INTRO(4) INTRO(4)

NAME

i ntro — Introduction to specid files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The entries in this section describe the characteristics of the device interfaces (device drivers) and
corresponding hardware devices or pseudo devices in UNICOS; there is one entry or set of related entries per

page.

UNICOS devices and pseudo devices are represented by specia files in the / dev directory. With a few
exceptions, each hardware device is represented by one or more filesin / dev. Examples of devices are disk
drives, which are represented by the specia files in the / dev/ dsk directory and are described by the
dsk(4) entry. Pseudo devices are device drivers that have no associated hardware but which behave in
much the same way as a hardware device. Examples of pseudo devices are the null pseudo device,

/ dev/ nul | (described by the nul | (4) entry), and the pseudo terminals, located in the / dev/ pt y
directory (described by the pt y(4) entry).

Three types of specia files exist: block special files, character special files, and FIFO specia files (named
pipes). This manual does not discuss FIFO special files; for information on these files, see pi pe(2).

On block devices, data read from or written to the device is moved through a cache of system buffers. In
contrast, devices that do not use the system buffer cache are character devices. (Character devices do not
necessarily move data 1 character at a time; in fact, very large blocks (track-sized or cylinder-sized) are often
used.) The unbuffered I/O of character devices is often called raw 1/0O mode.

On CRAY Y-MP systems, disks and RAM disks are the only block devices supported. These devices are
documented in dsk(4) and r am(4). The supported block devices are disks, buffer memory resident (BMR)
file systems, the SSD solid-state storage device, and RAM disks. The dsk(4) and r am(4) entries describe
these devices.

You can use disk drives as character devices instead of block devices; in this case, the system buffer cache is
not used, and the data is moved directly between the device and the user’s buffer. The f cnt | (2) system
call is available to open the block specia file in raw mode (see f cnt | (5) and dsk(4)).

Most devices and pseudo devices can do read and write operations, many can do additional operations. The
capabilities of each device are discussed in the entry for that device.

Many devices allow further manipulation of the device through the special file with thei oct | (2) system
call. For example, a process can issue ani oct | request to return the status of a device; thei oct | request
CPUSTAT returns the status of the target CPU (see cpu(4)). Thei oct | requests are device-dependent, and
they are discussed in the entry for each device if appropriate.

SR-2014 1

INTRO(4) INTRO(4)

Specia files are created using the mknod(8) command, which builds a directory entry and an inode for a
device. For specific information on creating devices, see the nknod(8) command and the system installation
bulletin for your UNICOS release.

SEE ALSO

cpu(d), fentl (2),i octl (2), pi pe(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

2 SR-2014

CPU(4)

NAME

CPU(4)

cpu — Interface to special CPU functions

IMPLEMENTATION

DESCR

All Cray Research systems

IPTION

The cpu driver alows control of many different aspects of the CPU environment in which processes run.
Some of the functions refer to a specific physical CPU. The naming convention for the special files
corresponding to CPUs is as follows:

CPUO /dev/cpu/O
CPU1 /dev/cpu/l
CPU 2 /dev/cpu/?2
CPU 3 /dev/cpu/3
CPU4 /dev/cpu/4
CPUS5 /dev/cpu/5
CPU 6 /dev/cpu/ ncpus

The following usage, while still accepted, may not be supported in future releases.

CPUO /dev/cpu/a CPU 8 [dev/ cpu/i
CPU1 /dev/cpul/b CPU 9 / dev/ cpu/j
CPU 2 /dev/cpu/c CPU 10 /dev/cpul/k
CPU 3 /dev/cpu/d CPU 11 /dev/cpu/l
CPU4 /dev/cpule CPU 12 /dev/cpu/m
CPUS5 /dev/cpu/f CPU 13 /dev/cpu/n
CPU6 /dev/cpulg CPU 14 /dev/cpul/o
CPU 7 [/dev/cpu/h CPU 15 /dev/cpulp

Some of the functions refer to a CPU in which the specified process (or processes) may happen to execute.
For those functions, you should use the special file / dev/ cpu/ any. This special file provides a generic
interface to any CPU.

For sites with more than one CPU, create as many CPU devices as needed, changing the name and minor
device number in sequence.

The only valid system calls to the cpu driver are open(2), cl ose(2), and i oct | (2).
The available i oct | requests are defined in the sys/ cpu. h include file.

For the following requests, arg is interpreted as a pointer to an exchange packet. The following i oct |
requests are supported for a specific CPU:

CPU_DOWN Disables the CPU.

SR-2014

CPU(4)

CPU_START

CPU_STAT

CPU_DSTAT

CPU_STOP

CPU_UP

CPU_UP_S_CACHE
CPU_DN_S_CACHE

The following i oct | requests apply only to CRAY Y-MP systems that are supported on the generic device
(/ dev/ cpu/ any). These requests require the following structure (except for the CPU_CLRTMR request).
This structure is defined in the sys/ cpu. h include file, as follows:

struct

}s
CPU_CLRRT
CPU CLRTMR

CPU(4)

Copies the exchange package to which arg points to the system diagnostic and
stores it. The exchange information is assumed to be absolute address O of the
stand-alone program. The target CPU must be in a down state. The base address
(BA) in the exchange package is considered as relative to the caller’ s base address;
the limit address (LA) is set to that of the caller.

CPU_START is disabled for CRAY T90 series architecture. Thisi oct| request
will return a value of EI NVAL.

Copies the system’s user exchange package to arg. CPU_STAT copies the user
exchange information only if the target CPU exits.

Copies the system’s diagnostic exchange package to arg. CPU_DSTAT copies the
diagnostic exchange information only if the target CPU exits.

Halts the target CPU; arg is not used but must be supplied. The CPU must have
been started by using PU_START.

CPU_STOP is disabled for CRAY T90 series architecture. Thisi oct| request will
return a value of EI NVAL.

Reenables the CPU. Permits the CPU to be scheduled for normal processing. The
CPU must have been downed previously (CPU_DON).

Enables scalar cache for the specified CPU. (CRAY T90 and CRAY J90 series)
Disables scalar cache for the specified CPU. (CRAY T90 and CRAY J90 series)

cpudev {

i nt cat; /* category */
i nt i d; [* identifier */
long word,; [* paranmeter */
long cpu_wordl; [/* parameter */
long cpu_word2; [* parameter */
long cpu_word3; [* parameter */
long cpu_word4; [* parameter */

Clears real-time status from the specified process or process group.

Removes the calling process from the interval timer queue. The cpudev structure
is not required.

SR-2014

CPU(4)

CPU_CLUSTER

CPU_DEDI CATE

CPU_GETMCDE

CPU_QDOWN

SR-2014

CPU(4)

Selects the clusters specified by the bit mask in wor d for the ID and category
specified by i d and cat . If i d is O, the current process ID is assumed. Bit 2" in
the mask refers to cluster k. The resulting bit mask is returned. Clusters 0 and 1
cannot be selected.

Dedicates the CPUs specified by the bit mask in wor d to the ID and Eategory
specified by i d. If i d is O, the current process ID is assumed. Bit 2™ in the mask
refersto CPU k. If the mask contains O bits for CPUs that are aready dedicated,
those CPUs are released from dedication. The resulting bit mask is the return value
of CPU_DEDI CATE.

Returns a bit mask of the current mode settings for a process in a process group.
The bit positions in the mask (right-justified) are as follows:

UXP_MON 0 Monitor mode

UXP_BDM 1 Bidirectional memory

UXP_EMA 2 Extended mode addressing

UXP_AVL 3 Second vector logical

UXP_I FP 4 Interrupt on floating-point error

UXP_I OR 5 Interrupt on operand range error

UXP_I CM 6 Interrupt on correctable memory
errors

UXP_I UM 7 Interrupt on uncorrectable memory
errors

UXP_I WM 8 Interrupt monitor mode

UXP_RPE 9 Register parity interrupts enabled

UXP_SCE 10 Scalar cache enabled
UXP_I1O 11 1/O interrupts enabled
UXP_I PC 12 Programable clock interrupts

enabled

UXP_I AM 13 AMI interrupts enabled

UXP_I XI 14 Exceptional input interrupt enabled
(IEEE)

UXP_I NX 15 Inexact interrupt enabled (IEEE)

UXP_I UN 16 Underflow interrupt enabled
(IEEE)

UXP_I OV 17 Overflow interrupt enabled (IEEE)

UXP_I DV 18 Divide by zero interrupt enabled

(IEEE)
UXP_I NV 19 Invalid interrupt enabled (IEEE)
UXP_RM 20 Round mode 0 set (IEEE)
UXP_RML 21 Round mode 1 set (IEEE)

Returns a mask of the CPUs down. The number of CPUs configured is returned in
wor d. The mask of down CPUs is returned in cpu_wor d1.

CPU(4)

CPU_RTFRAME

CPU_RTPERM T

CPU_SELECT

CPU_SETMCDE

CPU_SETRT

CPU_SETTMR

CPU(4)

Enables least-time-to-go scheduling for the calling process. Requires the following
parameters:

cpuctl.rtframe Count of milliseconds in frame

cpuctl.rtitm Count of milliseconds of input time
cpuctl.rtctm Count of milliseconds of required computer time
cpuctl.rtotm Count of milliseconds of required output time

A total frametimein os_hz unitsispassed in cpuct| . rtframe. Thisvaueis
used for least-time-to-go scheduling of real-time processes. An optional signal
number may be passed in wor d1. If nonzero, this signal will be sent each time the
frame time expires. You can send this command at any time to resynchronize the
frame start point. The category must be C_PRCC, the ID must be O or the caller’s
process ID, and the process must be real time.

Used by super-user processes to bestow permission to nonsuper-user processes; used
by process groups to request real-time status.

Selects the CPUs specified by the bit mask in wor d for the ID and category
specified by i d and cat . If i d is O, the current process ID is assumed. Bit 2" in
the mask refersto CPU k. The resulting bit mask is the return value of
CPU_SELECT.

Sets mode bits. wor d is a bit mask. The value 1 in a bit position enables the
mode; the value O disables the mode. The bit positions in the mask are the same as
thosein thei oct | request CPU_GETMODE. If the calling process is not a
super-user process, UXP_MON, UXP_I | O, UXP_I PC, and UXP_I AMset to 1 returns
the EPERM error.

Marks the ID and category specified by i d and cat as being real-time processes.
Real-time processes are scheduled from a separate run queue that is always checked
before the default run queue. Priorities for real-time processes are initialized as are
other processes, but they are not adjusted by the system. The run queue can be
ordered by a change in nice values (see ni ce(2)). Rea-time processes have
permissions that alow them to use clock and CPU dedication even though they may
not be a super user. The EPERMerror is returned if the calling process is not a
super-user process or does not have permission (see CPU_RTPERM T).

Places the calling process on the interval timer queue. The interval (in milliseconds)
isinwor d. The process then receives SI GALRM signals at the specified interval.

SR-2014

CPU(4)

CPU_GETMAXERR

CPU_SETMAXERR

CPU(4)

Returns values from kernel maxerri nt table. The maximum PRE count is
returned in cpu_wor d1. The maximum ORE count is returned in cpu_wor d2.
The maximum ERR count is returned in cpu_wor d3. The values in the

maxer rint table specify the maximum count of Program Range Errors, Operand
Range Errors, and Error Exits that are allowed for a process in one connection to a
CPU. If any of the counts is exceeded, the processis sent a SI GKI LL signal. A
maxerrint table value of 0 means that no limit is enforced for that particular
error.

Sets values into the kernel maxerri nt table. wor d is a bit mask that indicates
which fields should be set. If bit 2**0 of the mask is set, the maximum PRE count
is set to the value in cpu_wor d1. If bit 2**1 of the mask is set, the maximum
ORE count is set to the value in cpu_wor d2. If bit 2**2 of the mask is set, the
maximum ERR count is set to the value in cpu_wor d3.

In addition to the standard i oct | error codes (seei oct | (2)), the following are errors that cause an

i octl request to fail:

EFAULT Exchange information address (arg) is out of the user's memory area

El NVAL Nonexistent CPU is requested, category is an unknown type, or timer interval is 0

ENODEV Last CPU is being stopped by using CPUSTOP

ENOENT Timer queue is full

EPERM User is not super user or does not own the device for device-specific (CPU-specific)
requests

ESRCH No existing process matches the category and ID specified

FILES

/ dev/ cpu/ 0
/dev/cpu/ 1
/ dev/ cpu/ 2
/ dev/ cpu/ 3
[dev/ cpu/ 4
/ dev/ cpu/ 5

/ dev/ cpu/ 32
/ dev/ cpu/ any

SR-2014

Device driver for CPU 0
Device driver for CPU 1
Device driver for CPU 2
Device driver for CPU 3
Device driver for CPU 4
Device driver for CPU 5

Device driver for CPU 32

Device driver for any CPU

CPU(4) CPU(4)

[usr/include/ sys/category.h CPU i oct | request definitions

[usr/include/sys/cpu.h

SEE ALSO

cl ose(2),ioctl (2), ni ce(2), open(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

8 SR-2014

DISK (4) DISK (4)

NAME
di sk — Physical disk interface

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The / dev/ di sk device is used as the interface to all of the real physical disk devices configured. The

i octl (2) system call is used to issue requests to individual devices by passing the ASCIl name of the
physical device in the control structure to the ddcnt | . ¢ device driver. The ASCII names of the physical
devices are those configured in cf / conf . SN. ¢ (SN is the mainframe seria number) or the 1/O subsystem
(10S) parameter file.

The control structure used for thei oct| system call is defined in the sys/ ddcnt | . h include file, as

follows:
struct ddctl {
daddr _t dc_bno; /* Bl ock number */
waddr _t dc_buff; /* Buffer to return data */
i nt dc_of f; /* Ofset */
| ong dc_count; /* Count */
| ong dc_nane; /* Physical device nane */
i nt dc_si ze; /* Size */
i nt dc_type; /* Cache type */
i

#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <sys/ddcntl. h>

fdes = open(DI SKDEV, O RDVR);
ioctl (fdes, cnd, &ddcntl)

Following is a description of the availablei oct | requests:

DC_ACACHE Adds a cache to a logical device dc_nane (for logica device caching). dc_count is
the number of cache buffers, dc_si ze is the size of each buffer, and dc_t ype is the
type of cache (DDBVR or DDSSD).

DC _AFLW Adds the dc_bno block on the dc_nane device to the flaw map.
DC DFLW Removes the dc_bno block on the dc_nane device from the flaw map.
DC_DOMN Configures the dc_nan®e device to DOAN. This causes any /O requests to that device

to fail and return an error.

SR-2014 9

DISK (4)

10

DC_GO
DC_MAI NT

DC_RCACHE
DC_READ

DC_RFLW
DC_RI OBUF

DC_RVAP

DC_RONLY
DC_RTAB

DC_SSDOFF
DC_SSDON
DC_SSDTAB
DC_SSTHRSH

DC_STOP

DC_SYNCALL
DC_UP
DC_WRI TE

DISK (4)

Restarts the dc_nane device.

Places dice dc_count of the logical device specified in dc_of f into or out of
maintenance mode, depending on whether dc_t ype is nonzero or 0. You can use this
command only on glices that reside on physical devices that are configured DOAN or
RONLY.

The call setsbit SI _OFLDinthesi _fl ags word of the size structure associated with
the dice (see the i obuf . h file). Bit SI _OFLD can be read by using the DC_MAP
system call associated with the di sk device. To clear the bit, either issue another
DC_MAI NT call or configure UP the physical device that contains the dlice.

The f sof f | oad(8) command uses the DC_MAI NT call.
Removes all cache from alogical device (for logical device caching).

Reads the number of bytes (which must be a sector multiple) specified in dc_count to
the address specified in dc_buf f from the dc_nane device.

Replaces a flawed block with a new spares block.

Returns the i obuf structure, which is defined in the sys/ i obuf . h include file, for
the device name in dc_nane into the user’s buffer at dc_buf f .

Returns the | dmap entry and slice entry for the logical device specified by the minor
device number in dc_of f to the buffer in dc_buf f .

Sets device dc_nane so that new space will not be allocated on that device.

Returns to the buffer in dc_buf f thei obuf structures for al configured physical
devices.

Configures the SSD channel specified in dc_of f to DOAN.
Configures the SSD channel specified in dc_of f to UP.
Returns the SSD control table (ssdconf) to the buffer in dc_buf f .

Sets the SSD threshold between synchronous and asynchronous transfers to dc__count
sectors.

Stops the dc_nane device. This causes all 1/0 requests to that device to be queued
until the device is configured up through DC_UP.

Flushes all logical device caches to disk.
Configures the dc_nane device to UP.

Writes the number of bytes (which must be a sector multiple) specified in dc_count
to the address specified in dc_buf f from the device dc_narne.

SR-2014

DISK (4) DISK (4)

The possible errors for the system calls and probable causes are as follows:

[EEXI ST] This error appears when it is detected that a flaw already exists for block dc_bno
(DC_AFLW.

[EFAULT] This error appears when one of the following conditions has occurred:
* The address of the ddcnt | structure is out of range.
* Thelogica device number dc_of f istoo big (DC_RMAP, DC_NAI NT).
* The dlice number in dc_count istoo big (DC_MAI NT).
* The buffer address dc_buf f is out of range.
[El NVAL] This error appears when one of the following conditions has occurred:
* The block number to be flawed is out of range (DC_AFLW.
* The dlice to be placed into maintenance mode is not DOAN or RONLY (DC_MAI NT).
* The SSD channel number was not found (DC_SSDOFF, DC_SSDON).
¢ Undefined command.
[ENCENT] This error appears when one of the following conditions has occurred:
* The name of the physical device dc_nan® is not found.
* No spares device is configured (DC_AFLW DC_DFLW DC_RFLW.
* The flaw is not found (DC_DFLW DC_RFLW.
[ENCSPC] This error appears when no spares are left (DC_AFLW DC_RFLW.

NOTES

Only the super user can use the / dev/ di sk interface.
CRAY EL systems do not support SSD devices.

FILES
/ dev/ di sk Physical disk interface file
[usr/include/sys/ddcntl.h Control structure definition for thei oct | system call
fusr/include/sys/fcntl.h Structure definition for f cnt |
/usr/include/sys/iobuf.h Structure definition for i obuf
/usr/include/sys/types.h Data type definition file
cf/conf.N. c System configuration file (SN is the mainframe serial number)

SR-2014 11

DISK (4) DISK (4)

SEE ALSO
dsk(4)
i octl (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

pddconf (8), pddst at (8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

12 SR-2014

DM(4)

NAME

DM(4)

dm— Kernel to data migration daemon communications interface

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

FILES

The / dev/ dm m g0 specid file contains messages for dnmdaenon(8), the data migration daemon.
Messages are sent to the data migration daemon when the kernel recognizes the need for afile recall, the
removal of an offline file, or the cancellation of afile recall.

The data migration daemon replies to the kernel requests through the same special file. These replies,
currently used only for a recall request, indicate either a successful completion of the recall or an error.

The format of the requests and replies on this device are defined in sys/ dikr eq. h, as follows:
struct dnkr {

i nt kr _magi c; /* for verification purposes */
i nt kr_req; /* request */
i nt kr_rep; /* reply */
i nt kr _error; /* error number */
i nt kr_seq; /* sequence number */
struct dmadvino kr_dvi; /* device/inode of the file */
struct offhdl kr_hdl; /* file handle of the file */

} nt_nsg;

The following are the available i oct | requests, as defined in the sys/ dnkr eq. h include file:
M G_DEBUG Sets a debug mode that echoes messages to the system console.

M G_NBI O Enables or disables nonblocking I/O; currently unused.

M G_NREAD Returns the number of bytes available to be read.

Only one process at a time is permitted to have this device open.

/dev/dm m g0 Message file for kernel to data migration communication

SEE ALSO

dnmdaenon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2014

DSK (4) DSK (4)

NAME

dsk — Disk drive interface

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The / dev/ dsk file contains block special files that represent logical disk devices. A logical disk device is
a collection of blocks on one or more physical disk or other logical disk devices.

The block specid filesin / dev/ dsk are the interface to disk devices for the UNICOS file system. They
have the major device number of the logical disk driver, | dd. Seel dd(4) and | desc(5).

The block specia devicesin / dev/ dsk are made by using the mknod(8) command. Each device can
reference one logical or physical disk device directly or more than one device indirectly.

The mknod(8) command is used as follows to create a logical disk inode:
nmknod name b major minor 0 O path

name Name of the logical device.

b The device is a block special device.

major Major device number of the concatenated logical disk device driver. The driver is denoted by
the name dev_| dd and is defined in/ usr/ src/ uts/cl/ cf/devsw. c.

minor Minor device numbers must be unique among logical disk devices. Major device O is reserved
for the / dev/ di sk control device (description follows).

00 Placeholders for future use.

path Device path name. Path names for devices are full path names and are limited to 23 characters
in length.

Two types of devices can be defined by using the mknod command: logical direct devices and logical
indirect devices. A logical direct device indicates that the logical disk is comprised of exactly one disk
dice. The path in the nknod parameter represents another block or character special device.

nknod /dev/dsk/usr b 34 20 0 O /dev/pdd/ usr

A logical indirect device indicates that the logical disk is comprised of more than one disk dlice. The path
in the mknod parameter represents a logical descriptor file. Seel desc(5).

nknod /dev/dsk/usr b 34 21 0 O /dev/| dd/ usr

14 SR-2014

DSK (4) DSK (4)

The following i oct | (2) system calls are supported through the / dev/ di sk control device.
i octl (fd, cmd, arg)

fd Open file descriptor for / dev/ di sk.
cmd cmd can be one of the following parameters:

DC_ACACHE Adds cache to alogical device
DC_RCACHE Removes cache from a logical device

DC_RVAP Returns the | dmap structure for the logical device
DC_SYNCALL Flushes the logical disk device cache to disk
arg A pointer to st ruct ddctl. Theddct!| structureis defined in sys/ ddcnt | . h. The

minor device number of the target device is specified in the dc_of f field.
For a description of the physical characteristics of disk drives for systems with an 10S model E, see
di skspec(7).
FILES

/ dev/ dsk/ *
/dev/ | dd/ *

/usr/include/sys/ldesc.h

SEE ALSO
di sk(4), | dd(4), | desc(5), ndd(4), pdd(4), ssd(4), ssdd(4)
di skspec(7) (available only online) for IOS model E

ddst at (8), mknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

General UNICOS System Administration, Cray Research publication SG—2301

SR-2014 15

ERR(4) ERR(4)

NAME

err — Error-logging interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Minor device O of the error-logging interface driver, er r, is the interface between a process and the
system’s error-record collection routines. The / dev/ err or specia file represents the er r driver. A
single process that has super-user permissions may open the driver for reading only. Each r ead operation
causes an entire error record to be retrieved. If ther ead request is for less than the length of the record,
the record is truncated.

FILES

/ dev/ di ag
/ dev/ error
/ dev/ MAKE. DEV

fusr/include/sys/erec.h

SEE ALSO
errfil e(5)

dgdenon(8), er r denon(8), er r pt (8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

16 SR-2014

ESD(4)

NAME

ESD(4)

esd — External Semaphore Device Logical-layer Interface

SYNOPSIS

/ dev/ sfs

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The / dev/ sf s device is used as the interface to the logical layer of the External Semaphore Device (ESD)
driver. The logical layer of the ESD driver manages all semaphore lock assignment, heart-beat monitoring,
and port table management.

Thei oct | (2) system call is used to issue requests to the ESD driver.

The control structure used for thei oct | system call is defined in the sys/ esd. h include file, as follows:

struct

I

/
used

* X X X X X X

*/
#define
#defi ne

/
used

* O * F X X F

*/
#defi ne
#define

SR-2014

esdct |

wor d esdf _narg[5];

wor d esdf _reply;

for: ESDF_ ASGNSEVA
ESDF _RELSEMA,
ESDF_SETSEMA,
ESDF_CLRSEMA,
ESDF_TESTSEMA,
ESDF_TSETSEMA,
ESDF_SET_XCLR SEMA,

esdf _fs_ id esdf_narg[0]

esdf _fs_idl esdf_narg[1]

for:

ESDF_RELSEMA,
ESDF_SETSEMA,
ESDF_CLRSEMA,
ESDF_TSETSEMA,
ESDF_TSETSEMA,
ESDF_SET_XCLR _SEMA,

esdf _semano esdf_narg[0]
esdf _fnflags esdf _narg[3]

/* Function argunents */
/* Function reply area address */

/* Semaphore filesys/proc id word 0 */
/* Semaphore filesys/proc id word 1 */

/* Semaphore nunber */
/* Function flags */
/* ESDF_ID = 0 => use esdf_semano */

17

ESD(4) ESD(4)

/* ESDF I D = 1 => use esdf fs id/idl */

/*

* used for: ESDF_TSETSEMA,

*/

#define esdf _timeout esdf_narg[4] /* Time out value (in clocks) */
/*

* used for: ESDF_REPORT

* ESDF_READHBEAT

*/

#defi ne esdf _repl ysz esdf_narg[4] /* Reply block size (in words) */

The first five words of the esdct | structure have different meanings, depending on the command being
used. The #def i ne statements following the definition of the esdct | structure provide an easy way of
redefining the control words in lieu of using a uni on.

The general method of interfacing to the ESD driver involves passing in the handle for the requested
semaphore by name or by semaphore number. When the semaphore name is supplied in esdf _fs_i d and
esdf _fs_idl fields of ther equest structure, the ESDF_| D flag must be set in the esdf _f nf | ags
field. If semaphore number is supplied, the ESDF | D flag must be 0. The esdf _r epl y field of the
esdct | structure must be initialized to the address of ar epl y structure. The address of the r equest
structure is passed in the i oct | call.

#i ncl ude <sys/types. h>
#i ncl ude <sys/esd. h>

structure esdctl request;
structure esdrep reply;

if (fd = open("/dev/sfs", O RDONLY)....
request.esdf _reply = (word) & eply;
ioctl (fd, cnd, &request)

On return, the r epl y structure contains information filled in based on the command type:

18 SR-2014

ESD(4)

struct esdrep {
wor d
wor d
wor d
wor d
wor d
wor d
struct
wor d
wor d

esdr _senano;
esdr _result;
esdr_error;
esdr_state;
esdr _| ast _port;
esdr _port nane;
timeval esdr ti
esdr _avail;
esdr _used,;

/* semaphore nunber */

/* result code (-1 => error)

/* error code */

[* previous/current state */
/[* last port hol ding sema */

*/

ESD(4)

/[* last port (nane) hol ding sema */

ne; [* assignment time */

[* # avail abl e user-assi gnable sema’s */
/* # used user-assignable sema’s */

A description of the available i oct | requests follows:

ESDF_ ASGNSEMA

Requires:

Returns:
ESDF REL SEMA

Requires:

Returns:
ESDF_ SETSEMA

Requires:

Returns:
ESDF CLRSEMA

SR-2014

Requires:

Returns:

Assigns a semaphore.

esdf fs id/esdf fs idl
esdr _result
0 = Success

-1 = Error (for code, see esdr _error)

Releases a semaphore.

esdf fs id/esdf fs idl, oresdf_ semano
esdf _fnflags

esdr _result
0 = Success

-1 = Error (for code, see esdr _error)

Sets the semaphore to 1.

esdf fs id/esdf fs idl, oresdf_ semano
esdf _fnflags

esdr _result
0 = Success

-1 = Error (for code, see esdr _error)

Sets the semaphore to 0.

esdf fs id/esdf fs idl, oresdf_ semano
esdf _fnflags

esdr _result

0 = Success

19

ESD(4)

-1 = Error (for code, see esdr _error)
ESDF_TESTSENA Returns the current value of the semaphore.

Requires: esdf _fs_id/esdf _fs_idl, oresdf _senmano
esdf _fnflags

Returns. esdr _result
0 = Success
-1 = Error (for code, see esdr _error)
ESDF_TSETSEMNA If the semaphore is currently O, set it to 1; otherwise, return with a failure.

Requires: esdf _fs_id/esdf _fs_idl, oresdf _senmano
esdf _fnflags
esdf tinmeout

0 = One attempt.
>0 = Number of clocks periods to wait.

Returns. esdr _result

1 = Semaphore aready set by this system

0 = Success

-1 = Error (for code, see esdr _error)
ESDF_REPORT Reports All/Assigned Semaphores

Requires: esdf _repl ysz
ESDF_READHBEAT Read Heart Beat Status
Requires: esdf _repl ysz

ESDF_SET_XCLR_SEMA
Sets semaphore unconditionally. Clear, if setting process exits.

Requires: esdf _fs_id/esdf _fs_idl, or esdf _senmano
esdf _fnflags

Returns:. esdr _result

1 = Semaphore aready set by this system
0 = Success
-1 = Error (for code, see esdr _error)

20

ESD(4)

SR-2014

ESD(4) ESD(4)

EXAMPLES
An example of assigning a semaphore directly follows:

/ *

* Initialize the 16-character cluster-uni que name

* to be assigned to this semaphore. Care should be
* taken to not use the same conventions as used to
* jdentify fil esystemns.

*/
request.esdf fs id
request. esdf fs_idl

'01234567 ;
" 89 ABCDEF ;

request.esdf _reply = (word) & eply;

if (ioctl(fd, ESDF_ASGNSEMA, &request) < 0) {
error, ioctl refused....

}

SR-2014 21

ESD(4)

ESD(4)

At this point, the i oct | has returned an esdr ep structure that contains the fields at the esdf _repl y

address:

struct esdrep {
word esdr_senano
word esdr_result;
word esdr_error;
word esdr_state;
word esdr_l ast_port;
word esdr_port naneg;

/* semaphore nunber */
/* result code (-1 => error) */
/* error code */
/* previous/current state */
/* last port hol ding semn */

/* last portnanme hol di ng sema*/

struct tinmeval esdr_tine; /* assignment time */

word esdr_avail

word esdr_used;

b

VWer e:
esdr _senano
esdr_result
esdr_error

esdr_state

esdr | ast _port
esdr _port nane
esdr _tine
esdr _avai

esdr _used

/* # avail user-assignable */
/* sema’s */
/* # used user-assgn semn’'s */

The semaphore # assigned

0 for success, -1 for sonme error condition
If there was an error, the expanded error
codes are defined in sys/esd.h

The ‘state’ field fromthe response word
returned fromthe hardware semaphore box
after ‘clear’ing the semaphore, not very
interesting at user-|evel

The port # of the assigning system

The port nane of the assigning system

The time the assignnent occurred

The # of hardware semaphores available to
be assi gned

The # of hardware semaphores al ready assigned

An example of releasing a semaphore directly follows:

22

SR-2014

ESD(4)

ESD(4)
/*
* I ndi cate whi ch semaphore is to be rel eased
*/
request. esdf _semano = a_semaphore_#;
request. esdf _fnflags = 0;
request. esdf _reply = (word) &reply;
if (ioct.|(fd, ESDF_RELSEMA, &request) < 0) {
error, ioctl refused...
}
At this point, the i oct | has returned an esdr ep structure in r epl y with the following fields:
esdr _semano The semaphore # rel eased
esdr_result 0 for success, -1 for some error condition
esdr _error If there was an error, the expanded error
codes are defined in sys/esd.h
esdr_state 0
esdr | ast _port The port # of the rel easing system
esdr _port name The port nane of the rel easing system
esdr _tinme The time the assignnent occurred
esdr _avai | The # of hardware semaphores available to
be assi gned
esdr _used The # of hardware semaphores al ready assigned

An example of setting a semaphore directly follows:

/*
* I ndi cate whi ch semaphore is to be set
*/

request. esdf _semano

request . esdf _fnfl ags

a_semaphore_#;
0;

request. esdf _reply (word) &reply;

if (ioct.l(fd, ESDF_SETSEMA, &request) < 0) {
error, ioctl refused...
}

At this point, the i oct | has returned an esdr ep structure in r epl y with the following fields:

SR-2014

23

ESD(4)

24

esdr _senano

esdr_error

The semaphore # just set
esdr _result 0 for success, -1 for
If there was an error,
codes are defined in sys/esd.h

some error
t he expanded error

ESD(4)

condi tion

esdr_state The ‘state’ field fromthe response word
returned fromthe hardware semaphore box

after 'set’ing the semaphore,
whether it was set or
current set operation

i ndi cat es
bef ore the

esdr | ast _port The port # of the last systemto change the
semaphor e

esdr _port name The port name of the last systemto change the
semaphor e

esdr _tine 0

esdr _avai | 0

esdr _used 0

An example of clearing a semaphore directly follows:

/
r
r
r
[

}

At this point, the i oct | has returned an esdr ep structure in r epl y with the following fields:

*

* I ndi cate whi ch semaphore is to be cleared
*/

equest . esdf _semano
equest . esdf _fnfl ags

a_semaphore_#;
0;

equest . esdf _reply (word) &reply;

f (ioct.l(fd, ESDF_CLRSEMA, &request) < 0) {

error, ioctl refused....

SR-2014

ESD(4)

NOTE: A clear request is honored only if the semaphore was set by the same system that issues the clear

esdr _senano
esdr _result
esdr_error

esdr_state

esdr | ast _port
esdr _port name
esdr _tine

esdr _avai |
esdr _used

request.

ESD(4)

The semaphore # just cleared

0 for success, -1 for sone error condition
If there was an error, the expanded error
codes are defined in sys/esd.h

The ‘state’ field fromthe response word
returned fromthe hardware semaphore box
after ‘clear’ing the semaphore, indicates
whether it was set or clear before the
current clear operation

The port # of the last systemto change the

semaphor e

The port name of the |last systemto change the

semaphor e
0
0
0

An example of testing a semaphore directly follows:

SR-2014

/*

* I ndi cate whi ch semaphore is to be tested

*/
request.esdf fs id
request. esdf fs_idl
request. esdf _fnflags =

"01234567 ;
" 89ABCDEF ;

ESDF_I D;

request.esdf _reply = (word) & eply;

if (ioct.|(fd, ESDF_TESTSEMA, &request) < 0) {

error, ioctl

}

ref used. . ..

25

ESD(4) ESD(4)

At this point, the i oct | has returned an esdr ep structure in r epl y with the following fields:

esdr _semano The semaphore # just cleared

esdr_result 0 for success, -1 for some error condition

esdr _error If there was an error, the expanded error
codes are defined in sys/esd.h

esdr_state The ‘state’ field fromthe response word

returned fromthe hardware semaphore box
after ‘test’ing the semaphore, indicates
whether it was set or clear

esdr | ast _port Port # of the last systemto change the
semaphor e

esdr _port name Port name of the last systemto change the
semaphor e

esdr _tine 0

esdr_avai | 0

esdr _used 0

NOTES

Only the super user can use the / dev/ sf s interface.
FILES
[dev/ sfs External Semaphore Device Logica-layer Interface

SEE ALSO
i octl (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

26 SR-2014

FDDI(4) FDDI(4)

NAME
FDDI — ANSI Fiber Distributed Data Interface

IMPLEMENTATION
Cray PVP systems with an |OS model E

DESCRIPTION

The FDDI interface (or FDDI driver) drives an ANSI standard Fiber Distributed Data Interface (FDDI).
Application processes use the FDDI driver by means of the standard UNICOS system calls (that is,

cl ose(2),ioctl (2), open(2), read(2), reada(2), wite(2),and wit ea(2). Each of the specia files
ina/ dev/ f ddi n/* directory represents al of the logical paths on one physical network interface. Each
occurrence of a/ dev/ f ddi n/* directory represents a physical network interface.

By convention, FDDI file names have the following format:
[dev/fddin/ fdxx

n Physical interface number
xx Logica path number

All FDDI /O is raw; that is, the user process is locked in memory as data moves directly between the user
buffer and the network. Therefore, user buffers must be word-aligned, and their length must be in 8-byte
multiples.

Cray FDDI supports station management (SMT), version 6.2.

FDDI Fundamentals
FDDI is a 100-Mbit/s token-ring network that is used as a high-performance interconnection among
computers and peripheral equipment as well as a high-speed backbone network for medium performance
local area networks (LANS). FDDI uses fiber-optic technology as its transmission medium and can be
configured to support a sustained transfer rate of approximately 80 Mbit/s (10 Mbyte/s). FDDI can
interconnect many nodes on a ring distributed over distances of severa kilometers in length. FDDI can
support rings made up of 1000 physical connections that span a total fiber path length of 200 km. Each
point-to-point link that makes up the ring can be a maximum of 2 km in length for fiber-media applications.
Other media technologies, such as copper twisted-pair, are being studied but have no standards published as
yet. Distance limits and other characteristics of the ring extent are different for these other media types.

An FDDI ring consists of a set of stations logically connected as a serial string of stations and media to form
a closed loop. Information is transmitted sequentially from one station to the next; each station regenerating
and repeating the information. The station serves as a way of attaching one or more devices to the network
to communicate with other devices on the network.

FDDI, as it is defined by the American National Standards Ingtitute, is divided into three layers: physical
layer (PL), data link layer (DLL), and station management (SMT). Each layer defines part of FDDI and is
kept as independent of the other layers as possible.

SR-2014 27

FDDI(4) FDDI(4)

28

The PL is divided into two sublayers: physical medium dependent (PMD) and physical layer protocol
(PHY). The PMD defines and characterizes the fiber-optic drivers and receivers, media-dependent encoding
requirements, cables and connectors (cable plant), power budgets, optical-bypass provisions, and al other
physical hardware-related characteristics. The PHY provides connection between the PMD and DLL.
PHY's responsibilities include clock synchronization with incoming code-bit stream, encoding and decoding
of code-bit stream into a symbol stream for use by the upper layers, and media conditioning and initializing.

The DLL is divided into two sublayers: media access control (MAC) and logical link control (LLC). The
MAC provides fair and deterministic access to the media, address recognition, and generation and
verification of frame check sequences. Its primary function is the delivery of frames from station to station,
including frame transmission, repetition, and removal. The LLC provides a common peer-to-peer protocol
that facilitates the transfer of information and control between any pair of DLL service access points on the
FDDI ring.

Station management (SMT) provides the control necessary to manage the processes that occur in all of the
FDDI layers such that each station may work cooperatively on the FDDI ring. SMT provides services such
as station insertion and removal, station initialization, configuration control, fault isolation and recovery,
station isolation, statistics collection, and address administration.

FDDI User Interface

As with any network interfaces on Cray Research systems with an 10S model E systems, when the first
logical path is opened on a FDDI interface, the physical channel is configured up. For FDDI, this implies
going through physical connection management (PCM) to connect to its adjacent stations, usually referred to
as its upstream and downstream neighbors. When the last logical path on a FDDI interface is closed, the
physical channel is configured down, which causes the Cray FDDI interface to disconnect from its neighbors.

