument is not avalid shared memory identifier.
El NVAL The shmaddr argument is not equal to 0, and the value of shmaddr — (shmaddr
modulus SHVLBA) isan illegal address for attaching shared memory.
El NVAL The shmaddr argument is not equal to 0, shmflg&SHM RNDis equal to 0, and the value
of shmaddr is an illegal address for attaching shared memory.
EMFI LE The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.
ENOVEM The available data space is hot large enough to accommodate the shared memory
segment.
ENOSYS Shared memory operations are permitted only on the CRAY T90 series.
FILES
/usr/include/sys/shmh Contains shared memory data structures and macros
SEE ALSO

exec(2), exit (2),fork(2),shnctl (2), shndt (2), shnget (2)

i pc(5), shm(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

i pc(7) Online only

SR-2012 10.0 449

SHMCTL(2) SHMCTL(2)

NAME

shntt | — Provides shared memory control operations

SYNOPSIS

#i ncl ude <sys/shm h>
int shnctl (int shmid, int comd, struct shmid_ds *buf);

IMPLEMENTATION

All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for al systems except the CRAY T90 series.

STANDARDS
XPG4

DESCRIPTION

Theshntt| system call provides avariety of shared memory control operations. It accepts the following
arguments:

shmid Specifies the shared memory identifier.
cmd Specifies a shared memory control operation. The following are valid cmd values.

| PC_STAT Places the current value of each member of the data structure associated with
shmid into the structure pointed to by buf. The contents of this structure are
defined in theinclude filesys/ shm h (see shm(5)). This command
reguires read permission.

| PC_SET Sets the value of members of theshni d_ds data structure associated with
shmid. It setsthe value of the following members to the corresponding value
found in the structure pointed to by buf:

shm perm ui d
shm perm gi d
shm per m node /* loworder 9 bits */

Thel PC_SET command can be executed only by a process that has an
effective user 1D equal to the value of shm per m cui d or
shm_per m ui d inthe data structure associated with shmid.

450 SR-2012 10.0

SHMCTL(2)

SR-2012 10.0

| PC_RM D

| PC_SETACL

| PC_GETACL

| PC_SETLABEL

SHM DCACHE
SHM_ECACHE
SHM | CACHE

SHM LOCK

SHM_UNLOCK

SHMCTL(2)

Removes the shared memory identifier specified by shmid from the system
and destroys the shared memory segment and shni d_ds data structure
associated with shmid. Thel PC_RM D command can be executed only by a
process that has an effective user ID equal to the value of

shm _per m cui d or shm _per m ui d in the data structure associated with
shmid.

Sets the access control list (ACL) on the shared memory identifiers specified
by shmid. Thei pc_per mstructure withintheshm d_ds structure
pointed to by buf contains a pointer, i pc_acl ,toanacl _r ec structure
with the required ACL entries, and a count of those entries,

i pc_acl count . If an ACL existsfor the shared memory identifier, itis
replaced by the one provided with thiscall. If i pc_acl count is0, any
existing ACL isremoved. The calling process must be the owner of the
shared memory identifiers specified by shmid.

Retrieves the access control list (ACL) for the shared memory identifier
specified by shmid. Thei pc_per mstructure withintheshm d_ds
structure pointed to by buf contains a pointer, i pc_acl ,toanacl _rec
structure where the ACL entries are to be returned. The count of entriesto
be returned is specified inthei pc_acl count field. If there are more than
i pc_acl count entries, only thefirsti pc_acl count entriesare
returned. If therearelessthani pc_acl count entries, al entries are
returned. The return value indicates the number of entries returned. If there
isno ACL, thereturn valueis0. The calling process must have read
permission to the shared memory identifiers specified by shmid.

Sets the security 1abel on the shared memory identifier specified by shmid.
Thei pc_per mstructure within the shimi d_ds structure pointed to by buf
contains a security level, i pc_sl evel , and acompartment set,

i pc_sconps, to be set in the security label on the shared memory
identifier. If the shared memory segment is currently attached by any
processes, the security label is not altered; avalue of —1 isreturned and
errno issetto EAGAI N. Only a process with the appropriate privilege can
perform this operation.

Disables scalar caching of this segment for this process.
Enables scalar caching of this segment for this process.

Invalidates the scalar cache of each CPU currently running a process with
the specified segment attached and cached.

L ocks the shared memory segment specified by shmid in memory. This
command can be executed only by a process with the appropriate privilege.

Unlocks the shared memory segment specified by shmid. This command can
be executed only by a process with the appropriate privilege.

451

SHMCTL(2) SHMCTL(2)

NOTES

452

buf Points to a structure.

If the user has persistence permission, shared memory segments will remain in the system. |If the user does not
have persistence permission, and does not explicitly remove segments created, these segments are removed
from the system when the session terminates or after the final detach, if attached by processes from another
session.

The user must explicitly remove shared memory segments after the last reference to them has been removed.

If the kernel list of processes caching each segment becomes corrupted, all processes with that segment
attached will be sent the SI GSMCE signal. The default action istermination.

A processis granted read permission to a shared memory identifier only if the active security label of the
process is greater than or equal to the security label of the shared memory identifier, and the process is granted
read access by the shared memory identifier ACL (if oneisassigned). Thisappliestothel PC_STAT and

| PC_GETACL operations.

Thel PC_SET, | PC_RM D, and | PC_SETACL operations require that the active security label of the process
isegual to the security label of the shared memory identifier.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRI V_MAC_READ The process is considered to meet the security label requirements for
being granted read permission to a shared memory identifier.

PRI V_MAC VWRI TE The process is considered to meet the security label requirements for
performing an| PC_SET, | PC_RM D, or | PC_SETACL operation.

PRI V_DAC_OVERRI DE The process is considered to meet the permission mode and ACL
requirements for being granted read permission to a shared memory
identifier.

PRI V_FOANER The process is considered to meet the shared memory identifier ownership

requirements for the | PC_SET, | PC_RM D, and | PC_SETACL
operations. The processis also permitted to lock and unlock a shared
memory segment.

If the PRI V_SU configuration option is enabled, the super user is granted the same abilities as al effective
privileges shown above.

The super user is considered the owner of a shared memory identifier, and is granted read permission to that
shared memory identifier. The super-user isaso permitted to lock and unlock a shared memory segment.

SR-2012 10.0

SHMCTL(2)

RETURN VALUES

SHMCTL(2)

If shnct | completes successfully, avalue of O is returned; otherwise, avalue of —1isreturned, and er r no is

set to indicate the error.

ERRORS

Theshntt| system cal failsif one of the following error conditions occurs:

Error Code
EACCES

EACCES

EAGAI N

EFAULT
EFAULT

El NVAL
El NVAL
El NVAL

El NVAL

ENOVEM
ENOVEM

ENCSYS
EPERM

EPERM

SR-2012 10.0

Description

The cmd argument isequal to | PC_STAT and the calling process does not have read
permission (see shm(5)).

The cmd argument is| PC_GETACL and the calling process does not have read
permission.

The cmd argument is| PC_SETLABEL and the shared memory segment is currently
attached by one or more processes.

The buf argument pointsto an illegal address.

Thecmd argument is| PC_SETACL or | PC_GETACL, and thei pc_acl fieldin buf
pointsto an illegal address.

The shmid argument is not avalid shared memory identifier.
The cmd argument is not a valid command.

The cmd argument is| PC_SET, and shm_per m ui d or shm _per m gi d isnot
valid.

The cmd argument is| PC_SETACL and one of the following istrue:

e Thei pc_acl count fieldinbuf isO, but there isno ACL associated with shmid.
e Thei pc_acl count fieldin buf islessthan O or greater than 256.

o The ACL supplied failed validation.

The cmd argument is equal to SHM L OCK and there is not enough memory.

The cmd argument is| PC_SETACL and no memory was available to storethe ACL.
The command should be retried at alater time.

Shared memory operations are permitted only on the CRAY T90 series.

The cmd argument isequal tol PC_RM Dor | PC_SET, and the effective user ID of
the calling processis not equal to the process with the appropriate permissions or to
thevalue of shm per m cui d or shm _per m ui d in the data structure associated
with shmid, and the process does not have the appropriate privilege.

The cmd argument is| PC_SETLABEL, and the calling process does not have the
appropriate privilege.

453

SHMCTL(2) SHMCTL(2)

EPERM The cmd argument is SHM_LOCK or SHM_UNLOCK, and the calling process does not
have the appropriate privilege.
EPERM The cmd argument is| PC_SETACL, and the calling process does not meet ownership
reguirements and does not have the appropriate privilege.
FILES
/usr/include/ sys/shmh Contains shared memory data structures and macros
SEE ALSO

exec(2), exi t (2), f ork(2), shmat (2), shnget (2), shndt (2)
i pcs(1) inthe UNICOSUser Commands Reference Manual, Cray Research publication SR-2011

i pc(5), shm(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research publication
SR-2014

i pc(7) Online only

454 SR-2012 10.0

SHMDT(2) SHMDT(2)

NAME
shndt — Detaches shared memory segment

SYNOPSIS
#i ncl ude <sys/shm h>
int shrmdt (void *shmaddr);

IMPLEMENTATION
All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS
XPG4

DESCRIPTION

Theshndt system call detaches the shared memory segment from the calling process's address space. It
accepts the following argument:

shmaddr Specifies the address of the shared memory segment.

NOTES

If the user has persistence permission, shared memory segments will remain in the system. If the user does not
have persistence permission, and does not explicitly remove segments created, these segments are removed
from the system when the session terminates or after the final detach, if attached by processes from another
session.

The alignment requirement, which varies on different machines, is determined by the mapping size of the
memory system.

RETURN VALUES

If shndt completes successfully, the value of the shm_nat t ch field in the data structure associated with the
shared memory 1D of the attached shared memory segment is decremented and a value of O is returned;
otherwise, avalue of —1 isreturned, and er r no is set to indicate the error.

ERRORS

The shndt system call fails and does not detach the shared memory segment if one of the following error
conditions occurs:

Error Code Description
El NVAL The shmaddr argument is not the data segment start address of a shared memory
segment.

SR-2012 10.0 455

SHMDT(2) SHMDT(2)

El NVAL There are outstanding asynchronous /O operations.

ENOSYS Shared memory operations are permitted only on the CRAY T90 series.
FILES

/usr/include/ sys/shmh Contains shared memory data structures and macros
SEE ALSO

exec(2), exi t (2),f ork(2), shmat (2), shntt! (2), shnyget (2)

i pc(5), shm(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research publication
SR-2014

i pc(7) Onlineonly

456 SR-2012 10.0

SHMGET(2) SHMGET(2)

NAME

shnget — Accesses shared memory identifier

SYNOPSIS
#i ncl ude <sys/shm h>
int shnget (key_ t key, size t size, int shnflg);

IMPLEMENTATION
All Cray Research systems. The interface is supported on all platforms, but invocation will return an ENOSYS
error for all systems except the CRAY T90 series.

STANDARDS
XPG4

DESCRIPTION

Theshnget system call returns the shared memory identifier associated with key. 1t accepts the following
arguments:

key Specifies the shared memory segment.
size Specifies the shared memory segment size in bytes.
shimflg Specifies aflag value.

A shared memory identifier, associated data structure, and shared memory segment of at least size bytes (see
shm(5)) are created for key if one of the following istrue:

e keyisequal tol PC_PRI VATE.
e key does not aready have a shared memory identifier associated with it, and shmflg&l PC_CREAT isnot 0.
Upon creation, the data structure associated with the new shared memory identifier isinitialized as follows:

e shm perm cui d,shm perm ui d,shm perm cgi d, and shm per m gi d are set to the effective
user ID and effective group 1D, respectively, of the calling process.

® Thelow-order 9 bitsof shm per m nbde are set to the low-order 9 bits of shmflg. shm segsz issetto
the value of size.

e shml pid,shmnattch,shm ati nme,andshm dti ne aresettoO.
e shm cti ne isset to the current time.

SR-2012 10.0 457

SHMGET(2) SHMGET(2)

NOTES

If the calling process hasthei pc_per si st permission bit, then the shared memory identifier will be created
asapersistent ID. Persistent shared memory identifiers will not be removed from the system unless a
shnet | (2) system call with the command | PC_RM Dor ani pcr m{(1) command is performed on the ID.

If the calling process does not have this permission bit, then the shared memory identifier will be linked into a
list of nonpersistent IDs belonging to the session of which the processis a member. When the last process of
the session terminates, all the shared memory identifiers linked to the session will be removed from the system.

A process with the effective privileges shown is granted the following abilities:
Privilege Description
PRI V_RESOURCE The process is considered to have thei pc_per si st permission bit.

If the PRI V_SU configuration option is enabled, the super user is granted the same abilities as all effective
privileges shown in the preceding list.

The super user is considered to have thei pc_per si st permission hit.

RETURN VALUES

If shnget completes successfully, avalue of 0 isreturned; otherwise, avalue of —1isreturned, and er r no is
set to indicate the error.

ERRORS

458

The shnget system cal failsif one of the following error conditions occurs:

Error Code Description

EACCES A shared memory identifier exists for key but operation permission as specified by the
low-order 9 bits of shmflg would not be granted (seei pc(7)).

EEXI ST A shared memory identifier exists for key but both shmflg&l PC_CREAT and
shmflg&l PC_EXCL are not 0.

El NVAL The size argument is less than the system-imposed minimum or greater than the
system-imposed maximum.

El NVAL A shared memory identifier exists for key, but the size of the segment associated with
itislessthan size and size is not equal to 0.

EMEMLI M The request would exceed the limits for the session associated with the calling process.

ENCENT A shared memory identifier does not exist for key and shmflg&l PC_CREAT isO.

ENOVEM A shared memory identifier and associated shared memory segment are to be created,
but the amount of available memory is not sufficient to fill the request.

ENCSPC A shared memory identifier isto be created, but the system-imposed limit on the
maximum number of allowed shared memory identifiers system-wide would be
exceeded.

SR-2012 10.0

SHMGET(2) SHMGET(2)

ENOSYS Shared memory operations are permitted only on the CRAY T90 series.
FILES

[usr/include/sys/shmh Contains shared memory data structures and macros
SEE ALSO

shmat (2), shnet | (2), shirdt (2)
i pcr m(1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011
st di pc(3C) inthe UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

i pc(5), shm(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research publication
SR-2014

i pc(7) Online only

SR-2012 10.0 459

SHUTDOWN(2) SHUTDOWN(2)

NAME

shut down - Shuts down part of a full-duplex connection

SYNOPSIS

int shutdown (int s int how);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The shut down system call shuts down al or part of afull-duplex connection on the specified socket. It
accepts the following arguments:

S Specifies the descriptor for the socket.
how Specifies whether further sends and receives are allowed. The following are valid how values:
0 Further receives are disallowed.
1 Further sends are disallowed.
2 Further sends and receives are disallowed.
Unlikethe cl ose(2) system call, shut down can shut down a socket one direction at atime (send or receive).
Thecl ose(2) system call frees up kernel resources and the socket descriptor, but shut down does not.

NOTES

If some protocols (such ast cp(4P)) do ashut down before acl ose(2), the normal termination of a
connection is modified.

If the SOCKET_MAC option is enabled, the active security label of the process must equal the security label of
the socket. Note that SOCKET _MAC is part of TCP/IP configurable feature variableslist in
ut s/ cf/ Nmakefil e.

A process with the effective privilege shown is granted the following ability:
Privilege Description

PRIV_MAC WRI TE The processisalowed to override the security label restrictions when the
SOCKET_MAC option is enabled.

If the PRI V_SU configuration option is enabled, the super user is allowed to override security level and
compartment restrictions when the SOCKET _MAC option is enabled.

460 SR-2012 10.0

SHUTDOWN(2) SHUTDOWN(2)

RETURN VALUES

If shut down completes successfully, avalue of 0 isreturned; otherwise, avaue of -1 isreturned, and er r no

is set to indicate the error.

ERRORS
The shut down system call failsif one of the following error conditions occurs:
Error Code Description
EACCES If the SOCKET _MAC option is enabled, the process does not meet the security label
reguirements and does not have appropriate privilege.
EBADF The s descriptor is not valid.
El NVAL Aninvalid value was specified for how.
ENOTSOCK The s descriptor is not a socket.
SEE ALSO

cl ose(2), connect (2), socket (2)

t cp(4P) in the UNICOSFile Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2012 10.0

461

SIGACTION(2) SIGACTION(2)

NAME

si gacti on, si gvec — Examines or changes action associated with asignal

SYNOPSIS
#i ncl ude <signal.h>

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact);

int sigvec (int sg, struct sigvec *vec, struct sigvec *ovec);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4 (appliesonly to si gact i on)

DESCRIPTION

Thesi gact i on system call allows the calling process to examine or specify (or both) the action to be
associated with a specific signal.

Thesi gact i on system call accepts the following arguments:

sig Specifiesthe signal. Seesi gnal (2) for sig values.

act or vec Specifies the action to be taken when the signal is delivered.
oact or ovec Returnsthe previous signal action.

On Cray MPP systems, the si gact i on system call examines or changes the signal action only for the PE on
whichitiscalled. It hasno effect on any other PE of the application.

The si gact i on structure, which describes an action to be taken, isdefined inthe si gnal . h header file, and
contains the following members:

struct sigaction {
void (*sa_handler) (); /* SIGDFL, SIGIGN, or pointer to a function */
sigset _t sa_mask; /* added to signal mask when in handl er */
int sa_flags; /* flags to affect behavior of signal */

If the argument act is not null, it points to a structure specifying the action to be associated with the specified
signal. If the argument oact is not null, the action previously associated with the signal is stored in the location
pointed to by the argument oact. If act isnull, signal handling is unchanged by this call; thus the call can be
used to inquire about the current handling of a given signal.

462 SR-2012 10.0

SIGACTION(2)

SIGACTION(2)

Thesa_f | ags field specifies a set of flags used to modify the behavior of the specified signal. It isformed by
OR’ing together any of the following values (defined in si gnal . h):

SA_NOCLDSTOP

SA_RESETHAND

SA_CLEARMASK
SA_CLEARPEND
SA NODEFER

SA _NOCLDWAI T

SA_WAKEUP

SA_REGMIASK

SA_REGLWP

If set and if sig equals SI GCHLD, sig is not sent to the calling process when its children
change state due to job control.

If set, the action associated with sig isreset to SI G_DFL on entry to the signal handler
(except for the SI G LL, SI GTRAP, and SI GPVWR signals).

If set, sigis cleared from the calling process’ signal mask on registration.
If set, sigiscleared from the set of pending signals on registration.

If set, sigis not added to the calling process' signal mask when entering the signal
handler.

If set, children of the calling process do not create zombie processes when they
terminate.

If set, the processis just awakened when sig is received and does not enter a signal
handler.

If set, signal registration is performed for all the tasks in a multitasking group; starting in
UNICOS 8.0 thisisthe default behavior. To get the previous behavior, see the
SA REGLWP flag.

If set, signal registration is performed for the current process; this was the default
behavior before UNICOS 8.0. However, it is not recommended that applications depend
on this behavior since it may not be supported in later releases.

When asignal is caught by a signal-catching function installed by si gact i on, anew signal mask is
calculated and installed for the duration of the signal-catching function (or until the signal mask is changed
explicitly by another system call). This mask isformed by taking the union of the current signal mask and the
value of sa_mask for the signal being delivered, and then including the signal being delivered. If and when
the user’ s signal handler returns normally, the original signal mask is restored.

Once an action isinstalled for a specific signal, it remains installed until another action is explicitly requested or
until one of the exec(2) functionsis called.

If si gacti on fails, anew signal handler is not installed.

The si gvec system cal isprovided for 4.3 BSD compatibility. Since the semantics of si gvec are
equivalent to those of si gact i on (and thesi gvec structure has similar membersto thesi gacti on
structure), this system call isimplemented by calling si gact i on with the same argumentsassi gvec.

Thesi gvec structure has the following members:

struct sigvec {

void (*sv_handler) (); /* signal handler */
i nt sv_mask; /* added to signal mask when in handler */
int sv_flags; /* use SA * flags in sigaction(2) */

SR-2012 10.0

463

SIGACTION(2) SIGACTION(2)

RETURN VALUES

If si gacti on or si gvec completes successfully, avalue of 0 isreturned; otherwise, avalue of —1is
returned, and er r no is set to indicate the error.

ERRORS
Thesi gacti on or si gvec system call failsif one of the following error conditions occurs:
Error Code Description
EFAULT A si gacti on (act or oact) or si gvec (vec or ovec) argument pointsto an invalid
address.
El NVAL The sig argument is an illegal signal number, SI GKI LL, or SI GSTOP.

464 SR-2012 10.0

SIGACTION(2) SIGACTION(2)

EXAMPLES

This example shows how to usethe si gact i on system call to prepare for the receipt of asignal. Inthe
following program, the si gact i on request is anticipating receipt of SI G NT.

#i ncl ude <signal . h>

mai n()

{
void catch(int signo);
struct sigaction act, oact;

act.sa_handl er = catch;
si genpt yset (&act . sa_mask) ;
act.sa_flags = 0;

sigaction(SI G NT, &act, &oact);

printf("\nPrevious disposition for signal SIGNT (#%) = %",
SI G NT, oact.sa_handler);

if (oact.sa_handl er == SI G _DFL)

printf(" (Default)\n");
else if (oact.sa_handler == SIG IGN)

printf(" (lgnored)\n");
el se

printf("\n");

/* The process performs its work here fully prepared if a SIG NT
signal should be delivered to this process - if SIG NT signal
is sent, process is interrupted and control passes to routine "catch". */

}
void catch(int signo)
{
/* Code to process a SIG NT signal resides here - function returns to
the point of interruption when conplete. */
}
SEE ALSO

exec(2), si gnal (2), si gpendi ng(2), si gpr ocmask(2), si gsuspend(2)
si gset ops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2012 10.0 465

SIGCTL(2)

NAME

si gct | — Provides generalized signal control

SYNOPSIS
#i ncl ude <signal.h>
int sigctl (int action, int sig,

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

SIGCTL(2)

void (*func) (int));

Thesi gct | systemcall, likesi gnal (2), allows the calling process to specify what to do upon receipt of a

signal.

Thesi gct | system call accepts the following arguments:

action Specifiesthe action to be taken when the signal is received.

The simplest, and most common, use of si gct | isto set sig to the desired signal number and set

action to one of the three bits:

SCTL_DEF Takes a system-defined default action.

SCTL_I GN Ignores the signal.

SCTL_REG Registersto catch the signal.

In this case, func contains the address of the signal-catching function or 0. If funcissetto O, the
process is awakened when the signal occurs, but no signal-catching function is called.

Previoudly, the following actions provided additional control over the action taken.

SCTL_KI L
SCTL_DWP

SCTL_STOP
SCTL_CONT

This control isno longer supported; see the NOTES section for more information. The use of these
actionsis equivalent to specifying SCTL_ DEF.

sig Specifiesasignal. Seesi gnal (2) for sig values.
func Specifies the address of the signal handler if the action is SCTL_REG,

Thesi gct | system call provides additional functionality and control beyond that offered by si gnal (2). The
two primary differences with signal-catching insi gct | are the following:

e Normally, func does not revert to SI G_DFL ; therefore, the process does not need to re-register the

signal-catching function.

466

SR-2012 10.0

SIGCTL(2) SIGCTL(2)

e Further signal catching is postponed when the signal-catching function is entered (see si gon(3C)).

NOTES

With the introduction of the si gact i on(2) system call in UNICOS 6.0, the si gct | system call has become
obsolete. Whilethesi gact i on(2) interface does not provide a superset of the functionality of si gct | , the
additional functionality that si gct | providesisno longer considered necessary. Because of this change, both
the UNICOS MAX and UNICOS versions of si gct | arewritten interms of si gacti on(2).

The specific additional functionality provided by si gct | isthe ability to choose an arbitrary action for any
signal. For example, set SI G NT to terminate with a core dump or SI GUSRL to stop the process. In contrast,
si gact i on(2) only allows the user to ignore, catch with asignal handler, or choose a system-defined
"default" action for each signal. For example, SI G NT always terminates the process by default, and

S| GABRT aways terminates the process and causes a core dump by default.

When written interms of si gact i on(2), callstosi gct | with SCTL_KI L, SCTL_DMP, SCTL_STOP, or
SCTL__CONT asthe action are mapped to asi gact i on(2) call with the handler setto SI G_DFL. The other
characteristics of si gct | are handled as before.

Some additional complexity isinvolved in returning from the signal-catching function to the point at which the
process was interrupted. The C library manages this complexity so that users do not need to understand it. To
return to the point of interruption, the operating system must be called to restore the last few registers. Nesting
isnot limited. To return to the previous environment, a special action bit, SCTL_RET, is used.

To provide the functionality of si gnal efficiently, where signal-catching usually reverts to killing the process
or killing with core dump, there is one additional complexity: When registering a signal-catching function, the
process may specify a second bit besides SCTL_REG. Before entering the signal-catching function, the status
for that signal will be set to one of the following signals as requested, and further signal catching is not
postponed.

SCTL_I GN
SCTL_KI L
SCTL_STOP
SCTL_CONT
SCTL_DWP

RETURN VALUES

If si gct | completes successfully, it returns the previous action for the specified signal sig; otherwise, avalue
of —1isreturned, and er r no is set to indicate the error.

SR-2012 10.0 467

SIGCTL(2) SIGCTL(2)

ERRORS
Thesi gct | system call failsif the following error condition occurs:
Error Code Description
El NVAL The sig argument isan invalid signal number, including SI GKI LL or SI GSTOP.

Also, only SI GCONT may be set with the action SCTL__CONT; SI GCONT cannot be
registered with SCTL_KI L, SCTL_DMP, or SCTL_STOP.
FORTRAN EXTENSIONS
Thesi gct | system call may be called from Fortran through f si gct | (3F).

EXAMPLES
The following example shows how to usethe si gct | system call to prepare for the receipt of asignal. In this
program, thesi gct | request is anticipating receipt of SI G NT.
#i ncl ude <signal . h>

mai n()

{

void catch(int signo);
sigctl (SCTL_REG, SI A NT, catch);

/* The process perforns its work here fully prepared
if a SIANT signal should be delivered to this process -
if SIG@NT signal is sent, process is interrupted
and control passes to routine "catch". */

}
voi d catch(int signo)
{

/* Code to process a SIGANT signal resides here -
function returns to the point of interruption
when conplete. */

}

468 SR-2012 10.0

SIGCTL(2) SIGCTL(2)

SEE ALSO
kill (2), pause(2),ptrace(2),si gaction(2),signal (2),wait (2)
ki || (1) inthe UNICOSUser Commands Reference Manual, Cray Research publication SR-2011
set j np(3C), si gon(3C) inthe UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080
f si gct ! (3F) inthe Application Programmer’s Library Reference Manual, Cray Research publication
SR-2165

SR-2012 10.0 469

SIGNAL(2) SIGNAL(2)

NAME

si gnal , bsdsi gnal , si gset, si gi gnor e — Changes action associated with a signal

SYNOPSIS

#i ncl ude <signal.h>

void (*signal (int sig, void (*func) (int))) (int);
void (*bsdsignal (int sig, void (*func) (int))) (int);
void (*sigset (int sig, void (*func) (int))) (int);
int sigignore (int sig);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4 (applies only to si gnal)

DESCRIPTION

470

Thesi gnal , bsdsi gnal , si gset, andsi gi ghor e system cals allow the calling process to choose the
action to be associated with the receipt of a specific signal. All of these calls are implemented in terms of the
si gacti on(2) system call. The sig argument specifies the signal, and the func argument specifies the choice
(si gi gnor e has no func argument; it implicitly ignores the specified signal).

Valid arguments for thesi gnal , bsdsi gnal , si gset ,and si gi gnor e system calls are asfollows:

sig Specifiesthe signal. It can be assigned any one of the signals available on the operating system except
SI &KI LL or SI GSTOP (which cannot be caught or ignored): These are listed in the following table:

Signal Number Default Description

SI GHUP 1 Exit Hangup

SI G NT 2 Exit Interrupt

SIGUI T 3 Core Quit

SIG LL 4 Core [llegal instruction

SI GTRAP 5 Core Trace trap

S| GABRT 6 Core Abort

SI GERR 7 Core Error exit

SI GFPE 8 Core Floating-point exception
SI &I LL 9 Exit Kill (cannot be caught or ignored)
SI GPRE 10 Core Program range error

SI GORE 11 Core Operand range error

SR-2012 10.0

SIGNAL(2)

SR-2012 10.0

SIGNAL(2)

Signal Number Default Description
SI GSYS 12 Core Bad argument to system call
S| GPI PE 13 Exit Write on a pipe with no one to read it
S| GALRM 14 Exit Alarm clock
S| GTERM 15 Exit Software termination signal from kill
SIAd 0 16 Ignore Input/output possible signal
SI GURG 17 Ignore Urgent condition on 1/O channel
SI GCLD 18 Ignore Death of a child process
SI GPWR 19 Ignore Power failure
SI GBUFI O 22 Exit Reserved for CRI-library use on Cray MPP systems
S| GRECOVERY 23 Ignore Recovery signal (advisory)
SI GUMVE 24 Core Uncorrectable memory error
SI GDLK 25 Core True deadlock detected (Cray PV P systems)
S| GCPULI M 26 Exit CPU timelimit exceeded (seel i mi t (2))
S| GSHUTDN 27 Ignore System shutdown imminent (advisory)
SI GSTOP 28 Stop Sendabl e stop signal not from atty (cannot be caught

or ignored)
SI GTSTP 29 Stop Stop signal from atty
SI GCONT 30 Ignore Continue a stopped process
SI GTTIN 31 Stop To reader’ s process group on background tty read
SI GTTQU 32 Stop Like SI GTTI Nfor output, if selected
SI GW NCH 33 Ignore Window size changes
S| GRPE 34 Exit Cray PV P register parity error
S| GARBKPT 35 Core Write breakpoint (CRAY C90 series only)
S| GNOBDM 36 Core Cray PVP binary enabled bidirectional memory

(cannot be caught or ignored)
S| GAM 37 Core CRAY T90 address multiply interrupt
SI GSMCE 38 Exit Shared memory caching error
SI G NFO 48 Ignore Information signal (see get i nf 0(2))
SI GUSR1 49 Exit User-defined signal 1
SI GUSR2 50 Exit User-defined signal 2
The following alternative definitions are also available:
Sl G or 6
Sl GHVE 6
S| GEMT 7
SIGUS 10
SI GSEGvV 11
SI GCHLD 18
Signals 49 through 64 are available for users.

471

SIGNAL(2)

472

SIGNAL(2)

func Specifies the action associated with the signal.

SI G DFL

SIGIGN
SI G HOLD

function address

The default actions are outlined in the default column of the signal table. The
defaults are as follows:

Exit Upon receipt of the sig signal, the receiving process is terminated with all
of the consequences outlined in exi t (2).

Core Upon receipt of the sig signal, the receiving process isterminated. A core
image is made in the current working directory of the receiving process if
the following conditions are met: first, the effective user ID and the real
user 1D of the receiving process are equal, and second, afile named cor e
(or, if extended core file naming isturned on, cor e. pid) can be written
or created.

Two forms of acore image can be created. The system attempts to create
arestart file of the process (seer est ar t (1)). If thisfails, the system
creates a core image that cannot be restarted. Both forms describe the
state of the process at the point the signal was received, but the restart file
allows the user to continue execution under the control of a debugger.

Stop Upon receipt of the sig signal, the receiving process is stopped.

Ignore Upon receipt of the sig signal, the receiving processignoresit. This
default isidentical to the action specified by SI G _| GN.

The sig signd isignored.
(si gset only) The specified signal is added to the calling process’ signal mask.
Upon receipt of the sig signal, the receiving process executes the signal-catching

function pointed to by func. The signal number sig is passed as the only argument to
the signal-catching function.

Upon return from the signal-catching function, the receiving process resumes
execution at the point at which it was interrupted.

When asignal that isto be caught occurs during certain system calls (for example, a
read(2) orw it e(2) system call on aterminal or pipe), the signal-catching
function is executed, and then the interrupted system call returns a—1 to the calling
process with er r no setto EI NTR.

The SI &KI LL, SI GSTOR, and SI GNOBDM signals cannot be caught or ignored; also, these signals cannot be
blocked by using si gset withthe SI G_HCOLD action.

Whenever a process receivesa Sl GSTOP, SI GTSTP, SI GTTI N, or SI GTTOU signal, regardless of the action
associated with it, any pending SI GCONT signal is discarded.

SR-2012 10.0

SIGNAL(2)

SIGNAL(2)

Whenever a process receives a SI GCONT signal, regardless of the action associated with it, any pending
SI GSTOP, SI GTSTP, SI GTTI N, or SI GTTOU signal isdiscarded. In addition, if the process was stopped, it

is continued.

NOTES

Thesi gnal system call iscompatible with the ANSI C standard, and also follows UNIX System V, Release
3.0 semantics. Thebsdsi gnal system call iscompatible with the 4.3 BSD si gnal systemcall, andis
renamed to avoid conflicts with the ANSI routine. Thesi gset and si gi gnor e system calls are provided
for System V3 compatibility; their useis discouraged as they do not belong to any particular standard.

Differences in the semantics of these system calls are described in the following list:

System Call
si gnal

bsdsi gnal , si gset

si gnal ,si gset,si gi gnore

si gset,sigi gnore

Description

When asignal isreceived (and the action isto execute asignal handler),
the action for that signal isreset to SI G_DFL before entering the handler
(except for the SI G LL, SI GTRAP, and SI GPV\R signals). Also, when a
process registers for asignal, al pending signals of that type are cleared.

When asignal isreceived (and the action isto execute a signal handler),
the received signal is added to the process’ signal mask before entering
the handler.

Setting the action for SI GCLDto SI G_| GN causes any child processes of
the calling process to not create zombie processes when they terminate
(seeexi t (2)). If the parent process then doesawai t (2), thewai t
blocks until al of the child processes terminate before returning a value of
-1l witherrno setto ECHI LD.

When a process registers for asignal, that signal is cleared from the
calling process’ signal mask.

Under UNICOS, si gnal isimplemented as asystem call, but the si gnal (3C) function is also defined to be a
part of the ANSI Standard C library. For thisreason, this documentation appears both here and in the UNICOS
System Libraries Reference Manual, Cray Research publication SR-2080.

RETURN VALUES

If si gnal , bsdsi gnal , or si gset completes successfully, the previous signal action (func) is returned,;
otherwise, avalue of SI G_ERR isreturned (defined in header filesi gnal . h), and er r no is set to indicate

the error.

If si gi gnor e completes successfully, O isreturned; otherwise, avalue of —1 isreturned, and er r no is set to

indicate the error.

SR-2012 10.0

473

SIGNAL(2) SIGNAL(2)

ERRORS
Thesi gnal , bsdsi gnal , si gset, or si gi gnor e system call failsif the following error condition occurs:
Error Code Description
El NVAL The sig argument isan illegal signal number, SI GKI LL, or SI GSTOP.

FORTRAN EXTENSIONS

Thesi gnal system call can be called from Fortran as a function:

| NTEGER sig, FSI GNAL, |
EXTERNAL FUNC
| = FSI GNAL(sig, FUNC)

Alternatively, si gnal can be called from Fortran as a subroutine. In this case, the return value of the system
cal isunavailable.

| NTEGER sig
EXTERNAL FUNC
CALL FSIGNAL (sig, FUNC)

The Fortran program must not specify both the subroutine call and the function referenceto si gnal from the
same procedure.

EXAMPLES

The following examplesillustrate different uses of the si gnal system call.

Example 1. Thissi gnal request prepares for thereceipt of aSI G NT signal. When using si gnal to catch
signals, the programmer needs to remember to re-register to catch the signal in the signal-handling function,
because the signal’ s default disposition is reinstated before entrance to the handler.

474 SR-2012 10.0

SIGNAL(2) SIGNAL(2)

#i ncl ude <signal . h>

mai n()

{

void catch(int signo);
signal (SI A NT, catch)

/* The process perforns its work here fully prepared
if a SIANT signal should be delivered to this process -
if SIG@NT signal is sent, process is interrupted and
control passes to routine "catch". */

}
voi d catch(int signo)
{

signal (SI G NT, catch)

/* Code to process a SIGA NT signal resides here -
function returns to the point of interruption
when conplete. */

}

Example 2: Thissi gnal request in conjunction with awai t (2) system call causes a process to wait (delay)
until all of its child processes have completed:

#i ncl ude <signal . h>
mai n()
{
int ret_val, ret_stat;
signal (SIGCLD, SIGIGN);
/* Parent process forks child processes here and
performs other work - it then wants to wait
for all of its child processes to term nate. */

ret_val = wait(&et _stat);

/* Parent process proceeds after conpletion
of all child processes. */

SR-2012 10.0 475

SIGNAL(2) SIGNAL(2)

SEE ALSO

exit(2),getinfo(2),limt(2),read(2),restart (2),sigaction(2),sigpendi ng(2),
si gprocmask(2), si gsuspend(2), wai t (2),wite(2)

restart (1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

si gset ops(3C), si gnal (3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR—-2080

476 SR-2012 10.0

SIGPENDING(2)

NAME
si gpendi ng — Stores pending signals

SYNOPSIS
#i ncl ude <signal.h>
int sigpending (sigset_t *set);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

SIGPENDING (2)

Thesi gpendi ng system call storesthe set of signalsthat are blocked from delivery and pending for the

calling process. It accepts the following argument:

set Points to the space where the set of signalsis stored. On Cray MPP systems, thesi gpendi ng
system call stores pending signals only for the PE on which it iscalled. It has no effect on any other

PE of the application.

RETURN VALUES

If si gpendi ng completes successfully, avalue of 0 isreturned; otherwise, avalue of —1 isreturned, and

er r no isset to indicate the error.

EXAMPLES

The following example shows how to use the si gpendi ng system call in a program to determine whether
there are any signals currently pending and blocked for this process. If any signals are pending, the program

displays the corresponding signal numbers.

SR-2012 10.0

477

SIGPENDING(2) SIGPENDING(2)

sigset _t pset;

long i;

int j;

i f (sigpending(&pset) == -1) {
perror("sigpending failed");
exit(1);

}

printf("sigpending reveals the followi ng signals are pending => ");
printf("% o\n", pset);
if (pset '=0) {
printf(" or signals nunbered => ");
for (i =1L, j =1; i > 0; i <<=1, j++) {
if (pset & i) {
printf("% ", j);
}
}

printf("\n");
SEE ALSO

si gaction(2),si gnal (2), si gpr ocmask(2), si gsuspend(2)
si gset ops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

478 SR-2012 10.0

SIGPROCMASK (2) SIGPROCMASK (2)

NAME
si gpr ocmask, si gbl ock, si gset mask, si ghol d, si gr el se — Examines and changes blocked
signals
SYNOPSIS
#i ncl ude <signal.h>
int sigprocrmask (int how, const sigset t *set, sigset_ t *oset);
int sigblock (int mask);
int sigsetmask (int mask);
mask = sigmask (sig);
int sighold (int sig);
int sigrelse (int sig);
IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4 (applies only to si gpr ocnask)

DESCRIPTION
Thesi gpr ocnmask system call examines or changes (or both) the calling process's signal mask.
how Indicates the manner in which the set is changed. It consists of one of the following values, as
defined in the header file si gnal . h:
SI G_BLOCK The resulting set is the union of the current set and the signal set to which set
points.

SI G UNBLOCK Theresulting set is the intersection of the current set and the complement of the
signal set to which set points.

SI G_SETMASK The resulting set isthe signal set to which set points.

set Pointsto a set of signals that can be used to change the current signal mask. If the set argument is
null, it does not point to a set of signals.

oset Points to the space in which the previous mask is stored. |f the oset argument is null, it does not
point to this space. If the value of set isnull, the value of how is not significant and the process
signal mask is unchanged by this system call; the call can be used to inquire about currently blocked
signals.

mask Specifies a set of signals as a bitmask.

SR-2012 10.0 479

SIGPROCMASK (2) SIGPROCMASK (2)

sig Specifiesasignal. Seesi gnal (2) for sig values.

If any pending unblocked signals exist after acall to si gpr ocnmask, at least one of those signalsis delivered
before si gpr ocmask returns.

It isnot possible to block the SI GKI LL and SI GSTOP signals; thisis enforced by the system without causing
an error to be indicated.

Thesi gbl ock and si gset nask system calls are provided for 4.3 BSD compatibility, and call

si gpr ocmask to actually change the signal mask. Thesi gbl ock system call adds the signals specified in
mask to the calling process' s signal mask. Thesi gset mask system call setsthe calling process's signal mask
to the value of mask. The si gnask macro creates asignal mask for these system calls; to mask asignal sig,
usesi gmask(sig).

The si ghol d and si gr el se system calls are provided for UNIX System V, Release 3.0, compatibility; they
also cal si gpr ocnask to actually change the signal mask. Thesi ghol d system call adds the signal sig to
the calling process' s signal mask; si gr el se removesthe signal sig from the mask.

On Cray MPP systems, the si gpr ocrmask system call examines or changes blocked signals only for the PE
onwhichitiscalled. It hasno effect on any other PE of the application.

RETURN VALUES

If si gpr ocnmask, si ghol d, or si gr el se completes successfully, avalue of 0 isreturned; otherwise, a
value of —lisreturned, and er r no is set to indicate the error.

Thesi gbl ock and si gset nask system calls return the old value of the signal mask.

ERRORS

The si gpr ocmask system call failsif one of the following error conditions occurs:

Error Code Description

EFAULT The set or oset argument points to an address that is not valid.

El NVAL The value of how is not equal to one of the defined values.

The si ghol d and si gr el se system calsfail if the following error condition occurs:

Error Code Description

El NVAL The sig argument is an illegal signal number, SI GKI LL, or SI GSTOP.
EXAMPLES

The following examples illustrate how to usethe si gpr ocrmask, si gset mask, si gbl ock, and si ghol d
system calls.

480 SR-2012 10.0

SIGPROCMASK (2)

SIGPROCMASK (2)

Example 1: In this program, the si gpr ocrmask request blocks and unblocks signals for a process. In other
words, the example shows how bits are added and removed from the process' s signal hold mask.

#i ncl
#def i

mai n(

{

SR-2012 10.0

ude <signal.h>

ne NULL O

)
sigset t set, oset;

if (sigprocmask(NULL, NULL, &oset) ==
perror("sigprocmask failed");
exit(1l);

}

printf("\nlnitial signal mask = 9% o\ n"

si genpt yset (&set) ; /* clear the
si gaddset (&set, SI G NT);

si gaddset (&set, S| GFPE);

si gaddset (&set, SI GUSRL);

if (sigprocmask(SIG BLOCK, &set, NULL)
perror("sigprocmask failed");
exit(2);

-1) |

, oset);

si gnal

set

== -]_) {

*/

/* Signals SIANT, SIG-PE, and SI GQUSRL are now bl ocked
as well as any other signals blocked prior to the

si gprocmask request. */

/* Later, it is needed to unblock one of those signals, SIG-PE */

si gdel set (&set, SIGUSRL); /* Mdify mask such that SIG-PE */
sigdel set (&set, SIGANT); /* can be unbl ocked */

if (sigprocmask(SI G UNBLOCK, &set, NULL) ==

perror("sigprocmask failed");
exit(3);

-1) |

481

SIGPROCMASK (2)

SIGPROCMASK (2)

Example 2: In thisprogram, thesi gset mask, si gbl ock, and si ghol d requests manipulate a process' s

signal hold mask.
#i ncl ude <si gnal . h>

mai n()

{

int ret, nmmsk;

/* sigsetnmask(2) is used to hold signals SIGANT and SIGQU T -

all other signal types are not held.

mask = sigmask(SI G NT) | sigmask(SIGQUIT);
printf("initial mask = % o\n", sigsetnmask(mask));

/* sigblock(2) is used to add signal
to signal hold mask. */

mask = sigmask(SI GFPE) | sigmask(SlI GUSR2);

ret = sigblock(nmask);

printf("after sigsetmask, mask = %o\n",
ret = sigsetmask(OL); /* determ ne current
printf("after sigblock, mask = % o\n",
(voi d) sigsetnask(ret); /* restore mask */

/* sighold(2) is used to add signal type SIGUSRL

to signal hold mask. */

(voi d) sighol d(SI GUSR1) ;

printf("after sighold, mask = %o\n",

SEE ALSO

482

si gaction(2),si gnal (2), si gpendi ng(2), si gsuspend(2)

types SI GFPE and Sl GUSR2

mask */

si gset mask(O0OL));

si gset ops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR-2080

SR-2012 10.0

SIGSUSPEND(2) SIGSUSPEND(2)

NAME

si gsuspend, bsdsi gpause, si gpause — Releases blocked signals and waits for interrupt

SYNOPSIS
#i ncl ude <signal.h>
int sigsuspend (const sigset t *sigmask);
i nt bsdsigpause (int mask);
int sigpause (int sdg);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4 (applies only to si gsuspend)

DESCRIPTION

Thesi gsuspend system call replaces the process’ signal mask with the set of signals pointed to by the
sigmask argument and then suspends the process until delivery of a signal whose action is either to execute a
signal-catching function or to terminate the process.

Thesi gsuspend, bsdsi gpause, and si gpause system calls accept the following arguments:
sigmask Specifiesaset of signal as a bitmask.

mask Specifies a set of signal as a bitmask.

sig Specifiesasignal. Seesi gnal (2) for sig values.

If the action isto terminate the process, si gsuspend does not return. If the action isto execute a
signal-catching function, si gsuspend returns after the signal-catching function returns, with the signal mask
restored to the setting that existed prior to the si gsuspend call. Itisnot possibleto block the SI GKI LL and
SI GSTOP signals; thisis enforced by the system without indicating an error.

Thebsdsi gpause system call is equivalent to the 4.3 BSD si gpause system call; it is renamed to avoid
conflicts with the UNIX System V, Release 3.0, si gpause system call. It has the same behavior as
si gsuspend.

Thesi gpause system cal is provided for UNIX System V, Release 3.0, compatibility. It releases the signal
sig, and suspends the process until an interrupt occurs.

On Cray MPP systems, the si gsuspend system call suspends only on the PE on which itiscalled. It hasno
effect on any other PE of the application.

SR-2012 10.0 483

SIGSUSPEND(2) SIGSUSPEND(2)

RETURN VALUES

Sincesi gsuspend, bsdsi gpause, and si gpause suspend process execution indefinitely, no successful
completion return value exists; instead, avalue of —1 is always returned, and er r no is set to indicate the error.

ERRORS
Thesi gsuspend, bsdsi gpause, and si gpause system callsfail if the following error condition occurs:
Error Code Description
El NTR A signal is caught by the calling process, and control is returned from the

signal-catching function.

EXAMPLES

This example shows how to usethe si gsuspend system call to wait for asignal to be delivered to a process.
In particular, it shows how the si gsuspend request suspends the program until the process receives a specific
signal (SI GUSR1).

#i ncl ude <signal . h>

mai n()

{
struct sigaction act;
sigset _t set;

act.sa_handl er = catch;

si genptyset (&act . sa_mask) ;
act.sa_flags = O;

sigaction(SI GQUSR1, &act, NULL);

sigfillset(&set); /[* turn on (1) all bits in set - */
si gdel set (&set, SIGUSRL); /* except SIGUSRL */

/* Process performs work here, but after finishing work and before
proceeding, it needs to wait for a SIGUSRL signal to be sent
from anot her process. */

si gsuspend(&set) ; /* wait for SIGUSRL signal */

/* Work continues here after waiting and catching SI GUSR1 signal. */
}
voi d catch(int signo)
{

/* process SI GUSRL signal here */

484 SR-2012 10.0

SIGSUSPEND(2) SIGSUSPEND(2)

}

SEE ALSO
pause(2), si gacti on(2), si gnal (2), si gpendi ng(2), si gpr ocrmask(2)
si gset ops(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR-2080

SR-2012 10.0 485

SLGENTRY(2) SLGENTRY(2)

NAME
sl gent ry — Makes security log entry

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <unistd. h>

int slgentry (int type, word *entry);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thesl gent ry system call makes an entry inthe/ dev/ sl og security log. The caller defines the type of the
entry to be made and passes the address of the entry. The type is decoded and the entry is cast as the proper
security structure before the entry iswritten to the security log.