Before configuring the channel interface, the microprocessor (High Performance microController, or HPC) on
the channel adapter must first be downloaded with its microcode. If any I/O operation is tried on the device
before the microcode has been downloaded, an error will occur. Automatic configuring of the channel on
the first OPEN occurs only after the channel adapter has been downloaded.

From the user’s perspective, the frame is the basic unit of information to and from the network. The
maximum frame size on an FDDI network is 4500 bytes, which includes 2 bytes of preamble, 1 byte of start
delimiter (SD), 1 byte of frame control (FC), 6 bytes of destination MAC address (DA), 6 bytes of source
address (SA), 4478 bytes of Information (INFO), 4 bytes of frame check sequence (FCS), and 2 bytes of
ending delimiter/frame status (ED/FS). The FC, DA, and SA fields compose the MAC header. The FC byte
identifies the frame's type (for example, it identifies the frame as being a token, a MAC frame, a LLC frame,
or a SMT frame). MAC addresses used on FDDI are |EEE 48-bit (Ethernet/Canonical) addresses; however,
the FDDI MAC standard requires the Ethernet addresses to be in Non-Canonica form (or MSB form) when
placed onto the media. FDDI (MSB) form implies that each byte within the 48-bit address is end-for-end bit
swapped (OxCC to 0x33). To make this transparent to users, the Cray FDDI interface hardware performs
this tranglation on each frame transmitted or received; therefore, users always see true Ethernet addresses.

SR-2014

FDDI(4) FDDI(4)

On writes, the user must compile a frame made up of the MAC header and the INFO field, but not the FCS
or the ED/FS. When the frame is placed on the physical media, the hardware will append the PA, SD, FCS,
and ED/FS fields. Therefore, the amount of data that the user is allowed to write is a maximum of 4491
bytes, plus however many pad bytes have been programmed. (Pad bytes are described later in this
subsection.) Usually, 3 bytes of pad are before the FC byte when IP is the protocol being run over FDDI.
The buffer that holds the frame to be transmitted must be on a Cray word boundary, even though the number
of bytes written does not have to be a multiple of Cray words.

On reads, users may post reads of any size, as long as the buffer is aligned on a Cray word boundary. For
SMT frames received from the network, if the buffer is large enough, a user will receive the entire FDDI
frame from the media, including the 4 bytes of FCS. Users must be aware that these 4 bytes of FCS arein
the buffer, and if necessary, subtract 4 from the length to compensate for it. For LCC frames, the cyclic
redundancy check (CRC) is stripped off.

Internet protocol (IP) datagrams and address resolution protocol (ARP) requests and replies are sent and
received over the FDDI interface. Both of these protocols use the LLC service of FDDI. All LLC services
over FDDI use 802.2 LLC (for related documents, see the SEE ALSO section). RFC 1390 defines the
specific encapsulation of IP datagrams and ARP requests and replies within an FDDI frame by using 802.2
LLC SNAP. The use of this encapsulation yields a frame in which the beginning of the IP header is not
aligned on a Cray word boundary. This is not a desirable situation for the Cray TCP/IP implementation;
therefore, to assist the protocol stacks in frame processing, the Cray FDDI hardware can strip and append a
set of pad bytes to each frame transmitted or received from the network. The number of pad bytes is
programmable from 0 to 7. For IP, the desired nhumber of pad bytes is 3. If padding is enabled, users must
compile frames with the pad bytes on writes, and they will receive frames with the pad bytes on reads. The
hardware strips off the pad bytes before frame transmission.

Protocols such as ARP must be able to determine the |EEE 48-bit address of the FDDI interface to place this
address in ARP replies from other hosts. To determine the MAC address of the Cray FDDI interface, users
may do an i oct|l FDC _GET request (see FDI O GETSET) or an i oct| COVM | OC_GETULA request
(see NETULA), both of which have versions that the UNICOS kernel can use.

For more information about the FDDI standard, see the ANSI documents listed in the SEE ALSO section.

Station Management Assistance
SMT is divided into two major categories: connection management (CMT) and Frame-based Management.
CMT is further divided into five separate entities: configuration management (CFM), entity coordination
management (ECM), ring management (RMT), link error monitor (LEM), and physical connection
management (PCM). The ANSI standard defines how to implement these different parts of SMT; however,
the manufacturer of FDDI hardware must determine the implementation of al these different forms of station
management.

In the Cray implementation, SMT is a destributed process. The Cray Research mainframe handles all
frame-based management in the form of a daemon called SMTD. Connection management (CMT) is
handled on the channel adapter itself, using a microprocessor (called the HPC) that runs microcode that
manipulates the FDDI chipset hardware and also maintains all of the different software state machines
needed to perform CMT.

SR-2014 29

FDDI(4) FDDI(4)

30

In both cases, the FDDI driver has hooks to support the efforts of the SMTD and the HPC (for example, the
driver maintains a structure for each physical FDDI interface called st i nf 0). In this structure, data is
kept on behalf of the SMTD. The data consists of such things as upstream and downstream neighbor
addresses, MAC availability information, results of the Duplicate Addresses Test that the RMT performsin
the HPC, and a part of the SMT time-stamp value. To access these values, the SMT uses thei oct |
interface.

The mainframe also must have some control over the microcode that is running in the HPC on the channel
adapter. It needs this for two reasons. First, the SMTD must be able to retrieve information from both the
state machines and the physical FDDI chipset on the channel adapter to respond to SMT frames received
from other stations on the FDDI network. To do this, an interface that makes the HPC look like a set of
readable and writable registers to the mainframe was designed. Using this interface (which also usesi oct |
requests), the SMTD can read or write some of the key registers on the channel adapter at virtualy any time.

Second, when certain events occur on the channel adapter or the FDDI ring itself, the HPC notifies the
mainframe by sending an unsolicited interrupt. Several events can cause one of these interrupts, some
events need immediate action by the driver, and others do not. Some examples of events that cause
interrupts to the mainframe are as follows:

¢ Changesin MAC availability
* The ring recovering from a TRACE (which is an FDDI term for media reconfiguration)
* The overflow of a 32-bit SMT time-stamp value

When these events occur, the FDDI driver takes the necessary action(s). There are times when the
mainframe must force the CMT state machines to a given state (for example, if the mainframe wants to
disconnect from the FDDI network, it must tell the HPC's PCM code to disconnect). It does this by use of
another interface, which is similar to the register read-write interface, called the HPC signal interface.
Again, by using i oct | requests, the mainframe can send a signal to the HPC to perform some action.
Examples of these signals are Duplicate Address Test Failed (sent by the SMTD), EC_CONNECT (which
causes a port to connect to its neighbor), and EC_DI SCONNECT (which causes a port to disconnect from its
neighbor).

Parameter File

At boot time, the FDDI driver is configured by using a parameter file. The following example shows the
syntax for parameters entered in the parameter file:

SR-2014

FDDI(4)

SR-2014

2 fdmaxdevs; /*
16 fdmaxpat hs; /*
fddev 0 { /*
treq 10; /*
padcnt 3; /*
maxwt 10; /*
maxrd 10; /*
i opath {
cluster O;
eiop 1;
channel 034;
}
| ogical path 0 {
rft SM; /*
read ti meout 20; /*
}
| ogical path 1 {
rft ALL; /*
read ti meout 10;
}
| ogical path 5 {
rft LLC; /*
read ti meout 60
}
}
fddev 1 { /*
treq 30;
padcnt O;
maxwt 5;
maxrd 5;
i opath {
cluster O;
eiop 1;
channel 036;
}
| ogical path 0 {
read ti meout 30
}
I ogical path 1 {
read ti meout 15;
}
}

FDDI(4)

max no. of FDDI interfaces */

max no. of |paths per interface */
first interface */

FDDI TREQ in mlliseconds */

no. of pad bytes */

max no. of wite requests to I1CS */
max no. of read requests to IOS */

want to receive SMI frames */

read time-out in seconds */

want to receive ALL franme types */

want to receive LLC frames */

second interface */

31

FDDI(4) FDDI(4)

32

The only mandatory parameter for FDDI isi opat h. Without this parameter, the driver does not know of
the physical location of the FDDI interface. If you omit this parameter, an open on any logical path on that
device will receive a FDER_NOCHAN error.

FDDI i oct| Requests
Severa i oct | requests are available, and they have the following format:

#i ncl ude <sys/ netdev. h>
#i ncl ude <sys/fd. h>
#i ncl ude <sys/ fdsys. h>

i octl (fildes, command, arg)

i nt fildes; /* file descriptor returned on open */
i nt command, /* request code (FDC XXX in sys/fd.h) */
char *arg; /* fdioreq, commstreq, or netula */

When ani oct | request is performed, the arg argument of the system call must point to either af di or eq
structure or a commst r eq structure. Each of these structures have pointers to buffers that hold the actual

i oct| data. These buffers must be of sufficient size to hold the data requested. If the request will pass
back multiple structures of a given type, the buffer must be large enough to hold all instances of the
requested structure.

The following shows the format of the structures used in thei oct | reguest. You can find those structures
that are not shown in the various header files listed previoudly.

struct macaddr {

ui nt :16, /* unused */
ieee :48; [/* IEEE (Canonical) form*/
ui nt :16, /* unused */
fddi :48; /* FDDI (MsSB) form */
b
struct netula {
| ong addr; /* 48-bit address (Canonical form */
I
struct comrstreq {
i nt sfunc; [* status request subfunction */
char *sbuf ; /* status buffer pointer */
i nt dev; /* device number (-1 neans all devices) */
i nt | pat h; /* logical path (-1 means all paths) */
ui nt sl en; /* status buffer length (bytes) */
ui nt epoch; /* incremented every configuration change */

SR-2014

FDDI(4)

struct fdioreq {

char *buf ; /* buffer pointer */
i nt | en; /* buffer length */
i nt par am [* paranmeter */

b

struct fdio_echo {
char dat a [FD_MAXECHQ ;

b

struct fdio_|oadmcro {
char bi nary [FD_MAXLOAD] ;

b

struc fdi o_dunpsm {
char dat a [FD_MAXDUMPSM

H
struct fdio_getset {
i nt ieee_mac; /* fd->nac.ieee (RO */
i nt fddi _mac; [/* fd->mac.fddi (RO */
i nt err no; /* Ip->errno (RO */
i nt err; [* Ip->err (RO */
i nt des; [* 1 p->des (RO */
i nt fsw, [* 1p->fsw (RO */
i nt TREQ /* fd->TREQ (RW */
i nt cc; [* fd->cc (RW */
i nt padcnt ; [* fd->padcnt (RW */
i nt maxwrt ; [* fd->maxwt (RN */
i nt maxr d; [* fd->maxrd (RW */
i nt opt ; [* 1p->opt (RW */
i nt rft; [* 1p->rft (RN */
i nt rtno; [* Ip->>rtmo (RN */
b
struct fdio_snt_timestanp {
i nt hi _32; /* Upper 32 bits maintained by driver

b

struct fdio_dad_results {

b

SR-2014

nt

results; /[* results of Duplicate Addr Test */

*/

FDDI(4)

33

FDDI(4)

34

struct fdi o_mac_nei ghbors {
struct nmacaddr una;
struct macaddr dna;

b

struct fdio_hpc_reg_data {

i nt si ze; /*
i nt page;
i nt addr ;
i nt dat a;

b

struct fdio_signal _hpc {
i nt si gho;

b

struct fdio_hpc_info {
uchar snt _00[2] ;
uchar snmt _02[2];
uchar snt _04[2];
uchar snt _06;
uchar snt_07;
uchar snt _08;
uchar snt _09;
uchar snt _0A;
uchar snt _O0B;
uchar snt _0C[2];
uchar snt _OE[2] ;
uchar snt _10[4];
uchar snt _14[2];
uchar snt_16;
uchar snt_17;

/*
/*

size of access (none,

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

FDDI(4)

upstream nei ghbor */
downst r eam nei ghbor */

byte, word, long) */
F_HPC_SI ZE_NONE, F_HPC_SI ZE_BYTE */
F_HPC_SI ZE_ WORD, F_HPC_SI ZE_LONG */
menory page address */

FD_HPC PAGE_SMI, FD HPC PAGE_RMI */

FD _HPC PAGE_PORT1, FD HPC PAGE_PORT2 */
FD_HPC PAGE_BMAC, FD HPC PAGE PLAYER1 */
FD_HPC PAGE_PLAYER2, FD_HPC PACE_DI AG */
HPC regi ster address (0x00 - Oxff) */
read or wite data (right justified) */

signal nunmber to HPC */
F_HPC SI G RMI_DAD FAI L */
F_HPC_SI G RMI_DAD_PASS */
F_HPC_SI G RMI_EC DI SCONNECT */
F_HPC_SI G RMI_EC CONNECT */
F_HPC_SI G RMI_EC PTPASS */
F_HPC_SI G RMI_SYS RESET */

Working Register | */
Wor ki ng Register J */
Wor ki ng Register P */
M crocode Revision */
Har dwar e Confi guration */
SMI State */

SMI Confi guration */
Interrupt Summary */
Interrupt Mask */
SMI' Events */

SMI' Event Mask */
SMI' Ti mest anp */
SYSTI M Counter */

Ti mer Events */

Ti mer Event Mask */

SR-2014

FDDI(4)

SR-2014

uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar

rnt _00;
rmt_01;

rm _02[2];
rmt _04[2];
rm _06][2];
rmt _08[2];
rm _O0A[2];
rm _0C[2];
mac_OE[2] ;
mac_10[4] ;
mac_14[4];
mac_18[4] ;
mac_1C[4] ;
mac_20[4] ;
mac_24[4];
mac_28[4] ;
mac_2C[4] ;
mac_30[4] ;
mac_34[4] ;
portl 00;
portl 01;
portl 02;
portl 03;
portl 04 2];
portl 06[2];
port1l 08[2];
port1l OA[2];
portl 0C 2];
port1 OF[2];
portl 10[2];
portl 12[2];
portl 14[2];
portl 16;
portl 17;
portl 18[2];
portl 1A
portl 1B;
portl 1C
portl 1D
portl 1E
portl 1F;
portl1 20[4];
portl 24[4];
portl 28[4];

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

FDDI(4)

RMI State */

RMI Status */

RMI Ti mer */

RMI Events */

RMI' Event Mask */

Reserved word */

RTT - Restricted Token Timeout */
T request val ue */

Late Ct (Late Count) */

Token_C (Token Count) */

TX & (Transmit Count) */

Not Copi ed_C (Not Copied Count) */
Frame_Ct (Frame Copied Count) */
Lost _Ct (Lost Frame Count) */
Error _C (Error Isolated Count) */
RX & (Receive Count) */

Ring_Ct (R ng Recovery Count) */
TVX_C (TVX Expiration Count) */
Latency_Ct (Ring Latency Count) */

Port 1 - PCM state */

Port 1 - PCM PSC | ndex */

Port 1 - BREAK Count */

Port 1 - PCM Index at |ast BREAK */

Port 1 - Transition Table Pointer */

Port 1 - Current Line State */

Port 1 - Reserved Word */

Port 1 - Start Value of TPC Counter */
Port 1 - TCP Counter */

Port 1 - Address of TPC Service Routine */
Port 1 - PSC Connection Policy */

Port 1 - PSC Rval */

Port 1 - PSC Tval */

Port 1 - PSC Status (Neighbor porttype) */
Port 1 - LCT Fail */

Port 1 - CEM Policy */

Port 1 - CEM State */

Port 1 - PLAYER Configuration Reg val ue */
Port 1 - LEM Reject Count */

Port 1 - LER Estimate */

Port 1 - LER Alarm */

Port 1 - LER Cutoff */

Port 1 - LEM Count */

Port 1 - Elasticity Buffer Error Count */
Port 1 - LER Average */

35

FDDI(4) FDDI(4)

uchar portl 2C[4]; [/* Port - LER Delta */
uchar portl 30; /* Port - ECM State */
uchar portl 31; /* Port - ECM Pat h */

- Reserved Word */
- PORT Events */
- PORT Event WMask */

uchar portl 32[2]; [/* Port
uchar portl 34[2]; [/* Port
uchar portl 36[2]; [/* Port

uchar port2_00; /* Port - PCM state */

uchar port2_01; /* Port - PCM PSC | ndex */

uchar port2_02; /* Port - BREAK Count */

uchar port2_03; /* Port - PCM I ndex at |ast BREAK */

- Transition Table Pointer */

- Current Line State */

- Reserved Word */

- Start Value of TPC Counter */

- TCP Counter */

- Address of TPC Service Routine */
- PSC Connection Policy */

uchar port2 04[2]; [/* Port
uchar port2 06[2]; [/* Port
uchar port2 08[2]; [/* Port
uchar port2 0A[2]; [/* Port
uchar port2 0C[2]; [/* Port
uchar port2 OE[2]; [/* Port
uchar port2_10[2]; [/* Port

uchar port2_12[2]; [/* Port - PSC Rval */

uchar port2_14[2]; [/* Port PSC Tval */

uchar port2_16; /* Port - PSC Status (Nei ghbor porttype) */
uchar port2_ 17; /* Port - LCT Fail */

uchar port2_ 18[2]; [/* Port - CEM Policy */

uchar port2_ 1A; /* Port - CEM State */

uchar port2_ 1B; /* Port - PLAYER Configuration Reg val ue */
uchar port2_ 1C; /* Port - LEM Rej ect Count */

uchar port2_ 1D; /* Port - LER Estimate */

uchar port2_ 1E; /* Port - LER Alarm */

uchar port2_ 1F; /* Port - LER Cut of f */

uchar port2 20[4]; [/* Port - LEM Count */

uchar port2 24[4]; [/* Port
uchar port2 28[4]; [/* Port

- Elasticity Buffer Error Count */
- LER Average */

uchar port2_2C[4]; [/* Port - LER Delta */
uchar port2_30; /* Port - ECM State */
uchar port2_ 31; /* Port - ECM Pat h */

- Reserved Wrd */
- PORT Events */
- PORT Event WMask */

uchar port2_32[2]; [/* Port
uchar port2 34[2]; [/* Port
uchar port2 36[2]; [/* Port

NNNNNMNNPNDPNONDNNNNNDNNDNDNNNDNNDNNNDNNNNNNNNNNNNNNNNRPRPRRRERPRE
1

uchar brmac_87; /* THSH1 - async priority 1 */
uchar brmmac_8B; /* THSH2 - async priority 2 */
uchar brmmac_8F; /* THSH2 - async priority 3 */
uchar bmac_93; /* T _max */

uchar bmac_97; /* TVX val ue */

uchar bmac_98[4] ; /* T_negotiated */

uchar cfmstate; /* station CFM state */

36 SR-2014

FDDI(4) FDDI(4)
The following table shows each of the requests and the structure formats used:
ioctl arg fdi oreq. buf or
Request parameter comst r eq. sbuf
COW | OC_CDSTATS conmstreq N A
COW | OC_CLSTATS conmstreq N A
COW _I OC_DSTATS comrstreq conmmst at
COWL I OC_LSTATS comrstreq conmmst at
COWL I OC_STATS comrstreq conmmst at
COWL | OC__GETULA netul a N A
COW | OC__KGETULA netul a N A
FDC CET fdioreq fdio_getset
FDC_SET fdioreq fdio_getset
FDC_KGET fdioreq fdio_getset
FDC_KSET fdioreq fdio_getset
FDC _CDSTATS conmstreq N A
FDC _CLSTATS conmstreq N A
FDC_DSTATS comrstreq commst at
FDC_LSTATS comrstreq commst at
FDC_STATS comrstreq commst at
FDC_ECHO fdioreq fdio_echo
FDC_ECHOSI NK fdioreq fdio_echo
FDC CLRDLF fdioreq N A
FDC _SETDLF fdioreq N A
FDC_LOADM CRO fdioreq fdio | oadmcro
FDC_DUMPSM fdioreq fdi o_dunpsm
FDC_DSTRUCT conmstreq fd_dev
FDC_LSTRUCT conmstreq fdlp
FDC_CETVARS conmstreq fd vars
FDC_SET_LLC_AV none N A
FDC CLR LLC AV none N A
FDC_XCHG_DAD fdioreq fdio dad results
FDC_SET_MACNBRS fdioreq fdi o_mac_nei ghbors
FDC_GET_MACNBRS fdioreq fdi o_mac_nei ghbors
FDC _GET_DAD fdioreq fdio dad results
FDC GET_HPC fdioreq fdio _hpc_info
FDC OR HPC REG fdioreq fdio _hpc_reg data
FDC_AND HPC REG fdioreq fdio _hpc_reg data
FDC RD HPC REG fdioreq fdio _hpc_reg data
FDC WR HPC REG fdioreq fdio _hpc_reg data
SR-2014 37

FDDI(4) FDDI(4)

ioctl arg fdi or eq. buf or
Request parameter comst r eq. sbuf
FDC_SI GNAL_HPC fdioreq fdi o_signal _hpc
FDC _RD SMITI ME fdioreq fdio snt _tinestanp

Thevalidi oct| requests are as follows:

COW | OC_CDSTATS
Clears the statistics associated with the device(s) specified by comst r eq. dev. If
conmst req. dev isa-1, al configured devices will be cleared.

COW | OC_CLSTATS
Clears the statistics associated with the logical path(s) specified by conmst r eq. dev and
commstreq. | path. If conmstreq. devisa—1andcomstreq. | pathisa-1, dl
configured paths on all configured devices will be cleared.

COW | OC_DSTATS
Returns the statistics for the device(s) specified by the commst r eq. dev parameter. The format of
the statistics returned is that of acommst at structure. If cormst r eq. dev isa-—1, statistics for
all configured devices will be returned.

COWM | OC_LSTATS
Returns the statistics for the logical path(s) specified by the commst r eq. | pat h parameter. The
format of the statistics returned is that of acommst at structure. If commst r eq. dev isa—1 and
commstreq. | pathisa-1, statistics for al configured logical paths on all configured devices
will be returned.

COW | OC_STATS
Returns both device and logical path statistics associated with the device(s) and logical path(s)
specified by comst r eq. dev and commst r eq. | pat h. Thisis the same as FDC_DSTATS and
FDC_LSTATS combined.

COW | OC_GETULA
Gets the value of the IEEE Universal LAN address.

COW | OC_KGETULA
Same as FDC_GETULA except that the kernel uses it.

FDC_GET
Gets the current driver parameter settings and stores them in the f di 0_get set structure to which
f di or eq. buf points.

38 SR-2014

FDDI(4) FDDI(4)

FDC_SET
Sets driver parameters from the f di o_get set structure to which f di or eq. buf points. All
driver parameters that are changed by thisi oct | request reset to their boot-time values when the
logical path is closed. Parameters that apply to the device as a whole, such as TREQ, are reset to
their boot-time values when the last logical path is closed on the device.

FDC_KGET
Same as FDC_GET except that the kernel uses it.

FDC_KSET
Same as FDC_SET except that the kernel uses it.

FDC_CDSTATS
Same as COMM | OC_CDSTATS.

FDC_CLSTATS
Same as COMM | OC_CLSTATS.

FDC_DSTATS
Same as COMM | OC_DSTATS.

FDC_LSTATS
Same as COMM | OC_LSTATS.

FDC_STATS
Same as COMM | OC_STATS.

FDC_ECHO
Sends the data to which f di or eq. buf points to the IOS I/O buffer. Thisis a ssimulated write
operation that does not activate the channel. To read data back, post a read command on the
device.

FDC_ECHOSI NK
Sends the data to which f di or eq. buf points to the IOS I/O buffer. Thisis a ssimulated write
operation that does not activate the channel. Data cannot be read back by posting a read command
on the device.

FDC_CLRDLF
Clears the internal microcode download flag in the driver. When the flag is clear, the driver does
not allow any 1/0 to be performed on the device. Also, when the flag is clear, the channel is not
automatically configured on the first open.

FDC_SETDLF
Sets the internal microcode download flag in the driver. When the flag is set, the driver allows I/O
to be performed on the device. Also, when the flag is set, the channel is automatically configured
on the first open.

SR-2014 39

FDDI(4)

FDDI(4)

FDC_LOADM CRO

Sends the binary data to which f di or eq. buf pointsin the 10S 1/0O buffer. The 0P takes this
binary data and loads it into the FCA-1's shared memory at the address specified in the binary data
itself. After the reset signal is inactivated to the FCA-1, the HPC processor will begin to execute
the code that was just downloaded.

FDC_DUVPSM

Returns the contents of FCA-1 shared memory. The f di or eq. par amspecifies the address of the
shared memory to be returned.

FDC_DSTRUCT

Returns the contents of the f d_dev structures for the device(s) specified by comrst r eq. dev.
This structure is the internal driver structure used for controlling each FDDI interface.

FDC_LSTRUCT

Returns the contents of the f d_I p structures for the logical path(s) specified by conmst r eq. dev
and commst r eq. | pat h. This structure is the internal driver structure used for controlling each
logical path on each of the FDDI interfaces.

FDC_CETVARS

Returns the contents of the f d_var s structure, which contains the maximum number of FDDI
devices and logical paths.

FDC_SET_LLC AV

Sets the logical link control (LLC) available flag, f d_dev. snt .|| c_avail abl e, for this
device.

FDC_CLR LLC AV

Clearsthe LLC available flag, f d_dev. snt . | | c_avai | abl e, for this device.

FDC_XCHG_DAD

Exchanges the new results of the Duplicate Address Test with the current results that are stored in
the Driver Device table. If the results are different, the driver will notify the HPC on the channel
adapter of the new results.

FDC_SET_MACNBRS

Sets the upstream and downstream MAC neighbor addresses from the f di o_rmac_nei ghbor s
structure to which f di or eq. buf points.

FDC_GET_MACNBRS

Returns the upstream and downstream MAC neighbor addresses. The format of the data returned is
in the form of the f di o_mac_nei ghbor s structure.

FDC_GET_DAD

40

Returns the results of the Duplicate Address Test. The format of the data returned is in the form of
thef di o_dad_resul t s structure.

SR-2014

FDDI(4) FDDI(4)

FDC_GET_HPC
Returns the register information from the HPC on the channel adapter. The format of the data
returned is in the form of the f di o_hpc_i nf o structure.

FDC_OR_HPC_REG
Logicaly ORs the contents of a particular HPC register on the channel adapter with the specified
value. The format of the data to OR is in the form of the f di o_hpc_r eg_dat a structure.

FDC_AND_HPC _REG
Logicaly ANDs the contents of a particular HPC register on the channel adapter with the specified
value. The format of the datato AND is in the form of the f di o_hpc_r eg_dat a structure.
FDC_RD_HPC _REG
Returns the contents of a particular HPC register on the channel adapter. The format of the data
returned is in the form of the f di o_hpc_r eg_dat a structure.
FDC_WR_HPC_REG
Sets the contents of a particular HPC register on the channel adapter to the specified value. The
format of the data to write is in the form of the f di 0_hpc_r eg_dat a structure.

FDC_SI GNAL_HPC
Sends the specified signal number to the HPC on the channel adapter. The format of the dataisin
the form of the f di o_si gnal _hpc structure.

FDC_RD_SMITI ME
Returns the high-order 32 bits of the 64-bit SMT time stamp that the driver maintains by the
low-order 32 bits. The HPC on the channel adapter maintains the low-order bits, and they are
available in the f di o_hpc_i nf o structure. The format of the data is in the form of the
fdio_snt_tinestanp structure.

Thef di o_get set structure contains the following fields:
int ieee_nac
MAC address; IEEE (Canonical/Ethernet) form. (Ignored on FDC_SET and FDC_KSET.)

int fddi _nmac
MAC address; FDDI form. (Ignored on FDC_SET and FDC_KSET.)

int errno
Error code returned to user (er r no). (Ignored on FDC_SET and FDC_KSET.)

int err
FDDI error code. (Ignored on FDC_SET and FDC_KSET.)

int des
Detailed error status code from 10S. (Ignored on FDC_SET and FDC_KSET.)

int fsw
Frame status word from last frame read on this logical path. (Ignored on FDC_SET and
FDC_KSET.)

SR-2014 41

FDDI(4)

FDDI(4)

TREQ
TREQ value for this interface. TREQ s the value that is sent on all Claim frames from the FDDI
BMAC. Thisis the requested value for the token rotation timer. (Default is 167 ms.)

cc
Copy criteria mask for this interface. For the specific values for this mask, see sys/ epackf . h.
(Default is LLC and SMT.)

padcnt
Pad count (default is 3 bytes) for this interface. This is the number of bytes that are removed from
the start of each frame transmitted and inserted at the start of each frame received. This padding is
required for protocols such as TCP/IP, which needs the IP header word aligned within the FDDI
frame.

maxwr t
Maximum number of write requests (default is 10) allowed to 10S. After this many write requests
are pending in the |OS, the driver queues up any further write requests.

maxrd
Maximum number of read requests (default is 10) that can be sent to the I0S. After this number of
read requests is pending in the 10S, the driver queues any additional read requests.

opt
Options (default is NONE) for this logical path. Currently, two options (NFRCHK and NERRLOG)
are defined for logical paths. The NFRCHK option causes the driver to bypass frame validity
checking on write operations. This option can be useful for diagnostics. The NERRLOG option
causes the driver to not log errors that occur on this logical path to the system error log. This
option is useful for diagnostics that are causing errors intentionally and want to avoid having a
record of those errors. For the bit definitions of each of these options, see the FDLO_XXXX, defined
insys/fd. h.

rft
Receive frame type mask (default is NONE) for this logical path. This field defines the types of
frames to be received by this logical path. Frame types can be SMT frames, LLC frames, or any
combination of frame types. However, any particular frame type can be registered to be received
only by a single-logical path. If alogical path tries to register to receive a frame type that is
already being received by another path, an error will occur. For the specific values for this mask,
see the EFOP_RFT_XXXX, defined in sys/ epackf . h.

rtno
Read time-out value (in seconds) for this logical path; default is 60 seconds.

EXIT STATUS

The FDDI driver returns one of the following error codes in er r no on an error. To obtain a more specific
error code information, use a FDC_GET i oct | request and examine the er r and des fields. For the
mapping of the specific error codes to user error codes, see the table that follows.

42

SR-2014

FDDI(4)

FDDI(4)

The error codes and their meanings are as follows:

EBUSY

The specified logical path isin use.

EFAULT Anargumentto ai octl requestis not valid.
El NVAL The driver has detected a parameter error.

El O

ELATE

This error can be caused when a fatal 1/0 error occurs in the 10P, the FDDI MAC or LLC
services are not available on a write, a frame type that was not valid was received from the
network, the error bit is set in the frame status in a received frame on a read, or the actual
transfer length does not equal the request transfer length on a write or read.

A request timed out.

EPERM The driver has detected an operation that requires super-user privileges by a user that does not

have those privileges.

ENXI O The specified device or logical path does not exist or is not in an operational state.

The mainframe driver returns the following specific error codes:

FDER

FDER

FDER

FDER

FDER

FDER

FDER

FDER

FDER

FDER

SR-2014

BADDR
A b_waddr value that is not valid in the buf (bp) structure was detected on a read or write.

BADHPCADDR
A FDC_OR HPC_REG, FDC_AND _HPC_REG FDC_RD HPC REG, or FDC_WR HPC REGwas
issued with an HPC address that is not valid. The address must be less than or equal to OxOOff.

BADHPCPAGE
A FDC_OR _HPC_REG, FDC_AND _HPC_REG FDC_RD HPC REG, or FDC_WR HPC REGwas
issued with a HPC page address that is not valid. The page must be less than or equal to 0x07.
BADHPCSI ZE
A FDC_OR HPC_REG, FDC_AND _HPC_REG FDC _RD HPC REG, or FDC_WR HPC REGwas
issued with a HPC size that is not valid. The size must be byte, word, or long.

BADI OFLAG

The u_i o flag is not set for the user or the kernel making ani oct | request.
BCOUNT

A b_count value that is not valid in the buf (bp) structure was detected on a read or write.
BUSY

An open operation is tried on a logical path that is already open.
CLSNOPEN

A close operation is tried on a logical path that is not open.
CONFI NGDN

An open operation is tried on a device that is in the process of being configured down.
CONFUPER

An open operation is tried on a device that did not configure up successfully.

FDDI(4) FDDI(4)

FDER_COPYI N
An error occurred when copying data from the user to the kernel.

FDER_COPYOQOUT
An error occurred when copying data from the kernel to the user.

FDER ESET
The error bit is set in the received frame.

FDER HALTED
The 1/O was halted.

FDER_| OCPARAM
A parameter that was not valid was detected on ani oct | request.

FDER_| OCREQUEST
Aioctl request that was not valid was made.

FDER _LLC
An unsupported 802.2 LLC is detected.

FDER LLCNAVAI L
The LLC services are not available.

FDER NMACNAVAI L
The MAC services are not available.

FDER_NOCHAN
An open operation is tried on a device that has no physical channel defined in the configuration.

FDER_NOPEN
A operation is tried on a logical path that is not open.

FDER_NORFT
A read is posted on this path, but the path has not yet registered to receive any frame types.

FDER_NOTZUP
A nonsuper user tried an FDC_SET.

FDER_NULLDA
A null destination address (DA) in the FDDI frame was detected on a write.

FDER_OK
No error (binary 0).
FDER_PACKLEN
The length of an F-packet received from the 10S was incorrect.

FDER_PACKOUT
An error was detected when sending an F-packet to the 10S.

44 SR-2014

FDDI(4) FDDI(4)

FDER_RANGE
A device or logical path index is out of range. Typicaly, error this occurs when the minor device
number is created incorrectly.

FDER_RCVFC
A frame type that was not valid was received from the network.

FDER_RFTI NUSE
The frame type that you want to register for a path is already registered to another logical path.

FDER_WRI TEFC
A frame control (FC) byte that is not valid in the FDDI frame was detected on a write.

FDER_XNFRLEN
The actual transfer length does not equal the requested transfer length.

FDER_UNSOLI Cl TED
An unsolicited error has been received from the EIOP. This error may be asynchronous with the
operation that the mainframe is currently performing on the channel.

FDER_NOTLQADED
An attempt was made to open a logical path or to perform aread or write on alogical path before
the channel adapter has been downloaded with microcode.

FDER_ALRDYLOADED
An attempt was made to download the channel adapter with the download flag aready set, meaning
the adapter had been already loaded.

The 10S driver returns the following specific error codes:
F_RSP_ACT_CRE8
Cannot create needed activity.

F_RSP_BADCHN
Channel number is not valid.

F _RSP_BADFCA1l
FCA1 mode is not valid.

F_RSP_BADLEN
Requested transfer length is not valid.

F_RSP_BADPATH
Logica path is not valid.

F_RSP_BADREQ
Request code is not valid.

F_RSP_BADTMO
Supplied time-out value is not valid.

SR-2014 45

FDDI(4)

46

F_RSP_BAD TYPE
Bad packet type.

F_RSP_CBREL_BAD
CB_Release error.

F_RSP_CBRES BAD
CB_Reserve error.

F_RSP_CBNAVL
Channel buffer not available.

F_RSP_CH DOMN
Channel pair not configured up.

F_RSP_CH_ I NI TI NG
Initialization of channel pair already in progress.

F_RSP_CH TERM NG
Termination of channel pair already in progress.

F_RSP_CH UP
Channel pair already configured up.

F_RSP_CLOSED
Request aborted because of CLOSE PATH request.

F RSP_DVRTERM
Driver terminated.

F RSP_FCA1_BAD
FCA1 hardware information is not valid.

F_RSP_HALTED
Request aborted because of HALT 1/ O request.

F_RSP_HALT_FAI L
Cannot HALT 1/ O in adriver activity.

F_RSP_| OBVEM
IOB memory not available.

F_RSP_L OCVEM
Local memory not available.

F_RSP_LM O ADR

Bad channel buffer address parameter in LM O request.

F RSP LM O DR

Bad transfer direction parameter in LM O request.
F_RSP_LM O HDWR

Hardware error detected on LM O attempt.

FDDI(4)

SR-2014

FDDI(4) FDDI(4)

F_RSP_LM O _LEN
Bad word length parameter in LM O request.

F_RSP_LM O ORD
Bad ordinal parameter in LM O request.

F RSP_K
No error was detected.

F_RSP_OVERRUN
Transferred more data than expected.

F_RSP_ABORT_O
Output 1/0O buffer to FIFO abort.

F_RSP_BUFMEM O
Output 1/0 buffer single-or double-bit error.

F_RSP_PAR FETCH
Parity error during HPC fetch memory reference.

F_RSP_I FCALITMO
Input FCA-1 channel time-out.

F _RSP_HPC DOWNLOAD
HPC download failed.

F_RSP_HPC BADRESP
HPC sent bad response to mailbox command.

F_RSP_HPC TMO
Time-out occurred on a HPC mailbox request.

F_RSP_PARI TY_O
Output FIFO data/control/buffer parity error detected.

F_RSP_PARI TY_|I
Input FIFO data/control/buffer parity error detected.

F_RSP_PATHCLO
No open connection for this logical path.

F_RSP_PATHOPN
Connection aready open for this logical path.

F_RSP_PKTLEN
Request packet length is not valid.

F_RSP_RD PKT_TMO
Read request packet timed out.

F_RSP_RELMEM
RELMEMrequest failed.

SR-2014 47

FDDI(4)

48

F_RSP_TERM FAI L

Cannot terminate all driver activities.

F_RSP_TI MER_PAR

Bad parameter on Tl MER call.

F_RSP_TI MER_QUED

Start a timer already on RTC queue.

F_RSP_TI MER_UNKNOMN
An unknown timer failure.

F_RSP_TM O ADR

Bad channel buffer address parameter in TM O request.

F_RSP._TM O DIR

Bad transfer direction parameter in TM O request.

F_RSP_TM O_HDWR

Hardware error detected on TM O attempt.

F_RSP_TM O LEN

Bad word length parameter in TM O request.

F_RSP_TM O_NAVL

Target memory channel not available.

F_RSP_TM O_CRD

Bad ordinal parameter in TM O request.