Thesl gent ry system call accepts the following arguments:
type Defines the type of the entry to be made.
entry Specifies the address of the entry.

Thesl gent ry system call accepts only a specific subset of valid record types. See sl r ec(5) for more
information on these types.

Only an appropriately privileged process can use this system call.

NOTES
A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_AUDI T_WRI TE The process is allowed to use this system call.

If the PRI V_SU configuration option is enabled, the super user is alowed to use this system call.

RETURN VALUES

If sl gent ry completes successfully, avaue of 0 isreturned; otherwise, avalue of —1 isreturned, and er r no
is set to indicate the error.

486 SR-2012 10.0

SLGENTRY(2) SLGENTRY(2)

ERRORS
Thesl gent ry system call failsif one of the following error conditions occurs:
Error Code Description
EFAULT The process specified an entry where the length is not valid (that is, lessthan 0 or
larger than the largest allowed sl gent ry record).
El NVAL The process specified an entry in which some portion of the entry is outside the user’s
address space.
ESECADM The process does not have appropriate privilege to use this system call.
FILES
/usr/include/sys/types.h Contains types required by ANSI X3J11
[usr/include/unistd. h Contains C prototype for the sl gent ry system call
SEE ALSO

sl 0g(4), sl rec(5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research
publication SR-2014

sl ogdenon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

General UNICOS System Administration, Cray Research publication SG-2301

SR-2012 10.0 487

SOCKET(2) SOCKET(2)

NAME

socket - Creates an endpoint for communication

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int socket (int af, int type int protocol);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thesocket system call creates sockets. A socket isan endpoint for communications on alocal or aremote
host.

Thesocket system call accepts the following arguments:

af Specifies an address family with which addresses specified in later operations that use the socket
should be interpreted.

These families are defined ininclude file sys/ socket . h. The Internet address family
(AF_I NET), the UNIX address family (AF_UNI X), and the | SO address family (AF_I SO) are
the only families currently recognized by UNICOS.

type Specifies the type of socket to be created. Sockets are typed according to their communications
properties. Currently defined types are as follows:

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte streams. It
also provides an auxiliary out-of-band data transmission mechanism.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable messages of a
fixed (typically small) maximum length.

SOCK_RAW Provides access to interna network interfaces. These sockets are available
only to the super user.

protocol Specifies a protocol to be used with the socket. (Seei cnp(4P) for an example.) Usually, only
one protocol exists to support a particular socket type, using a given address family. However,
many protocols can exist; in which case, you must specify a particular protocol in this argument.
The protocol number to use is particular to the communication domain in which communication
occurs, see pr ot ocol s(5).

488 SR-2012 10.0

SOCKET(2) SOCKET(2)

Sockets of type SOCK_STREAMare full-duplex byte streams. A stream socket must be in a connected state
before any data can be sent from or received onit. A connection to another socket is created with a
connect (2) or accept (2) cal. After the socket is connected, data can be transferred using r ead(2) and
wr it e(2) callsor some variant of thesend(2) and r ecv(2) system calls. When amessage is complete, a
cl ose(2) cal can be performed. Out-of-band data, which is data not sent in sequence with other data, can
also be transmitted (as described in send(2)) and received (as described inr ecv(2)).

The communications protocols used to implement a socket of type SOCK_STREAMensure that datais not lost
or duplicated. If a piece of datafor which the peer protocol has buffer space cannot be transmitted successfully
within areasonable length of time, the connection is considered broken, and system calls using the connection
return a—1 value and place the ETI MEDOUT code in the global variable er r no. The protocols optionally keep
sockets active by forcing transmissions every minute in the absence of other activity. If no response can be
elicited on an otherwise idle connection for a extended period (for example, 5 minutes), an error isthen
indicated. If aprocess sends on a broken stream, a Sl GPI PE signal israised; this causes naive processes,
which do not handle the signal, to terminate.

SOCK_DGRAMand SOCK _RAWSsockets allow sending of datagrams to correspondents specified in send(2)
cals. Itisalso possibleto receive datagrams at such a socket by usingr ecvf r om(seether ecv(2) man

page).
Youcanuseani oct | (2) cal to specify a process group to receive a SI GURG signal when out-of-band data
arrives.

Thesocket call sets up send and receive socket buffers (sockbufs) using a protocol-specific sockbuf space
limit (see net var (8)). Thesocket call failsand returnsan ELI M T error if this call would cause the user’s
per-session sockbuf space limit to be exceeded.

Socket-level options control the operation of sockets. These options are defined inthesys/ socket . h
include file and in the following list. Useset sockopt (2) and get sockopt (2) (seeget sockopt (2)) to
set and to get options, respectively.

Thei oct | (2) system call performs a variety of functions at different levels (socket, interface, and routing).
Thefollowingisalist of command namesfor thei oct | (2) system call and a description of the function
performed by each command.

Command Description

Socket level:

FI CASYNC Sets and clears asynchronous input/output by using SI G O.

FI ONBI O Sets and clears nonblocking input/output.

FI ONREAD Gets number of bytes available for reading from socket.

S| OCATVARK Indicates whether any out-of-band data is waiting in the socket (0 means yes;
otherwise, no).

SI OCGPCRP Gets process group to receive SI G Oand SI GURGfor this socket.

SI OCSPCGRP Sets process group to receive SI G Oand SI GURGfor this socket.

SR-2012 10.0 489

SOCKET(2)

NOTES

Interface level:
S| OCAE FADDR

SI OCGE FCONF

S| OCGE FDSTADDR

SI OCAE FFLAGS

SI OCSI FADDR

SI OCSI FDSTADDR

SOCKET(2)

Gets network address of interface intothei f r _addr member to which the data
argument points.

Returnsinterface configuration information into thei f conf structure to which the
i oct| dataargument points.

Specifies address of the remote host on a point-to-point link inthei f r _addr
member of thei f r eq structure to which the data argument points.

Returnsinterface flagsin thei f r _f | ags member of thei f r eq structure to which
the data argument points.

Sets network address of interface fromthei f r _addr member of thei f r eq
structure to which the data argument points. Also initializes a routing table entry for
the interface (must ber oot).

Sets network address of the remote node on a point-to-point link fromthei f r _addr
member of thei f r eq structure to which the data argument (must ber oot) points.

SI OCSI FFLAGS Setsinterface flagsfromthei f r _f | ags member of thei f r eq structure to which
the data argument (must be r oot) points. Flag values are asfollows:
| FF_UP Ox1 /[* interface is up */
| FF_DEBUG 0x4 /* turn on debugging */
| FF_PO NTOPO NT 0x10 /* interface is point-to-point link */
| FF_NOTRAI LERS 0x20 /* avoid use of trailers */
| FF_NOARP 0x80 /* no address resolution protocol */

Network media sublevel:

HYSETROUTE
HYGETROUTE
HYSETTYPE
HYGETTYPE

Sets HY PERchannel routing table.
Gets HY PERchannel routing table.
Setsinterface type.
Gets interface type.

The socket is assigned the active security label of the process.

RETURN VALUES

490

If socket completes successfully, adescriptor that references the socket is returned; otherwise, avalue of -1
isreturned, and er r no is set to indicate the error.

SR-2012 10.0

SOCKET(2)

ERRORS

SOCKET(2)

Thesocket system call failsif one of the following error conditions occurs:

Error Code
EMFI LE
ELIMT
ENOBUFS
EPERM

Description

Either the per-process descriptor table isfull, or the system file table isfull.
The user’s socket buffer space limit is exceeded.

Buffer spaceis not available. The socket cannot be created.

Permission denied for operation.

EPROTONOSUPPORT The specified protocol is not supported.

EXAMPLES

Because the socket system call isused in both client and server programs along with other networking calls,
the following examples are simple client and server programs that illustrate how to usethe socket reguest.

Example 1: The client program creates a TCP/I P socket and then attempts to establish a connection between
the newly created socket and the socket within the server program on the designated server host. If a
connection is successful, the client process sends a string of data to the server process.

/* dient side of client/server socket exanple.

Synt ax:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/

E o S B R R B N

/

client hostname portnunber */

<sys/types. h>
<sys/socket . h>
<netinet/in.h>
<stdi 0. h>
<net db. h>

ninhis this socket structure

Socket address, internet style.

struct sockaddr _in {

b

short sin_famly;
u_short sin_port;

struct in_addr sin_addr;
char sin_zero[8];

#def i ne DATA "Test nessage fromclient to server."

mai n(int argc, char *argv[])

{

SR-2012 10.0

491

SOCKET(2)

492

SOCKET(2)
int s;
struct sockaddr _in dest; /* destination socket address */
struct hostent *hp; /* host structure pointer */

/* Convert host nane into network address */
hp = gethost byname(argv[1]);
bzero((char*) &lest, sizeof (sockaddr_in));

dest.sin_famly = hp->h_addrtype; /* addr type (AF_INET) */

bcopy(hp->h_addr _|ist[0], &dest.sin_addr, hp->h_length);

dest.sin_port = atoi(argv[2]);

/* create port */

if ((s = socket(AF_I NET, SOCK STREAM 0)) < 0) {

perror("client, cannot open socket");

exit(1);

}

if (connect (s, (struct sockaddr *) &dest,
cl ose(s);
perror("client, connect failed");
exit(1);

}

write(s, DATA, sizeof (DATA))

cl ose(s);

exit(0);

}

si zeof (dest)) < 0) {

Example 2: (Some system calls in this example are not supported on Cray MPP systems.) The server program
creates a TCP/IP socket, waits for a client process from some host to attempt a connection, accepts the

connection, and then forks a child process to provide the service to the client.

The original (parent) server loops back to look for additional connection attempts while the temporary (child)

server reads a string of data sent by the client process.

SR-2012 10.0

SOCKET(2)

SOCKET(2)

/* Server side of client-server socket exanple.

Synt ax: server portnunber & */

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#incl ude <netinet/in. h>
#i ncl ude <stdio. h>
#i ncl ude <net db. h>

mai n(int argc, char *argv[])
{ .
int s, ns;
struct sockaddr _in src;
int |en=sizeof(src);
char buf[256];

[* create port */
src.sin_famly = AF_I NET;
src.sin_port = atoi(argv[1]);
src.sin_addr.s_addr = 0;

/* source socket address */

if ((s = socket (AF_I NET, SOCK_STREAM 0)) < 0) {
perror("server, unable to open socket");

exit(l);
}

while (bind(s, (struct sockaddr *) &src, sizeof(src)) < 0) {
printf("Server waiting on bind...\n");

sl eep(1);
}
listen(s, 5);
while (1) {

ns = accept (s, (struct sockaddr *) &src, &l en);

if (ns <0) {

perror("server, accept failed");

exit(l);

SR-2012 10.0

493

SOCKET(2) SOCKET(2)

if (fork() == 0) {
[* in child server */
cl ose(s); [* child will use socket ns, parent uses s */
read(ns, &buf, sizeof(buf));
printf("Server read: %\n", buf);

cl ose(ns);
exit(0);
}
cl ose(ns); /* cl ose socket used by child */
}
}
FILES
/usr/include/ net/route.h Route file that containsther t ent ry structure
/usr/include/sys/socket.h Defines the address families
fusr/include/sys/types.h Defines types of sockets
SEE ALSO

accept (2), bi nd(2), cl ose(2), connect (2), get sockname(2), get sockopt (2),i oct | (2),
Iisten(2),read(2),recv(2),sel ect (2),send(2), shut down(2), socket pair (2),wite(2

i cnp(4P), pr ot ocol s(5), ser vi ces(5) inthe UNICOSFile Formats and Special Files Reference Manual,
Cray Research publication SR-2014

net var (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR-2022

494 SR-2012 10.0

SOCKETPAIR(2) SOCKETPAIR(2)

NAME

socket pai r — Creates apair of connected sockets

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int socketpair (int af, int type int protocol, int sv2]);

IMPLEMENTATION

All Cray Research systems
Implemented only for the UNIX address domain (AF_UNI X)

DESCRIPTION

Thesocket pai r system call was designed to simulate the UNIX pipe mechanism with the use of sockets.
The cdl isvery similar to the socket (2) system call. With standard network operations, sockets are created
individually using socket (2). To simulate pipe operations, the calling process must create both endpoints for
the communication simultaneously. socket pai r creates apair of sockets in one request to the operating
system.

Thesocket pai r system call accepts the same af, type, and protocol arguments assocket (2) does. For
descriptions of these arguments, see the socket (2) man page. In addition, socket pai r accepts the
following argument:

sV Specifies an array of two integers (sv[0] and sv[1]) that receive the descriptors for the new pair of
sockets.

NOTES

The socket is assigned the active security label of the process.

RETURN VALUES

If socket pai r completes successfully, avalue of O isreturned; otherwise, avalue of —1 isreturned, and
err no isset to indicate the error.

ERRORS
Thesocket pai r system call failsif one of the following error conditions occurs:
Error Code Description
EAFNCSUPPORT This machine does not support the specified address family.
EFAULT The sv address does not specify avalid part of the process address space.
EMFI LE Too many descriptors are in use by this process.

SR-2012 10.0 495

SOCKETPAIR(2) SOCKETPAIR(2)

ECPNOT SUPP The specified protocol does not support creation of socket pairs.
EPROTONOSUPPORT This machine does not support the specified protocol.

FILES
usr/incl ude/ sys/ socket. h Header file for sockets
usr/incl ude/ sys/types. h Header file for types
SEE ALSO

pi pe(2),read(2),wite(2)

496 SR-2012 10.0

SSBREAK (2) SSBREAK (2)

NAME

sshr eak — Changes size of secondary data segment

SYNOPSIS
#i ncl ude <unistd. h>
int ssbreak (long incr);

IMPLEMENTATION
All Cray Research systems except CRAY J90 seriesand CRAY EL series

DESCRIPTION

The ssbr eak system call increases or decreases the size of the secondary data segment (SDS), which is
allocated from an area of the SSD solid-state storage device reserved for this purpose at configuration time (see
ssd(4)). It accepts the following argument:

incr Specifies a count of 4096-byte blocks allocated and deallocated in the SSD.
The ssbr eak system call changes secondary storage size, as follows:

e If thesshr eak system cal has apositiveincr argument, the amount of secondary storage increases by a
multiple of the number of blocks that is defined as the unit allocation size. The unit allocation sizeisthe
number of 4096-byte blocks that compose the smallest amount of space that a user process can alocate in
the SDS; UNICOS is delivered with a unit allocation size of 128 blocks. The unit allocation size can be
found as SDS_WGHT in/ usr /i ncl ude/ sys/ ssd. h. If theincr argument isless than or equal to the
number of blocksin one unit, the ssbr eak system call allocates one whole unit of secondary storage. If
theincr islarger than the number of blocksin one unit and less than or equal to twice the number of blocks
in one unit, two units of secondary storage are allocated, and so on. Because the unit for secondary storage
usually is greater than one block, the amount of storage allocated can be greater than that requested.

e If thessbr eak system call has a negative incr argument, it deallocates secondary storage only in multiples
of one unit. Theincr argument must be larger than or equal to the number of blocks in one unit for
deallocation to result.

e If thessbr eak system call hasan incr argument of 0, the size of secondary storage remains the same.
Secondary storage allocated by the ssbr eak system call isfreed on exit of the program.

CAUTIONS

The ssbr eak system call works only on a system with an SSD in its configuration, and a secondary data
segment (SDS) area must be configured as a dlice of the SSD.

Using ssbr eak directly interferes with the operation of sdsal | oc(3F), which manages the SDS space
within aprocess; sdsal | oc(3F) should be used instead of ssbr eak. CRI strongly discourages direct use of
ssbr eak inuser programs.

SR-2012 10.0 497

SSBREAK (2) SSBREAK (2)

RETURN VALUES

If ssbr eak completes successfully, the current amount of secondary data storage in blocks is returned to the
caller; otherwise, avalue of -1 isreturned, and er r no is set to indicate the error.

ERRORS
Thessbr eak system call failsif the following error condition occurs:
Error Code Description
ENOVEM The request reguires more secondary storage than can be satisfied.

FORTRAN EXTENSIONS

The ssbr eak system call can be called from Fortran as a function:

| NTEGER incr, SSBREAK, |
| = SSBREAK (incr)

The ssbr eak system call should not be used in a Fortran program that accesses SDS through the assi gn(1)
command or auxiliary arrays because the libraries use sdsal | oc(3F) to control SDSalocation. Using
ssbr eak from Fortran directly conflicts with the SDS management that sdsal | oc(3F) provides.

EXAMPLES

The following example shows how to use the ssbr eak system call to request a SDS allocation. In this case,
the programmer asks for an area of 10 blocks for the process. Because SDS segment space is allocated in units
called the unit allocation size, which istypically configured at 128 blocks, thisssbr eak request actually
allocates the process 128 blocks of SDS space.

498 SR-2012 10.0

SSBREAK (2) SSBREAK (2)

int size;

if ((size = ssbhreak(10L)) == -1) {
perror("sds allocation error");
exit(l);

}

el se {

printf("The size of the sds is now % - 4096-byte bl ocks\n", size);
}

/* To make use of the allocated SDS area, the program next issues
ssread and sswite requests. */

/* \When usage of the allocated SDS area is conplete, the program
rel eases its SDS all ocation using ssbreak with negative argunent -
process term nation al so rel eases SDS space. */

if ((size = sshbreak(-size)) == -1) {
perror("sds deall ocation error");
exit(l);
}
el se {
printf("The size of the sds is now % - 4096-byte bl ocks\n", size);
}
FILES
[fusr/include/unistd.h Contains C prototype for the ssbr eak system call
SEE ALSO

assi gn(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR-2011
sdsal | oc(3F) inthe UNICOS System Libraries Reference Manual, Cray Research publication SR-2080
ssd(4) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research publication SR-2014

SR-2012 10.0 499

SSREAD(2) SSREAD(2)

NAME

ssread, sswrit e — Reads or writesto secondary data segment

SYNOPSIS
#i ncl ude <unistd. h>
int ssread (long pds, long sds, |ong count);
int sswite (long pds, long sds, |ong count);

IMPLEMENTATION
All Cray Research systems except CRAY J90 series and CRAY EL series

DESCRIPTION

The ssr ead system call moves data from a secondary data area reserved with the ssbr eak(2) system call to
abuffer. Thesswri t e system call moves data from a buffer to a secondary data area.

The ssr ead system call accepts the following arguments:
pds Specifies aword-aligned address of a buffer.

sds Specifies the secondary data area offset. Thisis a4096-byte sector offset in the process’ secondary
dataarea. It is specified numerically, with O giving the beginning block, 1 giving the second block,
and so on. It must be allocated with ssbr eak(2).

count Specifies the number of 4096-byte blocks to be moved.
CAUTIONS

Thessread andsswri t e system callswork only on a system with an SSD solid-state storage devicein its
configuration, and a secondary data segment area (SDS) must be configured as a dlice of the SSD.

RETURN VALUES

If ssread or sswrit e completes successfully, avalue of O is returned; otherwise, avalue of -1 isreturned,
and er r no is set to indicate the error.

ERRORS
Thessread andsswri t e system callsfail if one of the following error conditions occurs:
Error Code Description
EFAULT The request exceeds the boundaries of either the buffer or the secondary data area.
El O An error occurred during the data transfer.

500 SR-2012 10.0

SSREAD(2) SSREAD(2)

FORTRAN EXTENSIONS

The ssr ead system call can be called from Fortran as a function:

| NTEGER pds (512*n), sds, words, SSREAD, |
| = SSREAD (pds, sds, words)

The third argument to the Fortran interface to SSREAD specifies the number of wordsto beread. Thisis
different than the third argument to the system call. Thesswr i t e system call can be called from Fortran as a
function:

| NTEGER pds (512*n), sds, words, SSWRI TE, |
| = SSWRI TE (pds, sds, words)

The third argument to the Fortran interface to SSWRI TE specifies the number of wordsto be written. Thisis
different than the third argument to the system call.

EXAMPLES

The following example shows how to use the ssr ead system call in conjunction with other system callsto
transfer data to and from the SDS alocation for a process. In this portion of the program, the ssbr eak(2)
request asks for an SDS area of 1000 blocks, and the sswr i t e request then transfers 1000 blocks of data from
the user’ s process memory space to the process's SDS allocation. Lastly, ssr ead reads the 1000 blocks of
data back into the user’s process memory from the SDS allocation.

SR-2012 10.0 501

SSREAD(2) SSREAD(2)

int size;
char buff[4096 * 1000];

if ((size = ssbreak(1000L)) == -1) {
perror("sds allocation error");
exit(1);

}

el se {
printf("The size of the sds is now % - 4096-byte bl ocks\n", size);

}

/[* SDS wite illustration */

if (sswite((long) buff, OL, 1000L) == -1) {
perror("sswite error");
exit(2);

}

/[* SDS read illustration */

if (ssread((long) buff, OL, 1000L) == -1) {
perror("ssread error");
exit(3);

}

FILES
[fusr/include/unistd.h Contains C prototype for thessr ead and sswri t e system calls
SEE ALSO
ssbreak(2)

assi gn(1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011
ssd(4) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research publication SR-2014

502 SR-2012 10.0

STAT(2) STAT(2)

NAME
stat,| stat,fstat —Getsfile status

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>

int stat (const char *path, struct stat *buf);
int Istat (const char *path, struct stat *buf);
int fstat (int fildes, struct stat *buf);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4 (appliesonly tost at , f st at)

DESCRIPTION

The st at system call obtainsinformation about the file specified by path. All directories in the path name
leading to the file must be searchable, although it is not necessary to have read, write, or execute permission to
thefile.

Thel st at system call issimilar to st at , except when the specified fileisa symbolic link. Inthiscase,
| st at returnsinformation about the link, and st at returns information about the file that the link references.

Thef st at system call obtainsthe same information asst at about a specified open file. When using f st at
on afile descriptor returned from the accept (2), socket (2), or socket pai r (2) system call, only the

st _uid,st_gid,st_slevel,st_bl ksize,st_obl ksi ze, and the type portion of st _node fields
are meaningful. All other fieldswill be O.

Thestat,| stat,andf st at system calls accept the following arguments:

path Pointsto afile's path name (st at and | st at only). Read, write, or execute permission of the
specified fileis not required, but al directories listed in the path name leading to the file must be
searchable.

buf Pointsto the st at structure.

fildes Specifies afile descriptor. It isobtained from a successful accept (2), cr eat (2), dup(2),

fcntl (2), open(2), pi pe(2), socket (2), or socket pai r (2) system call (f st at only).

SR-2012 10.0 503

STAT(2)

504

STAT(2)

A st at structure includes the following members:

node_t
i no_t
dev_t
dev_t

nlink_t
uid_t
gid_t

i nt
of f _t
tinme_t

time_t

tinme_t

int

i nt
unsi gned

i nt

ushort

| ong

| ong

| ong
unsi gned

short
short
short
short

| ong
| ong

st _node;
st _ino
st _dev;
st _rdev;

st _nlink;
st _uid;
st _gid;
st _aci d;
st _si ze
st_atine;

st_ntine;

st_ctine;

st _count;

st _bl ocks;

i nt
st_msref: 1,
st_ms: 31,

st _gen;

st _parani 8] ;

st _dm_node;
st _dm st at us;
st_dmm d;

st _dm key;
int

st _hasacl : |,
st _hasconps: |

st _sl evel ;
st _secfl g;
st _intcls;
st _intcat;

st_site;
st _al | ocf;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

I

/*
/*
/*
/*

/*
/*

File node; see nknod(2). */
| node nunber for this file */
Device on which this file resides */

Device ID;, this entry is defined only */

for character special or block special files. */
Nunmber of |inks */

User ID of the file s owner */

Goup ID of the file' s group */

Account id of the file */
File size in bytes */

Time that file data was | ast accessed; */

changed by systemcalls creat(2), nknod(2), */
pipe(2), utine(2), and read(2). */

Ti me when data was |ast nodified; */

changed by systemcalls creat(2), nknod(2), */

pipe (2), utime(2), and wite(2). */

Time when file status was |ast changed; */

times neasured in seconds since 00:00:00 */

GMI, January 1, 1970. Changed by */

systemcalls chnmod(2), chown(2), creat(2), */
link(2), mknod(2), pipe(2), unlink(2), utime(2), */
and write(2). */

Ref erence count from i node
file table entries */
Nunmber of 4096 byte blocks allocated to the file */

nunber of active */

Modi fi cation signature referenced flag */
Modi fi cation signature */

I node generation numnber */

Devi ce paraneter words; this entry is defined only */

for character special or block special files */
Actual file node when migrated */
M grated file status flags */

Mgrated file machine id */
Mgrated file key */

File has an ACL */
File has conpartnments */

File | evel */

Security flags (not used) */
Integrity class (not used) */
Integrity category (not used) */

Site field frominode */

Al'l ocation control flags; see fcntl(2) */

SR-2012 10.0

STAT(2) STAT(2)

ThefiletypeS_| FREGisreturned in st _node if an | FOFL (offlinefile) is encountered. The actual file type
S | FOFL isreturnedinst _dm node.

NOTES

The process must have read permission to the file via the security label. That is, the active security label of the
process must be greater than or equal to the security label of thefile.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component (st at /I st at system calls only).

A process with the effective privileges shown is granted the following abilities:
Privilege Description

PRI V_DAC OVERRI DE The process is granted search permission to a component of the path prefix via
the permission bits and access control list (st at /I st at system calls only).

PRI V_MAC READ The process is granted search permission to a component of the path prefix via
the security label (st at / | st at system calls only).
PRI V_MAC_READ The process is granted read permission to the file via the security 1abel.

If the PRI V_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix (st at /I st at system callsonly) and is granted read permission to thefile viathe
security label.

RETURN VALUES

If stat,| stat,orfstat completes successfully, avaue of O isreturned; otherwise, avalue of -1 is
returned, and er r no is set to indicate the error.

ERRORS
Thest at orl st at system call failsif one of the following error conditions occurs:
Error Code Description
EACCES Search permission is denied for a component of the path prefix.
EACCES The processis not granted read permission to the file via the security label, and the
process does not have appropriate privilege.
EFAULT The buf or path argument points to an address that is not valid.
ENAVETOOLONG The supplied file name is too long.
ENOENT The specified file does not exist.
ENOTDI R A component of the path prefix is not a directory.

SR-2012 10.0 505

STAT(2) STAT(2)

Thef st at system call failsif one of the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not a valid open file descriptor.

EBADF The process is not granted read permission to the file via the security label, and the
process does not have appropriate privilege.

EFAULT The buf argument points to an address that is not valid.

FORTRAN EXTENSIONS

Thest at system call can be called from Fortran as afunction (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER* n path
INTEGER buf(m), STAT, |
| = STAT (path, buf)

Alternatively, st at can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER* n path
| NTEGER buf(m)
CALL STAT (path, buf)

The Fortran program must not specify both the subroutine call and the function referenceto st at from the
same procedure. path may also be an integer variable. In this case, it must be packed 8 characters per word
and terminated with anull (0) byte. The PXFSTAT(3F) subroutine provides similar functionality and is
available on all Cray Research systems.

EXAMPLES

The following examples illustrate how to use the st at and | st at system calls.

506 SR-2012 10.0

STAT(2) STAT(2)

Example 1: This example shows the simplest form of the st at system call. Thefollowing st at request
provides status information for a file whose path name is supplied as an argument.

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

mai n(i nt argc, char *argv[])

{
struct stat buf;
if (stat(argv[1l], &buf) == -1) {
perror("stat failed");
exit(1);
}
/* Data fromthe specified file's inode now available in buf. */
}

SR-2012 10.0 507

STAT(2)

STAT(2)

Example 2: This example shows how to usethel st at , r eadl i nk(2), and st at requests. It usesthelist of
file names supplied as arguments to produce a display listing each file name along with the size of each file. If
any filein the argument list is a symbolic link, the program also displays the path name of thefile that is the
target of thelink aswell asthat file'ssize. For adefinition of S_| FLNK, seethesys/ st at . h file.

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>

mai n(i nt argc, char *argv[])

{

SEE ALSO

char file[50], tfile[50];
struct stat buf;
int i;

for (i =1; i < argc; i++) {
strcpy(file, argv[i]);
if (Istat(argv[i], &buf) == -1) {
perror("lstat failed");
conti nue;
}
if ((buf.st_npde & S IFLNK) == S | FLNK) {
readl i nk(argv[i], tfile, 50);
if (stat(tfile, &uf) == -1) {
perror("stat failed");
exit(1);
}
strcat(file, "->");
strcat(file, tfile);
}
printf("% 50s

%\ n", file, buf.st_size);

/[* a symbolic |ink? */

accept (2), chnod(2), chown(2), cr eat (2), dnof r q(2), dup(2), f cnt | (2), I i nk(2), nrknod(2),
open(2), pi pe(2), readl i nk(2), socket (2), socket pai r (2),ti ne(2), unl i nk(2)

PXFSTAT(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication

SR-2165

508

SR-2012 10.0

STATFS(2)

NAME

statfs,fstatfs - Getsfile system information
SYNOPSIS

#i nclude <sys/statfs. h>

int statfs (char *path, struct statfs *buf, int Ilen,
int fstatfs (int fildes, struct statfs *buf, int Ilen,

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

STATFS(2)

int fstyp);
int fstyp);

Thest at f s system call returns a generic superblock describing afile system. It can be used to acquire
information about mounted and unmounted file systems, and usage is dightly different in the two cases. The

statfs andf st atfs system callsaccept the following arguments:
path Specifies path to afile system.

buf Pointsto a structure. It will befilled by the system call, as described in the following text.

len Specifies the number of bytes of information that the system should return in the structure.

The len argument must be no greater than si zeof (struct statfs), and ordinarily it contains
exactly that value; if it holds a smaller value, the system fills the structure with that number of bytes.
(This allows future versions of the system to grow the structure without invalidating older binary

programs.)
fstyp Specifiesfile system type.
fildes Specifies open file descriptor.

If the file system of interest is currently mounted, path must specify afile that resides on that file system. In this
case, the file system type is known to the operating system, and the fstyp argument must be 0. For an
unmounted file system, path must specify the block specia file containing it, and fstyp must contain the nonzero
file system type. In both cases, read, write, or execute permission of the specified fileis not required, but all

directories listed in the path name leading to the file must be searchable.

The st at f s structure to which buf points includes the following members:

SR-2012 10.0

509

STATFS(2) STATFS(2)

short f_fstyp; /* File systemtype */

| ong f_bsi ze; /* Bl ock size */

| ong f_frsize; /* Fragment size */

| ong f _bl ocks; /* Total nunber of blocks */

| ong f_bfree; /* Count of free bl ocks */

| ong f_files; /* Total nunber of file nodes */

| ong f_ffree; /* Count of free file nodes */

char f _fnane[6]; /* Vol umre name */

char f _fpack][6]; /* Pack name */

| ong f_priparts; /* Bitmap of primary partitions */

| ong f _secparts; /* Bitmap of secondary partitions */

| ong f_npart; /* Nunber of partitions (logical drives) in FS*/
| ong f _bi gsi ze; /* Block to "bigunit" allocation crossover */
| ong f_bigunit; /* Allocation size for large files */

| ong f _prinbl ks; /* Total nunber of 512 wd bl ocks in primry */
| ong f_prinfree; /* Nunber of free 512 wd blocks in primary */

| ong f_priaunit; /* Size of primary area allocation unit */

| ong f _secnbl ks; /* Total nunber of 512 wd bl ocks in secondary */
| ong f _secnfree; /* Nunber of free 512 wd bl ocks in secondary */
| ong f _secaunit; /* Size of secondary area allocation unit */

Thef st at f s system call issimilar, except that the file specified by pathin st at f s isidentified instead by an
open file descriptor, fildes, obtained from a successful cr eat (2), dup(2), f cnt | (2), open(2), or pi pe(2)
system call.

If fstyp indicates the network file system (NFS) file system, the fields of the structure have the following
meanings:

f frsize 0
f_bsize Block size on aremote system
f bl ocks Number of blocks on remote file system

f _bfree Free blocks on remote file system

f files 0

f ffree 0

f_fnane Name of host in which remote file system resides

NOTES
Thest at f s system call obsoletesthe ust at (2) system call for most purposes.

510 SR-2012 10.0

STATFS(2)

STATFS(2)

To be granted search permission to a component of the path prefix (for the st at f s system call), the active
security label of the process must be greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:

Privilege

Description

PRI V_DAC_OVERRI DE The process is granted search permission to a component of the path prefix via

PRI V_MAC_READ

the permission bits and access control list (st at f s system call only).

The process is granted search permission to a component of the path prefix via
the security label (st at f s system call only).

If the PRI V_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix.

RETURN VALUES

If st at f s completes successfully, avalue of O is returned; otherwise, avalue of —1isreturned, and er r no is

set to indicate the error.

ERRORS

Thest at f s orthef st at f s system cal failsif one of the following error conditions occurs:

Error Code
EACCES
EBADF
EBADF

EFAULT
El NVAL

ENOENT
ENOTDI R

EXAMPLES

Description
Search permission is denied for a component of the path prefix.
The fildes argument is not a valid open file descriptor.

The calling process does not have MAC read access to the file to which thefile
descriptor refers.

The buf or path argument points to an address that is not valid.

The fstyp argument is an not a valid file system type; the path argument is not a block
special file, and the fstyp argument is nonzero; the len argument is negative or is
greater than si zeof (struct statfs).

The specified file does not exist.
A component of the path prefix is not adirectory.

This example shows how to usethe st at f s and sysf s system callsto obtain file system information. The
st at f s request retrieves information for the file system containing the file whose name is passed as an
argument. Thesysf s system call converts the numerical file system type to a character-string format before

displaying it.

SR-2012 10.0

511

STATFS(2) STATFS(2)

#i ncl ude <sys/types. h>
#i ncl ude <sys/statfs. h>
#i ncl ude <sys/fstyp. h>
#i ncl ude <sys/fsid. h>

mai n(int argc, char *argv[])

{
struct statfs stats;
char buf[FSTYPSZ] ;
if (statfs(argv[1l], &stats, sizeof(struct statfs), 0) == -1) {
perror("statfs error");
exit(1);
}
if (sysfs(CGETFSTYP, stats.f_fstyp, buf) == -1) {
perror("sysfs (GETFSTYP) error");
exit(1);
}
printf("File systemtype = %\n", buf);
printf("Block size = %l\n", stats.f_bsize);
printf("Fragnent size = %\n", stats.f_frsize);
printf("Total nunmber of blocks on file system = %\ n", stats.f_bl ocks);
printf("Total nunber of free blocks = %\ n", stats.f_bfree);
printf("Total nunber of file nodes (inodes) = %\n", stats.f_files);
printf("Total nunber of free file nodes = %l\n", stats.f_ffree);
printf("Volunme nanme = %s\n", stats.f_fname);
printf("Pack nane = %\n", stats.f_fpack);
printf("Primary partition bit map = %\n", stats.f_priparts);
printf("Secondary partition bit mp = %\n", stats.f_secparts);
printf("Nunber of partitions = %l\n", stats.f_npart);
printf("Big file threshold = %d bytes ", stats.f_bigsize);
printf("or % blocks\n", stats.f_bigsize/stats.f_bsize);
printf("Big file allocation unit size = % bytes ", stats.f_bigunit);
printf("or %l blocks\n", stats.f_bigunit/stats.f_bsize);
printf("Nunmber of blocks in primary partitions = %\ n", stats.f_prinblks);
printf("Nunber of free blocks in primary partitions = %\ n",
stats.f_prinfree);
printf("Primary partition allocation unit size = %l ", stats.f_priaunit);
printf("bytes or % blocks\n", stats.f_priaunit/stats.f_bsize);
printf("Nunber of blocks in secondary partitions = %l\n",stats.f_secnbl ks);
printf("Nurmber of free blocks in secondary partitions = %\ n",
stats.f_secnfree);
printf("Secondary partition allocation unit size = % ",stats.f_secaunit);
printf("bytes or %l bl ocks\n", stats.f_secaunit/stats.f_bsize);
}

512 SR-2012 10.0

STATFS(2) STATFS(2)

SEE ALSO

chnod(2), chown(2), cr eat (2), dup(2), fcnt | (2),1 i nk(2), rknod(2), open(2), pi pe(2), r ead(2),
ti me(2),unlink(2),ustat (2),utime(2),wite(2)

f s(5) in the UNICOSFile Formats and Special Files Reference Manual, Cray Research publication SR-2014

SR-2012 10.0 513

STATVFS(2) STATVFS(2)

NAME

st at vfs, fstat vfs — Getsfile system information

SYNOPSIS

#i ncl ude <sys/statvfs. h>
int statvfs (const char *path, struct statvfs *buf);
int fstatvfs (int fildes, struct statvfs *buf);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The st at vf s system call obtains information about the file specified by path. All directories in the path name
leading to the file must be searchable, athough it is not necessary to have read, write, or execute permission to
thefile.

Thef st at vf s system call obtains the same information as st at vf s about the file referenced by fildes
Thest at vf s and f st at vf s system calls accept the following arguments:

path Pointsto afile’'s path name (st at vf s only).
buf Pointsto the st at vf s structure.
fildes Specifies afile descriptor (f st at vf s only).

The following flags can be returned inthe f _f | ag member:
ST_RDONLY read-only file system

ST_NOSUID setuid/setgid bitsignored by exec

ST _NOTRUNC does not truncate long file names

NOTES

The process must have read permission to the file via the security label. That is, the active security label of the
process must be greater than or equal to the security label of the file.

To be granted search permission to a component of the path prefix, the active security label of the process must
be greater than or equal to the security label of the component (st at vf s system calls only).

514 SR-2012 10.0

STATVFS(2) STATVFS(2)

A process with the effective privileges shown is granted the following abilities:
Privilege Description

PRI V_DAC OVERRI DE The process is granted search permission to a component of the path prefix via
the permission bits and access contral list (st at vf s system calls only).

PRI V_MAC READ The process is granted search permission to a component of the path prefix via
the security label (st at vf s system calls only).
PRI V_MAC_READ The process is granted read permission to the file via the security 1abel.

If the PRI V_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix (st at vf s system calls only) and is granted read permission to the file viathe
security label.

RETURN VALUES

If st at vfs or f st at vf s completes successfully, avalue of 0 isreturned; otherwise, avalue of —1is
returned, and er r no is set to indicate the error.

ERRORS
Thest at vf s or f st at vf s system call failsif one of the following error conditions occurs:
Error Code Description
El O An 1/O error occurred while reading the file system.
El NTR A signal was caught during execution of the function.

Thest at vf s system call failsif one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in resolving the path.
ENANVETOOLONG The supplied file name is too long.

ENOENT The specified file does not exist.

ENOTDI R A component of the path prefix is not a directory.

Thef st at vf s system call failsif the following error conditions occurs:

Error Code Description

EBADF The fildes argument is not avalid open file descriptor.

EBADF The processis not granted read permission to the file via the security label, and the

process does not have appropriate privilege.

SR-2012 10.0 515

STATVFS(2) STATVFS(2)

FILES
sydstatvfs.h

SEE ALSO

chnod(2), chown(2), cr eat (2), dup(2), exec(2),fcnt 1 (2), 1 i nk(2), rknod(2), open(2), pi pe(2),
read(2),ti me(2),unlinkuti me(2wite(2

516 SR-2012 10.0

STIME(2) STIME(2)

NAME

sti me — Setstime
SYNOPSIS

#i ncl ude <unistd. h>

int stinme (long *tp);
IMPLEMENTATION

Cray PVP systems
DESCRIPTION

Thest i me system call setsthe system time and date.

tp Points to the value of time as measured in seconds from 00:00:00 Greenwich mean time (GMT),
January 1, 1970. Only a process with appropriate privilege can use this system call.

NOTES
A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_TI ME The processis allowed to use this system call.

If the PRI V_SU configuration option is enabled, the super user or a process with the PERVBI TS_ SYSPARAM
permbit is allowed to use this system call.

RETURN VALUES

If sti me completes successfully, avalue of 0 isreturned; otherwise, avalue of —1isreturned, and er r no is
set to indicate the error.

ERRORS

The st i me system call failsif the following error condition occurs:

Error Code Description

EPERM The process did not have appropriate privilege to use this system call.
FILES

[usr/include/unistd.h Contains C prototype for the st i ne system call
SEE ALSO

time(2)

SR-2012 10.0 517

SUSPEND(2) SUSPEND(2)

NAME

suspend, r esune — Controls execution of processes

SYNOPSIS

#i ncl ude <sys/category. h>
#i ncl ude <unistd. h>

int suspend (int -category, int id);
int resume (int category, int id);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The suspend system call makes a process or group of processes ineligible to execute; the r esune system
call restores a process or group of processes to be dligible to execute.

Thesuspend and r esune system calls accept the following arguments:
category Specifies one of the following categories. C_PROC, C_PGRP, or C_SESS

id Specifies the PID, PGRP, or SID corresponding to the category. A PID of 0 means that the current
processis affected, and a PID of —1 means that all processes except the current process are
affected. Similarly, a PGRP of 0 means that all processes in the current process group are affected,
and a PGRP of —1 means that all processes not in the current process group are affected. A SID of
0 means that all processes in the current session are affected. System processes, such as processes
0 and 1, are never suspended.

The calling process must be the owner of the specified process or have appropriate privilege. If an affected
process is not part of the calling process’ session, the calling process must have appropriate privilege.
NOTES

The active security label of the calling process must be equal to the active security label of every affected
process.

A process with the effective privileges shown is granted the following abilities:

Privilege Description

PRI V_ADM N The calling processis alowed to suspend or resume a process that is not part of
its on.

PRI V_MAC WRI TE The calling process is allowed to override the security label restrictions for

suspend and resume.
PRI V_POMER The calling process is considered the owner of the specified process.

518 SR-2012 10.0

SUSPEND(2) SUSPEND(2)

If the PRI V_SU configuration option is enabled, the super user is considered the owner of every affected
process and is allowed to suspend or resume a process that is not part of itssession. If the PRI V_SU
configuration option is enabled, the super user is allowed to override security label restrictions.

RETURN VALUES

If suspend or r esune completes successfully, avalue of 0 is returned; otherwise, avalue of -1 isreturned,
and er r no isset to indicate the error.

ERRORS
Thesuspend or r esune system call failsif one of the following error conditions occurs:
Error Code Description
EAGAI N One of the processes being suspended was never in a suspendible state during the last

120 seconds. The suspend system call may be attempted again.

El NTR An asynchronous signal (such asi nt er r upt or qui t), which you have elected to
catch, occurred during asuspend system call. When execution resumed after
processing the signal, the interrupted system call returned this error condition.

El NVAL One of the arguments contains a value that is not valid.

EPERM The calling process does not own an affected process and does not have appropriate
privilege.

EPERM The calling process is attempting to suspend or resume a process that is not part of its
session and does not have appropriate privilege.

ESRCH No process can be found that matches the category and id reguests.

ESRCH The calling process does not meet security label requirements and does not have
appropriate privilege.

ESRCH The calling process does not own any processes in the requested process group or

session and does not have appropriate privilege.

FORTRAN EXTENSIONS
The suspend system call can be called from Fortran as afunction:
| NTEGER category, id, SUSPEND, |
| = SUSPEND (category, id)
Ther esune system cal can be called from Fortran as afunction:

| NTEGER category, id, RESUME, |
| = RESUME (category, id)

SR-2012 10.0 519

SUSPEND(2)

EXAMPLES

520

SUSPEND(2)

The following examples show how to usethe suspend and r esumne system calls to suspend and resume

program execution.

Example 1. This program suspends itself using the suspend request. When the process resumes, it computes

the number of seconds it was in a suspended state.

#i ncl ude <sys/category. h>
#i ncl ude <sys/types. h>

#i ncl ude <tine. h>

#i ncl ude <uni std. h>

mai n()
{

time_t stinme, etineg;

stime = time((long *) 0);

i f (suspend(C PROC, 0) == -1) {
perror("suspend failed");
exit(1);

}

etime = tinme((long *) 0);

printf("Program was suspended for % d seconds\n",

etime - stinme);

SR-2012 10.0

SUSPEND(2) SUSPEND(2)

Example 2: Using ther esumne system call, this program resumes any suspended process whose process
identification number (PID) is supplied as an argument.

#i ncl ude <sys/category. h>
#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

mai n(i nt argc, char *argv[])

{
int pid;
sscanf (argv[1], "%", &pid); [/* convert pid string to int */
if (resume(C PROC, pid) == -1) {
perror("resunme failed");
exit(1);
}
}
FILES
[fusr/include/unistd.h Contains C prototype for the suspend and r esune system calls
SEE ALSO

suspend(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2012 10.0 521

SYMLINK (2) SYMLINK (2)

NAME
sym i nk — Makesasymboliclink to afile

SYNOPSIS

#i ncl ude <unistd. h>
int symink (char *namel, char *name2);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thesym i nk system call makes a symbolic link to afile. It accepts the following arguments:

namel Specifiesthe string used in creating the symbolic link.

name2 Specifies the name of the file created.

A symbolic link name2 is created to namel. Either name may be an arbitrary path name; the files do not need
to be on the same file system.

NOTES

The active security label of the calling process must fall within the security label range of the file system on
which name2 will reside.

To be granted search permission to a component of the path prefix of name2, the active security label of the
process must be greater than or equal to the security label of the component.

To be granted write permission to the parent directory of name2, the active security label of the process must be
equal to the security label of the directory.

A process with the effective privileges shown is granted the following abilities:
Privilege Description

PRI V_DAC OVERRI DE The process is granted search permission to every component of the name2 path
prefix viathe permission bits and access control list.

PRI V_DAC OVERRI DE The process is granted write permission to the parent directory of name2 viathe
permission bits and access control list.

PRI V_MAC READ The process is granted search permission to every component of the name2 path
prefix viathe security label.

PRI V_MAC WRI TE The process is granted write permission to the parent directory of name2 viathe
security label.

522 SR-2012 10.0

SYMLINK (2) SYMLINK (2)

If the PRI V_SU configuration option is enabled, the super user is granted search permission to every
component of the path prefix and is granted write permission to the parent directory of name2.

RETURN VALUES

If sy i nk completes successfully, avalue of 0 isreturned; otherwise, avalue of —1 isreturned, and er r no
is set to indicate the error.

ERRORS

Thesym i nk system call failsif one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix of name2.

EACCES Write permission is denied to the parent directory of name2.

EEXI ST Thefilereferred to by name2 already exists.

EFAULT The namel or name2 argument points outside the process allocated address space.

EFLNEQ The active security label of the calling process does not fall within the range of the file
system on which name2 will reside.

El NVAL The name2 argument contains a character with the high-order bit set.

El O An1/O error occurred during aread from or write to the file system.

EMLI NK Too many symbolic links were encountered in trand ating name2.

ENAMETOOLONG A component of either namel or name2 exceeds 255 characters, or either namel or
name2 exceeds 1023 characters.

ENOENT A component of the path prefix of name2 does not exist.