The following shows the mapping of specific error codes and user error codes:

Specific Error Code
FDER_BADDR
FDER_BADHPCADDR
FDER_BADI OFLAG
FDER_BCOUNT
FDER_BUSY
FDER_CL SNOPEN
FDER_CONFI NGDN
FDER_CONFUPER
FDER_COPYI N
FDER_COPYOQOUT
FDER_ESET
FDER_HALTED

User Error Code (err no)
El NVAL
El NVAL
El NVAL
El NVAL
EBUSY
ENXI O
ENXI O
ENXI O
EFAULT
EFAULT
El O

El O

FDDI(4)

SR-2014

FDDI(4) FDDI(4)

FDER_| OCPARAM El NVAL
FDER_LLCNAVAI L ENXI O
FDER_MACNAVAI L ENXI O
FDER_NOCHAN ENXI O
FDER_NOPEN ENXI O
FDER_NORFT El O
FDER_NOTZUP EPERM
FDER_NULLDA El NVAL
FDER_PACKLEN El O
FDER_PACKOUT El O
FDER_RCVFC El O
FDER_RFTI NUSE El O
FDER_WRI TEFC El NVAL
FDER_XNFRLEN El O
F_RSP_ACT_CRES El O
F_RSP_BADCHN El NVAL
F_RSP_BADFCAL El NVAL
F_RSP_BADLEN El NVAL
F_RSP_BADPATH El NVAL
F_RSP_BADREQ El NVAL
F_RSP_BADTMO El NVAL
F_RSP_BAD TYPE El NVAL
F_RSP_CBREL_BAD El O
F_RSP_CBRES_BAD El O
F_RSP_CBNAVL_BAD El O
F_RSP_CH _DOMN El NVAL
F_RSP_CH_I NI TI NG El NVAL
F_RSP_CH_TERM NG El NVAL
F_RSP_CH UP El NVAL
F_RSP_CLOSED El O
F_RSP_DVRTERM El O

SR-2014 49

FDDI(4)

50

F_RSP_FCA1_I NFO_BAD
F_RSP_HALTED
F_RSP_HALT_FAI L
F_RSP_| OBVEM
F_RSP_LM O ADR
F_RSP_ LM O DIR
F_RSP_LM O _HDWR
F_RSP_LM O _LEN
F_RSP_LM O _CRD
F_RSP_LOCMVEM
F_RSP_OVERRUN
F_RSP_PARI TY
F_RSP_PATHCLO
F_RSP_PATHOPN
F_RSP_PKTLEN
F_RSP_RD _PKT_TMD
F_RSP_RELMEM
F_RSP_SECDED
F_RSP_TERM FAI L
F_RSP_TI MER_PAR
F_RSP_TI MER_QUED
F_RSP_TI MER_UNKNOAN
F_RSP_TM O ADR
F_RSP._TM O DIR
F_RSP_TM O_HDWR
F_RSP_TM O _LEN
F_RSP_TM O_NAVL
F_RSP_TM O_CRD

El O

El O

El O

El O

El O

El O

El O

El O

El O

El O

El O

El O

El NVAL
El NVAL
El NVAL
ELATE
El O

El O

El O

El O

El O

El O

El O

El O

El O

El O

El O

El O

FDDI(4)

SR-2014

FDDI(4)

EXAMPLES

FDDI(4)

The following is an example of the usage of the i oct | request to alter driver parameters:

#i ncl ude <sys/epackf. h>
#i ncl ude <sys/fd. h>

struct fdioreq req;

int ret;

int fil des;

struct fdio_getset getset;

/* FDDI driver paraneter structure */
/[* Status returned fromioctl() req */
/* FDDI device file descriptor */

/* getset structure */

req. buf = &getset;
req.len = sizeof (struct fdio_getset);
ret = ioctl(fildes, FDC_CET,

if (ret <0) {
perror ("FDC_GET");
exit(1);

};

get set. padcnt = 3;
get set. TREQ = 100;
getset.rtm = 10;

ret = ioctl(fildes, FDC_SET,
if (ret <0) {
perror ("FDC_SET");
exit(1);
s

FILES

/dev/fddin/*
[usr/include/sys/epackf.h
[fusr/include/sys/fd.h
fusr/include/sys/fdsys.h

[usr/include/sys/netdev. h

SR-2014

&eq); /* Get current driver settings */

/* New padcnt is 3 bytes */
/* New TREQ is 100 ns */
/* New read tine-out value is 10 sec */

&cb); /* Set new driver paraneters */

FDDI interface specia files

51

FDDI(4) FDDI(4)

SEE ALSO

cl ose(2),ioctl (2), open(2), read(2), reada(?2), wite(2), witea(2) in the UNICOS System Calls
Reference Manual, Cray Research publication SR—2012

nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
The ANSI documents for FDDI:

FDDI MAC (Media Access Protocol) Specification (FDDI-MAC), document number X3.139-1987,
November 5, 1986

FDDI PHY (Physical Layer Protocol) Specification (FDDI-PHY'), document number X3.148-1988, June
30, 1988

FDDI PMD (Physical Medium Dependent) Specification (FDDI-PMD), document number X3.166-1990,
September 28, 1989

FDDI SMI (Station Management) Specification (FDDI-SMT), document number X3T9.5/84-49, Rev
7.2, June 25, 1992

Other documents related to FDDI:
RFC 1390 Transmission of IP and ARP over FDDI Networks. January 1993. D. Katz
Logica Link Control Specification (802.2 LLC), document number 802.2-1985, July 16, 1984

52 SR-2014

FEI(4) FEI(4)

NAME

f ei — Front-end interface

IMPLEMENTATION
Cray PVP systems systems

DESCRIPTION

The front-end interface (FEI) is a channel-to-channel adapter that connects Cray PVP systems to a front-end
computer. The specia filein / dev for the FEI is usually / dev/ f ei . For details on the specid filesin

/ dev at your site, see your system support staff. Currently, support for the FEI is provided through the 1/0
subsystem (10S) as if the FEI were a Network Systems Corporation (NSC) adapter, except that the I0S
driver provides only one logical connection or logical path. The device is otherwise treated as an NSC
adapter; for details of usage, see hy(4).

FILES

[dev/ f ei
[usr/include/sys/hy.h
/usr/include/sys/hysys. h

SEE ALSO
hy (4), vire(4)

ioctl (2),listio(2),read(2),reada(2),wite(2),witea(2) inthe UNICOS System Calls Reference
Manual, Cray Research publication SR—2012

SR-2014 53

FMSG(4) FMSG (4)

NAME

f msg — GigaRing 1/0 message and MMR interface

IMPLEMENTATION

CRAY T90 systems with GigaRing-based 1/0
CRAY J90 systems with GigaRing-based 1/0

DESCRIPTION

54

Thefilesin / dev/ f nsg are character specia files that allow sending and receiving of message and MMR
(Mapped Memory Register) packets to GigaRing I/O nodes. Each file represents one GigaRing I/O node.
The following F-transmission protocol packets are supported:

e packets echo packets
g packets MMR packets

User-level commands such as f pi ng(8) and nmr (8) open / dev/ f msg devices and send and receive
packets using read and write system calls.

The f pi ng(8) command sends an echo packet to the specified GigaRing I/O node. The I/O node will then
echo the packet back to the sender.

The mt (8) command allows reading and writing of an 1/0O node’s GigaRing MMR for ring management
and error monitoring purposes.

Thefilesin / dev/ f nsg are normally created using the nkf m(8) command, based on the mknod(8)
specifiecation detailed below.

The mknod(8) command for / dev/ f nsg devicesis as follows:

nmknod name type major minor reserved ionode

name Name of the / dev/ f nsg file. Normally named for the 1/0 node ring and node address.
type Devicesin / dev/ f msg are character devices denoted by ac.

major The major device number is dev_f msg.

minor Minor device number.

reserved Must be 0.

ionode The ring and node address of the target 1/0 node broken down in octal as follows:
Orrrnn where:
rer = 1/O node ring number

nn = |/O node node number

SR-2014

FMSG(4) FMSG (4)

FILES
[dev/ fnmsg/ *

[usr/include/sys/fnsg.h

fusr/src/cl/iolfneg.c

SEE ALSO

f pi ng(8), mkf m(8), m (8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2014 55

FSLOG(4) FSLOG(4)

NAME

f sl og — File system error log interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The / dev/ f sl og pseudo device is a read-only device that holds file system error log records. The file
system error log daemon, f sl 0gd(8), reads and processes those records to enable graceful handling of file
system, directory, and inode errors detected by the kernel. For more information about the file system error
log file, see f sl r ec(5).

FILES
/ dev/f sl og Source of file system error log records

SEE ALSO
f sl rec(5) for more information about the file system error log file

f sl 0ogd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

56 SR-2014

HDD(4) HDD(4)

NAME
hdd — HIPPI disk device interface

IMPLEMENTATION
Cray PVP systems with 10S model E

DESCRIPTION

Thefilesin / dev/ hdd are specid files that allow read and write operations to HIPPI disk array devices.
Each file represents one dlice of a HIPPI disk device. Thefilesin/ dev/ hdd are character special files that
may be used directly to read and write HIPPI disk slices. Usually, they are called to perform 1/O on behalf
of higher-level logical disk device drivers. For I/O on a character disk device, read and write operations
must transfer multiples of the HIPPI disk device sector size and all seek operations must be on HIPPI disk
sector size boundaries.

The UNICOS operating system supports standard HIPPI disk array devices that adhere to the ANSI Standard
IPI-3 command set on top of the ANSI Standard HIPPI Framing protocol.

Thefilesin / dev/ hdd are not mountable as file systems, although you may combine one or more HIPPI
disk dlices to make a mountable logical disk device (see dsk(4), | dd(4), and nount (8)). To create the files
in/ dev/ hdd, use the mknod(8) command. Each must have a unique minor device number, along with
other parameters used to define a HIPPI disk dlice.

The mknod(8) command for HIPPI disk devices is as follows:
nmknod name type major minor dtype iopath start length flags reserved unit ifield

name Descriptive file name for the device (for example, hdd/ scr 0230. 0).
type Signifies how data will be transferred. Devicesin / dev/ hdd are character specia devices
denoted by ac.

major Major device number for HIPPI disk devices. The dev_hdd name label in the
/usr/src/uts/cl/cf/devsw. c file denotes the major device number for HIPPI disk
devices. You can specify the major number as dev_hdd.

minor Minor device number for this slice. The maximum number of HIPPI disk dices is defined in the
deadst art parameter file by the HDDSL MAX parameter.

dtype HIPPI disk device types are defined in / usr/ src/ ut s/ cl/ sys/ pddt ypes. h. The HIPPI
disk device types currently correspond to the HIPPI disk sector size.

HD16 1 /[* 16k byte sector, iou =4 */
HD32 2 /* 32k byte sector, iou =8 */
HD64 3 /* 64k byte sector, iou = 16 */

Thei ou (I/O unit) is the size of the sector in multiples of 512-word (4096-byte) blocks.

SR-2014 57

HDD(4)

58

iopath

Start
length
flags

HDD(4)

On CRAY Y-MP systems with an I0S-E, the iopath specifies the 1/0O cluster, the I/O processor
(I0P), and the controller channel number. For example, an iopath of 01234 is10C 1, I0P 2,
channel 34. A HIPPI channel pair takes up two |OP channels, the lower number channel for
input and the upper channel number for output. The following is a typical HIPPI 10P
configuration that has two pairs of HIPPI channels:

H PPl O channel 30 i nput
channel 32 out put

H PPl 1 channel 34 i nput
channel 36 out put

When specifying the HIPPI disk iopath, the input channel humbers are used (for example, HIPPI
1onlIOC 1, IOP 2, would have an iopath of 01234).

For information on setting the iopath field when configuring an hdd device node on CRAY EL
and CRAY J90 systems, see the subsection "The iopath field."

Absolute starting sector number of the dlice.
Number of blocks sectors in the dice.

Flags for HIPPI disk device control, defined in sys/ hdd. h, follow. They mainly are used for
diagnostic and maintenance purposes. Usually, the flags field should be O for slices in
/ dev/ hdd. The following flags are defined for hdd devices.

#define HS CONTROL 0001 /* control device */

#defi ne HS_NCDEVI NT 0002 /* no device intimate functions */
#defi ne HS MOVER 0004 /* this dev 3rd party data nover */
#defi ne HS_NOWVOVI 0010 /* no internedi ate nover response */
#defi ne HS_NCERREC 0040 /* no error recovery */

reserved

unit

ifield

NOTE: If the HIPPI disk array is not a Cray Research supported network disk product, you
may have to set the HS_NCDEVI NT flag.

For information on the HS_DYNPATH flag, see the subsection "The iopath field."
This field is reserved for future use.

This field contains the HIPPI disk array unit number (also known as the facility address) and the
raid partition number. The low-order 9 bits (bits O through 8) represent the facility address, f.
Bits 9 through 15 represent the raid partition number, r: Orrrfff. To designate an octal value,
specify the leading O on this parameter in the nknod command.

This is the HIPPI array ifield address if the array is connected through a HIPPI switch. Bit 2724
(camp on connect) is forced on by the driver.

SR-2014

HDD(4) HDD(4)

The iopath field
On CRAY EL and CRAY J90 systems, you can use the HS_DYNPATH flag to create the hdd device node
by using the mknod(8) command.

The HS_DYNPATH flag has a value of octal 0400. When the flags field in the hdd device node has the
HS_DYNPATH bit set, the iopath is treated as a channel mask as opposed to a single channel. When using
the channel mask, 1/0 to or from the hdd disk can occur over any of the channels specified in the channel
mask.

When the HS_DYNPATH bit (octal 0400) is not set in the flags field, 1/0O to or from the hdd disk occurs
over the single channel specified in the iopath field. There are seven possible input channel values for the
iopath field for CRAY EL systems: 024, 040, 044, 060, 064, 0100, or 0104. There are 15 possible input
channel values for the iopath field for CRAY J90 systems: 024, 030, 034, 040, 044, 050, 054, 060, 064,
070, 074, 0100, 0104, 0110, or 0114.

When the HS_DYNPATH bit (octal 0400) is set, the iopath field in the hdd device node represents a bit
mask. On CRAY EL systems, this bit mask can be up to 7-bits wide; on CRAY J90 systems, it can be up
to 15-bits wide. The bits in the bit mask in CRAY EL systems do not represent the same input channels as
the bits in the bit mask in CRAY J90 systems.

The formats of the bit mask in the iopath field follow.
The iopath bit mask for CRAY Y-MP systems is of the following format (up to 7-bits wide):

Input

Bit channel
20 024
21 040
22 044
2’3 060
24 064
2’5 0100
26 0104
Examples:

iopath bit iopath bit
mask mask
(binary) (decimal) Represents input channels

1000001 65 024, 0104
0111000 56 060, 064, 0100
0000011 3 024, 040
0101010 42 040, 060, 0100

SR-2014 59

HDD(4)

60

iopath bit iopath bit

mask mask
(binary) (decimal)

Represents input channels

1010101 85
1110111 119

024, 044, 064, 0104
024, 040, 044, 064, 0100, 0104

The iopath bit mask for CRAY J90 systems is of the following format (up to 15-bits wide):

Input
Bit channel
20 024
2’1 030
272 034
23 3040
2°4 044
2’5 050
26 054
27 060
28 064
279 070
2°10 074
2’11 0100
2°12 0104
2°13 0110
2°14 0114
Examples:
iopath bit
iopath bit mask mask
(binary) (decimal) Represents input channels
000000001000001 65 024, 054
100000000111000 16440 040, 044, 050, 0114
101010101010101 21845 024, 034, 044, 054, 064, 074,
0104, 0114
010101010101010 10922 030, 040, 050, 060, 070, 0100,

0110

HDD(4)

SR-2014

HDD(4)

HDD(4)

Facility addressing

The path to a HIPPI disk facility is defined by the 1/O path, ifield, and unit number. The HDDMAX parameter
describes the maximum number of HIPPI disk facilities in the deadst art parameter file.

Third-party transfer requests

The |EEE Mass Storage Reference Model breaks the process of doing /O into its component parts and
demonstrates the separation of data and control paths. As looked at from the peripheral’s perspective, a
control path handles functional regquest and response information, while the data mover path just moves data.
This can allow for centralization of control and can better use high-bandwidth connections for moving and
distributing data across a network.

The hdd driver has both data mover and data server capabilities. When acting as a data mover, an hdd
connection is a slave to data transfers being controlled by a server path. When performing the server role,
the hdd connection sends the read or write function to the device, aong with the data path information
needed to inform the data mover where to move the data

To configure an hdd connection as a data mover, simply set the HS_MOVER flag, as defined previoudly, in
the device inode. When a node is configured as a data mover, the command and response information travel
a different path and originate from a server, possibly from a different host. A server functionality is the
necessary complement to the data mover function.

Data move functionality for the hdd driver is provided with the UNICOS standard r eada(2) and
writ ea(2) system calls. Server functionality is provided through i oct | system calls to the hdd driver.
A unique transfer identifier (tid) logically connects a data move operation with a server request.

i octl requests

The format for i oct | requests that the hdd driver supports is as follows:

#i ncl ude "sys/ pddtypes. h"
ioctl (fildes, command, arg);

The hdd driver supports the following i oct | requests:
HDI _READFOR (0101) Reads data to another host.
HDI _WRI TEFOR (0102) Writes data from another host.

The HDI _READFOR and HDI _WRI TEFOR i oct | functions provide the hdd
driver with a server capability; that is, read and write requests may be sent on
behalf of data that is moved down another path to or from another host. You
can use the HDI _ READFOR and HDI _ WRI TEFOR commands in conjunction
with an hdd node set up to be a data mover. The hdi _ser v structure
passes the appropriate information to the driver.

SR-2014 61

HDD(4) HDD(4)

ioctl(fildess, HDI _READFOR, arg)
structure hdi _serve *arg;

/-k
* Structure for hdd ioctl read/wite for
*/
struct hdi _serv {
ui nt nbl ks 232, [* nunber of 512 word bl ocks */
bl kno :32; [* starting block in 512 word bl ks */
ui nt tid :32, [* transfer identifier */
offset :32; /* byte offset in destination buffer */
ui nt ifield :32, [/* destination ifield */
port :32; [/* destination controller port */
I
HDI _CANCEL (0103) Cancels a request to a data mover.
i nt tid;

ioctl (fildes, HDI _CANCEL, tid)
The HDI _CANCEL i oct | command cancels a pending data move identified
by the transfer identifier (tid).
HDI _GET_TI D (0104) Gets a unique transfer identifier (tid).
int tid;
ioctl(fildes, HDI _GET_TID, &tid)
Gets a system-unique nonzero transfer identifier (tid) that may be used to
identify a data mover and/or data server request.
HDI _SET_MOV_TO(0105) Sets data mover request time-out.
int timeout = 60;
ioctl(fildess, HDI _SET _MOV_TO &timeout);

Sets the time-out value for a data move to the specified number of seconds.
When the timer for a pending data move expires, the pending move is
canceled and the data move request is terminated with an EI NTR er r no.

EXAMPLES

The following mknod command makes a node for hdd/ scr 0334. 2, type ¢, major number dev_hdd,
minor number 110, disk type HDO4, 1/O cluster 0, IOP 3, channel 34, starting at block 0O, length of 100,000
blocks, O for flags, facility address of 020, raid partition number 021, and an ifield address of 7:

nmknod hdd/scr0334.2 c¢ dev_hdd 110 1 0334 0 100000 O 0 021020 7

62 SR-2014

HDD(4) HDD(4)

FILES
/ dev/ hdd/ *
[usr/include/sys/epackj.h
/usr/include/sys/hdd. h
[usr/include/sys/pddprof.h
[usr/include/ sys/ pddtypes. h
fusr/src/cl/iolhdd.c

SEE ALSO
dsk(4), | dd(4), ndd(4), pdd(4), xdd(4), sdd(4), ssdd(4)

ddst at (8), hddnmon(8), nknod(8), mount (8), sdst at (8) in the UNICOS Administrator Commands
Reference Manual, Cray Research publication SR—2022

SR-2014 63

HIPPI(4) HIPPI(4)

NAME

H PPl — ANSI High Performance Parallel Interface

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

64

The HI PPI interface (or HI PPI driver) drives an ANSI standard High Performance Parallel Interface
(HIPPI) channel. The driver supports no device in particular. If two machines are directly connected by
using HIPPI channels, the driver behaves in a manner similar to UNICOS named pipes. If the HIPPI
channel is connected to a device, user software must execute the device's protocol. Application processes
use the HI PPI driver by means of the standard UNICOS system calls: cl ose(2),i octl (2), i sti 0(2),
open(2), read(2), reada(2), wite(2),and wi t ea(2). Each of the special filesin a/ dev/ hi ppi *
directory represents one input or output HIPPI channel.

By convention, HIPPI file names have the following format:
/ dev/ hi ppi n/ i xx
/ dev/ hi ppi n/ oxx

n Physical channel number

[Input channel

o] Output channel

xx Logica channel number

For operation in one direction only, only one channel must be opened. If the application uses both read and
write operations, it must open both an input and an output channel. A read operation is valid only on an
input channel; a write operation is valid only on an output channel. All HIPPI 1/O is raw; the user process
is locked in memory as data moves directly between the user buffer and the channel. Therefore, user buffers
must be word-aligned, and their length must be a multiple of 8 bytes.

HIPPlI Fundamentals

HIPPI is a 32-bit parallel unidirectional point-to-point data channel. Usually, it is installed in input/output
pairs for bidirectional operation. Data flows from a HIPPI source to a destination.

From the user’s perspective, the basic unit of information on the channel is a packet. The channel hardware
breaks up packets into bursts of 256 32-bit words. READY pulses from the destination to the source control
flow; each READY pulse lets the source send one burst. The PACKET signal from source to destination
marks the boundaries between packets.

Thereis a signal called REQUEST from source to destination, and a companion signal called CONNECT in
the opposite direction. When both signals are present, a connection is said to exist. Data may not flow
unless there is a connection.

SR-2014

HIPPI(4) HIPPI(4)

To establish a connection, the source raises the REQUEST signal to the destination. At this time, it can
place 32 bits of information on the data lines, called the I-field. The destination can examine the I-field
before it responds to the request. The destination responds either by accepting the request or rejecting it.
Acceptance consists of raising the CONNECT signal and transmitting READY pulses. To reject a request,
the destination raises CONNECT for a certain period of time and drops it again without transmitting any
READY pulses. The source responds by dropping REQUEST.

Connections may be broken either by the source (by dropping the REQUEST signal) or by the destination (by
dropping CONNECT). The other side must respond by dropping its corresponding signal. The source must
cease sending data when the connection is broken. When a destination breaks a connection, data in transit
can be lost.

For further information about the HI PPl interface, see the ANSI documents listed in the SEE ALSO
section.

Dedicated and Shared HIPPI Channels
The HI PPI driver supports two modes of operation: dedicated and shared. The mode is assigned to each
channel when it is opened. If a channel is dedicated, only one process can have that channel open at a time.
If a channel is shared, severa processes can use one HIPPI channel. The driver enforces a protocol on the
shared channel, alowing it to determine the destination of each incoming message.

Shared channels are not supported on Cray PVP systems configured to read and write the HIPPI channels
with SSD solid-state storage buffers.

For more information on configuring HIPPI channels on CRAY Y-MP systems, see UNICOS Networking
Facilities Administrator’s Guide, Cray Research publication SG—2304.

HIPPI i oct] Requests
Severa i oct | requests are available. They have the following format:

#i ncl ude <sys/ hx. h>
i octl (fildes, command, arg)
struct hxio *arg;

Thevalidi oct| requests are as follows:

HXC GET Gets the current driver parameter settings; stores them in the hxi o structure referenced by
arg.
HXC_SET Sets driver parameters from the structure referenced by arg.

Connections are established automatically in response to r ead(2) and wri t e(2) system
calls. To control the termination of connections, use the HXCF_DI SC i oct | flag (see
the following).

The hxi o structure contains the following fields:

unsi gned int flags Flagsthat control channel operation. The flags field controls the driver’'s
options. The bits in the flags field are defined as follows:

SR-2014 65

HIPPI(4)

HXCF_DED

HXCF_DI SC

HXCF_DOWN

HXCF_HDR

HXCF_HI PPI

HXCF_I ND

HXCF_1 O

66

HIPPI(4)

The channel is open in dedicated mode; no other processes
may share the channel. If this flag is set, the value in the
path field is meaningless. Thei oct| request HXC GET is
used to set this flag. Thei oct| request HXC_SET ignores
this flag.

(Meaningful only on output devices) When set, causes the
driver to end the HIPPI connection after each packet written.

If this bit is set, the channel is unavailable to other users. If
this bit is clear, the channel is available. When the channel
is down, the driver returns the ENXI O error. Programs that
reconfigure the channel should issue acl ose request
immediately after thei oct | request, then reopen the
channel before trying to do anything else. This bit is set in
thei oct| request HXC_SET on a dedicated channel. This
is a read-only flag.

Controls the handling of the HIPPI-FP header (first word of
each packet). If HXCF_HDR is set (default), the HIPPI-FP
header is assumed to be in the user buffer. If clear, the

HI PPl driver adds a HIPPI-FP header to the beginning of
the user data on output and strips it off on input. For
HIPPI-FP field definitions, see sys/ hi ppi f p. h. When
creating the HIPPI-FP header, the driver sets the ul pi d
field to the value of pat h and the d2si ze field to the user
buffer length (in bytes). All other HIPPI-FP fields are O.
The HI PPI driver does not validate the HIPPI-FP header on
input.

(Read-only, not user settable) Indicates channel is a HIPPI.
Clear for HSX.

Controls the passing of the I-field value to the driver on
output channels. By default, the driver uses the value in

i fv. If HXCF_I ND is set, the driver uses the low-order 32
bits of the first word of the user buffer as the I-field. If
HXCF_HDR is set, the HIPPI-FP header is in the second
word of the user buffer. HXCF_| ND is convenient if the
application must change the I-field between packets,
especiadly if wri t ea(2) is being used.

(Not user-settable) Indicates the channel direction: set for
output, and clear for input.

SR-2014

HIPPI(4)

int err

int path
unsi gned int tno

int ifv

int ctnp

listio Special Features

HIPPI(4)

HXCF_1 SB Controls the sending of an Initial Short Burst. The
HIPPI-PH specification allows either the first or last burst of
a packet to consist of less than 256 HIPPI words (32- or
64-bit words). The HI PPl driver sends short bursts last by
default. To send it, the user must first set this flag and use
alistio(2) request with two output buffers, and the
HXLI _CHD flag set for only the first one. The first buffer
contains the contents of the first burst, and it may consist of
from 1 to 256 Cray words. The second buffer must be a
multiple of 128 Cray words for 32-bit HIPPI channels and
256 Cray words for 64-bit HIPPI channels.

HXCF_MODEL_E (Not user-settable) Indicates the type of 10S: set for IOS-E
and CRAY EL memory HIPPI systems, and clear for others.

Detailed error status from the last request; for a list of HIPPI errors, see the
M essages section.

ULP-ID for shared input channels or for autoheader mode for output channels.
Time-out value (in seconds).

(I-field value) The output channel driver sends this value when it requests a
connection. The input channel driver uses this value to decide whether to accept
or reject a connection request. The input driver forms the logical product of the
channel’s I-field value and the user’s I-field mask. If this product matches the
user's I-field value, the driver accepts the connection. If the values do not
match, the driver rgjects the connection.

On CRAY EL systems, if the input driver does not use the i f v field, all
incoming connections are accepted after the input channel has been opened.

(I-field mask) The input driver makes a logical product with this mask before
comparing the I-field on the channel with the I-field value. Thei f mfield is not
used on CRAY EL systems.

Connection time-out value (in seconds); determines how long the driver will wait
for a connection to become established after it is requested.

The HI PPl driver defines one flag to be used inthe | i _dr vr field of thel i st r eq structure (see

listio(2),asfollows:

HXLlI _CHD Indicates, in effect, that user data is chained. When this flag is set, the driver suppresses the
end-of-block signal at the end of the current list entry (for an output channel) or alows the
current input data block to overflow into the next list entry (for an input channel).

SR-2014

67

HIPPI(4) HIPPI(4)

If the driver encounters an end-of-block signal during a read operation in which the HXLI _CHD flag is set,
no error indication is returned to the user. Subsequent read operations will complete with a data length of O
until the HXLI _CHD flag is cleared. If the user issuesthei oct| request HXC GET to check the status
after a chained read operation, the er r field of the hxi o structure is set to the HXST_EOB error code,
indicating that an end-of-block signal arrived before the last read request was processed.

If the driver has not detected an end-of-block signal on a unchained read operation (that is, r ead(2),
reada(?), or | i sti o(2) with the HXLI _CHD flag clear) by the time the read operation completes, the
driver discards the unread part of the block. The byte count returned to the user is equal to the size of the
buffer, and no error code is returned in er r no. If the user issues thei oct | request HXC_GET to check
the status after a unchained read operation, the er r field of the hxi o structure is set to the HXST_LONG
error code, indicating that the entire block was not read and the remainder was discarded.

When using the | i sti o chaining feature on shared channels to combine more than one buffer to make a
single data block, the user must include all buffersin the same | i sti 0(2) system call. That is, make sure
that the HXLI _CHD flag is clear in the | i _dr vr field of the last item for an HIPPI channel in each
listio(2)cal. Failureto do this can cause lost or corrupt data on the channel if the user processis
swapped between requests.

The 10S-E systems support chained buffers only in pairs; that is, if HXLI _CHD is set for one buffer, it must
be clear for the next.

On CRAY EL systems with memory HIPPI, the chained buffers also must be supplied in pairs. The first
buffer also must consist of 1024 bytes or less. On the input channel, the first burst will be written to the
first buffer. If the first burst fits completely into the first buffer, the remainder of the packet will be written
to the second buffer, leaving empty space in the first buffer if the first burst did not fill it completely. If the
first burst is bigger than the first buffer, the first buffer will be filled, the remainder of the first burst will be
written to the second buffer, and the remainder of the packet will be appended to the second buffer.

HIPPI Protocol
On dedicated channels, the HI PPI driver treats all HIPPI packets as opaque data: no specific protocol is
required or recognized.

Shared channel operation requires that all applications use the ANSI draft HIPPI Framing Protocol
(HIPPI-FP). The sys/ hi ppi f p. h header file contains definitions for the header. The Hl PPI driver
examines the ULP-1D field in each input packet. For an application to receive a packet in shared mode, its
path value must match the contents of this field. The default value of path is n+128; n = (minor device
number) modulo 16 (for example, the default path (ULP-ID) for / dev/ hi ppi /i 01 and

/ dev/ hi ppi / 001 is 129; for / dev/ hi ppi / *02 is 130, and so on). Each application can change its
ULP-ID by setting the new value in the path variable in a HXC_SET request.

HIPPI 800- and 1600-M Modes
The HIPPI-PH specification describes both 32-bit and 64-bit HIPPI implementations. Nominal data rates are
800 M and 1600 M, respectively. One cable in each direction, called Cable A, is used for 800-M HIPPI.
1600-M HIPPI uses two cables in each direction, called Cable A and Cable B. Cray Research systems that
have an IOS-E can be wired for Cable B; all other Cray Research systems have only 32-bit HIPPI.

68 SR-2014

HIPPI(4)

HIPPI(4)

The ANSI HIPPI-SC (Switch Control) draft standard allocates bit 2**28 of the I-field to control the mode of
switch connections. The Cray Research HI PP driver uses this same bit to select the channel mode, as

follows:

Output If bit 2**28 of the I-field is set and the output HIPPI has a second cable installed and connected,
the driver selects 64-bit mode for the transfer. If there is no second cable, the driver returns
El O

Input The driver examines bit 2**28 of incoming I-fields. If set, and Cable B is installed and
connected, the driver selects 64-bit mode for the transfer.

MESSAGES

When afatal error occurs, the HI PPI driver returns one of the following error codesin er r no. The error
codes and their meanings are as follows:

EFAULT
El NVAL

El O

ELATE
ENXI O

A bad argument address was specified in ani oct | request.

The driver software has detected a fatal parameter error. Errors in system configuration and
user errors in system call invocation, can cause this error.

One of the following conditions can cause this error.

¢ A fata 1/0 error occurred or the HIPPI channel closed while asynchronous I/O was active
(onaread(2) or wite(2) system call).

¢ A data block was too long for the input buffer (on ar ead(2) system call) or overflowed
the channel (on awr i t e(2) system call).

* An /O request timed out (on aread(2) or wri t e(2) system cal).

The detailed error status is available in the er r field of the hxi o structure; to see this field,
usethei oct| request HXC GET.

An input request timed out.

The HIPPI channel is unavailable (on an open(2) system call), or the channel is not open (on
acl ose(2) system call). On Cray PVP systems, this code can mean that the |OP failed to
allocate some resource.

After afatal error, the detailed error status is available with the i oct | request HXC_GET. The driver
returns error codes in the er r field of the hxi o structure.

The following detailed error codes are defined on CRAY EL systems that have VME HIPPI:

HXST_BUF
HXST_CHAN
HXST_DBG
HXST_EOB
HXST_FLGS

SR-2014

I0OS 1/O buffer unavailable on open operation.

CPU gave bad channel number to 10S; caused by configuration error.
Debug mode error; indicates a driver fault (should never occur).
Unexpected end of packet (input only).

Buffer flags do not match; indicates a driver fault (should never occur).

69

HIPPI(4) HIPPI(4)
HXST_FMEM IOS free memory unavailable on open operation.
HXST_FNC Illegal function code; indicates a driver fault (should never occur).
HXST_HI SP No high-speed channel to this IOP; caused by configuration error or wrong target memory.
HXST_LLEN Transfer length too long; indicates a driver fault (should never occur).
HXST_LONG Long block received (input only).
HXST_MOS MOS buffer unavailable on open operation (debug mode only).
HXST_NDEV No device present on the channel (hardware signal).
HXST_OK No error (binary 0).
HXST_OPEN Channel is not open; indicates a driver fault (should never occur).
HXST_OVER Data overrun error (input only).
HXST_TM Bad target memory type; indicates a driver fault (should never occur).
HXST_TMO Request timed out.
HXST_ZLEN Buffer length is O; indicates a driver fault (should never occur).
HXST_CTMO Connection timed out.
HXST_CNPR Connection not present.
HXST_CREJ Connection rejected.
HXST_DI SC Channel disconnected.
HXST_CNPE No connection pending.
HXST_CAPR Connection already present.
HXST_CABT Connection aborted.
HXST_LLRC Length/Longitudinal Redundancy Checkword (LLRC) error.
HXST_CPE Channel parity error.
HXST _CHST Channel status is not valid.
HXST_BOE Buffer overrun error.
HXST_O M Odd initial microburst.
HXST_BPE Buffer parity error.
HXST_| PE |-field parity error.

The following detailed error codes are defined for Cray Research systems that have an I0S-E and CRAY EL

systems that have VME HIPPI:
HI ST_I NV_REQ
H ST_I NV_RL

Request code is not valid.
Request packet length is not valid.

70 SR-2014

HIPPI(4)

H ST IS UP Channel already configured up.

H ST_NOT_UP Channel is not configured up.

H ST_NOT_| MP Function is not implemented.

H ST_RTMO Read request time-out.

H ST_DRV_DOMN Driver terminated by configuration down.
H ST IS OPN Logical path aready open.

H ST_RAW OPN Bad raw channel open request.

H ST_NOT_OPN Logical path is not open.

H ST _PTH CLS Read abandoned because path is closed.
H ST_LONG Long packet excess discarded (nonfatal).

HI ST_DTA ERR
HI ST_CHAN_TMO
HI ST_DRV_TERM
HI ST_NOT_CNCT
HI ST_HALT_ I O

HI ST_I N\V_PARM

H ST_NOT_64 Cannot write in 64-bit HIPPI mode.

H ST_CN _REJ Connection attempt was rejected.

H ST_CN_FAI L Connection attempt failed (other).

H ST_CN TMO Connection request time-out.

H ST _CN_STUCK Connect-in will not drop.

H ST | NV_SF Device control subfunction that is not valid.
H ST_HANGUP Connection went away.

H ST_SECDED SECDED error in |/O buffer.

HI ST_| NTRCNCT Lost Interconnect.

H ST _EOB Short block received.

Data integrity error on read.

Channel activation time-out.

Driver terminating.

Interconnect-A not present.

Read/write request returned due to halt-io.
Configure UP parameter that is not valid.

The following detailed error codes are defined for I0S-E systems:

HI ST_RC OK
HI ST_RC_PARAM

No errors

Parameter error

HIPPI(4)

H ST_RC NO EVENT Requested event not outstanding
H ST_RC NOT_QUED Entry was not on specified queue

SR-2014 71

HIPPI(4)

HI ST_RC_Q EMPTY
HI ST_RC BAD CB

H ST_RC_BAD_ADR
HI ST_RC_ | N\VDI R

HI ST_RC_TMNAVL

H ST_RC_HVERR

HI ST_RC_QUEUED

HI ST_RC_NOVEM

HI ST_RC_BADLEN

HI ST_RC_BADREQPKT
HI ST_RC_BADRESPKT
H ST_RC_QUEREQ

HI ST_RC_CBNAVL

HI ST_RC_CBNOTOWN
HI ST_RC _BADSSI D

EXAMPLES

72

Queue is empty

Invalid I/O buffer ordinal

Invalid I/O buffer address

Invalid transfer direction

Target memory channel not available/configured
Unrecovered hardware error

Entry aready on a queue

Memory space not available

Bad memory allocation length

Bad request packet address on release
Bad respond packet address

Must queue request (can't set pointer)
Channel buffer not available to reserve
Channel buffer not owned by subsystem
Invalid subsystem identifier

HIPPI(4)

The following is an example of the usage of the hxi o structure to alter driver defaults on CRAY Y-MP

systems:

SR-2014

HIPPI(4) HIPPI(4)

#i ncl ude <sys/ hx. h>

struct hxio cb; /* H PPl driver paraneter structure */
int s; /[* Status returned fromioctl () request */
int fil des; /* H PPl output device file descriptor */
s = ioctl(fildes, HXC GET, &cb); [/* Get current driver settings */
if(s <0 {
perror ("HXC_GET");
exit(l);
}
cb.flags |= HXCF_DI SC;, /* Automatic disconnect after each output */
cb.ifv = ifield; /* 1-field value for all packets */
[* OR */
cb. flags | = HXCF_I ND; /* 1-field prefixed to data in buffer */
cb. path = 0300; /* Set new ULP-1D val ue */
ch.ctno = 10; /* Connection timeout value is 10 seconds */
s = ioctl(fildes, HXC_SET, &cb); /* Set new driver paraneters */
if(s <0 {
perror ("HXC_SET");
exit(1);
}
FILES
[dev/ hi ppi */* HIPPI channel special files

[usr/include/sys/hx.h
/usr/include/sys/ hpacket. h (CRAY Y-MP systems and CRAY EL systems with VME)
/usr/include/sys/ hxsys. h (CRAY Y-MP systems and CRAY EL systems with VME)

SR-2014 73

HIPPI(4) HIPPI(4)

SEE ALSO
hsx(4)

cl ose(?2),ioctl (2),1istio(2),read(2), reada(?),wite(2),witea(?2) inthe UNICOS System
Calls Reference Manual, Cray Research publication SR—2012

hsxconfi g(8), nknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

General UNICOS System Administration, Cray Research publication SG—2301
The ANSI documents for HI PPI :

HIPPI Mechanical, Electrical, and Sgnaling Protocol Specification (HIPPI-PH), document number
X3T79.3/88-127, Rev 8.1, June 24, 1991

HIPPI Framing Protocol (HIPPI-FP), document number x3T9.3/89-146, Rev 4.2, June 24, 1991

HIPPI 802.2 Link Encapsulation (HIPPI-LE), document number X3T9.3/90-119, Rev 3.1, June 28,
1991

HIPPI Physical Switch Control (HIPPI-SC), document number X3T9.3/91-023, Rev 1.9, June 28, 1991

74 SR-2014

HPI3(4) HPI3(4)

NAME
hpi 3 — IPI-3/HIPPI packet driver configuration file

IMPLEMENTATION
Cray PVP systems that have an 10S model E

DESCRIPTION

The IPI-3/HIPPI packet driver configuration file consists of statements that describe the 1/O processors
(10Ps), channels, daves, and devices that compose the IPI-3/HIPPI subsystem. It also includes alist of
driver options and limits that, when specified, override the system defaults.

This man page describes the format of the configuration file and the I1PI-3/HIPPI packet driver i oct |

requests. For information on the 1PI-3/HIPPI packet driver commands, see the hpi 3_cl ear (8),

hpi 3_confi g(8), hpi 3_opti on(8), hpi 3_start (8), hpi 3_st at (8), and hpi 3_st op(8) man pages

in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022.
Configuration File Format

Each line in the configuration file is a configuration type statement, a configuration description statement, a

comment, or white space.

To specify comments, begin a line with the # symbol. Configuration type statements begin with

the - symbol, followed by one of these strings: | OPS, CHANNELS, SLAVES, DEVI CES, or OPTI ONS.
You must specify the configuration type statements in the order listed. All lines specified between
configuration type statements that are not comments or white space are configuration description statements.
The format of the configuration description statements depends on the configuration type statement preceding
it.

The configuration file format is as follows:

-1 OPS
iop description statements (CRAY Y-MP systems with 10S model E (I0S-E) only)

- CHANNELS
channel description statements

- SLAVES
dave description statements

- DEVI CES
device description statements

- OPTI ONS
option description statements

SR-2014 75

HPI3(4)

IOP Description

HPI3(4)

(CRAY Y-MP systems with an 10S-E only) The IOP description statements follow the - | OPS statement.
Each |OP description statement describes one IOP. Y ou can specify 32 0P description statements. You
cannot specify an |OP description for CRAY EL series and CRAY J90 series systems. The description
statement must be in the following format:

iop-name cluster-number iop-number

iop-name

cluster-number

iop-number

Channel Description

76

Consists of 1 to 8 characters and must be unique. The name is used in creating a file
that can be used to issue packets that affect the IOP as a whole, rather than
device-specific requests.

Must be in the range O to 15.
Must be in the range 0 to 3. Each cluster-IOP pair must be unique.

The channel description statements follow the - CHANNEL S statement. Each channel statement describes one
channel. The description statement must be in the following format for CRAY Y-MP system with I0S-E:

iop-name input-channel output-channel state input-ch-timeout output-ch-timeout connect-timeout

The description statement must be in the following format for CRAY J90 and CRAY EL systems:

input-channel output-channel state input-ch-timeout output-ch-timeout connect-timeout

iop-name

input-channel

output-channel

State

input-ch-timeout

(CRAY Y-MP systems with an IOS-E only) Denotes the name of the IOP in which the
channdl is attached. The |OP must already be defined in one of the IOP description
statements.

Specifies the channel number of the input subchannel. The subchannel is attached to
EIOP iop-name on CRAY Y-MP systems with an IOS-E. For alist of valid channel
pairs for CRAY J90 and CRAY EL systems, see the Channel Selection (CRAY J90 and
CRAY EL systems) subsection.

Specifies the channel number of the output subchannel. On CRAY Y-MP systems with
an |OS-E, the subchannel is attached to EIOP iop-name, the channel numbers must be
030, 032, 034, or 036, and a channel number must be unique within an EIOP. For alist
of valid channel pairs for CRAY J90 and CRAY EL systems, see the Channel Selection
(CRAY J90 and CRAY EL systems) subsection.

Specifies the status (UP or DOAN) of the channel after starting the packet driver. If you
specify UP, the channel pair will be configured up as part of the start-up sequence. If
you specify DOWN, the channel pair is left down after the start-up sequence completes.

Specifies the time-out period (in milliseconds) for requests issued to the input channel.
The time-out period must be in the range 0 to 0177777. If you specify O, the default
time-out period is 10 seconds.

SR-2014

HPI3(4)

HPI3(4)

output-ch-timeout Specifies the time-out period (in milliseconds) for requests issued to the output channel.

connect-timeout

The time-out period must be in the range 0 to 0177777. If you specify O, the default
time-out period is 10 seconds.

Specifies the time-out period (in hundredths of a second) for the connection request. The
time-out period and must be in the range 0 to 0177777. 1If you specify 0O, the default
time-out period is 10 seconds.

On CRAY Y-MP systems with an 10S -E, you can specify a maximum of two channel descriptor statements
per IOP. CRAY EL systems can have up to 7 memory-HIPPI channels, and CRAY J90 systems can have
up to 15 memory-HIPPI channels; for a list of valid channel pairs for CRAY J90 and CRAY EL systems,
see the Channel Selection (CRAY J90 and CRAY EL systems) subsection.

Slave Description

The dlave description statements follow the - SLAVES statement. Each slave statement describes one slave.
The description statement must be in the following format for CRAY Y-MP systems with an |OS-E:

dave-name iop-name channel-pairs(s) i-field

The description statement must be in the following format for CRAY J90 and CRAY EL systems:

dave-name channel-pairs(s) i-field

slave-name

iop-name

channel-pair(s)

Denotes the name of the dave (attached to 10P iop-name on CRAY Y-MP systems with
an IOS-E). A dave name must consist of 1 to 8 characters and must be unique. The
slave name is used in the device definition to identify the paths to the device.

(CRAY Y-MP systems with an I0S-E) Denotes the name of the IOP in which the slave
is attached. The IOP must already be defined in one of the IOP description statements.

Specifies the channel pairs that may be used to issue requests to the slave and to transfer
data to the slave. The channel pairs must be in the following format:

input-channel 1: output-channel1[, input-channel 2: output-channel 2]

i-field

If you specify two channel pairs, the channel pairs must be unique. The channel pairs
specified must aready be defined in a channel description statement. See the Channel
Selection (CRAY J90 and CRAY EL systems) subsection for alist of valid channel pairs
for CRAY J90 and CRAY EL systems.

The HIPPI i-field address. It is used to route requests and data from a HIPPI switch to a
dave.

On CRAY Y-MP systems with an 10S-E, you may specify a maximum of 32 slaves per |OP.

SR-2014

77

HPI3(4)

Device Description

HPI3(4)

The device description statements follow the - DEVI CES statement. Each device statement describes one
device. The description statement must be in the following format:

device-name slave-name low-facility-address high-facility-address

device-name Specifies the name of a device attached to slave slave-name. The device name must
consist of 1 to 8 characters and must be unique. The name is used to create a file that can
be used to issue packets to the device.

slave-name Denotes the name of the slave in which the device is attached. The save must have been
defined in one of the slave description statements.

Facility addresses are used to route requests or data from a slave to a device. low-facility-address and
high-facility-address specify a range of facility addresses. Asynchronous responses with facility addresses
within this range are associated with the device. The facility addresses specified must be in the range O to

OxFF.

You may specify a maximum of 32 devices.

Option Description

The option description statements follow the - OPTI ON statement. Each option statement is in the format:

option option-value

valid options are | OS_OPTI ONS, MAX_ASYNC, MAX_| OP_PROC, MAX_NON_CMDLST,
MAX_STK_COUNT, and TRACI NG

| OS_OPTI ONS

MAX_ASYNC

MAX_| OP_PROC

MAX_NON_CMDLST

MAX_STK_COUNT

78

Defines a value used to control temporary and installation-specific IOP configuration
options. If you omit this option, the IOS option value defaults to 0.

Defines the maximum number of asynchronous responses that may be enabled for an
individual device. The number of asynchronous responses must be in the range O to
20. If you omit this option, the packet driver will default to a maximum of five
asynchronous responses.

Defines the maximum number of processes that can open an |OP device
concurrently. The number of processes must be in the range 1 to 50. If you omit
this option, the packet driver will default to a maximum of 10.

Defines the maximum number of noncommand list requests that may be stacked for
an individual device. The stack count must be in the range 0 to 10. If you omit
this option, the packet driver will default to a maximum of five.

Defines the maximum number of command list requests that may be stacked for an
individual device. The stack count must be in the range O to 20. If you omit this
option, the packet driver will default to a maximum of five.

SR-2014

HPI3(4) HPI3(4)
TRACI NG Specifies whether packet driver tracing should be on or off. The option value must
be either ON or OFF.
Channel Selection (CRAY J90 and CRAY EL systems)

The following table indicates valid channel pairs for CRAY J90 systems:

Channel pair Input channel Output channel

1 024 027
2 030 033
3 034 037
4 040 043
5 044 047
6 050 053
7 054 057
8 060 063
9 064 067
10 070 073
11 074 or7

12 0100 0103
13 0104 0107
14 0110 0113
15 0114 0117

The following table indicates valid channel pairs for CRAY EL systems:

Channel pair Input channel Output channel

1 024 027
2 040 043
3 044 047
4 060 063
5 064 067
6 0100 0103
7 0104 0107

SR-2014 79

HPI3(4)

Sample Configuration Files

80

The following is an example of an IPI-3/HIPPI packet driver configuration file.

#
I Pl -3/ H PP
#

Packet Driver Configuration File

#
Define the | OPs
#

-1 OPS

#

#1 OP Name Cl uster
#

iop_0_0 0
iop_0_2 0
iop_3_2 3
iop_3_3 3

#

Define the channels
#

- CHANNELS

#

#1 OP Nane

+l nput Channe
+Qut put
#

#

#

#

#

#

#

#

#

#

#

iop_0_0 030 032
iop_0 0 034 036
iop_0_2 030 032
iop_3_2 034 036
iop_3_3 034 036

W NN O

Channe
+St ate
(UP, DOWN)
+l nput Channe
Ti meout
(sec/ 1000)
+Qut put Channel
Ti meout
(sec/ 1000)

uP
uP

upP

3000
3000
1000
2000
2000

3000
3000
1000
2000
3000

+Connecti on
Ti meout
(sec/ 1000)

2000
2000
2000
3000
2000

HPI3(4)

SR-2014

HPI3(4)

SR-2014

iop_3_3 03

#
Def i ne
#

- SLAVES
#

#Sl ave Nane
#

slv_0
slv_1
slv_2
slv_3
slv_4
slv_5
slv_6
slv_7

slv_8

#

Def i ne the devices

#
- DEVI CES

#Devi ce
#Name
#

er91
er92
er93
er94

dsk_1
dsk_2
dsk_3
dsk_4
hpdsk

di_1

0 032

the sl aves

| OP NAME

o
©
lO
o

o
i

w

N

o O O
'C'OI'O
(/OOJIOO
w W

Sl ave

slv_0
slv_0
slv_0
slv_0

slv_1
slv_2
slv_3
slv_4
slv_5

slv_6

Low Facility

Addr

0x01
0x02
0x03
0x04

OxFF
OxFF
OxFF
OxFF
OxFF

OxFF

uP 3000

Channel Pair(s)

030:

030:
030:
030:
030:

030:
030:

030:
030:

ess

032/ 034: 036

032
032
032
032

036

032
032
036

Addr ess

0x01
0x02
0x03
0x04

OxFF
OxFF
OxFF
OxFF
OxFF

OxFF

2000

I-Field

00x01000007

00x01000007
00x01000008
00x01000009
00x0100000a

00x01000003
00x01000004

00x01000005
00x01000007

High Facility

3000

HPI3(4)

81

HPI3(4) HPI3(4)

dl 2 slv_7 OXFF OXFF
hpdsk_2 slv_8 OxFF OxFF

82 SR-2014

HPI3(4) HPI3(4)

The following is an example of a configuration file for a CRAY EL system:
HERHHH B PR HH T T R R T R T R R T R R

#
Tape K-packet driver configuration file for CRAYELS systens
#

BHAHBH BHAH AR HHHHHB B HH B HBH B HBH BB H A BH AR A AR B AR AR R B R H AR
#

| Pl -3 Tape Configuration

#

- CHANNELS

+l nput Channel

| +Qut put Channel

#1

| | +St ate (UP, DOWN)

| | | +I nput Channel

| | | | timeout +CQutput Channel

| | | | (sec/1000) | timeout +Connection
| | | | | (sec/1000) | tinmeout
v v v v v v (sec/100)
0104 0107 UP 30000 30000 2000

- SLAVES

#

+Tape Sl ave Nane

| +Channel Pair(s)

| I

| | +l-Field

| I I

v % %

s_hippil 0104: 0107 0x0100001d
- DEVI CES

#

+Tape Device Nane (for /dev/hpi3)

| +Sl ave name

| | +Low Facility Address
| | | +Hi gh Facility Address

SR-2014 83

HPI3(4)

| | | |
| | | |
| I |

| | | |
v \Y \Y \Y
hdd_dsk1 s_hippil OxFF OxFF

- OPTI ONS

Def i ne the maxi mum nunber of conmmand |ist requests
that may be stacked for an individual device

MAX_STK_COUNT 5

Def i ne the maxi mum nunber of non-conmand |ist requests
that may be stacked for an individual device
MAX_NON_CMDLST 3

Def i ne the maxi mum nunber of asynchronous responses

that may be enabled for an individual device
MAX_ASYNC 5

Def i ne the maxi mum nunber of processes that can

open an iop device

MAX_| OP_PROC 10

Request kernel tracing to be on or off.

TRACI NG On

| OS_OPTI ONS defines a val ue used to control

tenporary and installation-specific configuration options.

| OS_OPTI ONS Oxabc

84

HPI3(4)

SR-2014

HPI3(4) HPI3(4)

i octl Requests

You can use the following i oct | (2) requests with the IPI-3/HIPPI packet driver: PKI _DRI VER_STS,
PKI _ENABLE, PKI _GET_CONFI G PKI _GET_DEVCONF, PKI _GET_DEVTBL, PKI _GET_OPTI ONS,

PKI _RECEI VE, PKI _SEND, and PKI _SI GNO. A description of each of these requests follows, along with
an example of its use.

SR-2014 85

HPI3(4) HPI3(4)

86

PKI _DRI VER_STS
The PKI _DRI VER_STS request returns the status of the IPI-3/HIPPI packet driver. If the packet driver has
been started, a negative value is returned. If the packet driver is down, O is returned.

You can issue this request to the request device, IOP devices, or IPI-3 devices.
The following example shows how to issue a request for the driver status:
/ *
* Get the IPlI-3/H PPl Packet Driver Status
*/

#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <errno. h>

#i ncl ude <sys/cnthpi 3. h>
#i ncl ude <sys/pki_ctl.h>

mai n()
{
i nt fd;
/*
* Open the request device
*/
if ((fd = open(HPI3_REQ ORDWR)) <0) {
perror("Unable to open the request device");
exit(errno);
}
if (ioctl(fd, PKI_DRIVER STS, 0) <0) {
printf("The packet driver has been started");
} else {
printf("The packet driver is not active");
}
cl ose(fd);
}

SR-2014

HPI3(4)

PKI _ENABLE

HPI3(4)

The PKI _ENABLE request enables the packet interface for a device. The driver alocates buffer space for
the packets issued to the driver. You must issue this request before trying to register for a signal and before
trying to send request packets.

You can issue this request only to IOP devices and IPI-3 devices.

The following example shows how to issue a request to enable the packet interface:

/*
* Enabl e the packet interface
*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/fcntl.h>

#i ncl ude <errno. h>

#i ncl ude <sys/cnthpi 3. h>

#i ncl ude <sys/pki_ctl.h>

mai n()

{
i nt fd;
/* Open the device */
if ((fd = open("/dev/ipi3/iop_ 3", ORDAR)) <0) {

perror("Unable to open the device");
exit(errno);
}
/* Enabl e the packet interface */
if (ioctl(fd, PKI_ENABLE, 0) < 0) {
perror("Unabl e to enable the packet interface");

}
cl ose(fd);

}

SR-2014

87

HPI3(4) HPI3(4)

If no error has occurred, the i oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal):

EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.
EPKI _ALREADY_ENBL 423 The packet interface has aready been enabled.

The symbols for these error codes are located in file er r no. h.

88 SR-2014

HPI3(4)

PKI _GET_CONFI G

HPI3(4)

The PKI _GET_CONFI G request returns the I1PI-3/HIPPI packet driver configuration. The configuration is
returned in structure cnt hpi 3, which is defined in the sys/ cnt hpi 3. h file.

The argument to the i oct | system call is a pointer to structure pki _ct | , described in the
sys/ pki _ctl.h file. The pki _packet field of structure pki _ct| must be set to a pointer to structure

cnt hpi 3.

You can issue thisi oct | only to the request device.

The following example shows how to issue a request for the configuration:

/*

* Get the IPI-3/H PPl configuration.

*/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n()

{

SR-2014

<sys/types. h>
<sys/fcntl.h>
<errno. h>

<sys/ cnt hpi 3. h>
<sys/pki _ctl.h>

struct pki_ctl ctl;
struct cnthpi 3 cnt;

i nt fd;

/*
* Open the request device.
*/

if ((fd = open(HPI3_REQ ORDAR)) < 0) {
perror("Unable to open the request device");
exit(errno);

}

ctl.pki_packet = (word *)&cnt;

if (ioctl(fd, PKI_CGET_CONFIG &ctl) < 0) {
perror("Unable to get the configuration");

}

cl ose(fd);

89

HPI3(4) HPI3(4)

If no error has occurred, the i oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal):

EFAULT 14 An address specified points outside the user’s address space.
EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.

The symbols for these error codes are located in file er r no. h.

90 SR-2014

HPI3(4) HPI3(4)

PKI _GET_DEVCONF

The PKI _GET_DEVCONF request returns the configuration of an IPI-3/HIPPI device. The configuration is
returned in structure cnt hpi 3_ent ry, which is defined in the sys/ cnt hpi 3. h file.

The argument to the i oct | system call is a pointer to structure pki _ct | , described in the
sys/ pki _ctl. h file. The pki _packet field of structure pki _ct| must be set to a pointer to structure
cnt hpi 3_entry. The pki _devi ce field of structure pki _ct | must be set to the name of the device.

You can issue thisi oct | only to the request device.
The following example shows how to issue a request for the device configuration:
/*
* Get the 1 PI-3/H PPl device configuration for device, dldev
*/

#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <errno. h>

#i ncl ude <sys/cnthpi 3. h>
#i ncl ude <sys/pki_ctl.h>

mai n()

{
struct pki_ctl ctl;
struct cnthpi3_entry ce;

i nt fd;

/*
* Open the request device
*/

if ((fd = open(HPI3_REQ ORDAR)) < 0) {
perror("Unable to open the request device");
exit(errno);

}

ctl.pki_packet = (word *)&ce
ctl.pki_device =20
strncpy((char *)&ctl.pki_device, "dldev", strlen("dldev"));

if (ioctl(fd, PKI_GET_DEVCONF, &ctl) < 0) {
perror("Unable to get the device configuration");

}

cl ose(fd);

SR-2014 91

HPI3(4) HPI3(4)

}
If no error has occurred, the i oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal).

EFAULT 14 An address specified points outside the user’s address space.
EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.
EPKI _NO_DEVI CE 421 The device specified is not in the configuration.

The symbols for these error codes are located in file er r no. h.

92 SR-2014

HPI3(4)

HPI3(4)

PKI _GET_DEVTBL
The PKI _GET_DEVTBL request returns the device table of an IPI-3/HIPPI device. The device table is
returned in structure hpi 3_t ab, which is defined in the sy s/ hpi 3. h file.

The argument to the i oct | system call is a pointer to structure pki _ct | , described in the

esys/pki _ctll.h file. Thepki _packet field of structure pki _ct| must be set to a pointer to
structure hpi 3_t ab. The pki _devi ce field of structure pki _ct| must be set to the name of the
device.

You can issue thisi oct | only to the request device.

The following example shows how to issue a request for the device table:

/*

*

CGet the IPlI-3/H PPl device table for device, dldev

*/

#i
#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

mai n()

{

SR-2014

<sys/types. h>
<sys/fcntl.h>
<errno. h>

<sys/ epack. h>
<sys/ hpi 3. h>
<sys/cnt hpi 3. h>
<sys/pki _ctl.h>

struct pki_ctl ctl;
struct hpi3_tab tab

i nt fd;

/*
* Open the request device
*/

if ((fd = open(HPI3_REQ ORDAR)) < 0) {
perror("Unable to open the request device");
exit(errno);

}

ctl.pki_packet = (word *)&tab
ctl.pki_device =20
strncpy((char *)&ctl.pki_device, "dldev", strlen("dldev"));

if (ioctl(fd, PKI_GET_DEVTBL, &ctl) < 0) {
perror("Unable to get the device table")

93

HPI3(4) HPI3(4)

}

cl ose(fd);
}

If no error has occurred, the i oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal):

EFAULT 14 An address specified points outside the user’s address space.
EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.
EPKI _NO_DEVI CE 421 The device specified is not in the configuration.

The symbols for these error codes are located in file er r no. h.

PKI _GET_OPTI ONS

94

The PKI _GET_OPTI ONS i oct | reguest returns the IPI-3/HIPPI packet driver options. The options are
returned in structure pki _opt i on, which is defined in the sys/ pki _ct 1. h file. Five options are
returned from the driver.

Field pki _max_async defines the maximum number of asynchronous responses that may be enabled for
an individual device. Field pki _max_|i st _cnd defines the maximum number of command list requests
that may be stacked for an individual device. Field pki _max_i op_pr oc defines the maximum number of
processes that can open an |OP device concurrently. Field pki _max_non_cndl st defines the maximum
number of noncommand list requests that may be stacked for a device. If packet driver tracing is on, field
pki _tracingissettol;ifitissettoO, itis off.

To display the options, use the IPI-3/HIPPI command hpi 3_st at (8) with option - o:
hpi 3_stat -o

The following example shows how to issue a request for the options:

SR-2014

HPI3(4)

SR-2014

/*
* Get the IPI-3/H PPl options
*/
#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <errno. h>
#i ncl ude <sys/pki_ctl.h>
#i ncl ude <sys/cnthpi 3. h>
mai n()
{
struct pki_option opti on;
i nt fd;
/*
* Open the request device
*/
if ((fd = open(HPI3_REQ ORDAR)) < O
perror("Unable to open the request device"
exit(errno);
}
if (ioctl(fd, PKI_GET_OPTIONS, &option)
perror("Unable to get the options");
}
cl ose(fd);
}

)

<

)

HPI3(4)

{

0) {

95

HPI3(4) HPI3(4)

If no error has occurred, the i oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal):

EFAULT 14 An address specified points outside the user’s address space.
EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.

The symbols for these error codes are located in file er r no. h.

PKI _RECEI VE

96

The PKI _RECEI VE i oct | request is used to acquire the next response packet from the IPI-3/HIPPI packet
driver.

The argument to the i oct | call is a pointer to structure pki _ct |, which is defined in the

sys/ pki _ctl. h file. The pki _packet field of structure pki _ct| must be set to a pointer to a buffer
large enough to receive the IPI-3/HIPPI IOP response. The pki _nbyt es field of structure pki _ct | must
be set to the size of the buffer.

A packet will be returned only if the following conditions are met:

* The packet interface must be enabled

* A response packet must be available

* The buffer space must be large enough to accommodate the packet
You can issue thisi oct | only to IOP devices and IPI-3 devices.

You may use the C library routine i pi _get _pkt to acquire packets. This routine creates and then issues a
PKI _RECEI VE i oct| request until a packet is obtained or an error other than EPKI _NO_PACKETS is
received. When a response packet is not available, EPKI _NO PACKETS is the error code returned.

The following example shows how to receive an I0OP packet:

SR-2014

HPI3(4)

/*
* Recei ve an | OP packet
*/

#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <errno. h>

#i ncl ude <sys/epack. h>
#i ncl ude <sys/epackk. h>
#i ncl ude <sys/cnthpi 3. h>
#i ncl ude <sys/pki_ctl.h>

mai n()

{
struct pki_ctl ctl;
char pkt[HPI 3_PKT_SI ZE] ;

i nt reply;
i nt fd;

/
Open the [1PI-3 device

ipi _open is a library routine that registers for

HPI3(4)

si gha

interface, and registers signal IPI_PKT _SIGwth the driver.

/

[((fd = ipi_open("/dev/hpi3/dldev")) < O

perror("ipi_open");

exit(-1);
}
send a packet
/*
* Poll the driver for a response packet.
*/

bzero(pkt, HPI3_PKT_SIZE);

ctl . pki_packet
ctl.pki_nbytes

(word *)pkt
HPI 3_PKT_SI ZE

while (1) {
sigoff();
reply = ioctl(fd, PKI _RECEIVE, &ctl);
if ('reply || (errno != EPKI_NO PACKETS)

br eak;

SR-2014

*
*
*
* | Pl _PKT_SIG opens the device file, enables the packet
*
*

97

HPI3(4) HPI3(4)

pause();
}
sigon();
cl ose(fd);
}
If no error has occurred, thei oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal):
EFAULT 14 An address specified points outside the user’s address space.
EPKI _TOO LARGE 403 The response buffer is not large enough to accommodate the
response packet.
EPKI _NOT_ENABLED 406 The packet interface has not been enabled.
EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.
EPKI _RESPBUF_LOST 429 That part of the packet returned in a response buffer was lost.
The symbols for these error codes are located in file er r no. h.
PKI _SEND
The PKI _SEND request is used to send request packets to the IPI-3/HIPPI packet driver.
The argument to the i oct | system call is a pointer to structure pki _ct | , described in the
sys/ pki _ctl. h file. The pki _packet field of structure pki _ct| must be set to a pointer to a valid
IPI-3/HIPPI IOP request. The pki _nbyt es field of structure pki _ct| must be set to the size of the
IPI-3/HIPPI request packet. The size of the packet cannot exceed EPAK _MAXLEN.
The packet will be accepted only if the following conditions are met:
* The packet interface must be enabled
* The request cannot exceed the request limit
* The request code must be a valid EIOP request code
* The request must be valid for the device
* The IOP driver must already be started
The request packet must be of a format defined in the sys/ epackk. h file.
You can issue thisi oct | request only to IOP devices and IPI-3 devices.
You may use the C library routine i pi _put _pkt to send packets.
98 SR-2014

HPI3(4) HPI3(4)
The following example shows how to send an 10P packet:
/-k
* Send an i op packet
*/
#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <errno. h>
#i ncl ude <sys/epack. h>
#i ncl ude <sys/epackk. h>
#i ncl ude <sys/cnthpi 3. h>
#i ncl ude <sys/pki_ctl.h>
mai n()
{
epackk *pk;
struct pki_ctl ctl;
char pkt[HPI 3_PKT_SI ZF] ;
i nt fd;
/-k
* Open the [1PI-3 device
* ipi_open is a library routine that registers for signal
* I Pl _PKT_SIG opens the device file, enables the packet
* interface, and registers signal IPI_PKT_SIGwth the driver.
*/
if ((fd = ipi_open("/dev/hpi3/didev")) < 0) {
perror("ipi_open");
exit(-1);
}
/-k
* Create the I OP request
*/
bzero(pkt, HPI3_PKT_SIZE);
pk = (epackk *)pkt;
pk- >ek_open_stream ek_request = EK OPEN_STREAM
/-k
* Send the request.
SR-2014 99

HPI3(4) HPI3(4)

*/
ctl.pki_packet
ctl.pki_nbytes

(word *)pk
si zeof (ek_open_stream;

if (ioctl(fd, PKI_SEND, &ctl) < 0) {
perror("Unable to send the packet");

}
cl ose(fd);
}

If no error has occurred, thei oct | return code will be 0. If an error has occurred, the error code will be

one of the following codes (in decimal):

EFAULT 14 An address specified points outside the user’s address space.

El NVAL 22 The packet length is not in the range 1 through EPAK_MAXLEN.
Or, on arequest that requires a data transfer, the memory type is
not valid.

EPKI _ASYNCH LI M 404 Cannot enable more asynchronous responses than the maximum
alowed.

EPKI _| NVAL_CODE 405 Reguest code specified is not valid.

EPKI _NOT_ENABLED 406 Packet interface is not enabled.

EPKI _REQ LI M 407 Exceeded the maximum number of requests allowed.

EPKI _BAD RESYNC 408 A command list request was issued with a resynchronize code that
does not match the resynchronize code of the last command list
response.

EPKI _NO _START 409 The IOP driver has not been started.

EPKI _REQT_TYPE 414 Reguest code specified is not valid for the device type.

EPKI _| OCTL_REQT 415 ioctl isnot valid for the device type.

EPKI _| OP_SEND 416 The packet driver could not send the packet to the 10P.

EPKI _DEVS ACTI VE 418 Cannot stop an IOP driver that has an active device.

EPKI _CMDLI ST LIM 430 Exceeded the maximum number of command list requests allowed.

The symbols for these error codes are located in file er r no. h.

PKI _SI GNO

The PKI _SI GNO request is used to register for a signal that will be sent to the user when the packet driver
receives a response from the |OP.

The argument to the i oct | (2) system call is a pointer to structure pki _ct |, described in the
sys/ pki _ctl1.h file. The pki _si gno field of struct pki _ct| must be set to the signal number.

100 SR-2014

HPI3(4)

Before registering for a signal (PKI _ENABLE), you must enable packets.

You can issue this request only to IOP devices or IPI-3 devices.

The following example shows how to issue a request to register a signal by using the packet driver.

SR-2014

/*
* Regi ster a signal by using the packet driver.
*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/fcntl. h>

#i ncl ude <sys/signal. h>

#i ncl ude <errno. h>

#i ncl ude <sys/pki_ctl.h>

mai n()

{
struct pki_ctl ctl;
i nt fd;
/* Regi ster for the packet-avail abl e signal */
if (sigetl(SCTL_REG IPI_PKT_SIG 0) <0) {

exit(errno);
}
/* Open the device */
if ((fd = open("/dev/ipi3/dldev', ORDWR) < 0) {
perror("Unable to open the device");
exit(errno);
}
enabl e packets (see PKI _ENABLE)
ctl.pki_psigno = 1Pl _PKT_SIG
if (ioctl(fd, PKI_SIGNO, &ctl) < 0) {
perror("Unable to register for a signal");

}
cl ose(fd);

}

HPI3(4)

101

HPI3(4)

HPI3(4)

If no error has occurred, the i oct | return code will be 0. If an error has occurred, the error code will be
one of the following codes (in decimal):

EFAULT 14

El NVAL 22
EPKI_NOT_ENABLED 406
EPKI _| OCTL_REQT 415

Thei oct | argument specified points outside the user’s address
space.

The signal number specified is not within the range 0 to NSIG.
The packet interface has not been enabled.

i oct| isnot valid for the device type.

The symbols for these error codes are located in file er r no. h.

SEE ALSO

hpi 3_cl ear (8), hpi 3_confi g(8), hpi 3_opti on(8), hpi 3_st art (8), hpi 3_st at (8),
hpi 3_st op(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication

102

SR-2022

SR-2014

HPM(4) HPM(4)

NAME

hpm— Hardware Performance Monitor interface

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

Cray PVP systems contains a Hardware Performance Monitor (HPM) that counts certain activities within a
CPU when it is executing in user mode. The HPM driver interfaces let a user read the performance counters
for the groups of processes or change to a different monitor group number. No group number change is
supported on the CRAY C90 and CRAY T90 series.

The HPM driver supports the following three minor devices:
/ dev/ hpm Minor device O; returns data about the current process.

/ dev/ hpm mul t Minor device 1; returns data about the current process and any other processes that
are or have been in a multitasking group with the current process.

[dev/ hpm al | Minor device 2; returns data about all processes (systemwide) that are running or
have been disconnected.

The HPM driver supports the i oct | (2), open(2), and r ead(2) system calls. Ther ead(2) system call
returns only si zeof (struct hpm bytes on minor devices 0 and 1, and (si zeof (struct

hpm) * NCPU) bytes on minor device 2. If the requested number of bytes is fewer than this, an error is
returned. If more than this is requested, the request is truncated.

On Cray PVP systems (except CRAY C90 and CRAY T90 series), the format of thei oct | request is as
follows:

#i ncl ude <sys/hpm h>

i oct | (fildes, HPMSET, group)

The only valid i oct | requests are HPMSET on minor device O and 2. Super-user permission is required to
perform an HPMSET on minor device 2. HPMSET accepts as an argument the HPM group selected. Valid
HPM groups are 0, 1, 2, or 3. HPMSET on minor device 2 changes the value of the global HPM group to
the group specified. All processes that have not explicitly chosen an HPM group are put into the global
group the next time they are connected. Group 1 is the default for the global group.

The possible errors for the system calls are as follows:
EFAULT Returned if the read buffer is not entirely within the user field.

El NVAL Returned if the selected group is outside the allowable range, if the read buffer is too small, or if
anioct!| cal other than HPMSET is issued.

SR-2014 103

HPM(4) HPM(4)

NOTES

FILES

ENXI O Returned if requested on other than the CRAY J90 series or if a minor device other than O, 1, or
2 isrequested on an open(2), cl ose(2), or r ead(2), or if aminor device other than O or 2 is
requested on ani oct | .

EPERM Returned if an HPMSET on minor device 2 is tried and the user does not have super-user
permissions.

The system always maintains the counters on any mainframe that supports the HPM. Except for the
CRAY C90 and CRAY T90 series, a user program usually starts in group 1, although the group number is
inherited from the parent and can be overridden by setting the global group.

On the Cray PVP systems (except for the CRAY C90 and CRAY T90 series), accounting of execution time
for autotasked and microtasked programs does not charge for time spent waiting on a semaphore. The group
number defaults to group 1 to gain this information. |If an autotasked or microtasked program runs in a
different HPM group, the system does not have the information necessary to avoid charging for
wait-semaphore time. Therefore, running an autotasked or microtasked program with a group other than 1
shows nonrepeatable execution times for the program. On the CRAY C90 and CRAY T90 series,
wait-semaphore time is always included.

The definition of what is counted differs between the CRAY C90 and CRAY T90 series and the CRAY J90
series. For more information, see the functional description manual for your mainframe.

/ dev/ hpm

/ dev/ hpm al |

[dev/ hpm mul t

/ dev/ MAKE. DEV
[usr/include/sys/hpmh

SEE ALSO

104

hpm(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

i octl (2), open(2), r ead(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

hpmal | (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

Guide to Parallel Vector Applications, Cray Research publication SG—2182

SR-2014

HSX (4) HSX (4)

NAME
hsx — High-speed Externa Communications Channel interface

IMPLEMENTATION
All Cray Research systems except CRAY J90 series and CRAY EL series

DESCRIPTION

The hsx interface (or hsx driver) drives a High-speed External (HSX) Communications Channel.
Application processes use the hsx driver by means of the standard UNICOS cl ose(2), i oct | (2),
listio(2),open(2), read(2), reada(?2), wite(2),andwitea(2) system calls. Each of the specia
filesin the / dev/ hsx directory represents one input or output HSX channel.

By convention, HSX file names have the following format:

/ dev/ hsxn/ i xx
/ dev/ hsxn/ oxx

n Physical channel number
[Input channel

o] Output channel

xx Logica channel number

For operation in one direction, only one channel must be opened. If the application uses both read and write
operations, it must open both an input and an output channel. A read operation is valid only on an input
channel; a write operation is valid only on an output channel. All HSX I/O is raw; the user process is
locked in memory as data moves directly between the user buffer and the channel. User buffers must
therefore be word-aligned, and their length must be a multiple of 8 bytes.

Dedicated and Shared HSX Channels
The hsx driver supports two modes of operation: dedicated and shared. The mode is assigned to each
channel when it is configured. If a channel is dedicated, only one process can have that channel open at a
time. If a channel is shared, several processes can use one HSX channel. The driver enforces a protocol on
the shared channel; this allows it to determine the destination of each incoming message.

CRAY Y-MP systems that are configured to read and write the HSX channels with SSD solid-state storage
buffers do not support shared channels. For more information on configuring HSX channels on Cray PVP
systems, see UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304.

HSX i octl Requests
Severa i oct | requests are available. They have the following format:

#i ncl ude <sys/ hx. h>
i octl (fildes, command, arg)
struct hxio *arg;

SR-2014 105

HSX (4) HSX (4)

Thevalidi oct| requests are as follows:
HXC CLR Sends aclear signal on the output channel. This request is restricted to dedicated channels.

HXC _EXC Sends an exception signal on the input channel. This request is restricted to dedicated
channels.

HXC GET Gets the current driver parameter settings; stores them in the hxi o structure referenced by
arg.

HXC SET Sets driver parameters from the structure referenced by arg.

HXC_WFI Waits for interrupt: blocks until a clear signal (from an input channel) or exception signal
(from an output channel) is received. If the channel signal has already been received, the
request returns immediately. This request is restricted to dedicated channels.

The hxi o structure contains the following fields:

unsi gned int flags Flagsthat control channel operation. The flags field controls the driver's
options. The bits in the flags field are defined as follows:

HXCF_ACM Sets the alternative checkbyte mode (for an output channel) or
disables SECDED (for an input channel).

HXCF_DBG Sets debug mode. On write operations, the data is discarded.
On read operations, the input data is undefined. 1n debug
mode, the driver does everything except actual 1/0 on the HSX
channel. HSX channel hardware does not have to be present
for this mode to be used.

HXCF_DED The channel is open in dedicated mode; no other processes
may share the channel. If this flag is set, the value in the path
field is meaningless. Thei oct| request HXC GET is used to
set thisflag. Thei oct| request HXC _SET ignores this flag.

HXCF_DOWN If this bit is set, the channdl is unavailable to other users. If
this bit is clear, the channel is available. When the channel is
down, the driver returns the error ENXI O. Programs that
reconfigure the channel should issue acl ose request
immediately after thei oct| request, then reopen the channel
before trying to do anything else. This bit is set in thei oct |
request HXC_SET on a dedicated channel. HXC_SET is a

read-only flag.
int err Detailed error status from the last request; for a list of HSX errors, see the
MESSAGES section.
int path Logica path number for device (ignored on HSC_SET).

unsi gned int tmo Time-out value (in seconds).

106 SR-2014

HSX (4) HSX (4)

listio Special Features
The hsx driver defines two flagsto be used inthe | i _dr vr field of thel i st r eq structure (see
listio(2):

HXLI _CHD Indicates, in effect, that user data is chained. When this flag is set, the driver suppresses
the end-of-block signal at the end of the current list entry (for an output channel) or allows
the current input data block to overflow into the next list entry (for an input channel).