ENCSPC The directory in which the entry for the new symbolic link is being placed cannot be

extended because of one of the following:

® Thereisno space left in the file system to make the directory longer. Sometimes,
but not always, the new directory name added by sy i nk requires that an
additional block be allocated.

o There was not enough space (one block) to write the name2 string to disk.

ENCSPC The new symboalic link cannot be created because no space left is on the file system
that will contain the link.

ENGSPC No free inodes exist on the file system on which the file is being created.

ENOTDI R A component of the path prefix of name2 is not a directory.

SR-2012 10.0 523

SYMLINK (2)

524

EQACT

EQGRP

EQUSR

ERCFS

SYMLINK (2)

The new symbolic link cannot be created for one of the following reasons. the quota
of inodes on the file system on which the file is being created has been exhausted for
the current account, the account’ s quota of disk blocks on the file system that will
contain the link has been exhausted, or the directory in which the entry for the new
symbolic link is being placed cannot be extended because the account’ s quota of disk
blocks on the file system containing the directory has been exhausted.

The new symboalic link cannot be created for one of the following reasons. the quota
of inodes on the file system on which the file is being created has been exhausted for
the current group, the group’ s quota of disk blocks on the file system that will contain
the link has been exhausted, or the directory in which the entry for the new symbolic
link is being placed cannot be extended because the group’ s quota of disk blocks on
the file system containing the directory has been exhausted.

The new symboalic link cannot be created for one of the following reasons. the quota
of inodes on the file system on which the file is being created has been exhausted for
the current user, the user’s quota of disk blocks on the file system that will contain the
link has been exhausted, or the directory in which the entry for the new symbolic link
is being placed cannot be extended because the user’s quota of disk blocks on the file
system containing the directory has been exhausted.

The file name2 would reside on aread-only file system.

SR-2012 10.0

SYMLINK (2) SYMLINK (2)

EXAMPLES

This example shows how to usethe syl i nk system call to create a symbolic link. Thefollowing syml i nk
request makes a symbolic link to afile from information supplied as arguments. The first argument, ar gv[1] ,
isthe path name of an existing file or directory that is the target of the new link. The second argument,

ar gv[2] , isthe name of the new link. The program later forcesan| s -1 display of the new link.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>

mai n(i nt argc, char *argv[])

{
static char cmd[50] = {"Is -1 "};
if (argc < 3) {
fprintf(stderr, "lInsufficient arguments supplied!/'\n");
exit(1);
}
if (symink(argv[1], argv[2]) == -1) {
perror("symink failed");
exit(1);
}
strcat(cmd, argv[2]);
system(cmd) ;
}
FILES
{usr/include/unistd. h Contains C prototype for thesymi i nk system call
SEE ALSO

i nk(2),] st at (2),readl i nk(2), st at (2), unl i nk(2)
I n(1) inthe UNICOSUser Commands Reference Manual, Cray Research publication SR-2011

SR-2012 10.0 525

SYNC(2)

NAME

sync — Flushes system buffers out of main memory

SYNOPSIS

#i nclude <unistd. h>
void sync (void);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

SYNC(2)

The sync system call causes al information in memory that should be on disk to be flushed out of main

memory, including modified inodes and delayed block 1/0.

Information is flushed to the logical device cache (a second-level cache) or disk if alogical device cacheis not

configured. Thel dsync(8) command flushes data from the logical device cache to disk.

Use sync in programs that examine afile system (for example, f sck(8) and df (1)). You must execute sync

before halting or rebooting the system.
The sync system call issues the write request; it may return before al of the datais written.

RETURN VALUES

None

FORTRAN EXTENSIONS

The sync system call can be called from Fortran as a function:

| NTEGER SYNC, |
| = SYNC ()

Alternatively, sync can be called from Fortran as a subroutine, because there is no return value:
CALL SYNC ()

FILES

fusr/include/unistd. h Contains C prototype for the sync system call

526 SR-2012 10.0

SYNC(2) SYNC(2)

SEE ALSO
fsync(2),ioctl (2)
df (1), sync(2) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

f sck(8), | dsync(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

General UNICOS System Administration, Cray Research publication SG-2301

SR-2012 10.0 527

SYSCONF(2)

NAME

SYSCONF(2)

sysconf — Retrieves system implementation information

SYNOPSIS

#i ncl ude <unistd. h>
l ong sysconf (int

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX, XPG4

DESCRIPTION

528

name) ;

Thesysconf system call provides amethod for an application to determine the current value of a
configurable system limit or option. It accepts the following argument:

name Represents the system variable to be queried.

The values for name specified by the POSIX P1003.1 standard are listed in the following with a brief
description of the value each returns:

_SC_ARG_MAX
_SC_CHI LD_MAX
_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PI D_MAX

_SC_SAVED | DS

_SC_STREAM MAX
_SC_TZNANME_MAX
_SC_Ul D_MAX

_SC_VERSI ON

The maximum length of argumentsin bytesfor exec().

The maximum number of processes allowed per user.

The number of clock ticks per second.

The POSIX job control option has been implemented; if true, itis1.
The multigroups size; if multigroups are not implemented, itisO.
The maximum number of open files.

The maximum value for aprocess ID. (This nameisno longer specified by
POSIX P1003.1.)

Theexec() routine saves thereal UID and GID of the caller for later use; if
true, itis 1.

The number of streams that one process can have open at any given time.
The maximum number of bytes supported for the name of atime zone.

The maximum value for auser ID. (Thisnameis no longer specified by
POSIX P1003.1.)

The version/revision of the POSIX standard used for this implementation.

SR-2012 10.0

SYSCONF(2) SYSCONF(2)

The values for name specified by the POSIX P1003.2 standard are listed in the following with a brief
description of the value each returns:

_SC_BC_BASE_MAX
_SC_BC_DI M_MAX
_SC _BC_SCALE_MAX

_SC_BC_STRI NG_MAX
_SC_COLL_VEI GHTS_MAX

_SC_EXPR_NEST_MAX

_SC_LI NE_MAX

_SC_RE_DUP_MAX

_SC_2_VERSI ON

_SC 2 _C DEV

_SC_2_FORT_DEV

_SC_2_FORT_RUN

_SC 2 LOCALEDEF
_SC_2_SW.DEV

_SC 2 CBIND
_SC_2_CHAR_TERM

_SC 2_C VERSI ON

The maximum obase value allowed by the bc (1) utility.

The maximum number of elements permitted in an array by the bc (1) utility.
The maximum scale value alowed by the bc (1) utility.

The maximum length of a string constant accepted by the bc (1) utility.

The maximum number of weights that can be assigned to an entry of the
LC _COLLATE order keyword in the locale definition file.

The maximum number of expressions that can be nested within parentheses
by the expr (1) utility.

Unless otherwise noted, the maximum length, in bytes, of a utility’sinput line
(either standard input or another file), when the utility is described as
processing text files. The length includes room for the trailing newline
character.

The maximum number of repeated occurrences of aregular expression
permitted when using the interval notation m,n.

The C-language devel opment facilities support the POSI X P1003.2
C-Language Bindings Option.

The system supports the POSIX P1003.2 C-Language Development Utilities
Option.

The system supports the POSIX P1003.2 FORTRAN Development Utilities
Option.

The system supports the POSIX P1003.2 FORTRAN Runtime Utilities
Option.

The system supports the POSIX P1003.2 Locale Creation Option.

The system supports the POSIX P1003.2 Software Development Utilities
Option.

The system supports the POSIX P1003.2 C-Language Bindings Option.

The system supports at least one terminal type capable of al operationsin the
POSIX standard.

The version of the POSIX P1003.2 interfaces used for thisimplementation.

The values for name specified by the X/Open XPG4 standard are listed in the following with a brief description
of the value each returns:

_SC_PASS_MAX
_SC_XOPEN_VERSI ON

The maximum size of a password.
The version of the X/Open standard supported by this implementation.

SR-2012 10.0 529

SYSCONF(2)

530

_SC_XOPEN_CRYPT
_SC_XOPEN_ENH_| 18N

_SC_XOPEN_SHM
_SC_LOG N_NAVE_MAX
_SC_TTY_NAME_MAX
_SC_GETGR_R_SI ZE_MAX

_SC_GETPW.R_SI ZE_MAX

SYSCONF(2)

The system supports the X/Open Encryption Feature Group.

The system supports the X/Open Enhanced Internationalization Feature
Group.

The system supports the X/Open Shared Memory Feature Group.
The maximum length of alogin name.
The maximum length of atty path name.

The maximum size of data buffers used by theget gr gi d_r and
get gr nam r library functions.

The maximum size of data buffers used by theget pwgi d_r and
get pwnam r library functions.

The vaues for name that are unique to Cray Research are listed in the following with a brief description of the
value each returns. These unique values will not change.

_SC_CRAY_AVL
_SC_CRAY_BDM
_SC_CRAY_BWMM
_SC_CRAY_CHI PSZ
_SC_CRAY_CPCYCLE
_SC_CRAY_EMA
_SC_CRAY_HPM
_SC_CRAY_I CS
_SC_CRAY_MFSUBTYPE
_SC_CRAY_MFTYPE
_SC_CRAY_NBANKS
_SC_CRAY_NBUF
_SC_CRAY_NCPU
_SC_CRAY_NDI SK
_SC_CRAY_ NVOUNT
_SC_CRAY_NPTY

_SC_CRAY_NUSERS
_SC_CRAY_NVHI SP
_SC_CRAY_OPEN_MAX

Additional vector logical hardware; if present, itis 1.
Bidirectional memory enabled; if true, itis1.

Bit matrix multiply unit; if present, itis 1.

The memory chip size.

The CPU cycletime in picoseconds.

Extended memory addressing hardware; if present, itis1.
Hardware performance monitor hardware; if present, it is 1.

The 1/O subsystem type; | OS_MODEL_E.

The mainframe subtype (see sys/ sn. h and sys/ nachd. h).
The mainframe type (see sys/ sn. h and sys/ machd. h for al systems).
The number of memory banks on the Cray Research mainframe.
Number of 512-word system 1/O cache blocks.

The number of CPUs currently available.

The number of disk devices configured on the system.

The number of file-system mount points configured in the system.

The maximum number of pty devices configured into the currently running
version of the operating system.

The number of users configured.
The number of VHISP channels to the SSD solid-state storage device.
The value of the largest open file limit supported by the kernel.

SR-2012 10.0

SYSCONF(2)

_SC_CRAY_CS_HZ

_SC_CRAY_RELEASE

_SC_CRAY_SCTRACE
_SC_CRAY_SDS
_SC_CRAY_SECURE_MAC

_SC_CRAY_SECURE_SYS

_SC_CRAY_SERI AL
_SC_CRAY_SSD

_SC_CRAY_SYSMEM
_SC_CRAY_USRVEM

RETURN VALUES

SYSCONF(2)

The frequency per second (usually 100) with which the operating system
clock routineis called.

Therelease leve of the currently running version of the operating system.
Therelease level is multiplied by 1000 (for example, release level 5.0 = 5000,
release level 5.1 = 5100, and so on).

System call timing; if on, itis 1.
Size of secondary data segment (SDS) memory in 512-word blocks.

The system supportssyshi gh and sysl ow security labels. Thisimplies
that file systems have been appropriately labeled.

The system has been generated with security enabled. Always returns TRUE
(nonzero).

The system serial number (seesys/ sn. h).
Size of the SSD in words.
The size of the kernel and tables, in words.

The user memory available, in words.

If name not avalid value, thesysconf system call returnsavalue of —1, and setser r no to EI NVAL. If
nameisvalid, sysconf returnsthe current variable value for the system.

EXAMPLES

This example shows how to usethe sysconf system call to retrieve system implementation information. The
following sysconf requestsillustrate some of the different types of information available through this call.
Because sysconf returns the mainframe type as an integer, the programmer creates a table to convert the
mainframe type to a more recognizable character string.

SR-2012 10.0

531

SYSCONF(2) SYSCONF(2)

#i ncl ude <uni std. h>

mai n()
{
/* The follow ng table based upon the mainfrane definitions
in the sys/machd. h and sys/ machcons. h header files. */
static char *nftype[] = {"", "CRAY Y-MP", "", "CRAY C90"};

printf("The mainframe type = %\n",
nftype[sysconf (_SC CRAY_M-TYPE)]);

printf("The current nunber of available cpu's = %d\n",
sysconf (_SC_CRAY_NCPU)) ;

printf("The size of the kernel and tables = % d words\n",
sysconf (_SC_CRAY_SYSMEM)) ;

printf("The anmpunt of user nmenory available = % d words\n",
sysconf (_SC_CRAY_USRMVEM)) ;

printf("The nunber of clock ticks per second = % d\n",
sysconf (_SC CLK TCK));

}
FILES
/usr/incl ude/sys/ machd. h Contains machine-dependent information
{usr/include/sys/sn.h Contains Cray Research mainframe hardware information
fusr/include/sys/tfmh Defines TFM _UDB_6
/usr/include/unistd.h Contains C prototype for the sysconf system call
SEE ALSO

pat hconf (2)
bc(1), expr (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR-2011
General UNICOS System Administration, Cray Research publication SG-2301

532 SR-2012 10.0

SYSFS(2) SYSFS(2)

NAME
sysf s — Getsfile system type information

SYNOPSIS

#i ncl ude <sys/fstyp.h>
#i ncl ude <sys/fsid. h>

int sysfs (int opcode, char *fsname);
int sysfs (int opcode, int fsindex, char *buf);
int sysfs (int opcode);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thesysf s system call returns information about the file system types configured in the system. The number
of arguments accepted by sysf s varies and depends on the opcode.

opcode Specifies function to perform. The following are valid opcode values:

GETFSI ND Tranglates fsname, a null-terminated file system identifier, into afile system type
index.

CETFSTYP Tranglates fs_index, afile system type index, into a null-terminated file system
identifier and writesiit into the buffer to which buf points. This buffer must be at
least of size FSTYPSZ, asdefinedinsys/ f st yp. h.

CGETNFSTYP Returns the total number of file system types configured in the system.
fsname Specifiesfile system identifier.
fs index Specifiesfile system type index.
buf Pointsto a buffer.

RETURN VALUES

If sysf s completes successfully, it returns the file system type index if opcode is GETFSI ND, avaue of O if
opcode is GETFSTYP, or the number of file system types configured if opcodeis GETNFSTYP. Otherwise, a
value of -1 isreturned, and er r no is set to indicate the error.

SR-2012 10.0 533

SYSFS(2)

ERRORS

SYSFS(2)

Thesysf s system call failsif one of the following error conditions occurs:

Error Code
EFAULT
El NVAL

EXAMPLES

This example shows how to usethe sysf s and st at f s(2) system calls to obtain file system information. The
st at f s(2) request retrieves information for the file system containing the file whose name is passed as an
argument. Thesysf s system call converts the numerical file system type to a character-string format before

534

displaying it.

system.

#i ncl
#i ncl
#i ncl
#i ncl

mai n(

{

Description
The buf or fsname argument points to a user address that is not valid.

The fsname argument points to afile system identifier that is not valid; fs_indexisO0, or
not valid; opcode is not valid.

Thefinal sysf s reguest determines the total number of file system types configured in the

ude <sys/types. h>
ude <sys/statfs. h>
ude <sys/fstyp. h>
ude <sys/fsid. h>

int argc, char *argv[])
struct statfs stats;

char buf[FSTYPSZ];
int nconfig;

if (statfs(argv[l], &stats, sizeof(struct statfs), 0) == -1) {
perror("statfs error");
exit(1);

}

if (sysfs(GETFSTYP, stats.f_fstyp, buf) == -1) {
perror("sysfs (CGETFSTYP) error");
exit(1);

}

printf("File systemtype => %\n", buf);

printf("Block size = %\n", stats.f_bsize);

printf("Fragnent size = %\n", stats.f_frsize);

printf("Total nunber of blocks on file system= %\ n", stats.f_bl ocks);
printf("Total number of free blocks = %\n", stats.f_bfree);
printf("Total number of file nodes (inodes) = %l\n", stats.f_files);
printf("Total nunber of free file nodes = %l\n", stats.f_ffree);
printf("Volunme nane => %\n", stats.f_fnane);

printf("Pack nane => %\n\n", stats.f_fpack);

SR-2012 10.0

SYSFS(2)

SYSFS(2)
if ((nconfig = sysfs(GETNFSTYP)) == -1) {
perror("sysfs (GETNFSTYP) error");
exit(1);
}
el se {
printf("Nunber of file systemtypes configured = %\ n", nconfig);
}
}
SEE ALSO
statfs(2)

SR-2012 10.0 535

SYSSGI(2) SYSSGI(2)

NAME

syssgi — Provides asystem interface to Silicon Graphics workstations

SYNOPSIS

#i ncl ude <sys/syssgi.h>

ptrdi ff_t syssgi (int request, ...);
IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

Thesyssgi cal isasystem interface specific to Silicon Graphics workstations. It accepts the following
argument:

request Represents the requested interface. The currently supported values for request are listed below.

The following request values are interfaces that implement various| i bc functions. They are al
subject to change and should not be called directly by applications.

SG _GETASH
SG _SETASH

SG _GETPRID

SG _GETDFLTPRI D
SG@ _SETPRI D

SG _GETSPI NFO
SG _SETSPI NFO
SG _NEWARRAYSESS

The following request values are interfaces that implement various| i bar r ay functions. They
are all subject to change and should not be used directly by applications.

SG _ENUMASHS

SG _GETARSESS
SG _GETASMACHI D
SG _PI DSI NASH
SG _SETASMACHI D

536 SR-2012 10.0

SYSSGI(2) SYSSGI(2)

RETURN VALUES

If syssgi completes successfully, a command-dependent value (default of 0) isreturned; otherwise, avalue
of - 1 isreturned, and er r no is set to indicate the error.

ERRORS
Thesyssgi system cal failsif one of the following conditions occurs:
Error Code Description
EFAULT A buffer isreferenced which isnot in avalid part of the calling program’ s address
space.
ENOVEM The specified buffer was not large enough to hold the entire list of process IDs

returned by the SA@ _ Pl DSI NASH function.

SR-2012 10.0 537

TABINFO(2) TABINFO(2)

NAME

t abi nf o, t abr ead — Returns information on and reads a system table

SYNOPSIS
#i ncl ude <sys/table.h>
int tabinfo (char *name, struct tbs *info);
int tabread (char *name, char *buf, |ong nbytes, |ong offsat);

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

Thet abi nf o andt abr ead system calls let you read a system table without reading / dev/ kmem The

t abi nf o call describes table characteristics: |ocation, header length, number of entries, and size of entry.
Using theinformation returned by t abi nf o0, you can create a user buffer into which t abr ead will read all or
part of atable.

If you have read permission on/ dev/ kimem you will have unlimited access with t abi nf o and t abr ead,
regardless of the table permissions. The calls et you process atable in segments; the requirement for an
arbitrarily large buffer does not exist. Using the information fromt abi nf o, you can calculate buffer sizes.

Thet abi nf o and t abr ead system calls accept the following arguments:

name Pointsto atable name (defined insys/ t abl e. h).

info Pointsto thet bs structure to receive the information.

buf Points to the character to which the buffer pointsto receive the table.

nbytes Specifies the number of bytes to be read.

offset Specifies the number of bytes after the table base at which t abr ead isto start reading.

NOTES

Thet abi nf o andt abr ead system callsare similar tothenl i st (3C) library routine and have some of the
same functionality.

If the process does not have read permissionto/ dev/ kimemand the table permissions restrict access, the
process must belong to the appropriate table group, or the process must have appropriate privilege.

If the SECURE_MAC option is enabled, the calling process usesthet abr ead system call to retrieve process
table information and the active security label of the process table entry is greater than the active security 1abel
of the calling process, the returned process table entry is zero-filled. A process with appropriate privilegeis
allowed to override this behavior.

538 SR-2012 10.0

TABINFO(2) TABINFO(2)

A process with the effective privileges shown is granted the following abilities:
Privilege Description
PRI V_ADM N The process is granted access to tables whose permissions restrict access.

PRI V_DAC_OVERRI DE The process is granted search permission to every directory component of the
/ dev/ kmempath prefix viathe permission bits and access control list.

PRI V_DAC_OVERRI DE The process is granted read permission to/ dev/ kmemviathe permission bits
and access control lists.

PRI V_MAC READ The process is granted search permission to every directory component of the
/ dev/ kmempath prefix viathe security label.

PRI V_MAC READ The process is granted read permission to / dev/ knmemviathe security label.

PRI V_MAC_READ The process is allowed to read al processtable entries. That is, process table

entries are not zero-filled.
If the PRI V_SU configuration option is enabled, the super user is alowed to override all t abr ead and
t abi nf o restrictions.
RETURN VALUES

If t abi nf o ort abr ead completes successfully, avaue of 0 is returned; otherwise, avalue of —1 isreturned,
and er r no is set to indicate the error.

ERRORS
Thet abi nf o ort abr ead system call failsif one of the following error conditions occurs:
Error Code Description
EACCES Accessis not permitted.
EFAULT The address of info or buf isillegal.
El NVAL The name argument points to an undefined table name.
EXAMPLES

The following example shows how to usethet abi nf 0 and t abr ead system callsto retrieve information
from asystem table. In this case, the entire file table from the system is read into the process's memory space.

SR-2012 10.0 539

TABINFO(2) TABINFO(2)

#i ncl ude <sys/table. h>
#i ncl ude <stdlib. h>

/* The structure of type tbs defined as follows (from <sys/table.h>):

struct tbs {

char nane[9] ; - ASCIl name of table entry -
| ong *addr, - Start address of table (word *) -
head, - Length of table header (chars) -
ent, - Nunber of entries -
| en, - Length of each entry (chars)-
per m - Perm ssion word -
ool
mai n()
{

struct tbs tinfo;
char *tl oc;

| ong tsize;

i f (tabinfo(FILETAB, &tinfo) == -1) {
perror("tabinfo failed");
exit(1);

}

tsize = tinfo.head + (tinfo.ent * tinfo.len);
tloc = (char *) malloc(tsize);

if (tabread(FILETAB, tloc, tsize, 0) == -1) {
perror("tabread failed");
exit(1);
}
}
FILES
/usr/include/sys/table.h Contains user or system structure declaration
SEE ALSO

nl i st (3C) inthe UNICOS System Libraries Reference Manual, Cray Research publication SR-2080

540 SR-2012 10.0

TARGET(2) TARGET(2)

NAME

t ar get — Retrieves or modifies machine characteristics

SYNOPSIS
#i nclude <sys/target. h>
int target (int reguest, struct target *addr);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thet ar get system call provides a mechanism for compilers to determine the physical characteristics of the
host system.

Users may retrieve machine characteristics for the machine on which they are running (host machine) or for the
machine for which they are targeting code (target machine). Only a process with appropriate privilege can
modify characteristics for the target machine.

Thet ar get system call accepts the arguments:

request Specifies the type of request; request may be one of the following:
MC CGET_SYSTEM Retrieves the host machine characteristics.
MC CGET_TARGET Retrieves the target machine characteristics.

MC _SET TARGET Modifies the target machine characteristics
(on all systems except Cray MPP systems).

addr Specifies the address of a structure of typet ar get .
NOTES
A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_ADM N The process is alowed to modify characteristics of the target machine.

If the PRI V_SU configuration option is enabled, the super user or a process with the PERVBI TS_ SYSPARAM
permbit is allowed to modify characteristics of the target machine.

RETURN VALUES

If t ar get completes successfully, avalue of O is returned; otherwise, avalue of -1 isreturned, and er r no is
set to indicate the error.

SR-2012 10.0 541

TARGET(2) TARGET(2)

ERRORS
Thet ar get system call failsif one of the following error conditions occurs:
Error Code Description
EFAULT Thet ar get structure address is not within the user’s bounds.
El NVAL Therequest field is not valid.
EPERM The process tried to usethe MC_SET _TARGET request but did not have appropriate
privilege.
EXAMPLES

The following example shows how to usethet ar get system call to retrieve the characteristics of the target
machine. The field containing the primary machine type name (ntc_pmnt inthet ar get structure) contains
character data, but the field typeisdefinedas | ong i nt .