HXLl _STRB Specifies that each stride (in memory) is a block. (A stride is the distance from the start
of one section of data to the start of the next section.) This flag is valid only on dedicated
channels and is meaningful only when the number of strides in alist entry is greater than
1. When the HXLI _STRB flag is set, HXLI _CHD is ignored.

If the driver encounters an end-of-block signal during a read operation in which the HXLI _CHD flag is set,
no error indication is returned to the user. Subsequent read operations will complete with a data length of O
until the HXLI _CHD flag is cleared. If the user issuesthei oct| request HXC GET to check the status
after a chained read operation, the er r field of the hxi o structure is set to the error code HXST_EOB,
indicating that an end-of-block signal arrived before the last read request was processed.

If the driver has not detected an end-of-block signal on a unchained read operation (that is, r ead(2),
reada(?), or | i sti o(2) with the HXLI _CHD flag clear) by the time the read operation completes, the
driver discards the unread portion of the block. The byte count returned to the user is equa to the size of
the buffer, and no error code is returned in er r no. If the user issues thei oct | request HXC_GET to
check the status after a unchained read operation, the er r field of the hxi o structure is set to the error code
HXST_LONG indicating that the entire block was not read and the remainder was discarded.

When using the | i sti o chaining feature on shared channels to combine more than one buffer to make one
data block, the user must include al buffersin the samel i sti 0(2) system call. That is, ensure that the
HXLI _CHDflag isclear inthel i _drvr field of the last item for an HSX channel ineach | i sti 0(2) call.
Failure to do this can cause lost or corrupt data on the channel if the user process is swapped between
requests.

HSX Protocol
The hsx driver enforces no protocol on dedicated channels. On shared channels, the driver assigns a logical
path value to each device configured on the shared channel. Thei oct| request HXC_GET returns the
logical path value for a shared channel in the path field of the hxi o structure.

Each block of data must begin with a word that contains the logical path values of the sending and receiving
channels. The first word must have the following format (as defined in the sys/ hx. h include file):

struct hxhdr {

unsi gned int unused :32; /* not used by driver */
unsi gned int to : 16; /* destination address */
unsi gned int from : 16; /* source address */

SR-2014 107

HSX (4) HSX (4)

The driver uses only two fields in the word. These fields have the following meanings:

to I dentifies the channel to receive the message. The driver looks at this field in each incoming
block and delivers the block to the process reading the channel assigned to the number in this
field.

from Identifies the channel sending the message. In a message on an output channel, this field
contains the value assigned at configuration time to the special file in / dev that represents the
device.

You can use any protocol that fits this template on shared HSX channels. The sending process must set the
t o field in the hxhdr structure to the correct destination address. If no process is reading the destination
device for incoming data, the driver discards the block after a period of time. During this time interval, no
data can flow on the HSX channel.

Software Loopback Feature
The hsx driver contains a software loopback feature to debug application codes. The software loopback
feature works on the / dev HSX files that are configured as HSX software loopback channels.

Loopback channels come in pairs; an even-numbered channel (n) is paired with an odd-numbered channel
(n+1). Data written on the odd channel can be read on the even channel. A pair of channels simulates one
set of HSX channels cabled in loopback configuration.

MESSAGES

The hsx driver returns one of the following error codes in er r no on afatal error. The error codes and
their meanings are as follows:

EFAULT Ani oct| request specified a bad argument address.

El NVAL The driver software has detected a fatal parameter error. Errors in system configuration and
user errors in system call invocation can cause this error.

El O One of the following conditions can cause this error:

e A fata 1/0 error occurred or the HSX channel closed while asynchronous 1/0 was active
(onaread(2) or wit e(2) system call).

¢ A data block was too long for the input buffer (on ar ead(2) system call) or overflowed
the channel (on awr i t e(2) system call).

¢ An /O request timed out (on ar ead(2) or wi t e(2) system call).

The detailed error status is available in the er r field of the hxi o structure; to read this field,
usethei oct| request HXC GET.

ELATE An input request timed out.

ENXI O The HSX channel is unavailable (on an open(2) system call), or the channel is not open (on a
cl ose(2) system call). This code can mean that the IOP did not allocate some resource.

108 SR-2014

HSX (4)

FILES

HSX (4)

After any fatal error, the detailed error status is retrieved by using the i oct | request HXC_GET. The driver
returns error codes in the er r field of the hxi o structure.

HXST_ABRT
HXST_BUF
HXST_CHAN
HXST_CLR
HXST_DATA
HXST_DBG
HXST_EOB
HXST_FLGS
HXST_FMEM
HXST_FNC
HXST_HI SP

HXST_LLEN
HXST_LONG
HXST_MOS
HXST_NDEV
HXST_OK
HXST_OPEN
HXST_OVER
HXST_TM
HXST_TMO
HXST_XDT
HXST_ZLEN

/ dev/ hsxn/*

Channel abort (output only).

10S 1/0O buffer unavailable on open operation.

CPU gave bad channel number to 10S; caused by configuration error.
Clear pulse received (input channel only).

SECDED error or lost data (input only).

Debug mode error; indicates a driver fault (should never occur).
Unexpected end-of-block (input only).

Buffer flags do not match; indicates a driver fault (should never occur).
10S free memory unavailable on open operation.

Illegal function code; indicates a driver fault (should never occur).

No high-speed channel to this IOP; caused by configuration error or wrong target
memory.

Transfer length too long; indicates a driver fault (should never occur).
Long block received (input only).

MOS buffer unavailable on open operation (debug mode only).

No device present on the channel (hardware signal).

No error (binary 0).

Channel is not open; indicates a driver fault (should never occur).
Data-overrun error (input only).

Bad target memory type; indicates a driver fault (should never occur).
Request timed out.

Exception pulse received during transfer (output only).

Buffer length is O; indicates a driver fault (should never occur).

HSX channel specia files

[usr/include/sys/ hpacket . h

[usr/include/sys/hx.h

/usr/include/sys/ hxsys. h

SR-2014

109

HSX (4) HSX (4)

SEE ALSO

cl ose(2),ioctl (2),1istio(2),read(2), reada(?),wite(2),witea(?2) inthe UNICOS System
Calls Reference Manual, Cray Research publication SR—2012

hsxconfi g(8), nknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

General UNICOS System Administration, Cray Research publication SG—2301

110 SR-2014

HY (4)

NAME

HY (4)

hy — HYPERchannel adapter interface

IMPLEMENTATION

Cray PVP systems except CRAY J90 series

DESCRIPTION

The HY PERchannel driver provides an interface for NSC HY PERchannel adapters connected to the 10S.
The HY PERchannel driver also is used for Cray Research front-end interfaces (FEIs) and VME interfaces
attached to the 10S. For more information, see f ei (4) and vire(4). The driver accepts standard UNICOS
cl ose(2), i stio(2), open(2), read(2), reada(2), wite(2),andwitea(2) system cals; it aso
acceptsi oct | (2) requests.

By convention, the HY PERchannel special file names are in the following format:
/ dev/ comm address/ | pnn

address The address is composed of three elements: the interface type, the IOS number, and the channel
number (in octal). The interface type is indicated by one character: f (FEl), n (NSC), or v
(VME). The IOS number is either 0 or 1. The channel number is the octal channel to which
the interface is connected on the specified 10S.

nn Logical path number for the device (0 through 15).

For each device, up to 16 logical paths are available. The minor number is the logical path across a device.
For example, if the site has configured 3 network interfaces that use the hy driver with 16 logical paths for
each, the first device in the comm_i nf o of type COVM_HYDRI VER uses logical paths O through 15. The
second device uses logical paths 16 through 31. The third device uses 32 through 47.

You cannot open a minor device when it is already open. Any attempt to do so fails with an EBUSY error.

You can use thei oct | requests HYGET and HYSET to change parameters for the |IOS. Kernel-level
routines can use the HYKGET and HYKSET i oct| requests to change parameters for the 10S. To return
various kinds of driver and HY PERchannel status, use the HYSTAT function. The subfunctions are defined
in the npst at structurein sys/ hy. h. The last status is the |OS driver’s status and is specific to that
driver. The HYHLTI O i oct| reguest allows users to halt outstanding driver packet 1/0 requests. Because
this request must be issued by the same process that issued the I/O, you can use it only with asynchronous
1/0.

SR-2014 111

HY (4)

HY (4)

Thei oct | structure is defined in the sys/ hy. h include file, as follows:

struct npstat {

}

mad

Wt no

rtnmo

i nq

pat h
[rt

nperr

sfunc
sbuf

i nt mad; /* maxi mum associ ated data size */
i nt wt no; /* wite tinmeout */
i nt rtno; /* read tinmeout */
i nt i nq; /* input messages to queue */
i nt pat h; /* adapter path requested */
i nt Irt; /* last response tine */
i nt nperr; /* last N packet error return fromlGOS */

/* (valid only when the |ast operation */

/* returned an error) */
i nt sfunc; /* status subfunction see npstats.h */
char *sbuf; [* status buffer pointer */

Maximum associated data size (in words); this parameter places a limit on the message size that the
|OS expects.

Write time-out.

Read time-out (in tenths of a second) for both read and write operations. The 10S queues up to
four messages before discarding input from the adapter that the mainframe has not read.

Input messages to queue; allows a process to specify up to four messages to queue. A process can
request a specific minor device number. This is currently unused.

Adapter path.
Last response time; the time since the last packet was received from the 10S for this minor device.

Last error status from the 10S; valid only when the last 1/O operation returns an error. For alist of
error response codes from the 10S and their meaning, see the nper r Values subsection.

The statistics subfunction to be used; used only in conjunction with the HYSTAT i oct| request.

The address of the driver statistics buffer; used only in conjunction with the HYSTAT i oct |
request.

You canuse ani oct| reguest after the open operation and before the first r ead or wr i t e operation to
change the 10S parameters.

112

SR-2014

HY (4)

HY (4)

Theread(2) and wri t e(2) system calls issued by a process to the HY PERchannel driver differ from
typical r ead(2) and wr i t e(2) system calls only in that the first 64 bytes of the data must be a
HY PERchannel message proper. The message proper is defined as follows:

struct np {
char control[2]; /* NSC control word */
char acode[2] ; /* NSC access code */
char to[2]; /* NSC destination adapter */
char from 2]; /* NSC source adapter */
char par anf 56] ; /* NSC par aneters */
b

The details of the contents of message proper fields are available in NSC documentation.

If aread(2) system call is not satisfied within the time-out period, an ELATE error is returned. If a

writ e(2) system call cannot be completed, it is retried periodically in the time allowed by the time-out
period before an ELATE error is returned. A cl ose(2) system call closes the minor device. A CEl O error
terminates any outstanding system calls.

nperr Values

The following tables list the possible values of nper r, according to 10S driver (a response of 0 always
means "no error").

The following octal status values have the associated meanings for all N-packet drivers:

Value Definition
03 Protocol error concerning N-packet request order.
04 Bad channel, owner, or path.
05 Bad function code.
11 Cannot create activity; channel, path, or memory not available.
12 Error on configuration request processing.
54 Path terminated.
The following octal status values have the associated meanings only for FEI drivers:
Value Definition
40 Message length is O or too big.
41 Read time-out.
43 Write time-out.
44 Write sequence error.
50 Illegal function or subfunction.
52 MOS or local memory not available; cannot create.
SR-2014 113

HY (4)

114

53 Port select error.

54 Driver terminating.

56 Message read is too short; data read is too big.
57 Insufficient space allocated in CPU for input.
60 Parity error received.

61 Read sequence error.

The following octal status values have the associated meanings only for VME and NSC drivers:
Value Definition

36 Path 0 not available for loopback destination.
41 Read time-out.

43 Write time-out.

45 No read for loopback write.

51 No remote adapter ID in write message.

52 MOS or local memory not available.

57 Insufficient space allocated in CPU for input.
50 Illegal function or subfunction.

56 Transfer length specified on write is not valid.
60 Loopback write error.

62 Bad CPU address given in N-packet.

The following octal status values have the associated meanings only for VME drivers:
Value Definition

42 Input channel time-out.

44 Output sequence error.

52 Cannot create activity.

53 Output channel time-out.

57 Parity error, message bad size, or data not present but expected.

The following octal status values have the associated meanings only for NSC drivers:
Value Definition

42 Read error.
44 Associated data flag is set, but no associated data is available.
53 Remote adapter not available; write aborted.

HY (4)

SR-2014

HY (4) HY (4)

61 Residual data on channel after data read.
63 Input sequence error.
64 Input parity error.

The following octal status values have the associated meanings for COMM drivers (12-Mbyte interconnect
specification drivers):

Value Definition

20 CPU /O request time-out.

21 Driver detected function code error.
22 Driver termination in progress.

23 Insufficient space allocated by CPU.
30 Parameter block detected is not valid.
31 Data detected is not valid.

32 Write time-out.

33 Driver detected parity or sequence error.
34 I/O channel time-out.

35 Overrun (input channel).

36 Transfer length error.

BUGS
The NSC status is not available from the IOS. Currently, no special functions of the adapter are supported.

FILES

[dev/ comm */ *
[usr/include/sys/hy.h
/usr/include/sys/hysys. h

SEE ALSO
f ei (4), vie(4)

ioctl (2),listio(2),read(2),reada(2),wite(2),witea(2) inthe UNICOS System Calls Reference
Manual, Cray Research publication SR—2012

SR-2014 115

INODE (4) INODE (4)

NAME

i node — inode file system

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The /i node file system allows privileged processes access to a file or directory when the process knows the
device and inode number of afile system. The /i node file system has no files or storage but if it is asked
to trandate a path of the form / i node/ ddd.iii.ggg.ff (where ddd is the device number, iii is the inode
number, ggg is the optional generation number, and ff is an optional list of flagsr or w), it returns the vnode
for the specified file or directory. If the generation number is provided it must match the current generation
number.

Access to the /inode path trandation is limited to privileged processes: Root user for systems with
traditional UNIX security or users with an active secadm category for systems using privilege assignment
lists (PALYS).

Executing an | s(1) or r eaddi r () on the/ i node file system root directory shows only the "." and "..
directories.

Since / i node has no storage or files but serves only as a path to other file systems, once the path element
following the / i node is trandated, the normal rules for file system access for that target item apply.

CONFIGURATION

NOTES

116

You create an / i node file system with the following steps:
1. Create an empty directory called / i node with the following command:
nkdir /inode

2. Modify the system mount scripts and / et ¢/ f st ab file so that the / i node file system is always
mounted at system startup.

f st ab entry:
/inode /inode | NODE

The use and implementation of the i oct | (2) operations documented in this entry are subject to change in
future releases of UNICOS.

SR-2014

INODE (4)

FILES
/i node /i node file system root

SEE ALSO
f st ab(5)

INODE (4)

nmount (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014

117

IOSE (4)

NAME

i 0SE — 10S model E interface

IMPLEMENTATION

Cray PVP systems with an |IOS model E

DESCRIPTION

IOSE (4)

The/ dev/i osE/ * device is used as the interface to the IOS model E (IOS-E). Thei oct | (2) system call
issues requests to the i oscnt | device driver.

The minor number of a device specifies a particular IOP (for example, the / dev/ i osE/ i op. 1. 3 device

has a minor number of 11, which indicates cluster 1, eiop 3).

The different structures used for the i oct | (2) system call are defined in the
[usr/include/sys/ioscntl.h include file, and they are described as follows:

get _cluster(x) (int)(((uint)x>>3)&0377)

#define
#defi ne

/*

* I
*/

st ruct

}s

/* Fiel
#defi ne
#defi ne
#defi ne
#define
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
/*

118

get _ei op(x) (int)(x&7)

octl argument structure

ioscntl {

uni on {

int i;
char *cp;
word *wp;
struct ioscntl_cf *cf;

} ios_argl

uni on {
int i;
word *wp;

} ios_arg2;

int ios_arg3;

int ios_arg4;

d equival ence defines */

i 0s_hi sp_no i os_argl.
i os_channel i os_ar g2.
i 0s_node ios_arg3
i os_target ios_arg4
i os_path ios_argl.cp
i os_send ios_argl. wp
i 0s_receive i os_arg2. wp
ios_length i os_arg3

ios_iop_config ios_argl.cf

cluster from m nor */
eiop from m nor */

SR-2014

IOSE (4) IOSE (4)

* | O GET_CONFI G buf fer structure.
*/
struct ioscntl_cf {
int ios_status; /* configuration status bits */
char ios_bootpath[| O PATHVAX]; [/* partial path name for boot binary */
int ios_usage; /* drivers currently using |OP */
/* the following fields are valid only for the MJXI OP */
int ios_|lowsp; /* | ow-speed channel nunber */
struct {
int open; /* open flag */
int channel; /* channel nunber */
int target; /* the target menory for the channel */
i nt node; /* operating node for the channel */
} ios_hisp[2];
b
Configuration requests affect future 1/0 in the following ways:
| O STOP New 1/O to the target IOP is queued but not processed. Current 1/O is not guaranteed
to complete.
| O_ABORT All current and new 1/0 to the target I1OP is rejected.
| O RESTART Any current 1/0 that has not completed is requeued. All queued 1/0O to the target IOP
is then processed.
The following is a description of availablei oct | requests:
| O SET_PATH Specifies the path name for a binary file that will be booted later into the target IOP

by using the | O BOOT _| OP request. This request can be done only to a |OP that
has not been booted.

Required argument:
ios_path Pointer to the path name of the boot binary file

| O SET_LOWSP Sets the low-speed channel number. This request can be done only when the
low-speed channel is down.

Required argument:

ios_channel L ow-speed channel number

| O SET_HI SP Sets the HISP channel parameters. This request can be done only when the MUXIOP
for the specified cluster is up and accessible through the low-speed channel, and the
HISP is down.
Required arguments:
ios_hisp HISP ordinal; 0 for HISPO, 1 for HISP, and so on.
ios_channel HISP channel number.

SR-2014 119

IOSE (4)

120

| O BOOT_| OP

| O_DOWN_| OP

| O_RDOAN_| OP

| O_UP_LOABP

| O DOAN_LOWSP

| O_UP_HI SP

| O_DOAN_HI SP

| O_UP_I NTER

| O DOAN_| NTER

| O_ECHO

| O GET_CONFI G

IOSE (4)

HISP channel mode.
HISP channel target memory.

ios_mode
ios_target

Boots the specified IOP. The binary file used to boot the IOP must have been
specified by a previous | O_SET_PATH request.

Sets the specified 10P to a down state. This causes the | O_ABORT condition to be
set for the target 10P.

Sets the specified 10P to a down state in a restartable way. This causes the
| O_STOP condition to be set for the target |OP.

Sets the low-speed channel to an up state. This request can be done only when the
low-speed channel is down. This causes the | O RESTART condition to be set for
those 1OPs in the cluster that were stopped by a previous | O DOAN_L OAEP request.

Sets the low-speed channel to a down state. This request can be done only when the
low-speed channel is up. This causes the | O_STOP condition to be set for those
I0OPs in the cluster that are processing requests.

Sets a HISP channel to an up state. This request can be done only when the HISP
channel is down.

Required argument:
ios_hisp HISP ordina; 0 for HISPO, 1 for HISP, and so on.

Sets a HISP channel to a down state. This request can be done only when the HISP
channel is up.

Required argument:
ios_hisp HISP ordina; 0 for HISPO, 1 for HISP, and so on.

Sets an inter-1OP channel to an up state. This causes the | O RESTART condition to
be set for IOP if it was processing requests at the time of a previous
| O_DOMN_| NTER request.

Sets an inter-lOP channel to a down state. This causes the | O_STOP condition to be
set for IOP if it is processing requests.

Echoes message through an |OP.
Required arguments:

ios_send Word pointer to the send buffer
ios_receive Word pointer to the receive buffer
ios_length Number of words in the echo message

Gets an |OP configuration.
Required argument:

SR-2014

IOSE (4) IOSE (4)

ios iop_config Pointer to the buffer structure to receive the data

In addition to the standard i oct | error codes (seei oct | (2)), the following errors cause an i oct | request

to fail:

[EFAULT] Bad address passed to system call.

[EAGAI N| Attempt to down an inter-lOP channel that is already down.

[ENXI O MUXIOP or IOP is not in a state that allows configuration of an inter-IOP channel.
[EBUSY] MUXIOP or IOP is currently processing another i oct | (2) request.

NOTES

Only the super user can use the / dev/ i os interface.
FILES

/ dev/i os
/usr/include/ sys/epack. h

/usr/include/sys/ioscntl.h

SEE ALSO
i octl (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2014 121

IP13(4) IPI3(4)
NAME
i pi 3 — IPI-3/IPI interface

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The IPI-3 interface is used as a connection to the IPI-3/IPl 10Ps and the IPI-3/IPl devices. These devices
are represented by special files in the / dev/ i pi 3 directory.

The ASCII names for the IOP devices and the IPI-3/IPI devicesin the/ et c/ config/ipi 3_config
configuration file are used to create the special filesin / dev/ i pi 3.

The pki _ct | structure, as defined in the sys/ pki _ct | . h include file, is used to communicate between
the packet driver and the controlling process. The packet driver control structure is defined as follows:

struct pki_ctl{

122

i nt pki _psi gno; /* Signal to receive */
wor d *pki _packet ; /* Packet from user program */
i nt pki _nbytes; /* Length of packet */
i nt pki _devi ce; /* Device name */
}

The following is alist of thei oct | (2) requests used with the IPI-3/IPI interface:

PKI _CLEAR Clears the IPI-3/IPI device.
PKI DRI VER STS Returns the status of the IPI-3/IPI packet driver.
PKI _ENABLE Enables a packet interface.

PKI _GET_CONFI G
PKI _GET_DEVCONF
PKI _GET_DEVTBL
PKI _GET_OPTI ONS

Returns the IPI-3/IPI configuration.

Returns the configuration of a device.

Returns a driver device table.

Returns the options of the IPI-3/IPI packet driver.

PKI _RECEI VE Returns an 1PI-3/IPl packet.

PKI _SEND Sends an IPI-3/IPI packet.

PKI _SET_OPTI ONS Modifies the options of the IPI-3/IPI packet driver.

PKI _SI GNO Registers the signal to be sent to the user when an interrupt is received from

the IOP.

SR-2014

IPI3(4) IP13(4)

FILES

[dev/ipi 3/ reqt IPI-3/IPI interface device
[usr/include/sys/pki_ctl.h Structure definition of pki _ct |

SEE ALSO
reqt (4)

i pi 3_clear(8),ipi3_config(8),ipi3_option(8),ipi3 _start(8),ipi3_stat(8),
i pi 3_st op(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

Tape Subsystem Administration, Cray Research publication SG—2307

SR-2014 123

LDD(4) LDD(4)
NAME

| dd — Logica disk device
IMPLEMENTATION

DESCR

124

Cray PVP systems

IPTION

Thefilesin / dev/ | dd arelogica disk descriptor files (see | desc(5)). They are used to combine other
logical or physical disk dicesinto a single logical disk device. Typically, thefilesin/ dev/ | dd are
referenced by name by a disk block special filein / dev/ dsk that has a major device number of the
concatenated logical disk driver, Idd. See dsk(4). Concatenated logical disk devices are differentiated from
other logical disk devices by the major device number defined in / usr/ src/ uts/cl/cf/devsw. c.

Usually, a logical descriptor file is used to combine physical disk dlices in the following manner (see
pdd(4)):
nmknod /dev/|dd/usr L /dev/pdd/usr.0 /dev/pdd/usr.1

When the / dev/ | dd/ usr file is referenced by a character or block specia device, its member dlices,
[dev/ pdd/ usr. 0 and / dev/ pdd/ usr . 1, are combined by a logical disk driver into a single logical
disk device.

Typically, a block special filein/ dev/ dsk references afilein/ dev/| dd. Following through with the
preceding example, you can make a simple concatenated logical device by using the mknod(8) command
(see nknod(8) and dsk(4)). In this example, the major device number is dev_| dd, and the minor device
number is 12. The two 0’s are placeholders and are unused.

nmknod /dev/dsk/usr b dev _|dd 12 0 O /dev/I dd/ usr

The following logical disk devices are supported:

dev_| dd The simple concatenated logical device. The physical slices are concatenated to form a
single logical disk device. See dsk(4).

dev_ndd A mirrored logical disk device. Two or more disk dlices are identical copies of one
another for data redundancy. See ndd(4).

dev_sdd A striped logical disk device. Two or more disk slices are striped to increase bandwidth.
See sdd(4).

The logical disk devices are differentiated by their major device numbers defined symbolically in
fusr/src/uts/cl/cf/devsw. c.

SR-2014

LDD(4) LDD(4)

FILES

/ dev/ dsk/ *
/dev/ | dd/ *

/usr/include/sys/ldesc.h

SEE ALSO
dsk(4), | desc(5), mid(4), pdd(4), sdd(4), ssdd(4)

ddst at (8), mknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2014 125

LO(4) LO(4)

NAME

| o — Software loopback network interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The loop interface, | 0, is a TCP/IP pseudo device. It is a software loopback mechanism, which you can use
for performance analysis, software testing, and/or local communication. By default, the loopback interface is
accessible at address 127.0.0.1. To change this address, use the i oct | (2) request SI OCSI FADDR.

SEE ALSO
i net (4P)

126 SR-2014

LOG(4) LOG (4)

NAME
| og, kl og — System message log files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ dev/ | og and / dev/ kl og special files contain messages for the sys!| ogd(8) system log daemon.
The/ dev/ | og file is the user-level system log; it contains the messages issued by sysl og(3C). The
/ dev/ | og fileis a FIFO specia file (named pipe).

The / dev/ kl og file is the kernel-level system log; it contains the kernel messages from the system log
daemon, sysl ogd(8). The/ dev/ kl og fileis a circular queue; the kernel writes kernel messages into it,
and sysl| ogd(8) reads kernel messages from it.

NOTES
Only the sysl ogd(8) utility should read / dev/ | og and / dev/ kl og. When two or more processes have
/ dev/ | og or / dev/ kl og open at the same time, results are undefined.

FILES

/ dev/ Kkl og Kernel-level system log
/ dev/ 1 og User-level system log

SEE ALSO
| ogger (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
sysl 0g(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

sysl ogd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2014 127

MDD (4) MDD (4)

NAME

ndd — Mirrored disk driver

IMPLEMENTATION

Cray PVP systems with an |IOS model E

DESCRIPTION

128

Thefilesin / dev/ mdd are character special files that allow read and write operations to mirrored disk
dices. A mirrored disk dlice is alogical disk device composed of two or more physical disk slices. These
physical dlices, also known as members, must be of the same length and physical sector size. A maximum
of MDDSLMAX (defined in the parameter file) mirrored devices can exist.

A mirrored disk device takes on the physical sector size of its member physical disk devices. If the sector
size of the member devices consists of more than 512 words, the I/O request lengths and starts must match
those for the specified device.

Device driver-level mirroring is used when reliability is a critical issue. An individua write 1/0O request is
sent to all members of the mirror that are write enabled. Read 1/0 requests are sent to the first read-enabled
device of the mirrored group that is not busy.

On read errors, the driver selects the next available device from which to read.

On write errors, the member in error is disabled, and no reads or writes go to that device. The node also is
marked showing that the device is now out of sync with the other mirrored members. This marking is
recorded externally in the / dev/ ndd/ name node for the device, permitting the information to be preserved
across reboots. To resynchronize, use the mddconf (8) and nddcp(8) commands.

Thefilesin / dev/ mdd are not usually mountable as file systems. You may specify a mirrored disk dlice as
awhole or part of alogical disk device. Thefilesin/ dev/ ndd are al of the logical indirect type. See
dsk(4), | desc(5), | dd(4), and pdd(4).

The nknod command is used as follows to create a mirrored disk inode:

nmknod name type major minor O rwmode path

name Name of the logical device.

type Type of the device data being transferred. Devicesin/ dev/ nmdd are character devices denoted
by ac.

major Major device number of the mirrored logical disk device driver. The driver is denoted by the
name dev_ndd inthe/usr/src/uts/cl/ cf/devsw. c file

minor Minor device number for this slice. Each striped disk slice must have a unique minor device
number.

0 Placeholder for future use.

SR-2014

MDD (4) MDD (4)

rwmode Read/write/initialize modes, in the form Oxx. Reading from right to left, each digit represents a
member of mirrored group. The bits represent read enable, write enable, and initialize, and they
also are read from left to right, as permissions on afile are read. For example, 037 is a
two-member mirror: member O is read/write/initialize; member 1 is write only and initialize.

path Path name that designates the logical descriptor file listing the member dslices. See |l desc(5).

NOTES
As noted above, an unsynchronized mirrored device is marked in the / dev/ ndd/ name node. If these
nodes are recreated, causing the loss of synchronization information, the device must be resynchronized
manually.
EXAMPLES
The following example creates a mirrored disk inode:
nmknod /dev/ndd/usr ¢ dev_ndd 2 0 077 /dev/ldd/usr.mrror

FILES

/ dev/ mdd/ *
/fusr/include/sys/ mdd. h
fusr/src/cl/iol/mid.c

SEE ALSO
dsk(4), | dd(4), | desc(5), pdd(4)

nmddconf (8), mddcp(8), mknod(8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

SR-2014 129

MEM(4)

NAME

MEM(4)

mem kmem— Common or main memory files

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

130

The memfile is a specia file that is an image of the common or main memory of the computer. It can be
used to examine or patch the system. References to nonexistent locations fail with an er r no of ENXI O.

The knemfile is the same as mem kmemhas been preserved, because physical memory and kernel memory
are not exactly the same on some machines not manufactured by Cray Research.

You also can use the mem (or kren) file to change the configuration of physical memory. Physical memory
is made up of the following areas:

Kernel memory

RAM disk
User memory

Guest memory

Downed memory

Three separate areas that are not necessarily contiguous:
* Space dlocated at build time

* Space alocated at boot time

* Space dlocated at run time

Memory-resident disk.

Areain which user processes reside.

Areain which guest operating systems reside (mutually exclusive from downed
memory).

Area that was formerly used by diagnostics. This areais an artifact of the archaic
form of chmem (mutually exclusive from guest memory).

Maintenance memory Area used by diagnostics.

The following i oct | (2) requests are defined in the sys/ nmm h include file:

MV_STATUS_ONLY
MM _RSV_MAI NT

MM RLS_MAI NT

Returns memory status.

Reserves maintenance memory by reducing the overal size of configured physical
memory by the amount required for diagnostics; the required space comes from user
memory.

On completion, if requested, the memory status is returned.

Releases maintenance memory by restoring the overall size of configured physical
memory; the space used for maintenance memory is returned back to user memory.

On completion, if requested, the memory status is returned.

SR-2014

MEM(4) MEM(4)

The value of thei oct | argument arg is the address of the following structure, which is defined in

sys/ mm h:
struct nmoctl {
struct nmmstat *mm _stat; /* menory status area (user
rel ative) */
i nt nm _statl en; /* length of mem status area
(bytes) */

b
If mm _statl en is 0, no memory status will be returned.

Memory status (that is, the current configuration of physical memory) is returned by using the following
structure. A ba suffix refers to base address, and an sz suffix refers to size. All units are in words.

struct mmstat {

| ong ms_f | ags; /* menory state flags */

| ong ms_cnf physsz; /* configured physical nenory size*/

| ong ns_act physsz; /* actual physical nmenory size */

| ong ms_kbui | dba; /* kernel allocated at build time */

| ong ms_kbui | dsz;

| ong nms_kboot ba; /* kernel allocated at boot tinme */

| ong ns_kboot sz;

| ong ns_kr unba; /* kernel allocated at run tinme
(i.e., kmem */

| ong ns_Kkr unsz;

| ong ms_r anba; [* ranmdi sk */

| ong Ns_ransz;

| ong nms_usr ba; /* user nmenory */

| ong NS _USrsz;

| ong nms_pl ockdsz; /* amount of user menory that's
pl ocked */

| ong nms_downedba; /* downed nenory */

| ong nms_downedsz;

| ong nms_nmai nt ba; /* mai ntenance nenory */

| ong nms_nmai nt sz;

i
In addition to the standard i oct | error codes (seei oct | (2)), the following are errors that cause an
i oct | (2) request to fail:

EACCES Calling process was not plocked in memory when trying (possibly indirectly) to reduce the
size of user memory

EAGAI N Maintenance memory is disabled while downed or guest memory exists
EBUSY Cannot idle system (that is, park all CPUs) so that memory can be reconfigured

SR-2014 131

MEM(4)

FILES

132

EDOM
EFAULT
El NTR
El NVAL
ENCSPC
ENOSYS

/ dev/ MAKE.
/ dev/ knem

/ dev/ mem

User’'s and kernel’s idea of memory status structure size differ
Cannot copy information from or to user area

Interrupted system call

Unrecognized request or device minor number is not 0, 1, or 2
Space for maintenance memory is unavailable from user memory

Maintenance memory is not supported

DEV

MEM(4)

SR-2014

MNU(4) MNU (4)

NAME
mmu — Interactive nmu-based display package

SYNOPSIS

/usr/src/uts/cmd/ di sk/ mu. c

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The mu program is a display package that provides a menu-based interactive command processing
capability. An application program that uses the mu program provides a set of linked menus in a structured
form and is compiled with nmu. The application calls a function in rmu to update the display and to solicit
input from users.

The mu program provides command input and screen refresh capabilities by using the following primitives:

<TAB> or right arrow Menu right

<BACK SPACE> or left arrow Menu left

<RETURN> Next menu level or execute menu item
<ESC> Back to first menu level

<CONTRCL- F> or <PAGE DONN> Next display page

<CONTROL- B> or <PAGE UP> Previous display page

<CONTROL- D> or down arrow Display down one line

<CONTROL- U> or up arrow Display up one line

? Help

The first letter of a given menu item selects and executes that menu item. A help facility displays help text
for each menu item if provided by the application.

An application builds and links together menu items by using the mu structure defined in
[usr/include/sys/ mu. h.

SR-2014 133

MNU(4) MNU(4)

/-k
* menu structure
*/
struct mmu {
char *mu_namne; /* menu nane */
struct mmu *mu_forw, /* next nenu |evel */
i nt (*mu_func)(); /* function to execute */
i nt mu_fl ags; /* flags defined bel ow */
char *mu_hel p; /* pointer to help text */
i
/*
* menu flags
*/
#defi ne MJF_I NPUT 1 /* input node */
#defi ne MJF_STAY 2 /* stay on this nenu */

The mu_narne field is the name of the menu item. The mu_f or wfield points to the next level menu
structure and is NULL at the bottom menu. The mu_f unc field is a pointer to a function, on the bottom
menu item, that performs the desired action. The mu_f | ags control menu displays action, and the
mu_hel p field is a pointer to optional help text.

The application program must provide an external mu entry called muO that points to the main (top)
menu. The application calls mu_r ef r esh to update the display and menu items at the specified refresh
rate.

The hddnon(8) utility provides an example of an application that makes use of rmu display and command
capabilities. See/ usr/ src/ ut s/ cmd/ di sk/ hddnon. c.

FILES

/usr/src/uts/cmd/ di sk/ hddmon. ¢
/usr/src/uts/cmd/ di sk/ mu. c

[usr/include/sys/ mu.h

SEE ALSO

hddnmon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

134 SR-2014

NETCONFIG (4) NETCONFIG (4)

NAME

et ¢/ net confi g — Network configuration database

IMPLEMENTATION
Cray Research systems licensed for ONC+™ and UNICOS 8.3 or later

DESCRIPTION

The network configuration database, / et ¢/ net conf i g, is a system file used to store information about
networks that are connected to the system. The network selection component also includes the NETPATH
environment variable and a group of routines that access the network configuration database by using
NETPATH components as links to the net confi g entries.

The net conf i g database contains an entry for each network available on the system. Entries are separated
by newlines. Fields are separated by white space in a prescribed order. Y ou can embed white space as a
blank single space or at ab symbol. You may embed backslashes (\) as symbols. Linesin

/ et c/ net confi g that begin with a# symbol in column 1 are treated as comments.

Each of the valid lines in the net conf i g database correspond to an available transport. Each entry is of
the following form and order:

network ID
semantics

flag

protocol family
protocol name
network device

trandation libraries

network ID A string that uniquely identifies a network. network ID consists of nonnull characters, and

it has a length of at least 1. No maximum length is specified. This namespace is locally
significant and is named by the local system administrator. All network 1Ds on a system
must be unique.

semantics The semantics field is a mandatory field that contains a string that identifies the semantics

SR-2014

of a network. Semantics is defined as the services a network supports and the service
interface the network provides. The following semantics are recognized.

tpi _clts Transport Provider Interface (connectionless).
tpi _cots Transport Provider Interface (connection oriented).

tpi _cots_ord Transport Provider Interface (connection oriented) it supports an
orderly release.

135

NETCONFIG (4)

136

flag

protocol family

protocol name

network device

NETCONFIG (4)

The flag field records two-valued (true and false) attributes of networks. flag is a string
composed of a combination of symbols, each of which indicates the value of the
corresponding attribute. If a specified symbol is present, the attribute is true. If a symbol
is absent, the attribute is false. The - symbol indicates that none of the attributes are
present. Only one symbol is currently recognized:

% Visible (default) network. Used when the NETPATH environment variable is not set.

The protocol family and protocol name fields are provided for protocol-specific
applications. The protocol family field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as those for network 1Ds; the string
consists of nonnull characters, it has a length of at least 1, and no maximum length is
specified. A - symbol in the protocol family field indicates that no protocol family
identifier applies (the network is experimental). The following are examples:

| oopback Loopback (local to host)
i net Internetwork: UDP, TCP, and so on

The protocol name field contains a string that identifies a protocol. The protocol name
identifier follows the same rules as those for network IDs; that is, the string consists of
nonnull characters, it has a length of at least 1, and no maximum length is specified. A -
symbol indicates that none of the names listed apply. The following protocol names are
recognized.

tcp Transmission Control Protocol
udp User Datagram Protocol

The network device field is the full path name of the device used to connect to the
transport provider. The following network devices are recognized.

/dev/tcp Transmission Control Protocol

/ dev/udp User Datagram Protocol

trandation libraries

The name-to-address trandation libraries field support a name-to-address mapping service
and directory service for the network. A - in this field indicates the absence of any
trangdlation libraries, in which case, name-to-address mapping for the network is
nonfunctional. This field consists of a comma-separated list of path names to libraries.
Although this is not used in the UNICOS software, the path should be present.

Each field corresponds to an element in the st r uct net confi g structure. struct netconfi g and the
identifiers described previously are defined in <net conf i g. h>. This structure includes the following

members:

char *nc_netid Network ID, including null terminator

unsi gned | ong nc_semantics Semantics

unsi gned long nc_fl ag Flags

SR-2014

NETCONFIG (4) NETCONFIG (4)

char *nc_protofmy Protocol family

char *nc_proto Protocol name

char *nc_device Full path name of the network device

unsi gned | ong nc_nl ookups Number of directory lookup libraries

char **nc_| ookups Names of the name-to-address trandation libraries
unsi gned | ong nc_unused[9] Reserved for future expansion

Thenc_semant i cs field takes the following values, corresponding to the semantics identified previously:
* NC_TPI_CLTS

* NC_TPI _COTS

* NC_TPI _COTS_ORD

Thenc_f I ag field is a bit field. The NC_VI SI BLE hit, corresponding to the attribute identified
previoudly, is currently recognized.

NC_NOFLAG indicates the absence of any attributes.
WARNINGS

Y ou should not modify the / et ¢/ net confi g file provided by Cray Research, because incoherent behavior
of r pcbi nd(8) may result.

FILES

netconfig. h

SEE ALSO
nssw t ch(4)

r pcbi nd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2014 137

NIS(4) NIS(4)

NAME

ni s — A new version of the network information service

IMPLEMENTATION
Cray Research systems licensed for ONC+™ and UNICOS 8.3 or later

DESCRIPTION

NIS+ is a new version of the network information service. This version differs in several significant ways
from version 2, which is referred to as NIS or YP in earlier releases. Specific areas of enhancement have
been the ability to scale to larger networks, security, and the administration of the service.

The man pages for NIS+ are broken up into two basic categories. Section 8 man pages are user commands
and daemons. Section 3N man pages describe the NIS+ programming API.

All commands and functions that use NIS version 2 are prefixed by the letters yp asin ypcat (2).
Commands and functions that use the new version are prefixed by the letters ni s, asin ni smat ch(8) and
ni s_add_ent ry(3N).

This man page introduces NIS+ terminology. It also describes the NIS+ namespace and authentication and
authorization policies.

NIS+ Namespace
The naming model of NIS+ is based on a tree structure. Each node in the tree corresponds to an NIS+
object. There are six types of NIS+ objects:

¢ Directory

e Table

¢ Group

e Link

e Entry

* Private

NIS+ directories

Each NIS+ namespace will have at least one NIS+ directory object. An NIS+ directory is like a UNIX file
system directory that contains other NIS+ objects, including NIS+ directories. The NIS+ directory that
forms the root of the NIS+ namespace is called the root directory. Two special NIS+ directories exist:

org _dir and groups_dir. Theorg_dir directory consists of al systemwide administration databases,
such as passwd, host s, and gr oups. The gr oups_di r directory consists of NIS+ group objects that
are used for access control. The collection of the or g_di r, gr oups_di r and their parent directory is

referred to as an NIS+ domain. You can arrange NIS+ directories in a tree-like structure allowing the NIS+
namespace to be divided so that it matches an organizational hierarchy.

138 SR-2014

NIS(4) NIS(4)

NIS+ tables

NIS+ tables, contained within NIS+ directories, store the actual information about some particular type. For
example, the hosts system table stores information about the 1P address of the hosts in that domain. NIS+
tables have multiple columns and any of the columns can be searched. Each table object defines the schema
for its database.

NIS+ group objects
NIS+ group objects are used for access control at group granularity. NIS+ group objects, contained within
the gr oup_di r directory of a domain, contain a list of all NIS+ principals within a certain NIS+ group.

NIS+ link objects
NIS+ link objects are similar to UNIX symbolic file system links. Typically, they are used for short cuts in
the NIS+ namespace.

For more information about the NIS+ objects, see ni s_obj ect s(3N).

NIS+ entry objects
The NIS+ tables consist of NIS+ entry objects. For each entry in the NIS+ table, an NIS+ entry object
exists. NIS+ entry objects conform to the schema defined by the NIS+ table object.

Multiple Administrative Domains
NIS+ allows the creation of multiple domains, or subset of the enterprise network, that may be administered
on an autonomous basis. As a corporation grows, or as its corresponding domain grows, authorized
administrators can subdivide the domain into two or more hierarchical subdomains.

NIS+ allows for a primary copy of information to be stored on a master server, with zero or more save
servers storing replicas of the primary copy. Updates are made only to the master server, which propagates
them to its slave servers. An NIS+ client can send look-up requests to any of the replicas and update
requests only to the master server. This arrangement has two benefits: inconsistent updates between tables
is avoided because only one master exists, and either a master or a slave server can act as a back-up server
for look-up reguests.

Each domain in an NIS+ network has its own master server and also may have many slave replicated
servers. The overall reliability of the network is enhanced when multiple master servers are across the
network, one for each domain, as opposed to one master domain for an NIS+ network. If a master server is
down, only updates for its particular domain are disabled; updates to the rest of the network are not affected.

NIS+ Names
The NIS+ service defines two forms of names, simple names and indexed names. The service uses simple
names to identify NIS+ objects contained within the NIS+ namespace. Indexed names are used to identify
NIS+ entries contained within NIS+ tables. Entries within NIS+ tables also are returned to the caller as
NIS+ objects of type entry. NIS+ objects are implemented as a union structure, which is described in the
<rpcsvc/ ni s. h>file. Theni s_obj ect s(3N) man page describes the differences between the various
types and the components of these objects.

SR-2014 139

NIS(4) NIS(4)

Simple Names
Simple names are made up of a series of labels that are separated by the dot (.) symbol. Each label is
composed of printable symbols from the 1SO Latin 1 set. Each label can be of any nonzero length, provided
that the fully qualified name is fewer than NI S_MAXNANMELEN octets, including the separating dots. For the
actual value of NI S_MAXNAMELEN, see the <r pcsvc/ ni s. h> header file. You must use quotation marks
for labels that contain special symbols. See the Grammar subsection.

The NIS+ namespace is organized as an individual rooted tree. Simple names identify nodes within this tree.
These names are constructed such that the leftmost label in a name identifies the leaf node, and al of the
labels to the right of the leaf identify that objects parent node. The parent node is referred to as the leafs
directory (this is a naming directory and should not be confused with a file system directory).

For example, the name exanpl e. si npl e. nane is a smple name that has three labels:
exanpl e The leaf node in this name

si mpl e The directory of this leaf

name Simple name of the directory

The ni s_I eaf _of (3N) function returns the first label of a simple name. The ni s_domai n_of (3N)
function returns the name of the directory that contains the leaf. Repeated use of these two functions can
break a simple name into each of its label components.

The name dot (.) is reserved to name the global root of the namespace. For systems that are connected to
the Internet, this global root will be served by a domain name service (DNS). When an NIS+ server is
serving a root directory whose name is not dot (.), this directory is referred to as alocal root. The root of
the NIS+ namespace does not have to be the local root, and it ends in a trailing dot.

NIS+ names are said to be fully qualified when the name includes all of the labels that identify all of the
directories, up to the global root. Names without the trailing dot are called partially qualified.

Indexed Names
Indexed names are compound names that are composed of a search criterion and a simple name. The search
criterion component is used to select entries from a table; the simple name component is used to identify the
NIS+ table that will be searched. The search criterion is a series of column names and their desired values
enclosed in bracket ([]) symbols. These criteria take the following form:

[col um_nane=value, col um_nane=value, ...]
A search criterion is combined with a simple name to form an indexed name by concatenating the two parts,
separated by a comma (,) symbol, as follows.

[search-criterion],table.directory.
When multiple column name/value pairs are present in the search criterion, only those entries in the table

that have the appropriate value in all columns specified are returned. When no column name/value pairs are
specified in the search criterion, al entries in the table are returned.

140 SR-2014

NIS(4)

NIS(4)

Grammar
The following text represents a context-free grammar that defines the set of legal NIS+ names. The
terminals in this grammar are the following symbols:

Dot (.)

Open bracket ([)
Close bracket (])
Comma (,)
Equals (=)
White space

Angle brackets (< and >), which delineate nonterminals, are not part of the grammar. The vertical bar (|)
symbol is used to separate alternate productions, and it should be read as either this production or the
following production:

name = | <simple name> | <indexed name>
simple name = <string>. | <string>. <simple name>
indexed name = <search criterion>, <simple name>

search criterion

[<attribute list>]

attribute list = <attribute> | <attribute>, <attribute list>
attribute = <string> = <string>
string ::=1S0O Latin 1 character set

The/ symbol is not used. The initial character may not be a terminal character or the symbols at (@, plus
(+), or hyphen(-).

Terminals that appear in strings must be quoted with double quotation marks (). You may quote the "
symbol by quoting it with itself ("").

Name Expansion
The NIS+ service accepts only fully qualified names. Because such names may be unwieldy, however, the
NIS+ commands use a set of standard expansion rules that will try to fully qualify a partially qualified name.
The NIS+ library function ni s_get names(3N) actually does this expansion. This function generates a list
of names by using the default NIS+ directory search path or the NI S_PATH environment variable. The
default NIS+ directory search path includes al of the names in its path. When the EXPAND_NAME flag is
used, the ni s_| ookup(3N) and ni s_1 i st (3N) functions invoke ni s_get nanes(3N).

The NI S_PATH environment variable contains an ordered list of simple names. The names are separated by
the : symbol. If any namein the list contains colons, you should quote the colon as described in the
Grammar subsection. When the list is exhausted, the resolution function returns the error NI S NOTFOUND.
This may end up masking the fact that the name existed but a server for it was unreachable. If the name
presented to the list or look-up interface is fully qualified, the EXPAND_NAME flag is ignored.

SR-2014

141

NIS(4) NIS(4)

In the list of names from the NI S_PATH environment variable, the $ symbol is treated specialy. Simple
names that end with the $ have this symbol replaced by the default directory. For more information, see
ni s_l ocal _di rectory(3N). Using the $ as a name in this list results in this name being replaced by
the list of directories between the default directory and the global root that contain at least two labels.

An example of this expansion follows. If the default directory is a long name (such as
sone. | ong. donmi n. nane.), and the NI S_PATH variableisset tofred. bar.: org_dir. $: $, this
path is initially broken up into the following list:

1. fred. bar.
2. org dir.$
3 %

The $ in the second component is replaced by the default directory. The $ in the third component is
replaced with the names of the directories between the default directory and the global root that have at least
two labels in them. The effective path value becomes:

1. fred. bar.
org_dir.some. | ong. domai n. nane.
some. | ong. domai n. nane.

| ong. domai n. narme.

a » WD

domai n. nane.

Each of these simple names is appended to the partially qualified name that was passed to the
ni s_| ookup(3N) or ni s_Ii st (3N) interface. Eachistried until NI S_SUCCESS is returned or the list is
exhausted.

If the NI S_PATH variable is not set, the path $ is used.

The ni s_get nanes(3N) function may be called from user programs to generate the list of names that
would be searched. You aso can use the ni sdef aul t s(8) program with the - s option to show the fully
expanded path.

Concatenation Path
Usually, all of the entries for a certain type of information are stored within the table itself. At times,
however, it is desirable for the table to point to other tables where entries can be found. For example, you
may want to store al 1P addresses in the host table for their own domain, and yet want to be able to resolve
hosts in some other domain without explicitly specifying the new domain name. With a concatenation path,
you can create a sort of flat namespace out of a hierarchical structure. You also can create a table with no
entries and just point the hosts or any other table to its parent domain. With such a set up, you are moving
the administrative burden of managing the tables to the parent domain. The concatenation path slows down
the request response time because more tables and more servers are searched.

142 SR-2014

NIS(4) NIS(4)

NIS+ provides a mechanism for concatenating different but related tables with a "NIS+ Concatenation Path.”
This path is set up at table creation time by using the ni st bl adm(8) command. You can specify more
than one table to be concatenated, and they are searched in the given order. The NIS+ client libraries will
not follow the concatenation path set in the other tables.

Namespaces
The NIS+ service defines two additional digjoint namespaces for its own use. These namespaces are the
NIS+ Principal namespace and the NIS+ Group namespace. The names associated with the group and
principal namespaces are syntactically identical to ssmple names. However, the information they represent
cannot be obtained by directly presenting these names to the NIS+ interfaces. Specia interfaces are defined
to map these names into NIS+ names so that they may then be resolved.

Principal Names
NIS+ principal names uniquely identify users and machines that are making NIS+ requests. These hames
have the following form:

principal.domain
The domain is the fully qualified name of an NIS+ directory in which the specified principals credentials can

be found. For more information on domains, see the Directories and Domains subsections. No leaf exists in
the NIS+ namespace in the name, principal.

Credentias are used to map the identity of a host or user from one context such as a process UID into the
NIS+ context. They are stored as records in an NIS+ table named cr ed. cr ed is always found in the
or g_di r subdirectory of the directory specified in the principal name.

You can express this mapping as a replacement function, as follows:
principal.domain - >[cnanme=principal.domain],cr ed. org_di r. domai n
This latter name is an NIS+ name that can be presented to the ni s_I i st (3N) interface for resolution. To
administer the NIS+ principal names, use the ni saddcr ed(8) command.
The cr ed table contains the following five columns:
* cnane
e aut h_name
e auth_type
* public_data

* private_data

SR-2014 143

NIS(4) NIS(4)

One record in this table exists for each identity mapping for an NIS+ principal. The current service supports
two such mappings:

LOCAL Maps from the UID of a given process to the NIS+ principal name associated with that UID. If
no mapping exists, the name nobody is returned. When the effective UID of the processis 0
(for example, the privileged user), the NIS+ name associated with the host is returned. UIDs are
sensitive to the context of the machine on which the process is executing.

DES Maps to and from a Secure RPC netname into an NIS+ principal name. Because nethames
contain the notion of a domain, they span NIS+ directories.

The NIS+ client library function ni s_| ocal _pri nci pal (3N) usesthe cr ed. or g_di r table to map the
UNIX notion of an identity, a process UID, into an NIS+ principal name. Shell programs can use the
command ni sdef aul t s(8) with the - p option to return this information.

To map from UIDs to an NIS+ principal name, construct a query in the following form:

[aut h_type=LOCAL, aut h_nane=uid], cred. or g_di r. defaultdomain.
This query returns a record that contains the NIS+ principal name associated with this UID in the machines
default domain.

The NIS+ service uses DES mapping to map the names associated with Secure RPC requests into NIS+
principal names. RPC requests that use Secure RPC include the netname of the client making the request in
the RPC header. This netname has the following form:

uni x. UID@lomain

The service constructs a query by using the following form:

[aut h_t ype=DES, aut h_name=nethame], cred. or g_di r. domain.
The domain part is extracted from the netname, rather than using the default domain. This query is used to
look up the mapping of this netname into an NIS+ principal name in the domain in which it was created.

This mechanism of mapping UID and network names into an NIS+ principal hame ensures that a client of
the NIS+ service has only one principal name. This principal name is used as the basis for authorization,
which is described as follows. All objects in the NIS+ namespace and all entries in NIS+ tables must have
an owner specified for them. This owner field always contains an NIS+ principal name.

Group Names
Like NIS+ principal nhames, NIS+ group names take the form:

group_name.domain

All objects in the NIS+ namespace and all entries in NIS+ tables may optionally have a group owner
specified for them. This group owner field, when filled in, always contains the fully qualified NIS+ group
name.

144 SR-2014

NIS(4) NIS(4)

The NIS+ client library defines several interfaces for dealing with NIS+ groups. For information on these
interfaces, see the ni s_gr oups(3N) man page. These interfaces internally map NIS+ group names into an
NIS+ simple name that identifies the NIS+ group object associated with that group name. This mapping
looks like the following:

group.domain - > group.groups_dir.domain

This mapping eliminates collisions between NIS+ group names and NIS+ directory names. For example,
without this mapping, a directory with the name engi neeri ng. f 00. com would make it impossible to
have a group named engi neeri ng. f 0oo. com . Thisis due to the restriction that within the NIS+
namespace, a hame unambiguously identifies one object. With this mapping, the NIS+ group name

engi neeri ng. f 00. com maps to the NIS+ object name engi neeri ng. groups_di r. foo. com .

The contents of a group object is a list of NIS+ principal names, and the names of other NIS+ groups. For a
more complete description of their use, see ni s_gr oups(3N).

Directories and Domains
Some directories within the NIS+ namespace are referred to as NIS+ Domains. Domains are those NIS+
directories that contain the gr oups_di r and or g_di r subdirectories. The or g_di r subdirectory should
contain the table named cr ed. In particular, because of the way the group namespace and the principal
namespace are implemented within the NIS+ namespace, NIS+ Group names and NIS+ Principal names
always include the NIS+ domain name after their first label.

NIS+ Security
Unlike NIS, NIS+ defines a security model to control access to information managed by the service. The
service defines access rights that are selectively granted to individual clients or groups of clients. Principal
names and group names are used to define clients and groups of clients that may be granted or denied access
to NIS+ information.

The security model also uses the notion of a class of principals called nobody that contains all clients,
whether or not they have authenticated themselves to the service and the class world. The class world
includes any client who has been authenticated.

Authorization
The NIS+ service defines the following four access rights that can be granted or denied to clients of the
service:

* read
* nodi fy
e create

* destroy

SR-2014 145

NIS(4) NIS(4)

These rights are specified in the object structure at creation time and may be modified later by using the

ni schnod(8) command. Generally, the rights granted for an object apply only to that object. However, for
purposes of authorization, rights granted to clients reading directory and table objects are granted to those
clients for all of the objects contained by the parent object. This notion of containment is abstract. The
objects do not actually contain other objects within them. Group objects do contain the list of principals
within their definition.

Access rights are interpreted as follows:

read This right grants read access to an object. For directory and table objects, having read
access on the parent object conveys read access to all of the objects that are direct children
of a directory, or entries within a table.

nmodi fy This right grants modification access to an existing object. Read access is not required for
modification. In many applications, however, you must read an object before modifying it.
Such modify operations will fail unless you also grant read access.

create This right gives a client permission to create new objects where one had not previously
existed. It isused only in conjunction with directory and table objects. Create access for
atable allows a client to add additional entries to the table. Create access for a directory
allows a client to add new objects to an NIS+ directory.

destr oy This right gives a client permission to destroy or remove an existing object or entry.
When a client tries to destroy an entry or object by removing it, the service first checks to
see whether the table or directory containing that object grants the client destroy access. If
it does, the operation proceeds, if the containing object does not grant this right, the object
itself is checked to see whether it grants this right to the client. If the object grants the
right, the operation proceeds; otherwise, the request is rejected.

Each of these rights may be granted to any one of four different categories, as follows:

owner A right may be granted to the owner of an object. The owner is the NIS+ principal
identified in the owner field. To change the owner, use the ni schown(8) command. If
the owner does not have modification access rights to the object, the owner cannot
change any access rights to the object, unless the owner has modification access rights to
its parent object.

group owner A right may be granted to the group owner of an object. This grants the right to any
principal that is identified as a member of the group associated with the object. To
change the group owner, use the ni schgr p(8) command. The aobject owner does not
have to be a member of this group.

wor | d A right may be granted to everyone in the world. This grants the right to all clients who
have authenticated themselves with the service.

nobody A right may be granted to the nobody principal. This has the effect of granting the
right to any client that makes a request of the service regardless of whether or not they
are authenticated.

146 SR-2014

NIS(4) NIS(4)

For bootstrapping reasons, directory objects that are NIS+ domains, the or g_di r subdirectory, and the

cr ed table within that subdirectory must have r ead access to the nobody principal. This makes
navigation of the namespace possible when a client is in the process of locating its credentials. Granting this
access does not alow the contents of other tables (such as the password table) within or g_di r to be read.

Directory authorization

Additional capabilities are provided for granting access rights to clients for directories. These rights are
contained within the object access rights (OAR) structure of the directory. This structure allows the NIS+
service to grant rights that are not granted by the directory object to be granted for objects contained by the
directory of a specific type.

An example of this capability is a directory object that does not grant create access to all clients, but does
grant create access in the OAR structure for group type objects to clients who are members of the NIS+
group associated with the directory. In this example, the only objects that could be created as children of the
directory would have to be of the t ype group.

Another example is a directory object that grants cr eat e access only to the owner of the directory, and
additionally grants cr eat e access through the OAR structure for objects’ types (for example, table, link,
group, and private) to any member of the directories group. This OAR structure allows complete cr eat e
access to a group except for creating subdirectories. This also restricts the creation of new NIS+ domains,
because creating a domain requires creating both a gr oups_di r and or g_di r subdirectory.

Currently, no command-line interface exists to set or change the object access rights of the directory object.

Table authorization

As with directories, additional capabilities are provided for granting access to entries within tables. Rights
granted to a client by the access rights field in a table object apply to the table object and all of the entry
objects contained by that table. If an access right is not granted by the table object, it may be granted by an
entry within the table. This holds for all rights except cr eat e.

For example, a table may not grant r ead access to a client performing ani s_| i st (3N) operation on the
table. However, the access rights field of entries within that table may grant r ead access to the client.
Access rights in an entry are granted to the owner and group owner of the entry and not the owner or group
of the table. When the list operation is performed, al entries to which the client has r ead access are
returned. Those entries that do not grant r ead access are not returned. If none of the entries that match the
search criterion grant r ead access to the client making the request, no entries are returned and the result
status contains the NI S NOTFOUND error code.

Access rights that are granted by the rights field in an entry are granted for the entire entry. In the table
object, however, an additional set of access rights is maintained for each column in the table. These rights
apply to the equivalent column in the entry. The rights are used to grant access when neither the table nor
the entry itself grants access. The access rights in a column specification apply to the owner and group
owner of the entry, rather than the owner and group owner of the table object.

When ar ead operation is performed, if r ead access is not granted by the table and is not granted by the
entry but is granted by the access rights in a column, that entry is returned with the correct values in all
columns that are readable and the string * NP* in columns in which r ead access is not granted.

SR-2014 147

NIS(4)

FILES

NIS(4)

As an example, consider a client that has performed a list operation on a table that does not grant read
access to that client. Each entry object that satisfied the search criterion specified by the client is examined
to see whether it grants r ead access to the client. If it does, it is included in the returned result. If it does
not, each column is checked to see whether it grants r ead access to the client. If any columns grant r ead
access to the client, data in those columns is returned. Columns that do not grant r ead access have their
contents replaced by the string * NP*. If none of the columns grant r ead access, then the entry is not
returned.

All clients of the NIS+ service should include the r pcsvc/ ni s. h header file.

SEE ALSO

148

ypcat (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

ni s_groups(3N), ni s_| ocal _nanmes(3N), ni s_names(3N), ni s_obj ect s(3N), ni s_subr (3N),
ni s_t abl es(3N) in ONC+ Technology for the UNICOS Operating System, Cray Research publication
SG-2169

newkey(8), ni saddcr ed(8), ni schown(8), ni sdef aul t s(8), ni smat ch(8) in the UNICOS
Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014

NISFILES (4) NISFILES (4)

NAME

ni sfil es — NIS+ database files and directory structure

IMPLEMENTATION
Cray Research systems licensed for ONC+™ and UNICOS 8.3 or later

DESCRIPTION

The Network Information Service Plus (NIS+) uses a memory based, replicated database. This database uses
a set of filesin the / et ¢/ ni s directory for checkpointing to stable storage and for maintaining a
transaction log. The NIS+ server and client also use files in this directory to store binding and state
information.

The NIS+ service implements an authentication and authorization system that is built upon Secure RPC. In
this implementation, the service uses a table named cr ed. or g_di r . domai nnane to store the public and
private keys of principals that are authorized to access the NIS+ namespace. It stores group access
information in the subdomain gr oups_di r . domai nname as group objects. These two tables appear as
filesin the/ et ¢/ ni s/ host nane directory on the NIS+ server.

Unlike the previous versions of the network information service in NIS+, the information in the tables is
initially loaded into the service from the ASCII files on the server and then updated using NIS+ utilities.
For details, see the ni st bl adm(8) man page and the - D option description.

The following files are stored in the / et ¢/ ni s directory:

NI S _COLDSTART
This file contains NIS+ directory objects that will be preloaded into the NIS+ cache at start-up time.
This file usualy is created at NIS+ installation time. For more information, see ni si ni t (8).

NI S_SHARED DI RCACHE
This file contains the current cache of NIS+ bindings being maintained by the cache manager. To
view the contents, use the ni sshowcache(8) command.

host namne. | og
This file contains a transaction log that is maintained by the NIS+ service. To view it, use the
ni sl og(8) command. This file contains holes. Its apparent size may be alot larger than its actual
size. Thereis only one transaction log per server.

host nane. di ct
Thisfile is a dictionary that the NIS+ database uses to locate its files. The default NIS+ database
package creates the dictionary. The dictionary has no log file.

host nane
This directory contains databases that the server uses.

host name/ r oot . obj ect
On root servers, this file contains a directory object that describes the root of the namespace.

SR-2014 149

NISFILES (4) NISFILES (4)

host name/ par ent . obj ect
On root servers, this file contains a directory object that describes the parent namespace. The
ni si ni t (8) command creates this file. If this is an isolated namespace, this file is not created.

host nane/table_name
For each table in the directory, there will be a file with the same name that stores the information
about that table. If subdirectories are within this directory, the database for the table is stored in the
file table_name.subdirectory.

host name/table_name.log
This file contains the database log for the table table name. The log file maintains the state of
individual transactions to each database. When a database has been checkpointed (that is, all
changes have been made to the host nane/table_name stable storage), this log file will have a
length of 0.

Currently, NIS+ does not do checkpointing automatically. Administrators should execute the

ni spi ng(8) command with the- C option once a day to checkpoint the log file. To accomplish
this, use either acr on(8) job or execute the command manually each time. For more information,
see ni spi ng(8).

host nanme. root _dir
On root servers, this file stores the database associated with the r oot directory. It is similar to
other table databases. The corresponding log file is called r oot _di r. | og.

host name/ cred. org_dir
This table contains the credentials of principalsin this NIS+ domain.

host name/ groups_di r
This table contains the group authorization objects that NI1S+ needs to authorize group access.
NOTES

Except for the NI S_ COLDSTART and the NI S_ SHARED DI RCACHE file, no other files should be
manipulated by commands such as cp(1), mv(1), or r m(1). Because the transaction log file keeps logs of all
changes made, you must not manipulate the files independently.

SEE ALSO

ni s(4)

ni s_db(3N), ni s_obj ect s(3N) in ONC+ Technology for the UNICOS Operating System, Cray Research
publication SG—-2169

ni scat (8), ni si ni t (8), ni sl og(8), ni smat ch(8), ni spi ng(8), ni st bl adm8) in the UNICOS
Administrator Commands Reference Manual, Cray Research publication SR—2022

150 SR-2014

NP (4) NP (4)

NAME
np — Network packet driver for low-speed interfaces

IMPLEMENTATION
Cray PVP systems with an |OS model E

DESCRIPTION

The np driver provides an interface for all of the low-speed network devices connected to an 10S model E
(IOS-E), including NSC devices such as the N130 and the FEI3 VME interface. The driver accepts standard
UNICOSread(2), wri t e(2), open(2), cl ose(2),listio(2), reada(2), andwr it ea(2) system cals; it
also acceptsi oct | (2) requests.

By convention, the N-packet specia file names are in the following format:

/ dev/ comm iociop chan/ 1 p nn

ioc Single-digit 1/0O cluster number.

iop Single-digit 0P number.

chan Two-digit octal channel number.

nn Low-order 4 bits of the minor device number ("logical path" in IOS terminology).

Usually, logical path 5 (/ dev/ commi */ | p05) is reserved for TCP/IP. You also may use other minor
devices, depending on how the interfaces are configured. Check with your system support staff for details of
usage at your site. The contents of the device node determine the configuration of the communication
device; see the Configuration subsection.

You cannot open a minor device when it is already open. Any attempt to do so fails with an EBUSY error.
Each device has a maximum of 16 paths. For driver type NP_FLG_RAW you may open only one path.

i octl Requests
Thei oct | (2) requests described in this section are defined in sys/ np. h.

The following i oct | (2) request requires no parameters:

NPC HLTI O Halts an outstanding 1/O request. This is valid only for asynchronous I/O. All
synchronous requests will block.

The following i oct | (2) request requires one parameter in the npi oct | structure:

NPC_DEVCNTL Network interface device control. The valid values for sf unc are as follows (see
epackn. h):
NP_DC MC 0 Channel master clear
NP_DC CD 1 Output disconnect
NP_DC AUTO 0D 2 Set auto disconnect mode in CCA1
NP_DC CLR _AUTO OD 3 Clear auto disconnect mode in CCA1

SR-2014 151

NP (4)

152

NP (4)

The following i oct | (2) requests require parameters in the npst at structure. The npst at structure is as

follows:

struct npstat {

}

i nt
char
i nt
i nt
ui nt
ui nt

NPC_CDSTATS

NPC_CLSTATS

NPC_DEV_STATUS

sfunc; /* status request subfunction */
sbuf ; / status buffer pointer */
dev; /* device number (-1 neans all) */
| pat h; /* logical path number (-1 neans all) */
sl en; [* status buffer length (bytes) */
epoch; /* incremented every configuration change */

Clears device statistics request. This is a super-user-only request. The user passes
the address of an npst at structure by using the i oct | (2) request. The requested
(al, if dev = - 1) device dtatistics are cleared. The epoch variable is returned in the
npst at structure.

Clears logical path statistics request. This is a super-user-only request. The user

passes the address of an npst at structure by using the i oct | (2) request. The

requested (al, if | pat h = - 1) path statistics are cleared. The epoch variable is
returned in the npst at structure.

Network logical channel statistics request. This is a super-user-only request. The
channel statistics are placed in a buffer specified in the request. The structures that
follow define the statistics.

The first five words of NPC_DEV_STATUS are status from the configure up request.
The first word is channel status:

ui nt nsr_ibz: 1, /* input channel busy flag */
nsr_idn: 1, /* input channel done flag */

14,
nsr_ics: 16, /* input channel status */
nsr_obz: 1, /* out put channel busy flag */
nsr_odn: 1, /* out put channel done flag */

14,
nsr_ocs: 16; /* out put channel status */

The next four words of NPC_DEV_STATUS are valid only for N130 devices. If the
master clear request was successful, the response is the "Initialize Device Response
Parameter Block" that the device sends to the 10S; otherwise, the response is the
response to the failing master clear request.

SR-2014

NP (4)

struct

b
struct

}s

struct

NPC_DSTATUS

NPC_ECHO

NPC_LSTAT

SR-2014

NP (4)

Each open logical path has the last read/write reply trailer from the |OS added to the
buffer. The path is identified by one integer that contains the path number. The next
word contains the last error from the 10S for that path. The read/write reply trailer is
defined as follows:

np_rw_rep { /* read/write reply trailer */

ui nt nprw bz :1, /* busy flag */

nprw dn 1, /* done flag */

114, /* unused */

nprw_ndc : 16, /* messages discarded (channel) */

nprw_ndp : 16, /* messages discarded (I|chan) */

nprw_nbp : 16; /* nmessages buffered on | chan */

ui nt 132, /* unused */

nprw_i ob_addr : 32; /* 110 buffer address */

np_rw_reps { /* read/write reply trailer stats (optional) */

ui nt nprw_status[4]; /* device status */
These structures are replicated for read and write for each logical path:

np_rw_stats {

struct np_rw_rep np_rdstats; /* read statistics */
struct np_rw_ reps np_rd_dstats; /* read device statistics */
struct np_rw_rep np_wstats; /* wite statistics */
struct np_rw_reps np_w _dstats; /* wite device statistics */

The entire structure is defined in sys/ np. h. The supporting structures are in
epackn. h and npsys. h.

Network interface status request. This is a super-user-only request. This request
returns statistics from all channel-related activity on the IOS. The user passes the
address of an npst at structure by using the i oct | (2) request. The length of data
and the epoch variable are returned in the npst at structure.

N-packet echo. Thisi oct | (2) request lets a super user send echo packets to a
communications driver in an IOP. The IOP returns the packets; this function may be
used to verify and time the request/response path of an N-packet through the 10S.

Last status of interface. This request returns the last status from the 10S. If a request
returns an error to the user, the err no is ageneric EIO. Thisi oct | (2) request lets
users determine the exact cause of the failure. The errors are defined in

sys/ epackn. h. Recovery from error cases depends on the type of error and the
type of interface. Before implementing any recovery techniques, you should
thoroughly understand the device and error modes.

153

NP (4)

NP (4)

NPC_LSTATUS Network logical path status request. This is a super-user-only request. This request
returns statistics from all path-related activity on the IOS. The user passes the
address of an npst at structure by using the i oct | (2) request. The length of data
and the epoch variable are returned in the npst at structure.

NPC_PACKET N-packet interface to allow a super user to issue N-packets directly from a user
program. This request gives the user complete control of the IOP interface to a
specific device.

NPC_STAT Network interface status request. This is a super-user-only request. This reguest
returns statistics from all channel-related activity on the IOS. This is deferred.

Several "driver types' are defined in the configuration. The raw driver allows a process to send data in any
format. The other drivers require a network header to be the first words of any data. This header is an NSC
message proper (for types MP, PB, and A130).

The message proper is defined as follows:

struct np {
char control[2]; /* NSC control word */
char acode[2]; /* NSC access code */
char to[2]; /* NSC destination adapter */
char fronf2]; /* NSC source adapter */
char parani 56]; /* NSC par aneters */
b

The nmp structure is defined in sys/ np. h. The details of the contents of message proper fields are available
in NSC documentation. For most devices such as the VME interfaces, the important fields are the to and
from fields. You can determine the contents of these fields from the network "adapter” addresses of the host
computers and the logical path (device minor).

If ar ead(2) system call is not satisfied within the time-out period, an ELATE error is returned. If a

wr it e(2) system call cannot be completed, it may be retried periodicaly in the time allowed by the
time-out period before an ELATE error is returned. A cl ose(2) system call closes the minor device. Any
outstanding system calls are terminated with an EIO error. The time-outs are defined in the N-packet include
files, which you should not have to change.

Configuration

154

The following definitions are used for the mknod(8) parameters:
/et ¢/ mknod name ¢ maj min ioc iop chan cmode dtype dmode adap hwtype

name Name of the special file, usually / dev/ comm ioc iop chan /1 p nn
maj Major device number, always 35 for the np. ¢ driver

min Minor device number (encoded device and logical path)

ioc IOS cluster number [0-7] [00-07]

SR-2014

NP (4)

iop
chan
cmode

dtype

dmode

adap
hwtype

SR-2014

IOS processor number [0, 1, 2, or 3]
|OP channel number in octal [030, 032, 034, or 036]
Controller mode [0: 6 Mbyte; 1: 12 Mbyte; 2: 12 Mbyte loopback]

Driver type (see below for dmode; meaning depends on dt ype)

0
1

4

0102
0104
0105
0106
0107
0110
0111
0301

Raw driver: dmode not used

Message proper (FEI-3, Cray-Cray): dmode = 0
Message proper (VAXBI): dmode = 1

Parameter block driver (NSC N130, Ultra LSC)
The following dmode bits are valid only for the N130:

dmode bits 0-15 = 0: no special functions in N130
dmode bits 16-31 (df unc) = 0: no driver function in N130

dmode bit 8 - 0400:
dmode bit 7 - 0200:
dmode bit 6 - 0100:
dmode bit 5 - 0040:
dmode bit 4 - 0020:
dmode bit 3 - 0010:
dmode bit 2 - 0004:
dmode bit 1 - 0002:
dmode bit 0 - 0001:

variable length message propers (mp’s) on medium
CRC (deferred)

statistics on in N130

adapter microcode trace on in N130

send disconnect after parameter block (N130)
disable write response parameter block (N130)
DXU master clear at power up (N130)

purge al network data (N130)

clear interface only (N130)

NSC message proper (A130, CNT LANIord) : dmode n/u

Driver function and driver mode (high-order 16 bits is driver function). Currently, only the PB
driver uses the driver function to specify microcode trace modes.

A130/N130 adapter address (in hexadecimal)

Code that specifies the type of hardware or adapter on the channel; for a detailed list of codes,
see net dev. h. Only monitoring software uses this code.

FEI-3

FEI-CN
FEI-DS
FEI-UC
FEI-VA
FEI-VB
FEI-VM

A130 HY PERchannel

NP (4)

155

NP (4)

NOTES

NP (4)

0302 N130 HYPERchannel
0303 EN643 Ethernet

0304 DX4130 FDDI

0401 VAXBI

0502 UltraLSC

A flag is required in the inode for control devices for monitors, configuration commands, and so on. This
flag disables input, output, and the process of incrementing the epoch variable when the device is opened

and closed.

WARNINGS

Differences exist between the interfaces supported by this driver and those supported by previous 10S
drivers. Do not use include files from hy(4) with this interface.

You can open only one logical path for type RAW.

MESSAGES

The driver returns the following error codes:

EBUSY

EFAULT
ENOTTY
ENXI O

The device specid file is currently in use.
The device is type RAW, and another path is in use.

Ani oct| (2) request did not have enough buffer space for the data returned.
An attempt was made to close a logical path that was not open.

Device specid file has a bad channel number.

Device specid file has a bad minor number.

Network device structures are al in use.

Network logical path structures are all in use.

Device specid file has 6-Mbyte set for an N130 device.

Attempt was made to close a device that was not open.

Attempt was made to close a logical path that was not allocated.

Attempt was made to execute an i oct | (2) command to issue an device that was not open.
Attempt was made to perform an unknown i oct | code. NPC_DEVCNTL i oct | (2) request
had a bad function code or was not from a super user.

NPC_ECHO i oct | (2) reguest was not from a super user.

NPC_PACKET i oct | (2) request was not from a super user.

The driver writes the following error messages to the system log:

156

SR-2014

NP (4) NP (4)

ERROR np.c: Cannot allocate device structure
ERROR np.c: Cannot allocate |ogical channel
WARNI NG np.c: npstrat: unknown driver type
WARNI NG np.c: N packet structure in use.
WARNI NG np.c: npintr: no bp structure.

I NFO np.c: path closed - packet returned
INFO np.c: No free |ogical devices

INFO np.c: No free device structures

np. c: out put sequence error 9% %

np ioc %d 10P %d ch 0% error % (0%0)

np. c: receive pkt sequence error 9% %

np.c: np device structure closed - reopening
npl already in use

For 10S-reported errors, the following message is logged:

np ioc %d 10P %d ch 0% error % (0%0)
The driver returns the following error codes:
Value Definition

10 Device-detected error

11 Parity error

12 SECDED error

20 Retry of failing request unsuccessful

The following are software detected errors; execution attempted and failed:
Value Definition

100 Local memory not available.

101 IOB memory not available.

102 Driver terminated.

103 Overrun on read request of N-packet; returned data is truncated.
104 CCA-1 hardware information is not valid.

105 CCA-1 input channel time-out.

106 CCA-1 output channel time-out.

107 Halt 1/O request.

110 Maximum consecutive errors encountered; driver terminated.
111 Transferred fewer parcels than requested.

112 Cannot create a required |0S-E activity.

SR-2014 157

NP (4)

158

113
114
115
116
117
120
121
122
123
250
251
252
260
261
262
263
264
265
270
271
272
273
274
277

A parameter block that was not valid was received off of the CCA-a input channel
Read request packet time-out.