#i ncl ude <sys/target. h>

mai n()
{
struct target data;
if (target(MC _GET_TARGET, &data) == -1) {
perror("target failed");
exit(1l);
}

printf("Primary machi ne type nane = %\n", &data.nt_pnt);
printf("Nunber of nenory banks = % d\n", data.nt_bank);
printf("Nunber of started processors = %d\n", data.nt_ncpu);
printf("lInstruction Buffer Size (words) = %d\n", data.nt_ibsz);
printf("Main nenory size (words) = %d\n", data.nt_mnsz);
printf("Nunber of clocks for a nenory read = % d\n", data.nt_nspd);
printf("Cl ock period in picoseconds = %d\n", data.nt_clk);
printf("Nunber of cluster register sets = %d\n", data.nt_ncl);
printf("Menory bank busy tinme in clocks = %d\n", data.nt_bbsy);
printf("Nunber of clock ticks per second = % d\n", data.nt_cl ktck);
printf("System serial nunber % d\n", data.nct_serial);

printf("UN COS rel ease | evel % d\n", data.nc_rls/1000);

SEE ALSO
t ar get (1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

542 SR-2012 10.0

TCGETPGRP(2) TCGETPGRP(2)

NAME
t cget pgr p,tcset pgr p — Gets or sets terminal process group 1D of the foreground process group

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <unistd. h>

pidt tcgetpgrp (int Cfildes);
pid_t tcsetpgrp (int fildes, pid_t porp_d);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Thet cget pgr p system call returns the value of the process group ID of the foreground process group; the
t cset pgr p system call setsthe foreground process group ID to pgrp_id.

Thet cget pgrp andt cset pgr p system calls accept the following arguments:

fildes Specifies the controlling terminal of the calling process, and that controlling terminal must be
currently associated with the session of the calling process.

porp_id Matches a process group ID of a process in the same session as the calling process.

NOTES

Thet cget pgr p system call isalowed from a process that is a member of a background process group;
however, the information may subsequently be changed by a process that is a member of a foreground process

group.
RETURN VALUES

If t cget pgr p completes successfully, it returns the process group ID of the foreground process group
associated with the terminal; otherwise, avalue of -1 isreturned, and er r no is set to indicate the error.

If t cset pgr p completes successfully, avalue of 0 is returned; otherwise, avalue of —1 isreturned, and
er r no is set to indicate the error.

SR-2012 10.0 543

TCGETPGRP(2) TCGETPGRP(2)

FILES
/usr/include/sys/types.h Contains types required by ANSI X3J11
/usr/include/unistd.h Contains C prototype for thet cget pgr p andt cset pgr p system
cals

544 SR-2012 10.0

_TFORK(2) _TFORK(2)

NAME
_t f or k — Creates a multitasking process

SYNOPSIS
#i ncl ude <unistd. h>
int _tfork (void);

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The _t f or k system call creates a process much asf or k(2) does. The main difference between f or k(2) and
_tforkisthat aprocesscreated by t f or k shares the same memory area as the parent process. Because the
calling process and the created process share the same memory area, the two processes have a sibling-sibling
relationship rather than a parent-child relationship. The two processes are said to share a multitasking group.
These processes have the following differences from normal processes:

e The process ID (PID) returned when the last process in the multitasking group exits is the pid of the first
process to exist in the group. The parent pid of all processes in the multitasking group is the parent pid of
the first process in the group. Only the last process in the group can be detected by thewai t (2) call. Each
process, except the last one to exit, does so without signaling its parent process.

® Whenever aprocess from a multitasking group is connected to a physical CPU, the process has a cluster.
The cluster isloaded when the first process from the group is connected, and it remains loaded as long as
any process in the group is connected.

Ther est ar t (2) system call and any of the exec(2) family of system calls are not allowed during
multitasking. Using them resultsin the EI NVAL error.

RETURN VALUES

If _tfork completes successfully, it returns to each processitsown pid. If _t f or k fails, avalue of -1 is
returned. Because the two processes share amemory area, acall to_t f or k from C does not function as
expected, because the stack is not copied; therefore, _t f or k ismost commonly called from a multitasking
library.

FILES
[usr/include/unistd.h Contains C prototype for the _t f or k system call

SEE ALSO
exec(2),fork(2),restart (2),wait (2)

SR-2012 10.0 545

THREAD(2) THREAD(2)

NAME

t hr ead — Registers this process as a thread

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/thread. h>

int thread (struct thread *buf);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

Thet hr ead system call registers this process as a thread and requests special handling by the kernel. It
accepts the following argument:

buf Specifies the address of the thread communication area.

The library uses _t f or k(2) and this system call to implement microtasking. Thet hr ead structure and
context structure are used for fast communication between the library and the kernel. A t hr ead structure
includes the following members:

| ong pi d; /* Pid of this process */

| ong wakeup; /* Request by library to wakeup this proc */
| ong gi veup; /* Request by kernel to give up cpu */

| ong cont ext; /* Pointer to context save area */

Thewakeup flag may be set by a sibling process in a multitasking group to request that the kernel wake up a
sleeping sibling. The gi veup flag is set by the kernel to request that the thread voluntarily give up the CPU.
Thisis done so that the thread may get to a convenient stopping point and thereby allow the other threads to

progress. If the thread does not give up the CPU promptly after gi veup is set, the kernel will take the CPU.

If the process at any time sets the context pointer to refer to an area outside its address space or shrinks its
address space by using sbr eak(2) so that thet hr ead structure is no longer included, the kernel revokes the
thread status of the process and sends the SI GERR signal to the process.

RETURN VALUES

546

If t hr ead completes successfully, avalue of O isreturned; otherwise, avalue of -1 isreturned, and er r no is
set to indicate the error.

SR-2012 10.0

THREAD(2) THREAD(2)

ERRORS
Thet hr ead system call failsif one of the following error conditions occurs:
Error Code Description
EBUSY The processis already athread.
EFAULT Thet hr ead structure to which buf pointsis not fully contained in the process address
space.
El NVAL The pi d valueinthet hr ead structure is not the correct value for this process.
SEE ALSO

sbreak(2), tfork(2)

SR-2012 10.0 547

TIME(2) TIME(2)

NAME

ti me — Getstime

SYNOPSIS

#i ncl ude <tine.h>

time_t time (time_t *tloc);
IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Thet i me system call returns the value of time in seconds since 00:00:00 Greenwich mean time (GMT),
January 1, 1970. It accepts the following argument:

tloc Points to a second location where the return value is stored.

If tlocisO, t i me returnsthe time only asthe return value. If the tloc argument points to an address
that isnot valid, the actions for t i e are undefined.

NOTES

Under UNICOS, t i e isimplemented as a system call, but thet i me(3C) function is also defined to be a part
of the ANSI Standard C library. For thisreason, this documentation appears both here and in the UNICOS
System Libraries Reference Manual, Cray Research publication SR—2080.

RETURN VALUES

Thet i me system cal returns the value of time.

FORTRAN EXTENSIONS

Thet i me system call can be called from Fortran as afunction:;

| NTEGER TI ME, |
| = TIME ()

548 SR-2012 10.0

TIME(2) TIME(2)

EXAMPLES

The following example shows how to usethet i me system call to retrieve the current time from the system. It
also illustrates how the value returned by t i ne is converted to character-string format in two different ways
usingthect i ne(3C) and | ocal ti me(3C) (seect i me(3C)) library routines.

#i ncl ude <tine. h>

#i ncl ude <sys/types. h>

mai n()
{
static char *daytab[] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"};

time_t tinval;

struct tm*tnptr;

time(&inval);

printf("The time in seconds since Jan 1, 1970 is % d\n", tinval);

printf("The date and tine are %", ctime(&inval));

tnmptr = localtine(&imval);

printf("The reformatted date and tine are % %2d/ %2d/ %2d % 2d: % 2d\ n",
daytab[tnptr->tmwday], tnptr->tmnon + 1, tnptr->tm nday,
tnptr->tmyear, tnptr->tmhour, tnptr->tmmn);

SEE ALSO
stime(2)

cti me(3C),ti me(3C) inthe UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

SR-2012 10.0 549

TIMES(2)

NAME

TIMES(2)

t i mes — Gets process and child process times

SYNOPSIS

#i ncl ude <sys/tines.h>

clock_t tines (struct tmns

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Thet i mes system call returns time-accounting information to the process. It accepts the following argument:

buffer Pointstothet ns structure.

* puffer) ;

A t s structure includes the following members:

clock _t tns_uti nme;

clock _t tns_sti ne;
clock _t tns_cutine;

clock _t tns_cstine;

CPU tinme used during the execution

of instructions in the user space

of the calling process

CPU tinme used by the system

on behalf of the calling process

Sum of the "tns_utinme"s and "tns_cutine"s
of the child processes

Sum of the "tns_stinme"s and "tns_cstine"s
of the child processes

This information comes from the calling process and each of itsterminated child processes for which it has
executed awai t (2). All timesare given in system hardware clock ticks; there are CLK_TCK system hardware

clock ticks per second. The CLK_TCK macroisdefinedinthet i ne. h file.

RETURN VALUES

If ti mes completes successfully, it returns the elapsed real time, in system hardware clock ticks, since an
arbitrary point in the past (for example, system start-up time). This point does not change from one invocation

of ti mes toanother. If ti mes fails, a—1isreturned, and er r no is set to indicate the error.

550

SR-2012 10.0

TIMES(2)

ERRORS
Thet i mes system call failsif the following error condition occurs:
Error Code Description
EFAULT The buffer argument pointsto an illegal address.

FORTRAN EXTENSIONS

Thet i mes system call can be called from Fortran as a function:

| NTEGER buffer(n), TI MES, |
I = TIMES (buffer)

EXAMPLES

TIMES(2)

This example shows how to usethet i nes system call to gather CPU usage information to time a particular

section of user code:

#i ncl ude <sys/tinmes. h>
#i ncl ude <tinme. h>

mai n()

{

struct tns before, after;

clock_t utine, stinme, startine, endtineg;

startine = tinmes(&before);

/* The section of code to be tined resides here. */

endtine = times(&after);

after.tms_utine - before.tns_utine;
after.tnms_stine - before.tns_stine;

utinme
stinme

printf("\nCPU tinme used in user space = % sec or %d clock ticks\n",

(float)utime/(float) CLK TCK, utine);

printf("CPU tinme used by the system= % sec or %d clock ticks\n",

(float)stime/(float)CLK_TCK, stinme);
printf("Wall clock time used by process = % sec ",

(float)(endtime - startine)/(float)CLK TCK);

printf("or %d clock ticks\n", endtinme - startine);

SEE ALSO
exec(2),fork(2),ti me(2),wait (2

SR-2012 10.0

551

TRUNC(2) TRUNC(2)

NAME

t runc — Truncates afile

SYNOPSIS
#i ncl ude <uni std. h>
long trunc (int fildes);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thet r unc system call setsthe size of the file indicated by fildes to the current file pointer. The process must
have write permission to thefile. Thet r unc system call accepts the following argument:

fildes Indicates the size of thefile.

NOTES

In addition to changing the size of afile, thet r unc system call releases file storage beyond the truncated size,
including any storage preallocated to the file through thei al | oc(2) system call.

A process is granted write permission to the file only if the active security label of the processis equal the
security label of thefile.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRI V_MAC WRI TE The processisgranted write permission to the file via the security label.

If the PRI V_SU configuration option is enabled, the super user is granted write permission to the file.

RETURN VALUES

If t r unc completes successfully, the new file size isreturned; otherwise, avalue of -1 isreturned, and er r no
is set to indicate the error.

ERRORS
Thet r unc system call failsif one of the following error conditions occurs:
Error Code Description
EAGAI N Mandatory file and record locking is set (see chnod(2)), outstanding record locks
exist onthefile (seef cnt | (2)), and O_NDELAY was set in the file flag word.
EBADF The fildes argument is not a valid file descriptor open for writing.

552 SR-2012 10.0

TRUNC(2) TRUNC(2)

EBADF The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

EDEADLK A deadlock situation would have occurred waiting for a blocking record lock to be
removed.

El NTR Mandatory file and record locking is set (see chnod(2)), outstanding record locks
exist on thefile (seef cnt | (2)), and O_NDELAY isnot set in thefile flag word.

El NVAL The pointer for fildesis beyond the end-of-file.

ENOLCK The system record lock table was full; therefore, it was not possible to wait for a

blocking record lock to be removed.

FORTRAN EXTENSIONS

Thet r unc system call can be called from Fortran as a function:

| NTEGER fildes, TRUNC, |
| = TRUNC (fildes)

EXAMPLES

This example shows how to usethet r unc system call to truncate the last half of afile's contents. In this case,
the request truncates filet est _dat a so that the file is one-half of itsoriginal size.

SR-2012 10.0 553

TRUNC(2) TRUNC(2)

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

mai n()
{
int fd;
| ong si ze;
if ((fd = open("test_data", ORDWR)) == -1) {
perror("open failed");
exit(1);
}
size = | seek(fd, OL, 2); /* determine size of the file */
| seek(fd, sizel2, 0); /* seek to nmddle of the file */
if (trunc(fd) == -1) { /* truncate last half of the file */
perror("trunc failed");
exit(1);
}
cl ose(fd);
}
FILES
[fusr/include/unistd.h Contains C prototype for thet r unc system call
SEE ALSO

chnod(2),fcnt 1 (2),i al | oc(2), | seek(2)

554 SR-2012 10.0

ULIMIT(2) ULIMIT(2)
NAME

ulimt - Getsand sets user limits
SYNOPSIS

#include <ulinit.h>

long int ulimt (int cmd, ...);
IMPLEMENTATION

All Cray Research systems
STANDARDS

POSIX, XPG4
DESCRIPTION

Theul i mi t system call controls process limits. It accepts the following argument:

cmd Specifies one of the values, defined intheul i ni t . h file. These values are as follows:

UL_CGETFSI ZE Gets the regular file size limit of the process. The limit isin units of 512-byte

blocks and isinherited by child processes. Files of any size can be read.

UL_SETFSI ZE Setsthe file size limit of the process to the value of the second argument,
takenasal ong i nt. Any process can decrease thislimit, but only a
process with an effective user ID of the super user can increase the limit. The

new file size limit is returned.

UL_GVEMLI M Gets the maximum break value in bytes. On Cray PVP systems, thisvalueis
an integer number of bytes; on Cray MPP systems, it isthe actual byte
address of the break value. To use thisvalue as an argument to the br k(2)

system call, see example 2 in the EXAMPLES section.
Only an appropriately privileged process can increase afile size limit.

NOTES

The minimum allocation unit, both on disk and in memory, for all Cray Research systemsis 4096 bytes. When
ul i mt iscalled to set the process limit, the limit is rounded to the next 4096-byte boundary. (For example, if

ul i mt iscalledto set thelimit at 5120 bytes, it is actually set to 8192 bytes.)
A process with the effective privilege shown is granted the following ability:

Privilege Description

PRI V_RESOURCE The process is alowed to increase afile size limit.

SR-2012 10.0

555

ULIMIT(2) ULIMIT(2)

If the PRI V_SU configuration option is enabled, the super user or a process with the PERMBI TS_RESLI M
permbit is allowed to increase afile size limit.

RETURN VALUES
If ul i m t completes successfully, a nonnegative value is returned; otherwise, avalue of -1 isreturned, and
er r no is set to indicate the error.

ERRORS

If the following error condition occurs when the value of cmd isUL_SETFSI ZE, theul i mi t system call fails
and the process limit remains unchanged.

Error Code Description
El NVAL Anillegal argument was passed to the system call.
EPERM A process without appropriate privilege tried to increase the file size limit.

FORTRAN EXTENSIONS
Theul i ni t system call can be called from Fortran as a function:

| NTEGER cmd, newlimit, ULIM T, |
Il = ULIMT (cmd, newlimit)

EXAMPLES
The following examplesillustrate use of theul i i t system call to get and set user limits.

Example 1: Thisul i m t request returns the file size limit for the current process. Because the file size limit
valueisin 512-byte units, it is converted to the more familiar unit of 512 words.

#include <ulimt. h>

mai n()

{
long fslim

fslim= ulimt(U._CETFSI ZE);

printf("File size limt %d (512-byte) blocks\n", fslim;
printf(" %d (512-word) blocks\n", fslini8);
}

556 SR-2012 10.0

ULIMIT(2) ULIMIT(2)

Example 2: Thisul i m t request returns the maximum break value for this process; then the br k system call
attempts to increase the process size to that limit.

#include <ulimt. h>

mai n()
{
if ((brk(((char *)0) + ulimt(UL_GVEM.IM)) == -1) {
perror("brk failed");
exit(1);
}
}
FILES
fusr/include/ulimt.h Contains C prototype for theul i mi t system call; also contains the
UL_GETFSI ZE, UL_SETFSI ZE, and UL_GVEM_I Msymbols.
SEE ALSO

brk(2),limt(2),wite()

SR-2012 10.0 557

UMASK (2) UMASK (2)

NAME
umask — Sets and getsfile creation mask

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <sys/stat.h>

node_t umask (node_t cmask);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Theumask system call sets the file creation mode mask of the process to cmask and returns the previous value
of the mask.

The umask system call accepts the following argument:
cmask Specifies the new value of the file creation mode mask. Only the low-order 9 bits of cmask and the file
creation mode mask are used.
RETURN VALUES

The previous value of the file mode creation mask is returned.

FORTRAN EXTENSIONS
Theunmask system call can be called from Fortran as a function:

| NTEGER cmask, UMASK, |
I = UMASK (cmask)

EXAMPLES

This example shows how to use the unmask system call to change a process's file creation mask. The following
umask request changes the file creation mask of the current process to 077, and the previous file creation mask
is displayed.

After thefile creation mask is atered, an open request creates afile with permissions of 0755. Because thefile
creation mask is now 077, the permissions set for the new file are 0700.

558 SR-2012 10.0

UMASK (2) UMASK (2)

mai n()
{
printf("The previous file creation mask was %o\ n", unmask(077));
if ((fd = open("datafile", O CREAT | O WRONLY, 0755)) == -1) {
perror("open failed");
exit(1);
}

SEE ALSO
chnod(2), cr eat (2), nknod(2), open(2)
nmkdi r (1), ksh(1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

SR-2012 10.0 559

UMOUNT (2)

NAME

unmount — Unmounts afile system

SYNOPSIS

int umount (char *file);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The umount system call accepts the following argument:

file Pointsto apath name.

UMOUNT(2)

Theunount system call requests that a previously mounted file system contained on the block special device
or directory identified by file be unmounted; file is a pointer to a path name. After unmounting the file system,

the directory on which the file system was mounted reverts to its ordinary interpretation.
Only an appropriately privileged process can use this system call.

NOTES

Unmounting the root device causes the kernel to reread all in-core (in memory) information from that device.

A processis granted search permission to a component of the path prefix only if the active security label of the

process is greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:
Privilege Description

PRI V_ADM N The processis allowed to use this system call.

PRI V_DAC OVERRI DE The process is granted search permission to every component of the path prefix

viathe permission bits and access control list.

PRI V_MAC READ The process is granted search permission to every component of the path prefix

viathe security label.

If the PRI V_SU configuration option is enabled, the super user is alowed to use this system call and is granted

search permission to every component of the path prefix.

RETURN VALUES

If unount completes successfully, avalue of O is returned; otherwise, avalue of -1 isreturned, and er r no is

set to indicate the error.

560

SR-2012 10.0

UMOUNT (2) UMOUNT (2)

ERRORS
Theunount system call failsif one of the following error conditions occurs:
Error Code Description
EACCES Search permission is denied for a component of the path prefix.
EBUSY A fileonfileis busy.
EFAULT The file argument points outside the allocated process address space.
El NVAL The file argument is not mounted.

ENAMETOOLONG The lenth of the file argument exceeds PATH_MAX, or a path name component exceeds
NAMVE_MAX while POSI X_NO_TRUNCisin effect.

ENOENT The specified file does not exist or the file argument points to an empty string.
ENOTDI R A component of the path prefix is not a directory.
EPERM The process does not have appropriate privilege to use this system call.
SEE ALSO
nmount (2)

SR-2012 10.0 561

UNAME(2) UNAME(2)

NAME

uname — Gets name of current operating system

SYNOPSIS
#i ncl ude <sys/utsnane. h>

int unane (struct utsname *name);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

The unane system call stores information identifying the current operating system. It accepts the following
argument:

name Pointsto the structure to receive the information. Each member of the structure receives a
null-terminated character string.

A ut snane structure includes the following members:

char sysname[9] ; /* Current operating system name */
char nodenane[9]; /* Name by which the systemis known
on a conmuni cations network */

char rel ease[9] ; /* Rel ease of the operating system*/
char version[9]; /* Rel ease version of the operating system*/
char machi ne[12] ; /* Standard name identifying the hardware

on whi ch the operating systemis running */

RETURN VALUES

If unanme completes successfully, a nonnegative value is returned; otherwise, avalue of -1 isreturned, and
er r no is set to indicate the error.

ERRORS
The uname system call failsif the following error condition occurs:
Error Code Description
EFAULT The name argument points to an address that is not valid.

562 SR-2012 10.0

UNAME(2) UNAME(2)

FORTRAN EXTENSIONS

See UNAMVE(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR-2165 (for all systems except Cray MPP systems and CRAY T90 series systems). Also seethe
PXFUNAME(3F) subroutine.

EXAMPLES

This example shows how to use the unane system call to retrieve the name of the operating system aswell as
the release and version of the operating system:

#i ncl ude <sys/ ut snane. h>

mai n()
{
struct utsnane opnang;
i f (unane(&opnane) == -1) {
perror("uname failed");
exit(l);
}
el se {
printf("The current operating systemis %\n", opnane.syshane);
printf(" Rel ease %\ n", opnane.rel ease);
printf(" Versi on %\ n", opnane.version);
}
}
SEE ALSO

unane(1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

PXFUNAME(3F), UNAME(3F) in the Application Programmer’s Library Reference Manual, Cray Research
publication SR-2165

SR-2012 10.0 563

UNLINK (2) UNLINK (2)

NAME

unl i nk, unl i nk2 — Removes directory entry

SYNOPSIS

All Cray Research systems:
#i nclude <unistd. h>

int unlink (const char *path);

Cray PVP systems:

#i ncl ude <unistd. h>

int unlink2 (const char *path);
IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX, XPG4 (applies only tounl i nk)

DESCRIPTION

Theunl i nk system call removes the directory entry specified by the path name to which the path argument
points. When all linksto afile have been removed and no process has the file open, the space occupied by the
fileisfreed and the file ceases to exist. If one or more processes have the file open when the last link is
removed, the removal is postponed until all references to the file have been closed.

Theunl i nk2 system call, which is a Cray Research extension, functions like the unl i nk system call except
for the values returned.

Theunl i nk and unl i nk2 system calls accept the following argument:
path Points to the path name of the directory entry to be removed.

The values returned by theunl i nk2 system call differ from those returned by unl i nk. When all linksto a
file have been removed and no process has the file open, the space occupied by the file is freed and the file
ceasesto exist. Inthiscase, unl i nk2 returns a positive value that represents the number of blocks of space
returned to the file system free space pool.

If one or more processes have the file open when the last link is removed, the removal is postponed until all
referencesto thefile are closed. Inthiscase, unl i nk2 returnsaO if the operation is allowed, and the actual
file space isreturned later.

564 SR-2012 10.0

UNLINK (2) UNLINK (2)

NOTES

Theunl i nk system call does not remove a directory from the file system, it simply unlinks the reference from
the specified directory. Use of unl i nk on directories by privileged users can cause file system errors
(unlinked inodes), which can be fixed by using the f sck(8) command. A privileged user should user ndi r (2)
to remove a directory from the file system.

A process is granted write permission to the directory containing the link only if the active security label of the
processis equal to the security label of the directory.

A process is granted search permission to a component of the path prefix only if the active security label of the
process is greater than or equal to the security label of the component.

The process must be granted write permission to the file via the active security label. That is, the security label
of the process must equal the security label of the specified file.

A process with the effective privileges shown is granted the following abilities:
Privilege Description
PRI V_ADM N The processis allowed to unlink a directory.

PRI V_DAC OVERRI DE The process is granted search permission to every component of the path prefix
viathe permission bits and access control list.

PRI V_DAC_OVERRI DE The process is granted write permission to the file' s parent directory viathe
permission bits and access control list.

PRI V_FOMNER The process is allowed to specify adirectory that has the "sticky" mode bit set
and that the process does not own.

PRI V_MAC READ The process is granted search permission to every component of the path prefix
viathe security label.

PRI V_MAC VWRI TE The process is granted write permission to the specified file and its parent
directory viathe security label.

If the PRI V_SU configuration option is enabled, the super user isallowed to unlink a directory. The super user
is allowed to specify a directory that has the "sticky" mode bit set and that it does not own. The super user is
granted search permission to every directory component of the path prefix. The super user is granted write
permission to the file and its parent directory. If the PRI V_SU configuration option is enabled, the super user is
granted write permission to the file via the security label.

RETURN VALUES

If unl i nk completes successfully, avalue of 0 isreturned.

If unl i nk2 completes successfully and the file space has aready been returned to the file system free space
pool, a positive value that represents the number of blocks of space returned isreturned. If the actual return of
the file space to the file system free pool has been postponed because some other process still references the file,
then avalue of O isreturned.

SR-2012 10.0 565

UNLINK (2) UNLINK (2)

If unl i nk orunl i nk2 fail to complete successfully, avalue of -1 isreturned, and er r no is set to indicate
the error.

ERRORS

Theunl i nk orunl i nk2 system call fails and the specified file remains linked if one of the following error
conditions occurs:

Error Code Description

EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission is denied on the directory containing the link to be removed.

EACCES The active security label of the process does not equal the specified security label of
thefile.

EBUSY The entry to be unlinked is the mount point for a mounted file system.

EFAULT The path argument points outside the allocated process address space.

ENAMETOOLONG The path argument islonger than PATH_MAX characters.

ENOENT The specified file does not exist.

ENOTDI R A component of the path prefix is not adirectory.

EPERM The specified fileis a directory, and the process does not have appropriate privilege.

EROFS The directory entry to be unlinked is part of aread-only file system.

FORTRAN EXTENSIONS

Theunl i nk system call can be called from Fortran as afunction (on all systems except Cray M PP systems
and CRAY T90 series systems):

CHARACTER* n path
| NTEGER UNLI NK, |
I = UNLI NK (path)

Alternatively, unl i nk can be called from Fortran as a subroutine (on all systems except Cray MPP systems
and CRAY T90 series systems). In this case, the return value of the system call is unavailable.

CHARACTER* n path
CALL UNLI NK (path)

The Fortran program must not specify both the subroutine call and the function reference to unl i nk() from
the same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters
per word and terminated with anull (0) byte. The PXFUNLI NK(3F) subroutine provides similar functionality
and isavailable on al Cray Research systems.

566 SR-2012 10.0

UNLINK (2)

EXAMPLES

UNLINK (2)

This example shows how to usethe unl i nk system call to implement a scratch file for usein the program. A
unique name for the scratch fileis derived by calling thet mpnamsubroutine. Theunl i nk request unlinks the
scratch fileimmediately after it isopened. At thispoint, the file has no links and is called a zero-linked file.

The scratch file (possessing no links) is not removed because the program still has it open for access. The
scratch file remains in existence until the program closes it, terminates without closing it, or abnormally
terminates, or until the UNICOS system dies.

#i ncl ude <stdio. h>
#i nclude <fcntl. h>
#i ncl ude <uni std. h>

mai n()

{

int fd;
char *scratch; /* path name to a scratch file */

scratch = tnpnam((char *) 0); /* create unique tenmp file name */

/* Create a file; open it for read & wite. */

if((fd = open(scratch, O RDAWR | O CREAT | O EXCL, 0600)) == -1) {
perror("open failed");
exit(1);
}
/* Now renove |inks, but don't close it. */
if (unlink(scratch) == -1) {
perror("unlink failed");
exit(1);
}
/* Programwites and reads the file here. */
close(fd); /* also renpves file, since # links = 0 */
}
FILES
fusr/include/unistd.h Contains C prototype for theunl i nk and unl i nk2 system calls
SR-2012 10.0 567

UNLINK (2) UNLINK (2)

SEE ALSO
cl ose(2),1 i nk(2), open(2), rndi r (2)
r m(1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

PXFUNLI NK(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR-2165

f sck(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR-2022

568 SR-2012 10.0

UPANIC(2)

NAME

upani ¢ — Stopsthe system from a user process

SYNOPSIS
#i ncl ude <sys/panic. h>
int upanic (int cmd);

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

UPANIC(2)

Theupani ¢ system call, which isreferred to as the user panic, alows the system to be stopped from a user
process. Thisfeature isuseful with problems, such as bad data on an 1/O read, that cannot be detected at the
system level or for problems that occur only with a specific user code or activity, such as user data corruption.

Theupani ¢ system call accepts the following argument:

cmd Specifies an entry. It can be one of the following:
PA_SET Sets the user panic flag; requires appropriate privilege.
PA_RELAX Clears the user panic flag; requires appropriate privilege.

PA_PANI C Stops the system if the user panic flag has been set; can be called by any process.

When PA_PANI Cis sent but the user panic flag is not set, the call isinoperative;
thus, it can be embedded in code with no side effect other than the overhead of the

system call path.

Only an appropriately privileged process can set or clear the user panic flag.

NOTES
A process with the effective privilege shown is granted the following ability:
Privilege Description

PRI V_ADM N The processis allowed to set or clear the user panic flag.

If the PRI V_SU configuration option is enabled, the super user is alowed to set or clear the user panic flag.

RETURN VALUES

When upani ¢ completes successfully, avalue of 0 isreturned; otherwise avalue of —1 is returned, and

err no is set to indicate the error.

SR-2012 10.0

569

UPANIC(2) UPANIC(2)

ERRORS

Theupani ¢ system call failsif one of the following error conditions occurs:

Error Code Description

El NVAL An argument isnot valid. The command is not one of the listed values.

EPERM The process does not have appropriate privilege to set or clear the user panic flag.
SEE ALSO

pani c(8) inthe UNICOS Administrator Commands Reference Manual, Cray Research publication SR-2022

570 SR-2012 10.0

USTAT(2) USTAT(2)

NAME
ust at — Getsfile system statistics

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <ustat.h>

int ustat (dev_t dev, struct ustat *buf);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
Theust at system call returns information about a mounted file system. It accepts the following arguments:
dev Specifies a device number that identifies a device containing a mounted file system.
buf Pointsto aust at structure.
Theust at structure includes the following members:

daddr _t f tfree; /* Total free blocks */

i no_t f _tinode; /* Number of free inodes */

char f _fname[6]; /* Nanme of the mounted file system */
char f _fpack][6]; /* Name of the file system pack */

NOTES

The st at f s(2) system call obsoletes some purposes of ust at , but ust at remains useful for determining
whether a given device is mounted.

RETURN VALUES

If ust at completes successfully, avalue of 0 isreturned; otherwise, avalue of -1 isreturned, and er r no is
set to indicate the error.

ERRORS
Theust at system call failsif one of the following error conditions occurs:
Error Code Description
EFAULT The buf argument points outside the allocated process address space.
El NVAL The dev argument is not the device number of a device containing a mounted file
system.

SR-2012 10.0 571

USTAT(2) USTAT(2)

FORTRAN EXTENSIONS

Theust at system call can be called from Fortran as a function:

| NTEGER dev, buf(m), USTAT, |
| = USTAT (dev, buf)

SEE ALSO

stat (2), statfs(2)
f s(5) in the UNICOSFile Formats and Special Files Reference Manual, Cray Research publication SR-2014

572 SR-2012 10.0

UTIME(2) UTIME(2)

NAME

ut i me — Setsfile access and modification times

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <utine. h>

int utine (const char *path, const struct utinbuf *times);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4
DESCRIPTION
Theut i ne system call sets the access and modification times of a specified file. 1t accepts the following
arguments:
path Pointsto afile path name.
times Specifies source of the access and modification times.

If timesis null, the access and modification times of the file are set to the current time. A process
must be the file owner or have write permission to use ut i ne in this manner.

If timesisnot null, it isinterpreted as a pointer to aut i mbuf structure, and the access and
modification times are set to the values contained in the designated structure. Only the file owner
can use ut i e thisway.

Theut i mbuf structure follows:

struct uti nbuf {
time_t acti me; /* Access time */
time_t nodt i me; /* NModification time */
H
Times are measured in seconds since 00:00:00 Greenwich mean time (GMT), January 1, 1970.

Theut i me function also causes the time of the last file status change (st _ct i ne) to be updated (see
st at (2)).

SR-2012 10.0 573

UTIME(2) UTIME(2)

NOTES

A processis granted write permission to the file only if the active security label of the processis equal to the
security label of thefile.

A process is granted search permission to a component of the path prefix only if the active security label of the
process is greater than or equal to the security label of the component.

A process with the effective privileges shown is granted the following abilities:
Privilege Description

PRI V_DAC_OVERRI DE The process is granted search permission to every component of the path prefix
viathe permission bits and access control list.

PRI V_DAC_OVERRI DE The process is granted write permission to the file's parent directory viathe
permission bits and access control list.

PRI V_FOANER The process is considered the file owner.

PRI V_MAC READ The process is granted search permission to every component of the path prefix
viathe security label.

PRI V_MAC WRI TE The process is granted write permission to the file via the security label.
If the PRI V_SU configuration option is enabled, the super user is considered the file owner, is granted search
permission to every component of the path prefix, and is granted write permission to the file.

RETURN VALUES

If ut i me completes successfully, avalue of 0 isreturned; otherwise, avalue of -1 isreturned, and er r no is
set to indicate the error.

ERRORS

Theut i ne system call failsif one of the following error conditions occurs:

Error Code Description

EACCES Search permission is denied by a component of the path prefix.

EACCES The processis not the file owner, timesis null, write permission is denied, and the
process does not have appropriate privilege.

EFAULT The path argument points outside the allocated process address space.

EFAULT The times argument is not null and points outside the allocated process address space.

EMANDV The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

ENCENT The specified file does not exist.

ENOTDI R A component of the path prefix is not adirectory.

574 SR-2012 10.0

UTIME(2) UTIME(2)

EPERM The processis not the file owner, timesis not null, and the process does not have
appropriate privilege.
EROFS The file system containing the file is mounted as read only.

FORTRAN EXTENSIONS

Theut i ne system call can be called from Fortran as a function (on all systems except Cray MPP systems and
CRAY T90 series systems):

CHARACTER* n path
| NTEGER times, UTI Mg, |
I = UTIME (path, times)

Alternatively, ut i me can be called from Fortran as a subroutine (on all systems except Cray MPP systems and
CRAY T90 series systems). In thiscase, the return value of the system call is unavailable.

CHARACTER* n path
| NTEGER times
I = UTIME (path, times)

The Fortran program must not specify both the subroutine call and the function reference to ut i me from the
same procedure. path may also be an integer variable. In this case, the data must be packed 8 characters per
word and terminated with anull (0) byte. The PXFUTI ME(3F) subroutine provides similar functionality and is
available on al Cray Research systems.

EXAMPLES

This example shows how to use the ut i me system call to modify the last accessed and last modified
time-stamps in afile' sinode.

The program first displays the current time stamps saved in the file'sinode. Then, the ut i ne request modifies
the two time stamps, and they are displayed again.

SR-2012 10.0 575

UTIME(2)

UTIME(2)

#i ncl ude <sys/types. h>
#i ncl ude <uti ne. h>
#i ncl ude <sys/stat. h>
#i ncl ude <tine. h>
#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
mai n()
{
static char file[] = {"datafile"};
struct stat buf;
if (stat(file, &buf) == -1) {
perror("stat failed");
exit(1);
}
printf("Before utine(), % was |ast accessed on %",
file, ctine(&buf.st_atinme));
printf("Before utime(), % was last nodified on %",
file, ctime(&buf.st_mine));
if (utime(file, ((struct utinmbuf *) 0)) == -1) { /* set tinmestanps to */
perror("utime failed"); /* current tine */
exit(1);
}
if (stat(file, &buf) == -1) {
perror("stat failed");
exit(1);
}
printf("\nAfter utinme(), % was |ast accessed on %",
file, ctime(&buf.st_atine));
printf("After utinme(), % was last nodified on %",
file, ctime(&buf.st_mine));
}
SEE ALSO
st at (2)
PXFUTI ME(3F) in the Application Programmer’s Library Reference Manual, Cray Research publication
SR-2165

576

SR-2012 10.0

VFORK (2) VFORK (2)

NAME

vf or k — Creates a new process in amemory efficient way

SYNOPSIS
#i ncl ude <unistd. h>
int vfork (void);

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The vf or k system call can be used to create new processes without fully copying the address space of the old
process. It isuseful when the purpose of f or k(2) would have been to create a new system context for an
execv(2). Thevf or k system call differsfrom f or k(2) in that the child borrows the parent’s memory and
thread of control until acall to execve(2) or an exit (either by acall to exi t (2) or an abnormal exit). The
parent process is suspended while the child is using its resources.

The vf or k system call returns 0 in the child’s context and (later) the process ID of the child in the parent’s
context.

The vf or k system call can normally be used just likef or k. It does not work, however, to return while
running in the child’s context from the procedure that called vf or k since the eventual return from vf or k
would then return to a no longer existent stack frame. Be careful to call _exi t (2) rather than exi t (2) if you
cannot call execve(2), because exi t (2) will flush and close standard I/O channels, and mess up the parent
process' s standard 1/0 data structures. (Even when using f or k(2), itiswrong to call exi t (2) because
buffered data would then be flushed twice.)

RETURN VALUES

If vf or k completes successfully, it returns a value of 0 to the child process and returns the process ID of the
child process to the parent process; otherwise, avalue of -1 isreturned to the parent process, no child processis
created, and er r no is set to indicate the error.

ERRORS

Thef or k system call fails and no child processis created if one of the following error conditions occurs:

Error Code Description

EAGAI N The system-imposed limit on the total number of processes under execution in the
whole system (NPROC) is exceeded.

EAGAI N The system-imposed limit on the total number of processes under execution by one
user (CHI LD_MAX) is exceeded.

ENOVEM Not enough main memory or swap space exists.

SR-2012 10.0 577

VFORK (2) VFORK (2)

BUGS

Because UNICOS si gnal (2) and si gct | (2) signal registration isimplemented with alibrary-level signa
vector, any changes in signal registration by the child will be reflected in the parent process. This behavior
differs from other UNIX systems supporting the vf or k system call. Other changes to signal disposition (for
example, SI G_| GNor SI G_DFL) will behave the same as with the f or k(2) system call.

EXAMPLES

578

The following examples illustrate different uses of the vf or k system call.

Example 1. Thevf or k request generates a new process (referred to as the child process). The child process
returns from vf or k and executes in the same process space as the parent process. The parent process does not
return from the vf or k request until the child process has executed some form of exec(2) request or an exit.
At the time that the child process issues an exec(2) request, enough memory is generated for the new (child)
process to execute the specified program; then the parent process returns from vf or k and continues execution.
The return value from vf or k indicates whether execution isin the parent or child process.

int res;

if ((res = vfork()) == -1) {
perror("vfork failed");
exit(1);

}

if (res == 0) {
/* Code here is executed in the child process until an exec or

_exit request is made. Parent does not return from vfork
until child process issues one of these requests. Since child
process has access to parent’'s data fields and signa
di spositions here until an exec or _exit request, it should
not nodify those on which the parent depends. Child process
must refrain fromreturning (e.g., falling out of the process)
since that will cause the parent process’ stack franme to be
renoved. Parent process expects presence of the stack frane. */

}
el se {
/* Code here is executed in the parent process after the child
process issues an exec or _exit request. */
}

Example 2: This example illustrates atypical usage of the vf or k request. When a parent process generates a
child process so that a different program can execute in the child process, the vf or k request is the most
efficient way to handle the task.

SR-2012 10.0

VFORK (2) VFORK (2)

Typically, when the child process returns from vf or k, it immediately performs an exec(2) request (in this
case execl (2)) to generate a new process space and to load the specified program for execution into the child
process. With vf or k, the process space for the parent is not duplicated in the child process. The parent and
child processes then execute different programsin parallel.

int res;
if ((res = vfork()) == -1) {
perror("vfork failed");
exit(1);
}
if (res == 0) { /* In child process? */

execl ("childprog", "childprog", "argl", "arg2", 0);
perror("exec for childprog failed");
_exit(1);

}

/* Parent process continues execution here after successful exec
request in the child process. */

FILES

{usr/include/unistd. h Contains C prototype for the vf or k system call

SEE ALSO
exec(2),fork(2),sigctl (2),signal (2),wait (2

SR-2012 10.0 579

WAIT(2) WAIT(2)

NAME

wai t ,wai t pi d — Waitsfor achild process to stop or terminate

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <sys/wait.h>

pidt wait (int *statloc);
pid_t waitpid (pid_t pid, int *statloc, int options);

IMPLEMENTATION

Cray PVP systems

STANDARDS

POSIX, XPG4

DESCRIPTION

580

Thewai t system call suspends the calling process until one of the child processes terminates or until a child
process that is being traced stops because it has hit a breakpoint. If asignal isreceived, wai t returns
prematurely. If achild process has stopped or terminated before the call onwai t , return isimmediate.

Thewai t and wai t pi d system calls accept the following arguments:
stat_loc Returns the status of a terminated child process.

pid Specifies the child process that will have its status returned. -1 indicates that the status of any
available terminated process should be returned.

options Sets optional flag for thewai t pi d system call. The options argument is constructed from the
bitwise inclusive OR of 0 or more of the following flags, defined in header filesys/ wai t . h:

VWNOHANG Indicates that wai t pi d returnsimmediately and does not suspend execution of
the calling processiif statusis not available for one of the child processes
specified by pid.

WUNTRACED Provides the following status if job control is supported. Reportsto the

requesting process the status of any child process specified by pid that has
stopped and whose status has not yet been reported since it stopped.

WVNWAL T Waits for the children of any member of the multitasking group. In UNICOS
9.0 thisisthe default behavior for bothwai t andwai t pi d. Theflag isstill
provided for source compatibility. To get the previous behavior, see the
description of the W.WPWAI T flag.

WLWPWAI T Waits only for the immediate children of the calling light-weight process (LWP).
Thisflag is not recommended for general use.

SR-2012 10.0

WAIT(2) WAIT(2)

If O, the caller will suspend until a child process stops or terminates.

If the stat_loc argument is not 0, 16 hits of statusinformation are stored in the low-order 16 bits of the location
towhich stat_loc points. This status differentiates between stopped and terminated child processes. If the child
process has terminated, The status identifies the cause of termination and passes useful information to the parent
process. Thisisaccomplished in the following manner:

e |If the child process has stopped, the high-order 8 bits of status contain the number of the signal that
caused the process to stop and the low-order 8 bits are set equal to 0177.

e |If the child process has terminated because of an exi t (2) call, the low-order 8 bits of statusare 0
and the high-order 8 bits contain the low-order 8 bits of the argument that the child process passed
toexi t (2).

e If the child process has terminated because of a signal, the high-order 8 bits of status are 0 and the
low-order 8 bits contain the number of the signal that caused the termination. If the low-order
seventh bit (that is, bit 0200) is set, a core image will also have been produced; see si gnal (2).

If a parent process terminates without waiting for its child processes to terminate, the parent process ID of each
child processis set to 1. This means that the initialization process inherits the child processes.

Thewai t pi d system call behaves identically towai t if the pid argument has avalue of —1 and the options
argument has a value of 0; otherwise, the values of pid and options modify its behavior.

The pid argument specifies a set of child processes for which statusis requested. Thewai t pi d system call
returns only the status of a child process from this set.

e If pidisequal to -1, statusis requested for any child process; wai t pi d isthen equivalent towai t .
e If pidisgreater than O, it specifies the process ID of a single child process for which statusis requested.

e If pidisequal to O, statusis requested for any child process with a process group ID that is equal to that of
the calling process.

e If pidislessthan -1, statusis requested for any child process with a process group 1D that is equal to the
absolute value of pid. The options argument is constructed from the bitwise inclusive OR of 0 or more of
the following flags, defined in header filesys/ wai t . h:

If wai t andwai t pi d return because the status of a child processis available, these system callsreturn a
value equal to the process ID of the child process. In thiscase, if the value of the stat_|oc argument is not
NULL, information is stored in the location to which stat_loc points. If, and only if, the status returned is from a
terminated child process that returned a value of 0 from mai n() or passed a value of 0 as the status argument
to_exi t (2) or exi t (2), the value stored at the location to which stat_|loc pointsisO.

Regardless of itsvalue, thisinformation isinterpreted using macros. These macros are defined in the
sys/wai t . h fileand evaluate to integral expressions. The stat_val argument is the integer value to which
stat_loc points.

W FEXI TED (stat_val) Returns a nonzero value if the child process terminated normally.

SR-2012 10.0 581

WAIT(2) WAIT(2)

VAEXI TSTATUS (stat_val) Determines the low-order 8 bits of the argument that the child process passed to
_exi t(2) orexit(2),orthevalue the child process returned from mai n().
Useonly if W FEXI TED returns a nonzero value.

W FSI GNALED (stat_val) Returns a nonzero value if the child process terminated due to the receipt of a
signal that it did not catch (seethesi gnal . h file).

WIERMSI G(stat_val) Determines the number of the signal that caused the termination of the child
process. Use only if W FSI GNALED returns a nonzero value.

W FSTOPPED (stat_val) Returns anonzero value if the child process is stopped due to asignal.

WSTOPSI G (stat_val) Determines the number of the signal that caused the child process to stop. Use
only if W FSTOPPED returns a nonzero value.

If the information in the location to which stat_loc pointsis stored there by acall towai t pi d that specified the
VWUNTRACED flag, exactly one of the W FEXI TED, W FSI GNALED, and W FSTOPPED macros evaluates to a
nonzero value. If theinformation stored at the location to which stat_loc pointsis stored there by acall to

wai t pi d that did not specify the flag or acall towai t , exactly one of the W FEXI TED and W FSI GNALED
macros evaluates to a nonzero value.

If aparent process terminates without waiting for all of its child processes to terminate, the remaining child
processes (now orphaned) are assigned a new parent process ID. The parent process of orphaned child
processesisthe init process (pid = 1).

NOTES

In UNICOS 9.0, the default behavior of both wai t and wai t pi d acts as though the WMINAAI T flag was set.
The W.WPWAI T flag provides the previous default behavior. However, it is not expected that thiswill be useful
because using wai t pi d with a specified process ID should provide the necessary control for child process
management.

Theidea of aparent process has changed in UNICOS 9.0. Previously, the parent was the entity (previously
termed a process, now a light-weight process) that created the child by using the f or k(2) system call. Now,
the parent process is the entire multitasking group in which the former parent process was a member. This
change is part of the more general change that moves from a multitasking model that supports multiple
processes in a multitasking group to a model that supports a single process. This change is described more fully
inthe get pi d(2) man page.

RETURN VALUES

If the child process stopped or terminated after the parent process's call towai t , the system call returns the
child process ID. If wai t isinterrupted by a signal other than the death-of-a-child-process signal (SI GCLD) or
if the calling process has no existing zombie-producing child processes (see the following paragraph), a value
of —1lisreturned, and er r no is set to indicate the error.

582 SR-2012 10.0

WAIT(2) WAIT(2)

A zombie-producing child process results when the death-of-a-child-process signal SI GCLD s set to anything
other than to be ignored. If SI GCLDis set to beignored, acall towai t returns -1, and an er r no of ECHI LD.