Cannot drain input channel completely at initialization.

Cannot buffer entire input; input truncated.

Request aborted due to CLOSE PATH request.

REL MEMrequest failed.

Cannot terminate (TERM all driver activities as desired.

Microcode in device not supported.

Cannot halt 1/0 in a driver activity as desired.

Bad parameter on Tl MER call.

Attempt to start TI MER that is already active.

Attempt to stop a TI MER that is not active.

Target memory 1/O error: bad channel buffer ordinal.

Target memory 1/O error: bad transfer direction.

Target memory 1/O error: bad channel buffer address.

Target memory 1/O error: hardware error on HISP channel.

Target memory 1/O error: target memory not available.

Target memory 1/O error: bad word length parameter.

Local memory to or from channel buffer error: bad buffer ordinal.
Local memory to or from channel buffer error: bad transfer direction.
Local memory to or from channel buffer error: bad buffer address.
Local memory to or from channel buffer error: hardware error on 1/O.
Local memory to or from channel buffer error: bad word length parameter.
IOS-E internal error.

The following are parameter errors in the request packet; execution not tried:

Value

300
301
302
303
304

Definition

Packet type is not valid
Request code is not valid
Channel not configured up
Channel number is not valid
Channel already configured up

NP (4)

SR-2014

NP (4)

305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
377

EXAMPLES

No connection path open for this logical path

Logical path is not valid

Logical path already open

CCA-1 mode is not valid

Driver type is not valid

Driver mode is not valid

Requested transfer length is not valid

Subfunction is not valid

Requested information not available

Packet length is not valid

Time-out value is not valid (must be nonzero)
Initialization of channel pair already in progress
Termination of channel pair already in progress
Second OPEN PATH request on CCA-1-Raw channel
Combination of driver type and driver mode is not valid
A130 driver not available in hybrid system

PB driver mode "input disc after PB" not available

Bad packet type (issued by monitor only)

This example makes the devices for the following configuration:

SR-2014

device O: FEI-3 on cluster 3, IOP 1, channel 030, 6-Mbyte mode, logical paths O through 7
device 1: N130 on cluster 0, IOP 0O, channel 032, (12-Mbyte mode), logical paths O through 7
device 2: FEI-1 on cluster 1, IOP 0O, channel 036, 6-Mbyte mode, IBM MVS

device 3: FEI-1 on cluster 2, IOP 1, channel 034, 6-Mbyte mode, VAX on port A

NP (4)

159

NP (4)

/etc/nmkdir /dev/comm

cd /dev/comm

/etc/nmkdir v31-30 n00-32
cd v31-30

/etc/mknod | p0O0O ¢ 35 000
/etc/mknod | p01 ¢ 35 001
/etc/mknod | p02 ¢ 35 002
/etc/nmknod | p03 ¢ 35 003
/etc/mknod | p04 ¢ 35 004
/etc/mknod | p05 ¢ 35 005
/etc/mknod | p06 ¢ 35 006
/etc/mknod | p07 ¢ 35 007
cd ../ n00-32

/etc/mknod | p00 ¢ 35 020
/etc/mknod | p01 ¢ 35 021
/etc/mknod | p02 ¢ 35 022
/etc/mknod | p03 ¢ 35 023
/etc/mknod | p04 ¢ 35 024
/etc/mknod | p05 ¢ 35 025
/etc/mknod | p06 ¢ 35 026
/etc/mknod | p07 ¢ 35 027
cd ../f10-36

/etc/mknod | p00 ¢ 35 040
cd ../f21-34

/etc/mknod | p00O ¢ 35 060

TCP/IP Configuration Example

160

Configuration for TCP/IP is done as described previoudly, except that the device names are

f10-36 f21-34

WWWwwwowowow
PR PRPRPRPEPPRPR

cNeoNoNoNeolNeNolNo)
cNoNoNoNeolNoNolNo)

=
o

1

030
030
030
030
030
030
030
030

032
032
032
032
032
032
032
032

036

034

cNoNoNolNoNeoNeNe!
PRRPRRPRPRRPRRERE
cNoNoNoNoNoNeNa!
cNeoNoNoNoNeoNoNa!

PRRPRRPRRPRRRER
NNNNNNNN
cNoNoNoNoNoNoNa!
cNoNoNoNoNeoNeNa!

o
o

[dev/ commi t cp nnnn; nnnn is an octal number, as follows:

0102
0102
0102
0102
0102
0102
0102
0102

0302
0302
0302
0302
0302
0302
0302
0302

0

0107

NP (4)

The low-order 4 bits of the minor device number are the logical path. The high-order bits are the TCP/IP

device number. Therefore, the following is true:

npO has minors 0 through 17
npl has minors 20 through 37
np2 has minors 40 through 57
np3 has minors 60 through 77
np4 has minors 100 through 117
np5 has minors 120 through 137
np6 has minors 140 through 157

np7 has minors 160 through 177, and so on

SR-2014

NP (4)

The next example makes the TCP/IP devices for the following configuration:

npO: FEI-3 on cluster O, IOP 0, channel 030, 6-Mbyte mode, logical path 5

npl: N130 on cluster O, IOP 0O, channel 032, 12-Mbyte mode, logical path 5

np2: Cray channel on cluster 1, IOP 0, channel 036, 6-Mbyte mode, logical path 3
np3: VAXBI on cluster 2, IOP 1, channel 034, 12-Mbyte mode, logical path 5

/etc/nmkdir /dev/comm
cd /dev/comm

/et c/ mknod tcp0005 ¢ 35 005
/et c/ mknod tcp0025 ¢ 35 025
/etc/mknod tcp0043 ¢ 35 043
/et c/ mknod tcp0065 ¢ 35 065
FILES
/ dev/ commi * Device special files
[usr/include/sys/np.h Definitions of constants and structures

[usr/include/sys/npsys. h Definitions of constants and structures

SEE ALSO

f ei (4), hy(4), vire(4)

ioctl (2),listio(2),read(2),reada(2),wite(2),witea(2) inthe UNICOS System Calls Reference
Manual, Cray Research publication SR—2012

SR-2014

NP (4)

161

NPCNTL (4) NPCNTL (4)

NAME

npcnt | — N-packet control interface

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

FILES

The N-packet control driver provides an interface for controlling the on/off status of NSC HY PERchannel
adapters connected to the 1/O subsystem (10S). The N-packet control driver also is used for Cray Research
front-end interfaces (FEIs) and VME interfaces attached to the IOS. For more information, see f ei (4) and
vire(4). The driver accepts standard UNICOS open(2) and cl ose(2) system calls; it also accepts

i oct | (2) requests.

The N-packet control driver is represented by the / dev/ npcnt | specia file. Only the super user can use
the device, because turning the network channels on and off interrupts network traffic.

You can use the i oct | request NPFC_CONFCHN to change an N-packet channel status in the I0S. The
i oct| structure is defined in the sys/ npcnt | . h include file.

struct npc_cntrl {

i nt channel; /* channel to change */
i nt i 0S; /* ios to change */
i nt st at e; /* on/off status * [
i nt node; /* channel node * [
}s
channel The N-packet channel that is changing state.
i 0S The 10OS to which the channel is connected.
state The state (either 0 (off) or 1 (on)) to which the channel is changing.
node The mode in which to initiate the channel. The default mode is NSC; al other modes are
deferred.

/ dev/ npcnt |

[usr/include/sys/npcntl.h

SEE ALSO

162

fei (4), hy(4), vire(4)
i octl (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2014

NSSWITCH(4) NSSWITCH(4)

NAME

nsswi t ch — Configuration file for the name-service switch

IMPLEMENTATION
Cray Research systems licensed for ONC+™ and UNICOS 8.3 or later

DESCRIPTION

The operating system uses many databases of information about users, groups, and so forth. Data for some
of these databases come from a variety of sources. These sources and their lookup-order can be specified in
the/ et c/ nsswi t ch. conf file

The following databases use the switch:

Database Used By

aut onount aut onount (8)
group get gr ent (3C)
passwd get pwent (3C)

pr ot ocol s get pr ot obynane(3C)
publ i ckey get publ i ckey(3R)
rpc get r pcbyname(3C)
services get ser vbynanme(3C)
net gr oup net gr oup(5)

You may use the following sources:

Source Uses

files / et c/ passwd

nis NIS (YP)

ni spl us NIS+

Anentry in/ et c/ nsswi t ch. conf exists for each database. Typically, these entries will be smple, such
as the following:

protocols: files ornetworks: files nisplus.

When you specify multiple sources, you may have to define precisely the circumstances under which each
source will be tried.

SR-2014 163

NSSWITCH(4) NSSWITCH(4)

A source returns one of the following status codes:

Status Meaning

SUCCESS Requested database entry was found
UNAVAI L Source is not responding or corrupted
NOTFOUND Source responded no such entry
TRYAGAI N Source is busy, might respond to retries
For each status code, two actions are possible:

Action Meaning

conti nue Try the next source in the list

return Return now

The complete syntax of an entry follows:

<entry> k::= <database> : [<source> [<criteria>]]* <source>
<criteria> = [<criterion>+]

<criterion> 1= <status> = <action>

<status> ::=success | notfound | unavail | tryagain
<action> ::=return | continue

Each entry occupies one line in the file. Lines that are blank or that start with # symbol or with white space
are ignored. The <database> and <source> names are case-sensitive, but <action> and <status> names are
case-insensitive.

The library routines contain default entries that are used if the appropriate entry in nsswi t ch. conf is
absent or syntactically incorrect.

The default criteriais to continue on anything except SUCCESS; that is, [SUCCESS=r et ur n
NOTFOUND=cont i nue UNAVAI L=conti nue TRYAGAI N=cont i nue] .

The default, or explicitly specified, criteria is meaningless following the last source in an entry, and it is
ignored because the action is always to return to the caller regardless of the status code that the source
returns.

Interaction with NIS+ and YP-compatibility Mode
The NIS+ server can be run in Y P-compatibility mode. When you specify this mode, the server handles NIS
(YP) requests and NIS+ requests. The results are the same, except that the get pwent (3C) routine uses the
ni s source rather than ni spl us. You should use the ni spl us source rather than the ni s source.

164 SR-2014

NSSWITCH(4) NSSWITCH(4)

Useful Configurations
The default entries for all databases use NIS+ as the enterprise level name-service. They are identical to
those in the default configuration of this file:

Category Entry

passwd: files nisplus

group: files nisplus

pr ot ocol s: ni spl us [NOTFOUND=return] files
rpc: ni spl us [NOTFOUND=return] files
et hers: ni spl us [NOTFOUND=return] files
publ i ckey: ni spl us [NOTFOUND=return] files
aut onount : files nisplus

servi ces: ni spl us [NOTFOUND=return] files

The policy ni spl us [NOTFOUND=r et urn] fil es impliesthat if ni spl us is unavailable, continue
ontofil es; if ni spl us returns NOTFOUND, return to the caller. That is, treat ni s as the authoritative
source of information and try fi | es only if ni spl us is down.

NOTES

Within each process that uses nsswi t ch. conf , the entire file is read only once; if the file is changed
later, the process will continue using the old configuration.

Y ou should not use both ni s and ni spl us as sources for the same database because both name services
are expected to store similar information and the lookups on the database may yield different results,
depending on which name-service is operational at the time of the request.

Misspelled names of sources and databases will be treated as legitimate names of nonexistent sources and

databases.

FILES
/etc/ nsswi tch. conf Configuration file
/etc/nsswitch.files Sample configuration file that uses only fi | es
/etc/nsswitch.nis Sample configuration file that usesfi | es and ni s
/etc/ nsswi tch. nisplus Sample configuration file that usesfi | es and ni spl us

SR-2014 165

NSSWITCH(4) NSSWITCH(4)

SEE ALSO

net confi g(4), ni s(4), ypfil es(5) in the UNICOS File Formats and Secial Files Reference Manual,
Cray Research publication SR—2014

aut onount (8), i f confi g(8), ni sd(8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

166 SR-2014

NULL (4) NULL (4)

NAME

nul I — Null file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ dev/ nul | fileis a character specia file. Data written on / dev/ nul | is discarded; read operations
from / dev/ nul | aways return O bytes.

FILES

/ dev/ MAKE. DEV

/ dev/ nul |

SEE ALSO
nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 167

PDD(4)

NAME

PDD(4)

pdd — Physical disk device interface

IMPLEMENTATION

DESCR

168

Cray PVP systems

IPTION

Thefilesin / dev/ pdd are specid files that allow read and write operations to physical disk devices. Each
file represents one dlice of a physical disk device. Thefilesin/ dev/ pdd are character specia files that
may be used directly to read and write physical disk slices. Usually, they are called to perform 1/0 on
behalf of higher-level logical disk device drivers. For I/O on a character disk device, read and write
operations must transfer multiples of the physical device sector size and all seek operations must be on
physical sector size boundaries.

Thefilesin / dev/ pdd are not usually mountable as file systems, although you may combine one or more
physical disk slices to make a mountable logical disk device (see dsk(4), | dd(4), and nount (8)).

Thefilesin / dev/ pdd are created by using the nknod command (see mknod(8)). Each must have a
unique minor device number, along with other parameters used to define a physical disk dlice.

The mknod(8) command for physical disk devices is as follows:

nmknod name type major minor dtype iopath start length flags altpath unit

name Descriptive file name for the device (for example, pdd/ scr 0230).
type Type of the device data being transferred. Devicesin/ dev/ pdd are character devices denoted
by ac.

major Major device number for physical disk devices. The dev_pdd name label in the
/usr/src/uts/cl/cf/devsw. c file denotes the major device number for physical disk
devices. You can specify the major number as dev_pdd.

minor Minor device number for this slice.

dtype Physical disk device types are defined in / usr/ src/ uts/ cl/ sys/ pddtypes. h.
Supported physical disk device types are as follows:

SR-2014

PDD(4)

iopath

SR-2014

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

CRAY EL series disk types:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

DD49
DD40
DD50
DD41
DD60
DD61
DD62
DD42
DAG2
DAG0
DD301
DA301
DD302
DA302

DDESDI
DD3
DDLDAS
DDAS2
DD4

RD1

DDl MEM
DD5S
DD5|

64
65
66
67
68
69
70
71
72

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

DD49 di sk drive
DD40 di sk drive
DD50 di sk drive
DD41 di sk drive
DD60 di sk drive
DD61 di sk drive
DD62 di sk drive
DD42 di sk drive
DA62 di sk drive
DA60 di sk drive
DD301 di sk drive
DA301 di sk drive
DD302 di sk drive
DA302 di sk drive

old esdi drive */
new esdi drive */

old Max Strat DAS */
new Max Strat DAS */

i pi + sabre 7 */
renmovabl e esdi */

i roni cs+nenory vne boards */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

DD5S SCSI drive */

DD5I | Pl drive */

PDD(4)

The iopath specifies the 1/O cluster, the I/O processor (I0P), and the controller channel number.
For example, an iopath of 01234 is IOC 1, IOP 2, channel 34. The iopath, defined by the

i 0_pat h structure in sys/ pdd. h, follows. The structure is different for CRAY EL series,
CRAY J90 series, and Cray PVP systems with an 10S model E. The unit is not used here; it is

in a separate field, described below.

169

PDD(4)

Start
length
flags

altpath

unit

170

/*
* i/o path to the channel
*/
struct io_path {
#i f defi ned(CRAYEL)
ui nt
uni t
i oc
i op
chan
#el i f defi ned(CRAYJ90)
ui nt
uni t
i oc
i op
chan
#el se
ui nt
uni t
i oc
i op
chan
#endi f /* CRAYELS */
b

Absolute starting block (sector) number of the dlice.

Number of blocks (sectors) in the dlice.

adapt er

/* must remain unu
/* ios - vme backp
/* eiop - control
/* channel

/[* must remain unu
/* ios - vme backp
/* eiop - control
/* channel

/* unused */

[* unit */

/* unused */

/* io cluster */
/* io processor */
/* channel */

PDD(4)

sed */
| ane */
er */
*/

sed */
| ane */
er */
*/

Flags for physical disk device control, defined in sys/ esl i ce. h, follows. They are mainly
used for diagnostic and maintenance purposes. Usually, the flags field should be O for dlices in

/ dev/ pdd.

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

S_CONTROL
S_NOBBF
S_NOERREC
S_NOLOG
S_NOWRI TEB
S CVE
S_NOSPI RAL

001 /*
002 /*
004 /*
010 /*
020 /*
040 /*
0100 /*

control device

no bad bl ock forwarding
no error recovery

no error | ogging

no wite behind

control device wite en
no spiraling

*/
*/
*/
*/
*/
able */
*/

The optional alternate iopath that you can use as a back-up path to the physical disk device's

second port.

The disk device unit number for device types that support multiple units on the same channel.

SR-2014

i octl Requests

PDD(4)

The physical disk driver supports the following i oct | (2) requests. They are defined in
sys/ pddt ypes. h, and they are passed as the cmd argument in the i oct | (2) system call.

If thei oct | description indicates that the i oct | (2) request has no effect on CRAY EL series systems, the
call may be part of a command that the system supports, but the call has no meaning on the system. If the
description indicates that the i oct | (2) request is not supported on CRAY EL series systems, the request is
used only by commands not supported on CRAY EL series systems.

PDI _STOP

PDI _START

PDI _DOWN
PDI_UP

PDI _RDONLY
PDI _NOALLOC

PDI _SPINI'T

PDI _DI AG_REQ

PDI _DI AG_RES

PDI _CGETFLAGS

PDI _SETFLAGS

PDI _SPI N_UP

PDI _SPI N_DOMN

PDI _ GETMODE

SR-2014

(Not supported on the CRAY EL series) Stops the queued disk requests after
all outstanding requests finish.

(Not supported on the CRAY EL series) Resumes disk requests after they are
stopped by using aPDI _STOP i oct | (2) request.

Puts device in a down state and terminates all queued requests with an error.
Puts device in an up state.

Sets device to a read-only state.

Sets device to a state in which writes can occur but no new file allocation can
take place. The file system uses this request.

(Not supported on the CRAY EL series) Initializes the spare sector map for
the specified device.

(Not supported on the CRAY EL series) Registers the calling process for a
diagnostic function request. A read(2) or awri t e(2) system call by the
calling process at a later time is treated as a diagnostic request. The argument
is a pointer to a disk request packet, dr q_pak, defined in sys/ epackd. h.

(Not supported on the CRAY EL series) Registers the calling process for a
diagnostic function response. An 10S response to ar ead(2) or awri t e(2)
system call by the calling process at a later time is copied into the caller. The
argument is a pointer to a disk response packet to which the response is
copied. The disk response packet, dr s_pak, is defined in sys/ epackd. h.

(Not supported on the CRAY EL series) Copies the physical device control
flags to the word to which arg points. The device control flags are defined
previously.

(Not supported on the CRAY EL series) Sets the physical device control flags
to the contents of arg. The device control flags are defined previoudly.

(Has no effect on the CRAY EL series) Issues a spin-up function to the
physical device. The device must have this capability and be in remote mode.

(Has no effect on the CRAY EL series) Issues a spin-down function to the
physical device. The device must have this capability and be in remote mode.

Gets the current read/write mode.

171

PDD(4)

PDI _GETSTATE
PDI _PRI MARY

PDI _ALTERNATE

PDI _RESET

PDI _GET_STREAMS

PDI _SET_STREAMS

PDI _GET_SL_STREAVS
PDI _SET_SL_STREAVS
PDI _ATOM CP

PDI _RESYNC
PDI _LDFRMI

EXAMPLES

FILES

PDD(4)

Gets the current disk state.

Selects primary path to disk.

(Has no effect on the CRAY EL series) Selects alternate path to disk.
Resets device stats.

(Has no effect on the CRAY EL series) Gets streams.

(Has no effect on the CRAY EL series) Sets streams.

(Has no effect on the CRAY EL series) Gets dlice streams.

(Has no effect on the CRAY EL series) Sets dlice streams.

(Not supported on the CRAY EL series) Atomic read/write diagnostic
function.

(Has no effect on the CRAY EL series) Resyncs labels to spindle within array.

(Not supported on the CRAY EL series) Loads format spec to spindle within
array.

The following mknod(8) command makes a node for pdd/ scr 0230, type ¢, major number dev_pdd,
minor number 110, disk type DD-60, I/O cluster 0, IOP 2, channel 30, startg at block O, length of 1472
blocks, O for flags, no aternate path, and unit number of 1:

nmknod pdd/scr0230 c¢ dev_pdd 110 10 0230 0 1472 0 0 1

/ dev/ pdd/ *

[usr/include/sys/pdd. h

[usr/include/sys/pddprof.h

fusr/src/cl/iolpdd.c

SEE ALSO
dsk(4), | dd(4), ndd(4), sdd(4), ssdd(4)

ddst at (8), mknod(8), mount (8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

172

SR-2014

PROC(4) PROC(4)

NAME

pr oc — Process file system

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The / pr oc file system allows users access to the address space of a running process. This file system
consists of files named / pr oc/ nnnnn; nnnnn is the process ID formatted in decimal. Each file contains the
address space of the process it represents.

Access to each member of / pr oc is restricted by the typical file system protection mechanisms, with the
additional restrictions that operations such as chown(1) and chnod(1) are prohibited in the / pr oc file
system. The/ pr oc file system does not have an associated device driver, but a major device number is
still needed for its current operation.

To inspect or modify the address space of a process by using the / pr oc file system, open the filein / pr oc
that represents that process by using the open(2) system call, and then use the | seek(2), r ead(2), or
wr it e(2) system call to access the process' s address space.

Additional operations on processes opened through / pr oc are supported by the i oct | (2) system call,
allowing debuggers to control the execution of the subject process precisely and to obtain a file descriptor
that refers to the subject process's text file. The/ proc i oct| Requests subsection describes all / pr oc
i oct| (2) operations.

Configuration
To create a/ pr oc file system, use the following steps:

1. Create an empty directory called / pr oc by using the following command:
nkdir /proc
2. Modify the system mount scripts and / et ¢/ f st ab file so that the / pr oc file system is always
mounted at system startup. For the format of the / pr oc entry in the f st ab file, see f st ab(5).

Process Address Space Segmentation
When a process is opened through the / pr oc file system, its address space is segmented into several
distinct address spaces. These separate process address spaces are declared in the sys/ fs/prfcntl . h
include file and are defined as follows:

PRFS DATA Program data space.
PRFS_TEXT Program text space.

PRFS PREGS Primary registers, including the process's P register, A and S registers, and the VL and
VM registers. The structure of this address space is in the pr oc_pr egs structure as
defined in the sys/ f s/ prfcntl . h include file.

SR-2014 173

PROC(4)

174

PRFS_VREGS

PRFS_BREGS

PRFS_TREGS

PRFS_SM

PROC(4)

Process V registers. The eight vector registers of the process appear in sequential order in
this address space. Thus, the first 64 words (512 bytes) in this address space correspond
to VO, and the second group of 64 words corresponds to V1.

Process B registers. The 64 B registers of the process appear in sequential order in this
address space. Thus, the word at byte offset O in this address space corresponds to BO; the
word at byte offset 8 corresponds to B1.

Process T registers. The 64 T registers of the process appear in sequential order in this
address space. Thus, the word at byte offset O in this address space corresponds to TO; the
word at byte offset 8 corresponds to T1.

Process shared semaphores. This address space is exactly 1 word in length with the
low-order bits of the word defining the state of the shared semaphores. The number of
shared semaphores varies by machine architecture: 32 semaphores for CRAY Y-MP
systems. This address space is read-only.

PRFS_SHRDBREGS

Process shared SB registers. The shared SB registers of the process appear in sequential
order in this address space. Thus, the word at byte offset 0 in this address space
corresponds to SBO; the word at byte offset 8 corresponds to SB1.

PRFS_SHRDTREGS

Process shared ST registers. The shared ST registers of the process appear in sequential
order in this address space. Thus, the word at byte offset 0 in this address space
corresponds to STO; the word at byte offset 8 corresponds to ST1.

The following process address spaces are included for convenience (because they reference internal UNICOS
data structures, compatibility across releases is not supported):

PRFS_PCOMM

PRFS_PROC

PRFS_SESS

PRFS_UCOW

PRFS_USER

Process common structure as defined in the sys/ pr oc. h include file. This address
space is read-only.

Process structure as defined in the sys/ proc. h include file. This address space is
read-only.

Session table structure as defined in the sys/ sessi on. h include file. This address
space is read-only. If the processis not in a session, any attempted read from this address
space will return O bytes.

User common structure as defined in the sys/ user . h include file. This address space is
read-only.

User structure as defined in the sys/ user . h include file. This address space is
read-only.

SR-2014

PROC(4) PROC(4)

The method used to access a particular location in any of the address spaces is aways the same. If the
current position of the file on which a process is open is not already at the proper location, an | seek(2)
system call should be made that identifies both the address space and the beginning byte offset within the
given address space, followed by ar ead(2) or wri t e(2) system call to access the data. (Alternatively, you
can usethel i sti 0(2) system to perform both the seek and read or write operation in one system call.)

For example, the following code fragment reads the first element of the second vector register (V1) of the
process open on the f d file descriptor:

#i nclude <sys/fs/prfcntl.h>
| ong buf ;

| seek (fd, PRFS_VREGS | 64*sizeof (long), 0);
read (fd, (char *)&buf, sizeof(long));

Splitting the process address space into multiple discontinuous segments results in some dlightly peculiar
behavior because one 1/O operation on a/ pr oc file is not permitted to cross a segment boundary. Thus,
I/O operations that run beyond the end of a segment are truncated.

The / pr oc files differ from other UNICOS files because various portions of the address space are always
read-only (for example, PRFS_PRCC); other UNICOS files are either entirely writable or entirely
write-protected.

/proc ioctl Requests
The format for i oct | (2) requeststo / pr oc is as follows:

#i nclude <sys/fs/prfcntl.h>
ioctl (fildes, request, arg)
| ong *arg;

Thevalidi oct | (2) requests are as follows:

PFCCSI G If the arg argument is set to O, clears all pending signals; otherwise, arg points to a signal
mask that contains the signal numbers to be cleared.

PFCCSI GV If the arg argument is set to O, clears all pending signals for the multitasking group;
otherwise, arg points to a signal mask that contains the signal numbers to be cleared.

PFCEXCLU Marks the process text space for exclusive use. The arg argument is not used and should
be set to 0.

PFCGVASK Gets the signal trace bit mask of the process. The arg argument must point to a long
integer in which the signal trace bit mask will be returned (see PFCSMASK).

PFCGVASKM Gets the signal trace bit mask of the multitask group. The arg argument must point to a
long integer in which the signal trace bit mask will be returned (see PFCSVASKM).

PFCKI LL Sends a signal to the process. The arg argument must point to a long integer that contains
the number of the signal to be sent.

SR-2014 175

PROC(4)

176

PFCKI LLM

PFCOPENT

PFCREXEC

PFCRUN
PFCRUNM

PFCSEXEC

PFCSIVASK

PFCSMVASKM

PFCSTOP

PFCSTOPM

PFCWSTOP

PFCWSTCOPM

PROC(4)

Sends a signal to all processes of the multitask group. The arg argument must point to a
long integer that contains the number of the signal to be sent.

Opens text file for reading. The arg argument must point to an integer in which the
opened file descriptor referring to the process's text file will be returned.

Clears the stop-on-exec flag of the process. The arg argument is not used and should be
set to O.

Makes the process runnable. The arg argument is not used and should be set to O.

Makes all processes of the multitask group runnable. The arg argument is not used and
should be set to 0.

Sets the stop-on-exec flag of the process. The arg argument is not used and should be set
to 0.

Sets the signal trace bit mask of the process. The arg argument must point to a long
integer that defines the signal trace bit mask. The process stops when any signal is
received whose corresponding bit in the trace mask also is set. The trace bit mask for
signal sis as follows:

1L << (s1)

Sets the signal trace bit mask of the multitask group. The arg argument must point to a
long integer that defines the signal trace bit mask. When any process in the multitask
group receives the signal whose corresponding bit in the trace mask also is set, the
receiving process stops, and all other processes in the multitask group, are sent the STOP
signal. The trace bit mask for signal sis as follows:

1L << (s1)

Sends the STOP signal to the process. The arg argument is not used and should be set to
0.

Sends the STOP signal to all processes in the multitask group of which the processis a
member. The arg argument is not used and should be set to 0.

Waits for the process to become stopped. You can use the arg argument as a pointer to
an integer to which the status of the stopped process will be returned. Any status value
returned in this way is interpreted in a manner identical to the status returned by the
wai t (2) system call. Alternatively, the arg argument can be O, indicating that no status
information will be returned.

Waits for all processes in the multitask group to stop. The arg argument is not used and
should be set to 0.

SR-2014

PROC(4) PROC(4)

PFCQUERYM Returns the status of each member in the multitask group. The arg argument should be a
pointer to a structure of type st ruct pf cquery, which contains a pointer to an array
of type st ruct pfcstat us and the size of the array. The status of each task in the
multitask group, up to the given maximum, is returned in the array. Each array element
contains the process identifier of the task, the status of the task, and some flags. The only
flag currently implemented is PSTAT _UNKNOWN, which means that the process has neither
stopped nor exited.

PFCSW TCHM When debugging a multitask group, there is at any given time, a currently traced task,
which is identified by its process identifier. If the arg argument is nonzero, it points to the
process identifier, a task that is then set to be the currently traced task. Alternatively, the
arg argument may be 0, which leaves the currently traced task unchanged. The previous
currently traced tasks's PID is returned as the function value.

NOTES

The use and implementation of the i oct | (2) operations documented in this entry are subject to change in
future releases of UNICOS.

FILES
/ proc / pr oc file system root
[fusr/include/sys/fs/prfcntl.h Definitions for the process address space
SEE ALSO
f st ab(5)

cl ose(?2),ioctl (2),1istio(2),read(2), reada(2),wite(2),witea(?2) inthe UNICOS System
Calls Reference Manual, Cray Research publication SR—2012

SR-2014 177

PTY(4) PTY(4)

NAME
pty — Pseudo terminal interface

IMPLEMENTATION

CRAY Y-MP systems
CRAY J90 series
CRAY EL series

DESCRIPTION

The pseudo terminal interface, pt y, provides support for a device pair called a pseudo terminal, which is a
pair of character devices. This pair consists of a master device and a Slave device. The slave device
provides an interface for processes that is identical to that described int er mi o(4). However, whereas all
other devices that provide the interface described in t er m o(4) have a hardware device of some sort behind
them, the slave device has, instead, another process manipulating it through the master half of the pseudo
terminal. That is, anything written on the master device is given to the slave device as input, and anything
written on the slave device is presented as input on the master device.

Thei oct | requests that apply to pseudo terminals are defined in the sys/ pt y. h include file, as follows:

FI ONBI O Enables or disables nonblocking 1/0. Nonblocking /O is enabled by the specification (by
reference) of a nonzero parameter and is disabled by a O parameter. When nonblocking 1/0 is
enabled, a read or write operation returns the error EWOUL DBLOCK, rather than going to sleep
to wait for the input buffer to fill or the output buffer to empty.

TCl OEXT Enables or disables external processing mode. External processing allows programs that use
pseudo terminals more control over echoing of data.

TCRDFL Enables "daemon read failure® mode. This mode allows the daemon to detect a read request
on the master pty device without using thei oct| request TCTTRD. The daemon’s read
operation fails with the ENOVSG error. This error occurs whenever a read request is on both
the pty and tty sides, and no data is going in either direction. When a daemon read fails with
ENOVSG, the daemon should write before it issues another read request.

TCSI G Sends a signal to the client’s process group; the signal sent is specified by the arg argument in
thei oct | (2) request.
TCTTRD Returns a nonzero value if a process on the master pty device currently has an outstanding

r ead(2) system call. The address of the word that stores the return value is specified by the
arg argument in the i oct | (2) request.

178 SR-2014

PTY(4) PTY(4)

TI OCPKT Enables or disables packet mode. Packet mode is enabled by the specification (by reference)
of a nonzero parameter and disabled by a 0 parameter. When this request is applied to the
master side of a pseudo terminal, each subsequent read operation from the terminal returns
data written on the slave part of the pseudo terminal, preceded by a O byte (symbolically
defined as TI OCPKT_DATA) or a single byte that reflects control status information. In the
latter case, the byte is an inclusive OR of 0 or more bits. The symbolic definition of the bytes
is as follows:

TI OCPKT_FLUSHREAD Sets whenever the read queue for the terminal is flushed.
TI OCPKT_FLUSHWRI TE Sets whenever the write queue for the terminal is flushed.

Tl OCPKT_STOP Sets whenever output to the terminal is stopped with
<CONTRQOL- s>.

TI OCPKT_START Sets whenever output to the terminal is restarted.

TI OCPKT_DGCSTOP Sets whenever | XON terminal control mode is enabled (see
term o(4)).

TI OCPKT_NCSTOP Sets whenever | XON terminal control mode is disabled (see
term o(4)).

Ther | ogi n(1B) and r | ogi nd(8) commands use packet mode to implement a remote login
with remote echoing, local flow control with <CONTROL- s> and <CONTROL- g>, and proper
back-flushing of output. Other similar programs also can use this mode.

BUGS

You cannot send an EOT to a pseudo terminal.
FILES

/ dev/ pty/ nnn
/dev/ttypnnn
/fusr/include/sys/pty.h

SEE ALSO
term o(4),tty(4)

SR-2014 179

QDD (4) QDD(4)

NAME

gdd — Physical disk device interface

IMPLEMENTATION

CRAY J90se systems
CRAY T90 systems

DESCRIPTION

180

Thefilesin / dev/ qdd are special files that allow read and write operations to physical disk devices
connected to the IPN-1. Each file represents one dlice of a physical disk device. Thefilesin/ dev/ qdd
are character special files that may be used directly to read and write physical disk dlices. Usualy, they are
called to perform 1/O on behalf of higher-level logical disk device drivers. For 1/O on a character disk
device, read and write operations must transfer multiples of the physical device sector size and all seek
operations must be on physical sector size boundaries.

Thefilesin / dev/ qdd are not usually mountable as file systems, although you may combine one or more
physical disk slices to make a mountable logical disk device (see dsk(4), | dd(4), and nount (8)).

Thefilesin / dev/ qdd are created by using the nknod command (see mknod(8)). Each must have a
unique minor device number, along with other parameters used to define a physical disk dlice.

The mknod(8) command for physical disk devices is as follows:

nmknod name type major minor dtype iopath start length flags altpath unit

name Descriptive file name for the device (for example, gdd/ scr 0230).

type Type of the device data being transferred. Devicesin/ dev/ qdd are character devices denoted
by ac.

major Major device number for physical disk devices. You can specify the magjor number as
dev_qdd.

minor Minor device number for this dice.

dtype Physical disk device type.

iopath The iopath specifies the GigaRing number the device is on, the node number to which the disk
is connected, and the controller and unit number of the device The controller number is in the
range O through 4. For array devices, the controller number is aways 0. The unit number isin
the range O through 7.

start Absolute starting block (sector) number of the dlice.
length Number of blocks (sectors) in the dlice.
flags Flags for physical disk device control. They are mainly used for diagnostic and maintenance

purposes. Usually, the flags field should be O for dlicesin / dev/ gdd.

SR-2014

QDD (4) QDD (4)

altpath The optional alternate iopath that you can use as a back-up path to the physical disk device's
second port.

unit The disk device unit number for device types that support multiple units on the same channel.

FILES

/ dev/ qdd/ *
fusr/src/cl/iolqdd.c

SEE ALSO
dsk(4), | dd(4), ndd(4), sdd(4), ssdd(4) xdd(4)

ddst at (8), mknod(8), mount (8), sdconf (8), sdst at (8) in the UNICOS Administrator Commands
Reference Manual, Cray Research publication SR—2022

SR-2014 181

RAM(4) RAM(4)

NAME

r am— Random-access memory disk interface

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

Random-access memory (RAM) is an area of memory that you may configure as one or more character or
block special devices. It is treated as a disk drive from the user level. RAM is configured in
fusr/src/uts/cf/conf.SN. c (SN isthe mainframe serial number); the driver uses the minor device
number as an index to a dlice description. The RAM interface is represented by the / dev/ r amspecia file.
Ther anmsi ze constant determines the amount of memory to be dedicated for all devicesin RAM.

EXAMPLES

The following example alocates a total of 200,000 words of main memory to RAM. This example shows
the allocation of two devices, each made up of 100,000 words, that could be configured in / dev as either
character or block special files. Their minor device numbers are 0 and 1; their major device numbers depend
on their location in the bdevsw or cdevsw tables.

#define ranmsi ze 200000
struct size ramDO[2] = {

sliceinit (100000, 0, 0),
slicei nit (100000, 100000, 0)

b
FILES

/ dev/ram

fusr/src/uts/cf/conf.SN.c (SN is the mainframe serial number)

182 SR-2014

RDD(4) RDD(4)

NAME
rdd — RAM disk driver

IMPLEMENTATION
Cray PVP systems with an |OS model E

DESCRIPTION

Thefilesin / dev/ r dd are character special files that allow read and write operations to random-access
memory (RAM) disk dices. Each file represents one dlice of the total RAM disk area. The total memory
allocated for RAM disks is specified in the UNICOS parameter file.

Usually, 1/0 request lengths to RAM disks must be in 512-word multiples and start on 512-word boundaries.
A RAM disk dlice can assume the attributes of a physical disk device. If the sector size of the specified
device consists of more than 512 words, the 1/0 request lengths and starts must match those for the specified
device.

Usually, you cannot mount the filesin / dev/ r dd asfile systems. You may specify a RAM disk dlice as a
whole or part of alogical disk device. You aso can combine a RAM disk slice with a physical disk device.
See dsk(4), | desc(5), and pdd(4).

Thefilesin / dev/ r dd are created by using the nknod(8) command. Each file must have a unique minor
device number, a starting block, and a length (in blocks).

The mknod(8) command for RAM disk devices is as follows:
nmknod name type major minor dtype O start length

name Descriptive file name for the device.
type Type of the device data being transferred. Devicesin/ dev/ r dd are character devices denoted
by ac.

major Major device number for RAM disk devices. The dev_r dd name label in the
/uts/cl/cf/devsw. c file denotes the major device number for RAM disk devices.

minor Minor device number for this dlice. Each RAM disk slice must have a unique minor device
number.

dtype (Optional) Physical disk device type. If left at 0, the RAM disk slice assumes the physical
attributes of a DD-49 disk drive. For alist of physical disk device types, see pdd(4).