If wai t orwai t pi d returns because the status of a child processis available, the call returns a value equal to
the process ID of the child process for which statusisreported. If wai t or wai t pi d returns due to the
delivery of asignal to the calling process, avalue of =1 isreturned and er r no isset to EI NTR. If the

wali t pi d system call isinvoked with WNOHANG set in options, it has at least one child process specified by pid
for which status is not available, and status is not available for any process specified by pid, avalue of O is
returned; otherwise, avalue of -1 isreturned, and er r no is set to indicate the error.

ERRORS

Thewai t system call fails and its actions are undefined if the stat_|oc argument pointsto anillegal address.
The cdll fails and returns immediately if one of the following error conditions occurs:

Error Code Description
ECHI LD The calling process has no existing unwaited-for child processes.
El NTR Receipt of asigna other than the death-of-a-child-process signal .

Thewai t pi d system call returns—1, and er r no is set to indicate the error if one of the following error
conditions occurs:

Error Code Description

ECHI LD The process or process group specified by pid does not exist or isnot a child of the
caling process.

El NTR The call was interrupted by asignal. The value of the location to which stat_loc points
is undefined.

El NVAL The value of the options argument is not valid.

FORTRAN EXTENSIONS
Thewai t system call may be called from Fortran as a function:

| NTEGER statloc, WAI'T, |
I = WAIT (statloc)

EXAMPLES

The following examplesillustrate use of thewai t and wai t pi d system calls. Both examples show a parent
process waiting for its child process to complete.

SR-2012 10.0 583

WAIT(2)

WAIT(2)

Example 1: In this program, thewai t request in the parent process waits for its child process to complete.

The program first creates a child process and allows the child process to perform some other work. Executing
in parallel with the child process, the parent displays the process identification number (PID) of the forked child
process and then waits for its completion. Once the child process completes, the parent uses a macro (that is,
W FEXI TED or W FSI GNALED) to determine the cause of the child’s termination.

584

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/wait.h>

mai n()
{
int res, cid_ret, cid_stat;
if ((res =fork()) == -1) {
perror("fork failed");
exit(1);
}
if (res == 0) { /* child process */
[* child process perforns its work here */
} else { /* parent process */
printf("Child process has pid = %@\n", res);
cid_ret = wait(&cid_stat); /* waits for child to conplete */
if (WFEXI TED(cid_stat)) { /* if child termnated normally */
printf("Child process %l terninated nornally with ", cid_ret);
printf("exit status = %d.\n", WEXI TSTATUS(cid_stat));
} else {
if (WFSIGNALED(cid stat)) { /* if child terminated (signal) */
printf("Child process % ternmnated due to ", cid_ret);
printf("signal no. -> %.\n", WIERMSI G(cid_stat));
}
}
}

SR-2012 10.0

WAIT(2) WAIT(2)

Example 2: In this program, thewai t pi d reguest in the parent process waits for its child process to compl ete.

The program first creates a child process and allows the child process to perform some other work. Executing
in parallel with the child process, the parent displaysthe PID of the forked child process and then waits for its
completion. Once the child process completes, the parent uses a macro (that is, W FEXI TED or

W FSI GNALED) to determine the cause of the child’ s termination.

#i ncl ude <uni std. h>
#i ncl ude <sys/wait.h>

mai n()
{
int res, cid_ret, cid_stat;
if ((res = fork()) == -1) {
perror("fork failed");
exit(1);
}
if (res == 0) { /* child process */
/* child process perforns its work here */
} else { /* parent process */

printf("Child process has pid = %@\n", res);
cid ret = waitpid(res, &cid stat, 0);/* waits for child to conplete */

if (WFEXITED(cid_stat)) { /[* if child termnated normally */
printf("Child process %l ternminated nornally with ", cid_ret);
printf("exit status = %l.\n", WEXI TSTATUS(cid_stat));

} else {

if (WFSIGNALED(cid_stat)) { /* if child termnated (signal) */
printf("Child process % termnated due to ", cid_ret);
printf("signal no. -> %.\n", WIERMSI G(cid_stat));

SEE ALSO
exec(2), exi t (2),fork(2),get pi d(2),i ntro(2), pause(2), si gnal (2

SR-2012 10.0 585

WAITJOB (2) WAITJOB (2)

NAME

wai t j ob — Getsinformation about a terminated child job

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/jtab. h>

int waitjob (struct jtab *jtab);

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

NOTES

586

Thewai t j ob system call obtainsinformation about a terminated child job (that is, achild job in which al of
the processes have exited) that has been configured to send asignal to its parent on termination. The system
call isnamed wai t j ob because, like thewai t (2) system call, it returns information about only an object that
is considered to be a child of the calling process. Unlikewai t , however, and despite its name, wai t j ob
never blocks the caller’s execution.

Thewai t j ob system call accepts the following argument:
jtab Returns the jtab entry for the terminated job.

If the jtab argument isnot O, thej t ab structure containing statistics for the terminated job is returned at that
address; otherwise, noj t ab structure is returned.

If the parent process of any job exits, the parent process ID of each remaining child job is set to 0, and the jobs
exit silently from the system on termination.

Thewai t j ob system call obtainsinformation only for aterminated job that was configured to send asigna to
its parent on termination. Theset j ob(2) system call makes it possible to create jobs that exit from the system
silently. These jobs do not send asignal to their parent on termination, and wai t j ob provides no information

about these jobs.

Seeget j t ab(2) for adescription of thej t ab structure.

Any process that does not ignore SI GCLD signals (see si gnal (2)) and useswai t j ob must first issue a

wai t (2) system call, which gathers the eldest child of the job when the child exits. If wai t (2) isnot issued,
the job will continue to exist, with the eldest process of the job existing as a zombie process; wai t j ob will not
consider the job to be terminated.

SR-2012 10.0

WAITJOB (2) WAITJOB (2)

RETURN VALUES

If wai t j ob completes successfully, the job ID of the terminated job is returned; otherwise, avalue of -1 is
returned, and er r no is set to indicate the error.

ERRORS
Thewai t j ob system call failsif one of the following error conditions occurs:
Error Code Description
EAGAI N The calling process is the parent of one or more jobs configured to send asignal on
termination, but none of the child jobs has terminated.
ECHI LD The calling process does not have any child jobs configured to send a signal on
termination.
EFAULT The jtab argument points outside the allocated process address space.
SEE ALSO

getjtab(2),setjob(2),signal (2),wait (2

SR-2012 10.0 587

WRACCT(2) WRACCT(2)

NAME

wr acct — Writes an accounting record to the kernel accounting file or to a daemon accounting file

SYNOPSIS
#i ncl ude <acct/dacct. h>
int wacct (char *buf, int did, int jid, int nbyte);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thewr acct system call writes an accounting record to a daemon accounting file. If auser enables job
accounting, the accounting record will also be written to the user’ s job accounting file. Thej a(1) command
can process thisfile.

Thewr acct system call accepts the following arguments:

buf Points to the accounting record. The size (in bytes) of this buffer is specified by nbyte. The
accounting records are defined inacct (5) andin/ usr/i ncl ude/ acct/ dacct . h.

did Specifies the type of accounting record that will be written. These daemon identifiers are specified
in/ usr/include/sys/accthdr. h.

jid Specifies the job ID of the process for which the record is being written. Thisisusually thejob ID
contained in the accounting record to which buf points.

nbyte Specifies the size (in bytes) of buf.

The daemons and the accounting subsystem must enable the appropriate type of accounting by using the
t ur nacct (8) ort ur ndacct (8) command.

Only a process with appropriate privilege can use this system call.

NOTES
A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_ACCT The process is alowed to use this system call.

If the PRI V_SU configuration option is enabled, the super user is alowed to use this system call.

588 SR-2012 10.0

WRACCT(2) WRACCT(2)

RETURN VALUES

If wracct completes successfully, avalue of O is returned; otherwise, avalue of —1isreturned, and er r no is
set to indicate the error.

ERRORS

Thewr acct system call failsif one of the following error conditions occurs:

Error Code Description

El NVAL An argument that is not valid was passed to the system call.

EPERM The process does not have appropriate privilege to use this system call.
FILES

/usr/include/acct/dacct.h Defines daemon accounting files

/usr/include/sys/accthdr.h Specifies daemon identifiers

SEE ALSO
jacct (2)
j a(1) inthe UNICOS User Commands Reference Manual, Cray Research publication SR-2011

acct (5) inthe UNICOSFile Formats and Special Files Reference Manual, Cray Research publication
SR-2014

gnogr (8), t pdaenon(8), t ur nacct (8), t ur ndacct (8) in the UNICOS Administrator Commands Reference
Manual, Cray Research publication SR-2022

SR-2012 10.0 589

WRITE(2) WRITE(2)
NAME

write—Writesonafile
SYNOPSIS

#i ncl ude <sys/types. h>

#i ncl ude <unistd. h>

ssize t wite (int fildess const void *buf, size_ t nbyte);
IMPLEMENTATION

All Cray Research systems
STANDARDS

POSIX, XPG4
DESCRIPTION

Thewr i t e system call writes from abuffer to afile. It accepts the following arguments:

fildes Specifies the file descriptor. It isobtained from an accept (2), cr eat (2), dup(2), f cnt | (2),

open(2), pi pe(2), socket (2), or socket pai r (2) system call
buf Points to the buffer in which the datais stored.
nbyte Specifies the number of bytesto be written.

On devices capable of seeking, the writing of data proceeds from the position in the file indicated by thefile
pointer. Onreturn fromwr i t e, the file pointer isincremented by the number of bytes written.

On devices incapable of seeking, writing starts at the current position. The value of afile pointer associated

with such adevice is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer is set to the end of the file before each write.
If the file being written is a pipe (or FIFO specia file), some specia semantics apply:

e If the O NDELAY and O_NONBLOCK flagsin the file flag word are both clear (the normal case), the write
request will block until there is room to copy all the data into the pipe.

e |f the O_NDELAY flag is set (no delay), the number of bytes to be written to the pipeisless than or equal to
the value PI PE_BUF, and insufficient space existsin the pipe, wr i t e returns avalue of 0 immediately (no

blocking) with no data written to the pipe.

e If the O NONBLOCK flagis set (no delay), the number of bytes to be written to the pipeisless than or equal
to the value PI PE_BUF, and insufficient space existsin the pipe, wr i t e returns avalue of =1 immediately

(no blocking) with no data written to the pipe.

590

SR-2012 10.0

WRITE(2) WRITE(2)

e If the O NDELAY flagis set (no delay), the number of bytes to be written to the pipe is greater than the value
Pl PE_BUF, and insufficient space existsin the pipe, wr i t e copies as many bytes to the pipe as possible
and returns the number of bytes written.

e If the O NONBLOCK flag is set (no delay), the number of bytes to be written to the pipe is greater than the
value Pl PE_BUF, and insufficient space existsin the pipe, wr i t e copies as many bytes to the pipe as
possible and returns avalue of —1 to the user. (The user is not able to determine the number of bytes
actually delivered to the pipe.)

Thevalue Pl PE_BUF isdefined inthe header | i mi t s. h and typicaly has a value of 512 words (4096 bytes).

For regular files, if the O_SYNC flag of the file status flags is set, the write does not return until both the file data
and file status are updated physically. Thisfunction isfor specia applications that require extrareliability at
the cost of performance. For block specid files, if O_SYNC s set, the write does not return until the dataiis
updated physically. A writeto aregular fileisblocked if mandatory file and record locking is set (see
chnod(2)) and arecord lock is owned by another process on the segment of the file to be written. If
O_NDELAY and O_NONBLOCK are both clear the write sleeps until the blocking record lock is removed.

NOTES

A process must be granted write permission to the file via the security label. That is, the active security label of
the process must be equal to the security label of thefile.

A process with the effective privilege shown is granted the following ability:

Privilege Description

PRI V_MAC WRI TE The processis granted write permission to the file via the security label.

If the PRI V_SU configuration option is enabled, the super user is granted write permission to the file viathe
security label.

RETURN VALUES

If wri t e completes successfully, the number of bytes actually written is returned; otherwise, avalue of —1is
returned, and er r no is set to indicate the error.

ERRORS
Thewr i t e system call fails and the file pointer remains unchanged if one of the following error conditions
OCCUrs:
Error Code Description
EAGAI N Mandatory file and record locking was set, O NDELAY was set, and a blocking record
lock exists.
EBADF The fildes argument is not a valid file descriptor open for writing.
EBADF The active security label of the process does not equal the security label of the file, and

the process does not have appropriate privilege.

SR-2012 10.0 591

WRITE(2)

EDEADLK
EFAULT
EFBI G

El NTR
ENCLCK

ENCSPC

WRITE(2)

The write was going to go to sleep and cause a deadlock situation to occur.
The buf argument points outside the allocated process address space.

An attempt was made to write a file that exceeds the file size limit or the maximum file
size of the process. Seeul i m t (2).

A signal was caught during thewr i t e system call (see si gnal (2)).

The system record lock table was full; therefore, the write could not go to sleep until
the blocking record lock was removed.

During awrite to an ordinary file, no free space was found in the file system.

EPI PE and SI GPI PE signals

EQACT
EQGRP
EQUSR

EXAMPLES

592

An attempt is made to write to a pipe that is not open for reading by any process.
A file or inode quota limit was reached for the current account ID.
A file or inode quota limit was reached for the current group ID.

A file or inode quota limit was reached for the current user ID.

The following examplesillustrate different uses of thewr i t e system call.

SR-2012 10.0

WRITE(2)

WRITE(2)

Example 1: In thisexample, ther ead(2) and wr i t e system calls sequentially update the records of file
dat af i | e. For each iteration of the while loop, arecord isread into user memory, updated, and then written
back todat afi | e.

A value 0 returned by r ead(2) indicates an end-of-file (EOF) condition has been reached. The dataread and
written is staged in the system buffer cache because the O RAWflag is not specified on the open(2) request.

#i ncl ude <uni std. h>

mai n()

{

SR-2012 10.0

int fd, cnt;
char buf[100];

if ((fd = open(“datafile", O RDWR)) == -1) {
perror("Opening file datafile failed");
exit(1);

}

while ((cnt = read(fd, buf, 100)) !'=0) { /* read returning O neans EOF */

/* update data (cnt bytes) in buf here and then wite back */

| seek(fd, (long) cnt, 1); /* backup to beginning of record */
if (wite(fd, buf, cnt) == -1) { /* wite record back to file */
perror("wite failed");
exit(1);

}

printf("EOF reached on file datafile.\n");

593

WRITE(2) WRITE(2)

Example 2: Inthisexample, ther ead(2) and wr i t e system calls perform asimple file copy operation. The
first argument to the program is the file name of the file to be copied. The second argument is the file name of
the duplicate copy.

#i nclude <fcntl. h>
#defi ne BUFSI ZE 4096

mai n(i nt argc, char *argv[])

{
int ifd, ofd, noread, nowite, cnt;
char buf[BUFSI ZE] ;
if ((ifd = open(argv[1l], ORDONLY)) == -1) {
perror("opening input file failed");
exit(1);
}
if ((ofd = open(argv[2], OWRONLY | O CREAT | O TRUNC, 0644)) == -1) {
perror("opening output file failed");
exit(1);
}
while ((noread = read(ifd, buf, BUFSIZE)) != 0) {
if (noread == -1) {
perror("read error");
exit(1);
}
cnt = 0;
do {
if ((nowite = wite(ofd, &uf[cnt], noread - cnt)) == -1) {
perror("write error");
exit(1);
}
cnt += nowite;
} while (cnt < noread);
}
close(ifd); close(ofd);
}
FILES
[usr/include/sys/types.h Contains types required by ANSI X3J11
fusr/include/unistd.h Contains C prototype for thewr i t e system call

594 SR-2012 10.0

WRITE(2) WRITE(2)

SEE ALSO

accept (2), chnmod(2), cr eat (2), dup(2), f cnt | (2), 1 seek(2), open(2), pi pe(2), r ead(2), si gnal (2),
socket (2),socket pair (2),ulimt(2),witea(?2)

SR-2012 10.0 595

WRITEA (2) WRITEA (2)

NAME

wr i t ea — Performs asynchronous write on afile

SYNOPSIS

#i ncl ude <signal.h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/iosw. h>

int witea (int fildess char *buf, unsigned nbyte, struct iosw *status,
i nt signo);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

596

Thewr i t ea system call performs an asynchronous write of a specified number of bytes from a buffer to afile.
Thefirst three arguments of thewr i t ea system call are the same asthewr i t e(2) system call. Thelast two
arguments are used for 1/O completion notification asin ther eada(2) system call.

Thewr i t ea system call accepts the following arguments:

fildes Specifies afile descriptor. Itisobtained fromacr eat (2), dup(2), f cnt | (2), open(2), or
pi pe(2) system call or socket descriptor obtained from acall to the socket (2) system call
buf Points to the buffer in which the datais stored.
nbyte Specifies the number of bytesto be written.
status Pointsto ai oswstructure. This structure isdefined intheusr /i ncl ude/ sys/ i osw. hfile.
signo Specifies the signal that should be sent to indicate that the 1/0 transfer is complete. For alist of

signals, seethe si gnal (2) man page.

A writeto aregular fileis blocked if mandatory file and record locking is set (see the chnod(2) man page), and
arecord lock is owned by another process on the segment of the file to be written. If O_NDELAY and
O_NONBLOCK are both clear, the write sleeps until the blocking record lock is removed.

A process must be granted write permission to the file via the security label. That is, the active security label of
the proces must be equal to the security label of thefile.

A process with the effective privilege shown is granted the following ability:
Privilege Description
PRI V_MAC WRI TE The processisgranted write permission to the file via the security label.

SR-2012 10.0

WRITEA (2)

WRITEA (2)

If the PRI V_SU configuration option is enabled, the super user is granted write permission to the file viathe

security label.

RETURN VALUES

If wri t ea completes successfully, the number of bytes remaining to be written is returned; otherwise, avalue
of —lisreturned, and er r no is set to indicate the error.

ERRORS

Thewr i t ea system call fails and the file pointer remains unchanged if one of the following error conditions

occurs:
Error Code
EAGAI N

EBADF
EBADF

EDEADLK
EFAULT
EFBI G

El NTR
El NVAL
ENCLCK

ENCSPC

Description

Mandatory file and record locking was set, O_NDELAY was set, and a blocking record
lock exists.

The fildes argument is not a valid file descriptor open for writing.

The active security label of the process does not equal the security label of the file, and
the process does not have appropriate privilege.

The write was going to go to sleep and cause a deadlock situation to occur.
The buf or status argument is not fully contained in the process address space.

An attempt was made to write afile that exceeds the file size limit or the maximum file
size of the process. Seetheul i ni t (2) man page.

The process caught asignal duringthewr i t ea system call (seesi gnal (2)).
The signo argument is not avalid signal number or 0.

The system record lock table was full; therefore, the write could not go to sleep until
the blocking record lock was removed.

During awrite to an ordinary file, no free space was found in the file system.

EPI PE and SI GPI PE signals

EQACT
EQGRP
EQUSR

FORTRAN EXTENSIONS

An attempt is made to write to a pipe that is not open for reading by any process.
A file or inode quota limit was reached for the current account ID.

A file or inode quota limit was reached for the current group ID.

A file or inode quota limit was reached for the current user ID.

Thewr i t ea system call can be called from Fortran as a function:

| NTEGER fildes, buf(n), nbyte, status, signo, WRI TEA, |
I = WRI TEA (fildes, buf(n), nbyte, status, signo)

SR-2012 10.0

597

WRITEA (2) WRITEA (2)

EXAMPLES

598

The following examplesillustrate different uses of thewr i t ea system call. In each example, the write
operation completesin parallel with other work in the user’s process. Simpler solutions appear in the last two
examples, which make use of additional calls.

Example 1. Inthisprogram, thewr i t ea request specifies the delivery of a SI GUSR1 signal on the
completion of the request.

The program uses the pause(2) request to wait for the completion of the asynchronous write operation (that is,
reception of the SI GUSR1 signal). Thelibrary routine si gof f (3C) provides assurance that the SI GUSR1
signal is not received before reaching the pause(2) request.

#i nclude <fcntl. h>
#incl ude <signal.h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/iosw. h>

struct iosw w stat;

mai n()
{
char buf[4096];
int fd;
void whdlr(int signo);

signal (SI GUSRL, w hdlr);

if ((fd = open("newfile", O WRONLY | O CREAT | O RAW 0644)) == -1) {
perror("open (newfile) failed");
exit(1);

}

/* Program popul ates buffer buf with data here. */

sigoff(); /* delay signal reception until pause() is reached */

witea(fd, buf, 4096, &wstat, SIGUSR1l); /* SIGUSRL sent when
write conpletes */

/* Performother work here in parallel with I/O conpletion. */

pause(); /* wait for wite to conplete - pause() calls sigon() */

/* Qutput data has now vacated buffer buf due to witea. */

}

void whdlr(int signo)

{

SR-2012 10.0

WRITEA (2)

}

WRITEA (2)

signal (signo, whdlr);
printf("witea wote % bytes\n", wstat.sw count);
wstat.sw flag = 0;

Example 2: (Some system calls in the example are not supported on Cray MPP systems.) Unlike the program
in example 1, this program usesther ecal | a(2) system call to wait for completion of the asynchronous output
operation. The user’s program isinformed of the completion by reception of the SI GUSR1 signal. While
recal | a(2) can wait for the completion of multiple asynchronous I/O requests from multiplefiles, it only
waits for one write operation in this example.

#i ncl ude <fcntl. h>

#i ncl ude <signal . h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/iosw. h>
#i ncl ude <sys/param h>

struct iosw wstat;

mai n()

{

}

char buf[4096];

int fd;

| ong mask[RECALL_SI ZEOF] ;
void whdlr(int signo);

signal (SI GUSRL, wrhdlr);

if ((fd = open("newfile", OWRONLY | O CREAT | O RAW 0644)) == -1) {
perror("open (newfile) failed");
exit(1);

}

/* Program popul ates buffer buf with data here. */
RECALL_SET(mask, fd); /* set bit for fd in nask */

witea(fd, buf, 4096, &wstat, SIGUSRL); /* SIGUSRl sent when
wite conpletes */

/* Performother work here in parallel with I/O conpletion. */
recal | a(mask) ; /* wait for wite to conplete */

/* Qutput data has now vacated buffer buf due to witea. */

void whdlr(int signo)

SR-2012 10.0

599

WRITEA (2)

600

WRITEA (2)

signal (signo, whdlr);
printf("witea wote % bytes\n", wstat.sw count);
wstat.sw flag = 0;

}

Example 3: Unlike the programs in examples 1 and 2, this program does not have an 1/0O completion signal
specified onthewr i t ea request. The program usesther ecal | (2) system call to wait for the completion of
the asynchronous write operation. Whiler ecal | (2) can wait for completion of multiple asynchronous I/O
requests from multiple files or even the same file, it only waits for one asynchronous write operation in this

example.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n()

{

char

int

<fcntl. h>
<signal . h>
<sys/types. h>
<sys/iosw. h>

buf [4096] ;
fd;

struct iosw wstat[1l], *statlist[1];

if ((fd = open("newfile", OWRONLY | O CREAT | O RAW 0644)) == -1) {

}

perror("open (newfile) failed");
exit(1);

/* Program popul ates buffer buf with data here. */

witea(fd, buf, 4096, &wstat[0], 0); /* no signal sent when

write conmpletes */

statlist[0] = &wstat[0];

/* Performother work here in parallel with I/O conpletion. */

recal |l (fd, 1, statlist); /* wait for wite to conplete */

printf("witea wote % bytes\n", wstat[0].sw count);
wstat[0].sw flag = O;

/* Qutput data has now vacated buffer buf due to witea. */

SR-2012 10.0

WRITEA (2) WRITEA (2)

SEE ALSO

chnod(2), cr eat (2), dup(2), f cnt 1 (2), open(2), pause(2), pi pe(2), r eada(2), recal | (2),
recal | a(2), si gnal (2),socket (2),ulimt(2),wite(2)

si gof f (3C) inthe UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2012 10.0 601