0 Placeholder for future use.
start Absolute starting block (sector) number of the dlice.
length Number of blocks (sectors) in the dlice.

SR-2014 183

RDD(4)

FILES

/ dev/ rdd/*

/usr/src/cl/iolrdd.c

SEE ALSO
dsk(4), | dd(4), | desc(5), pdd(4)

RDD(4)

nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

184

SR-2014

REQT(4) REQT(4)

NAME

reqt — IPI-3 interface

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

The/ dev/ i pi 3/ reqt device sends the IPI-3/IPI configuration to the IPI-3/IPI packet driver, and it
requests configuration, table, and device limit information.

To communicate between the packet driver and the controlling process, use the pki _ct | structure, as
defined in the sys/ pki _ct | . h include file. The packet driver control structure is defined as follows:

struct pki_ctl{

i nt pki _psi gno; /* Signal to receive */
wor d *pki _packet; /* Packet from user program */
i nt pki _nbytes; /* Length of packet */
i nt pki _devi ce; /* Device name */
}

The IPI-3/IPI interface uses the following i oct | (2) requests:

PKI _GET_CONFI G Returns the IPI-3/IPI configuration

PKI _GET_DEVCONF Returns the device configuration

PKI _GET_DEVTBL Returns an IPI-3/IPI table

PKI _GET_OPTI ONS Returns IPI-3/IPI options

PKI _PUT_CONFI G Sends the IPI-3/IPI configuration

PKI _SET_OPTI ONS Sets the IPI-3/1PI options

/ dev/ i pi 3/ device-name IPI-3/IPI interface devices

/usr/include/sys/pki_ctl.h Structure definition of pki _ct |

SEE ALSO

i pi 3(4)

i pi 3_clear(8),ipi3_config(8),ipi3_option(8),ipi3_start(8),ipi3_stat(8),

i pi 3_st op(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

Tape Subsystem Administration, Cray Research publication SG—2307

SR-2014 185

SDD(4) SDD(4)

NAME
sdd — Striped disk driver

IMPLEMENTATION
Cray PVP systems with an |IOS model E

DESCRIPTION

Thefilesin / dev/ sdd are character special files that allow read and write operations to striped disk slices.
A striped disk dlice is alogical disk device composed of two or more physical disk slices. These physical
dlices, also known as members, must be of the same physical device type and length.

Usually, 1/0 request lengths to striped disks must be in 512-word multiples and start on 512-word
boundaries. A striped disk device assumes the physical sector size of its member physical disk devices. If
the sector size of the member devices consists of more than 512 words, the 1/0 request lengths and starts
must match those for the specified device.

Device driver level striping is used when an increase in 1/O bandwidth is desired. An individual 1/O request
is divided into component requests, one or more for each member physical device. The basic unit of striped
I/0 is known as the stripe factor. The stripe factor is fixed based on the physical device type of the
underlying members.

Usually, you cannot mount the files in / dev/ sdd asfile systems. You can specify a striped disk dlice as a
whole or part of alogical disk device. The filesin/ dev/ sdd are all of the logical indirect type. See
dsk(4), 1 dd(4), | desc(5), and pdd(4).

The mknod command is used to create a striped disk inode, as follows:
nmknod name type major minor 0 O path

name Name of the logical device.

type Type of the device data being transferred. Devicesin/ dev/ sdd are character devices denoted
by ac.

major Major device number of the striped logical disk device driver. The name dev_sdd in the
[usr/src/uts/cl/cf/devsw. c file denotes the driver.

minor Minor device number for this slice. Each striped disk slice must have a unique minor device
number.

00 Placeholders for future use.

path Path name that designates the logical descriptor file listing the member dlices. See |l desc(5).

186 SR-2014

SDD(4) SDD(4)

EXAMPLES

The following example creates a striped disk inode:
nknod /dev/sdd/usr ¢ dev_sdd 1 0 O /dev/ldd/usr.stripe

FILES

[dev/ sdd/ *
/usr/include/sys/sdd. h

/usr/src/cll/iolsdd.c

SEE ALSO
dsk(4), | dd(4), | desc(5), pdd(4)
nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 187

SDS(4) SDS(4)

NAME
sds — Secondary data storage interface on SSD devices

IMPLEMENTATION
Cray PVP systems (except CRAY J90 series)

DESCRIPTION

The secondary data storage (SDS) device is extended storage space allocated on an SSD (solid-state storage
device). It can be used by users for extended storage, or by the operating system for use as logical device
cache. Seessd(4) and | dcache(8).

Users can alocate SDS space using the ssbr eak(2) system call. Reads and writes of SDS space can use
the specialized ssr ead(2) and sswri t e(2) UNICOS system calls, or the more general purpose r ead(2),
wite(2),reada(?),witea(?2),and!listio(2) systems calls.

The ssread(2) and sswri t e(2) system calls do not require a file descriptor. There is only one SDS
device and only an ssbr eak(2) system call is required to alocate extended storage before the ssr ead(2)
or sswite(2) system cals. The ssread(2) and sswri t e(2) system calls, however, are limited to
synchronous operation. See ssr ead(2) and sswri t e(2).

The character special file, / dev/ sds, provides a general purpose interface to the SDS device. By opening
/ dev/ sds, afile descriptor is obtained to allow r ead(2), r eada(2), wite(2), wit ea(2), and
[istio(2) system cals. File permissions on/ dev/ sds alow any user to open it; however, an ssbr eak
is required to allocate space before any reads or writes are allowed.

The character special file, / dev/ sds is created by the mknod(8) command as follows:
nmknod /dev/sds ¢ dev_sds 0O

FILES
/ dev/ sds

SEE ALSO
ssd(4), ssdd(4), ssdt (4)
sdss(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

ssbreak(2), ssread(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

| dcache(8), | dsync(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

188 SR-2014

SECDED(4)

NAME

SECDED(4)

secded — SECDED maintenance function interface

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The SECDED maintenance functions allow access to the memory error correction interface of the hardware.
These functions allow the setting and clearing of data bits or check bits in a word of memory or a processor
register. Reading a word that has been set in this way reveals whether memory error detection, correction,
and reporting are working properly. The functions also provide a means of controlling the scrubbing of
single-bit memory errors. The parameters that control the system’s response to bursts of memory errors can
be manipulated through this interface.

The secded driver supportsthei oct | (2) and open(2) system calls. The driver supports only one device
(minor device 0).

The following i oct | requests are accepted:

ME_GET

ME_SET

RPE_SET

SR-2014

Accepts as an argument a pointer to a structure that the driver will fill with the memory error
correction parameters mecormax, maximum number of single-bit errors that can occur in meint
period of time with no intervals of longer than meint/mecormax seconds without an error, then
single-bit error detection is turned off for all user processes for medisint seconds. The last
parameter, meuncma, is the limit of uncorrectable errors that the UNICOS system will allow
before forcing a panic because of the memory errors. The structure is defined in

sys/ ment. h. The default parameters are defined by MECORMAX as 16 errors, MEI NT as
5*HZ or 5 seconds, MEDI SI NT as 300 or 60 seconds times 5, and MEUNCVAX as 64.

Accepts as an argument a pointer to a structure that the driver will extract the new memory
error correction parameters, meint, mecormax, medisint, and meuncmax.

Accepts as an argument a pointer to a structure that contains a register set designator (RPE_V,
RPE_T, RPE_B, RPE_I B, or RPE_SR) and a parity indicator (even or odd).

RPE_SET allows the CPU register parity error functions to be tested. Incorrect even or odd
register parity may be written into aV, T, or B register; a shared register; or an instruction
buffer, and then read to force a register parity error interrupt.

Special maintenance instructions used for these functions exist only on CRAY Y-MP CPUs
that have a revision level of 4 or later. These instructions behave as NO-OPs on other CPUSs.

Currently, only the V register function (RPE_V) is supported. The RPE_T, RPE_B, RPE | B,
and RPE_SR functions are deferred.

189

SECDED(4) SECDED(4)

NOTES

SD_SET Accepts as an argument a pointer to a structure that contains the address of the word to be
modified and the data and check bits to be modified within the word.

Thei oct | request uses the SECDED maintenance instructions to read the entire word (64

data and 8 check bits), complements the data and check bits to be modified, and rewrites the
entire 72-bit data word to memory. In this way, any 72-bit pattern, including the associated

check bits, can be placed into a memory word.

CPU _GET Accepts as an argument a pointer to a structure that the driver will fill with the parameters
controlling downing of CPUs on uncorrectable memory errors. umemax, umelife and
umedown. umemax is the number of uncorrectable memory errors per CPU that can occur
before the CPU is downed by the operating system. Each error has a lifetime of umelife
seconds, after which it is no longer counted in the number of errors for a CPU. The CPU will
remain down for umedown seconds, after which it will automatically be returned to service by
the operating system.

Setting umemax to zero disables the automatic downing of the CPU. Setting umedown to zero
disables the automatic return to service of the CPU. The defaults are zero for umemax and
umedown and 86400 (24 hours) for umelife.

CPU_SET Accepts as an argument a pointer to a structure from which the driver will extract the new
parameters to control the downing of CPUs on uncorrectable memory errors: umemax, umelife
and umedown.

For the maintenance functions to work, the error maintenance switch on the mainframe switch panel must be
enabled. The software, however, cannot determine whether the switch is enabled. For memory error
detection and correction to work properly, the error correction switch on the mainframe also must be on (this
is the normal state). Because of the nature of the SECDED maintenance instructions, any test using this
capability should be done in single-user mode. The address of a word being modified is checked only to
ensure that it is within the physical memory of the machine. If aword is changed to contain a double-bit or
multibit error, and the kernel reads that word next (as opposed to a user process reading that word next), the
kernel panics.

For CRAY Y-MP systems, you must deadstart the mainframe with the maintenance mode switch in the off
position. After the mainframe is deadstarted (and the system is running in single-user mode), you should
turn the maintenance mode switch to the on position.

MESSAGES

190

The following errors can occur:

EFAULT Returned if the word to be modified is outside the machine’'s memory, or if the parameter
structure is outside the user’s field length.

ENXI O Returned if other than minor device O is selected, or if the mainframe is not an appropriate type
for the attempted operation.

SR-2014

SECDED(4) SECDED(4)

EPERM Returned if the user is not the super user.

El NVAL Returned if parameters passed in on SD_SET, ME_SET, RPE_SET or CPU_SET do not pass
validation tests.

FILES

/ dev/ secded
[usr/include/sys/ ment. h

/usr/include/sys/secded. h

SEE ALSO

secded(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2014 191

SFS(4)

NAME

SFS(4)

sf s — File that contains the names of each Cray Research system in an SFS cluster and its associated SFS
arbiter

SYNOPSIS

/etc/config/sfs

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The

The

192

The configuration of SFS arbitersis represented in the / et ¢/ confi g/ sf s file. The
[etc/ confi g/ sfs fileis generated using the menu system, or created directly with a text editor. The
[etc/ confi g/ sfs file should be identical on al systems within a cluster that share file systems.

The format of the / et ¢/ confi g/ sf s fileisline oriented. Each line begins with one of two valid
keywords starting in column 1: Host Nare or Ar bi ter.

Host Nane Line

The Host Nane line describes the name of a system, and denotes which SFS arbiters are valid and
accessible by that system. For example, the following line defines that the host f r ost is a system within
this cluster, and that f r ost can access SFS arbiters 0, 1, and 2, as further defined within
[etc/config/sfs:

Host Nane frost 0,1,2

Arbiter Line

The Ar bi t er line describes the identity of an SFS arbitration service, and the path names of the three
character special devices necessary to support that arbitration service. For example, the following line
defines an SFS arbiter with a numeric identity of 0, with a symbolic nhame of SMP-2, and which uses the
three path names / dev/ snp- 0, / dev/ sf s- 0, and / dev/ smmt - O to access the three character specia
devices that define an SFS arbiter:

Arbiter 0 SMmP-2 /dev/snp-0 /dev/sfs-0 /dev/smt-0
The first path name describes the character special for the physical semaphore device. For example, the

output of file/ dev/ snp- 0 may look like the following, which describes an SMP-2 (device type equals 2)
attached to low-speed channel pair 18:

/ dev/ snp- 0: character special (73/0) 218 000000

The output of file/ dev/ snp- 0 aso may look like the following, which describes an H-SMP (device type
equals 4) representing port 7, whose HIPPI 1/O path is described in the character special node
/ dev/ hdd/ smp:

SR-2014

SFS(4) SFS(4)

/ dev/ snp: character special (73/0) 4 7 /dev/hdd/smp 0 O

The second path name describes the character special for the logical shared file system driver, and its
associated Shared Lock Region. For example, the output of file / dev/ sf s- 0 may look like the following,
which describes an interface to the logical SFS driver that uses dev/ dsk/ sl r as the shared medium
necessary to communicate semaphore allocation and other shared information to the other systems in the
cluster:

/ dev/ sfs-0: character special (48/0) 0 O /dev/dsk/slr 0 O
The third path name describes the character special for the Shared Mount Table interface. For example, the
output of file/ dev/ simt - 0 may look like the following, which describes an interface to the logical SFS

driver that uses a portion of the shared medium described in / dev/ sf s- 0 as arecord of SFS mounts to be
shared with the other systems in the cluster:

/dev/ smt - O: character special (75/0) 0O0O0OOOOODO

The minor number assigned to each of the three character special devices must be the same, and it must
match the SFS arbiter numeric identity defined in the / et ¢/ confi g/ sf s file.

EXAMPLES

An example of / et ¢/ confi g/ sf s taken from atest system looks like the following:

c
o}

I

u

m

n

1

I

\Y

Host Name frost 0,1,2

Host Name ice 0,1,2

Host Nane sn5609 1,2

Arbiter 0 SMmP-2 /dev/smp-0 /dev/sfs-0 /dev/smt-0
Arbiter 1 HSMP /dev/smp-1 /dev/sfs-1 /dev/smt-1
Arbiter 2 Sinmul ator /dev/smp-2 /dev/sfs-2 /dev/smt-2

SR-2014 193

SFS(4) SFS(4)

FILES
[dev/sfs External Semaphore Device Logica-layer Interface
/ dev/ snp Low-level interface to the semaphore device
/ dev/ smmt Shared mount table interface

SEE ALSO

esdnon(8), sf sd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

Shared File System (SFS) Administrator’s Guide, Cray Research publication SG-2114

194 SR-2014

SLOG(4) SLOG(4)

NAME
sl og — Security log interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The / dev/ sl og pseudo device is a read-only device that holds security log records. The security log
daemon, sl ogdenon(8), transfers those records to the security log file for use with the security utilities.
For more information about the security log file, see sl r ec(5).

FILES
/ dev/ sl og Security log pseudo device
/fusr/adm sl /slogfile Disk-resident security log
SEE ALSO
sl rec(5)

r educe(8), sl ogdenon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

General UNICOS System Administration, Cray Research publication SG—2301

SR-2014 195

SSD(4) SSD(4)

NAME
ssd — Solid state storage device

IMPLEMENTATION
Cray PVP systems (except CRAY J90 series)

DESCRIPTION

The SSD solid-state storage device is a high-speed secondary memory available on Cray PVP systems
(except CRAY J90 series).

You can configure the SSD as a disk device used for filesystems or as a secondary data storage (SDS)
device. See ssdd(4), ssdt (4), and sds(4). SDS space can be used for extended storage or can be
configured as logical device cache with the | dcache(8) command. For more information, see

| dcache(8).

When configured as a disk, the SSD functions as a fast random-access device that can be used for mounting
file systems or for swapping. In this case, the SSD is represented in / dev/ ssdd by one or more files. For
more information about this configuration of the SSD, see ssdd(4) for 10S model E based systems or

ssdt (4) for GigaRing-based systems.

FILES

/ dev/ dsk
/ dev/ sds
/ dev/ ssdd
/ dev/ ssdt

SEE ALSO
sds(4), ssdd(4), ssdt (4)
sdss(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

ssbreak(2), ssread(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

| dcache(8), | dsync(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

196 SR-2014

SSDD(4) SSDD(4)

NAME
ssdd — SSD disk driver

IMPLEMENTATION
Cray PVP systems with an |OS model E

DESCRIPTION

Thefilesin / dev/ ssdd are character specia files that allow read and write operations to SSD solid-state
disk dlices. Each file represents a one dlice of the total SSD disk area. The total amount of the SSD
allocated for SSD disks is specified in the UNICOS parameter file.

Usually, 1/0 request lengths to SSD disks must be in 512-word multiples and start on 512-word boundaries.
A SSD disk glice can assume the attributes of a physical disk device. If the sector size of the specified
device consists of more than 512 words, the 1/0 request lengths and starts must match those for the specified
device.

Usually, you cannot mount the filesin / dev/ ssdd as file systems. You may specify a SSD disk dice as a
whole or part of alogical disk device. You aso can combine a SSD disk slice with a physical disk device.
See dsk(4), | desc(5), and pdd(4).

Thefilesin / dev/ ssdd are created by using the mknod command (see nknod(8)). Each must have a
unique minor device number, a starting block, and a length (in blocks).

The mknod(8) command for SSD disk devices is as follows:

nmknod name type major minor dtype O start length

name Descriptive file name for the device.
type Type of the device data being transferred. Devicesin/ dev/ ssdd are character devices
denoted by ac.

major Major device number for SSD disk devices. The dev_ssdd name label in the
/uts/cl/cf/devsw. c file denotes the major device number for SSD disk devices.

minor Minor device number for this slice. Each SSD disk dlice must have a unique minor device
number.

dtype Physical disk device type. Thisis optional. If left at O, the SSD disk slice assumes the physical
attributes of a DD-49 disk drive. For alist of physical disk device types, see pdd(4).

0 Placeholder for future use.
start Absolute starting block (sector) number of the dlice.
length Number of blocks (sectors) in the dlice.

SR-2014 197

SSDD(4)

FILES

/ dev/ ssdd/ *

/usr/src/cl/iolssdd.c

SEE ALSO
dsk(4), | dd(4), | desc(5), pdd(4)

SSDD(4)

nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

198

SR-2014

SSDT(4) SSDT(4)

NAME
ssdt — GigaRing-based Solid State Disk storage device interface

IMPLEMENTATION
CRAY T90 systems

DESCRIPTION

Thefilesin / dev/ ssdt are special files that allow read and write operations to the GigaRing-based Solid
State Disk storage device known as the SSD-T90. Each file represents one slice of an SSD-T90. The files
in/ dev/ ssdt are character special files that may be used directly to read and write physical SSD-T90
slices.

You can configure the SSD-T90 as a disk device or as a secondary data storage (SDS) device.

When configured as a disk, the SSD-T90 functions as a fast random-access device that can be used for
mounting file systems or for swapping. In this case, the SSD-T90 is represented in / dev/ ssdt by one or
more files. Usualy, they are called to perform I/O on behalf of higher-level logical disk device drivers.

Aniounit isamultiple of 4096-byte blocks that corresponds to the smallest read or write possible to a

character special disk device. Thei ounit for an SSD-T90 device is normally 1, meaning read and write
operations must transfer multiples of 4096 bytes and all seek operations must be on 4096-byte boundaries.
Thei ouni t may be set at a value greater than 1 as described below in the mknod command detail.

Thefilesin / dev/ ssdt are not usualy mountable as file systems, although you may combine one or more
physical disk slices to make a mountable logical disk device (see dsk(4), | dd(4), and nount (8)).

When configured as Secondary Data Storage (SDS), the SSD-T90 is managed in much the same way as
main memory. It can be accessed directly by users with the ssbr eak(2), ssread(2), and sswrit e(2)
system calls, or alocated as logical device cache for the caching of filesystem data. See ssbr eak(2),
ssread(2), sswite(2), and| dcache(8).

Thefilesin / dev/ ssdt are created by using the mknod(8) command (see nknod(8)). Each must have a
unique minor device number, along with other parameters used to define a physical disk dlice.

The mknod(8) command for physical disk devices is as follows:

nmknod name type major minor dtype iopath start length flags reserved unit

name Descriptive file name for the device (for example, / dev/ ssdt / ssdt _bl k0).
type Type of the device data being transferred. Devicesin/ dev/ ssdt are character devices
denoted by ac.

major Major device number for physical disk devices. The dev_ssdt name label in the
/usr/src/uts/cl/cf/devsw. c file denotes the major device number for physical disk
devices. You can specify the major number as dev_ssdt .

minor Minor device number for this slice.

SR-2014 199

SSDT(4)

dtype

iopath

Start
length
flags

reserved

unit

SSDT(4)

The dtype field is a compound field containing the i ouni t and target memory type for the
SSD-T90. Target memory types are defined in the include file sys/t mi 0. h. The dtype field
is broken down in octal as follows:

Otttiiii where:
ttt = the target memory type
iiii =thei ounit

The SSD-T90 is either an 8 or 16 processor CRAY T3E. The value of the dtype field should be
0100001 for an 8 processor or 0110001 for a 16 processor T3E.

The iopath specifies the GigaRing ring and node number that the SSD-T90 is connected to. It
contains the following fields when broken down in octal:

OrrrnnO where:

rer = GigaRing ring number

nn = GigaRing node number

Absolute starting block (i ouni t multiple) number of the dice.
Number of blocks (i ouni t multiple) in the dice.

Flags for physical disk device control. They are mainly used for diagnostic and maintenance
purposes. Usually the flags field should be O for slices in /dev/ssdt.

Currently unused. Should be 0.

Designates the SSD-T90 unit number. If only one SSD existis on a system, the unit should be
0.

Further information about configuring SSD-T90 for use as SDS memory can be found in UNICOS
Configuration Administrator’s Guide, publication SG-2303.

FILES

/ dev/ ssdt/ *

fusr/include/sys/ssdt.h

/usr/src/cl/iolssdt.c

SEE ALSO

dsk(4), | dd(4), mdd(4), qdd(4), sdd(4), ssdd(4),

ddst at (8), mknod(8), mount (8), sdconf (8), sdst at (8) in the UNICOS Administrator Commands
Reference Manual, Cray Research publication SR—2022

200

SR-2014

TAPE(4) TAPE(4)

NAME
t ape — Physical tape device interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
Each tape device node in the / dev/ t ape directory provides an interface to a real physical tape device.

These devices attach to Cray Research systems with 1/O subsystems model E using IBM Block Mux
channels, ANSI intelligent peripheral interface (IPl) channels, Enterprise Systems Connection (ESCON)
channels, or Small Computer System Interface (SCSI) channels. They attach to Cray Research GigaRing
based systems using IBM Block Mux channels or SCSI channels.

The physical tape driver interface trandates requests from a user or the tape daemon into requests packets
that are sent to the attached 1/0 subsystem. The type determines the type of physical devices that may be
attached. It manipulates the physical interface to accomplish the requested function and returns status to the
system.

During system start-up, a file describing the tape configuration (/ et ¢/ confi g/ t ext _t apeconfi g) is
read, tape device nodes are created in the / dev/ t ape directory, the configuration is sent to the tape driver
and related 1/0O processors (I0Ps), and the channels and control units are configured to the state specified in
the tape configuration file. The permissions on these device paths are generally reserved for the root account
and will have appropriate security labels.

You have two interfaces available for accessing tape devices:
Interface Description

Character-special tape Provides unstructured access to tape devices. Its capabilities
provide tape access similar to the access that users on other UNIX
systems have. This access is a basis means of reading and writing
tape information.

Tape daemon-assisted (t pddemnm(4)) Intercepts user system call requests and processes requests from
tape-related commands to perform tape resource management,
device management, volume mounts and dismounts through
operator communications or autoloader requests, label processing,
volume switching, and error recovery. This interface is called the
Tape Management Facility. The character-specia tape interface
does not provide these capabilities.

If the tape daemon-assisted interface is heeded, executing the t pdaenon(8) command creates the daemon
process that provides this interface. The tape daemon-assisted interface can use the configuration established
during system start-up, or it can redefine the configuration. It operates concurrently with the
character-special tape interface.

SR-2014 201

TAPE(4)

FILES

/ dev/ t ape/ device_name Tape device node

/etc/config/text_tapeconfig Tape subsystem configuration file

SEE ALSO
t pdden(4), t ext _t apeconfi g(5)
Tape Subsystem User’s Guide, Cray Research publication SG—2051
Tape Subsystem Administration, Cray Research publication SG—2307

202

TAPE(4)

SR-2014

TERMIO(4) TERMIO(4)

NAME

term o, term os — Genera terminal interface

SYNOPSIS

#include <termo.h>
ioctl (int fildes, int request, struct termo *arg);
ioctl (int fildes, int request, int arg);

#i nclude <ternios. h>
ioctl (int fildes, int request, struct termos *arg);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

All of the asynchronous communications ports use the same general interface, no matter what hardware is
involved. The remainder of this entry discusses the common features of this interface.

A terminal is associated with a terminal file in / dev. Terminal file names have the following form:
/dev/tty*

The user interface to this functionality is through function calls (the preferred interface) described on
t er mi nal (3C) man page or by thei oct | (2) requests described in this entry. This entry also discusses
the common features of the terminal subsystem that are relevant to both user interfaces.

When a terminal file is opened, it usually causes the process to wait until a connection is established. In
practice, a user’s programs seldom open terminal files; they are opened by get t y(8) and become a user’s
standard input, standard output, and standard error files. The very first terminal file opened by the session
leader that is not already associated with a session becomes the controlling terminal for that session. The
controlling terminal plays a special role in handling quit and interrupt signals; that role is discussed in this
entry. The controlling terminal is inherited by a child process during a f or k(2) system call. A process can
break this association by changing its session using the set si d(2) system call.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are lost only when the character input buffers of the
system become completely full (for example, if the user has accumulated MAX_| NPUT number of input
characters that have not yet been read by some program); this situation is rare. (When the input limit is
reached, all of the characters saved in the buffer up to that point are deleted without notice.)

SR-2014 203

TERMIO(4) TERMIO(4)

Session Management (Job Control)

When a session is associated with a terminal, the control terminal designates one of the process groups as
the foreground process group; al other process groups in the session are designated as background process
groups. The foreground process group plays a special role in handling signal-generating input characters, as
discussed in this entry. By default, when a controlling terminal is allocated, the controlling process's process
group is assigned as foreground process group.

Background process groups in the controlling process' s session are subject to a job control line discipline
when they try to access their controlling terminal. Process groups can be sent signals that will cause them to
stop, unless they have made other arrangements. An exception is made for members of orphaned process
groups. These are process groups that do not have a member with a parent in another process group that is
in the same session and therefore shares the same controlling terminal. When a member’s orphaned process
group tries to access its controlling terminal, errors will be returned because there is no process to continue it
if it should stop.

If a member of a background process group tries to read its controlling terminal, its process group sent a

SI GTTI N signal, which usually causes the members of that process group to stop. If, however, the process
isignoring or holding SI GT'TI N, or is a member of an orphaned process group, the read operation will fail
with an er r no value set to El O, and no signal will be sent.

If a member of a background process group tries to write its controlling termina and the TOSTOP bit is set
inthec_I f | ag field, its process group will be sent a SI GTTOU signal, which usually causes the members
of that process group to stop. If, however, the process is ignoring or holding SI GTTQU, the write operation
will succeed. If the process is not ignoring or holding SI GTTOU and is a member of an orphaned process
group, the write operation will fail with er r no set to El O and no signal will be sent.

If TOSTOR is set and a member of a background process group triesto issue an i oct | (2) system call to its
controlling terminal, and that i oct | will modify terminal parameters (for example, TCSETA, TCSETAW
TCSETAF, or TI OCSPGRP), its process group will be sent a SI GTTQU signal, which usually causes the
members of that process group to stop. If, however, the process is ignoring or holding SI GTTQU, the

i oct | (2) will succeed. If the process is not ignoring or holding SI GTTOU and is a member of an orphaned
process group, the write will fail with er r no set to El O, and no signal will be sent.

Canonical Mode Input Processing

204

Typically, al line editing and echoing functions are performed by the Cray Research system. You can off
load this processing to the front-end system when using t el net (1B); however, not all of the features
described in this entry are available in this mode.

Usually, terminal input is processed in units of lines. A line is delimited by a newline character (ASCII LF),
an end-of-file character (ASCII EQT), or an end-of-line character. This means that a program trying a read
operation is suspended until an entire line has been typed. Also, no matter how many characters are
requested in the read operation, at most one line is returned. However, a whole line does not have to read at
once; any number of characters may be requested in a read operation without loss of information.

SR-2014

TERMIO(4) TERMIO(4)

Erase and kill processing is usually done during input. The ERASE character (by default, #) erases the last
character typed. The WERASE character (CONTROL- w) erases the last word typed in the current input line
(but not any preceding spaces or tabs). A word is defined as a sequence of nonblank characters, with tabs
counted as blanks. Neither ERASE nor WERASE erases beyond the beginning of the line. The KI LL
character (by default, @ kills (deletes) the entire input line, and optionally outputs a newline character. All
of these characters operate on a keystroke basis, independently of any backspaces or tabs that may have been
entered. The REPRI NT character (CONTROL- r) prints a newline character, followed by all characters that
have not been read. Reprinting also occurs automatically if characters that usually would be erased from the
screen are garbled by program output. The characters are reprinted as if they were being echoed,;
consequencely, if ECHO s not set, they are not printed.

You may enter both the erase and kill characters literally if they are preceded by the escape \ symbol. In
this case, the escape character is not read. You may change the erase and kill characters.

Noncanonical Mode Input Processing
In noncanonical mode input processing, input characters are not assembled into lines. Erase and kill
processing does not occur. The M N and TI ME values are used to determine how to process the characters
received, as follows:

M N Minimum number of characters that should be received when the read is satisfied (that is, when the
characters are returned to the user).

TI ME Timer of 0.10-second granularity used to time-out transmissions that occur in bursts and short-term
data transmissions.

The four possible combinations for M N and Tl ME and their interactions are as follows:

Case A:MN>0, TIME>O
In this case, TI ME serves as an intercharacter timer and is activated after the first character is
received. Because it is an intercharacter timer, it is reset after a character is received. The
interaction between M N and TI MVE is as follows. As soon as one character is received, the
intercharacter timer is started. 1f M N characters are received before the intercharacter timer expires
(the timer is reset on receipt of each character), the read is satisfied. If the timer expires before M N
characters are received, the characters received to that point are returned to the user. If TI ME
expires, at least one character will be returned, because the timer would not have been enabled
unless a character was received. In this case (M N > 0O, Tl ME > 0), the read sleeps until the M N
and Tl ME mechanisms are activated by the receipt of the first character. If the number of
characters read is fewer than the number of characters available, the timer is not reactivated, and the
subsequent read is satisfied immediately.

CaseB:MN>0, TIME=0
In this case, because the value of Tl ME is 0O, the timer plays no role and only M N is significant. A
pending read is not satisfied until M N characters are received (the pending read sleeps until M N
characters are received). A program that uses this case to read record-based terminal 1/0 may be
blocked indefinitely in the read operation.

SR-2014 205

TERMIO(4) TERMIO(4)

206

CaseC: MN=0, TIME>O0
In this case, because M N = O, Tl ME no longer represents an intercharacter timer; it now serves as a
read timer that is activated as soon as one r ead operation is requested. A read request is satisfied
as soon as one character is received or the read timer expires. In this casg, if the timer expires, no
character is returned. If the timer does not expire, the read can be satisfied only if a character is
received. In this case, the read will not block indefinitely waiting for a character; if no character is
received within TI ME*.10 seconds after the read is initiated, the read returns with zero characters.

CaseD: MN=0O, TIME=0
In this case, return isimmediate. The minimum of either the number of characters requested or the
number of characters currently available is returned without waiting for more characters to be input.

The remainder of this subsection compares the different cases of interaction between the M N and TI MVE
values. In the following explanations, the interactions of M N and Tl ME are not symmetric. For example,
when M N is greater than 0 and Tl ME equals O, Tl ME has no effect. However, in the opposite case, in
which M N equals 0 and Tl MVE is greater than O, both M N and Tl ME play arolein that M N is satisfied
with the receipt of one character. In case A (M N greater than O, Tl VE greater than 0), Tl ME represents an
intercharacter timer; in case C (Tl ME equals O, TI ME greater than 0), Tl VE represents a read timer.

These two points highlight the dual purpose of the M N/ Tl ME feature. Cases A and B, in which M N > 0,
exist to handle burst mode activity (for example, file transfer programs), where a program would like to
process at least M N characters at atime. In case A, the intercharacter timer is activated by a user as a
safety measure; in case B, the timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are readily adaptable to
screen-based applications that must know whether a character is present in the input queue before refreshing
the screen. In case C, the read is timed; in case D, it is not.

Another important note is that M N is always just a minimum. It does not denote a record length (for
example, if a program does a read of 20 bytes, M Nis 10, and 25 characters are present, 20 characters will
be returned to the user). When one or more characters are written, they are transmitted to the terminal as
soon as previoudy-written characters have finished typing. If echoing has been enabled, input characters are
echoed as they are typed. If a process produces characters more rapidly than they can be typed, it will be
suspended when its output queue exceeds some limit. When the queue is drained down to some threshold,
the program is resumed. Certain characters have special functions on input. These functions and their
default character values are summarized as follows:

DI SCARD (CONTROL- 0 or ASCII Sl) describes subsequent output. Output is discarded until you type
another DI SCARD character, more input arrives, or a program you type clears the condition.

DSUSP (CONTROL- y or ASCII EM) generates a suspend (SI GTSTP) signal, such as SUSP, but the
signal is sent when a process in the foreground process group tries to read the DSUSP
character, rather than when the character is typed.

SR-2014

TERMIO(4)

ECF

ECL
ECL2
ERASE

I NTR

KI LL

LNEXT

NL
QT

REPRI NT

START

STOP

SUSP

SWICH

SR-2014

TERMIO(4)

(CONTROL- d or ASCII EOT) generates an end-of-file from a terminal. When this character
is received, all of the characters that are waiting to be read are passed immediately to the
program, without waiting for a newline character, and the ECF is discarded. If no characters
are waiting (that is, the EOF occurred at the beginning of a line), O characters, the standard
end-of-file indication, is passed back. The EOF character is not echoed unless it is escaped.
Because ASCII EOT is the default EOF character, this prevents terminals that respond to EOT
from hanging up.

(ASCII NUL) is an additional line delimiter, such as NL. Usualy, it is not used.

An additional line delimiter, such as NL. Usually, it is not used.

(RUBOUT or ASCII DEL) erases the preceding character. It does not erase beyond the start
of aline, as delimited by a NL, EOF, EQOL, or EQL2 character.

(CONTROL- ¢ or ASCII ETX) generates an interrupt (SI G NT) signal that is sent to all
frequent processes associated with the controlling terminal. Usually, each such process is
forced to terminate, but arrangements may be made either to ignore the signal or to receive a
trap to an agreed-upon location; see si gnal (2).

(CONTROL- u or ASCII NAK) deletes the entire line, as delimited by a NL, EOF, ECL, or
EOL2 character.

(CONTROL- v or ASCII SYN) ignores the special meaning of the next character. This works
for al of the special characters mentioned in this list. It allows characters to be input that
would otherwise be interpreted by the system (for example, KI LL or QUI T).

(ASCII LF) is the normal line delimiter, but you can escape it by using the LNEXT character.

(CONTROL- Oor ASCII FS) generates a quit (SI GQUI T) signal. Its treatment is identical to
the interrupt (SI G NT) signal, except that unless a receiving process has made other
arrangements, it is terminated, and a core image file (called cor e) is created in the current
working directory.

(CONTROL- r or ASCII DC2) reprints all characters, preceded by a newline character, that
have not been read.

(CONTROL- g or ASCII DC1) resumes output that has been suspended by a STOP character.
While output is not suspended, START characters are ignored.

(CONTROL- s or ASCII DC3) suspends output temporarily. It is useful with terminals to
prevent output from disappearing before it can be read. While output is suspended, STOP
characters are ignored.

(CONTROL- z or ASCII SUB) generates a suspend (SI GTSTP) signal, which stops all
processes in the foreground process group for that terminal.

(ASCII NUL) is reserved for future use.

207

TERMIO(4) TERMIO(4)

VERASE (CONTROL- w or ASCII ETX) erases the preceding word. (A word is defined as a sequence
of nonblank characters, with tabs counted as blanks.) It does not erase beyond the start of a
line, as delimited by a NL, EOF, EQOL, or EOL2 character.

You may change all character values except NL to suit individual tastes. If the value of a special control
character is _PCSI X_VDI SABLE (0), the function of that special control character is disabled. To escape
the ERASE, KI LL, and EOF characters, use a preceding \ symbol; in which case, no special function is
performed. You can precede any of the special characters by the LNEXT character; in which case, no special
function is performed.

Modem Disconnect
When a modem disconnect is detected, a hang-up (SI GHUP) signal is sent to the terminal’s controlling
process. Unless other arrangements have been made, these signals terminate the process. If SI GHUP is
ignored or caught, any subsequent read operation returns with an end-of-file (EOF) indication until the
terminal is closed.

If the controlling process is not in the foreground process group of the terminal, a SI GTSTP is sent to the
terminal’s foreground process group. Unless other arrangements have been made, these signals stop the
Processes.

Processes in background process groups that try to access the controlling terminal after modem disconnect
while the terminal is still allocated to the session will receive appropriate SI GTTOU and SI GT'TI N signals.
Unless other arrangements have been made, this signal stops the processes.

The controlling terminal remains in this state until it is reinitialized with a successful open by the controlling
process, or deallocated by the controlling process. The parameters that control the behavior of devices and
modules providing the t er mi os interface are specified by the t er mi os structure defined by the
sys/term os. h includefile. Several i oct | (2) requests apply to terminal files. The primary requests
use the following structure, defined in the sys/ t er mi 0s. h include file:

tcflag_t c_iflag; /* input nodes */
tcflag_t c_ofl ag; /* out put nmodes */
tcflag_t c_cfl ag; /* control nodes */
tcflag_t c_Iflag; /* local nodes */
cc_t c_cc[NCCs] ; /* control characters */

The c_cc array defines the special control characters. The symbolic name NCCS is the size of the
control-character array and also is defined by t er m os. h. The relative positions, subscript names, and
typical default values for each function are as follows:

208 SR-2014

TERMIO(4)

©Co~NOOOUTPA~,WNEO

15
16-19

Input Modes

The c_i f| ag field describes the basic terminal input control, as follows:

| GNBRK
BRKI NT
| GNPAR
PARMRK
I NPCK

| STRI P
I NLCR
| G\NCR

I CRNL

| UCLC
| XON

I XANY

| XOFF

VI NTR DEL
VQUI T FS
VERSE #
VKI LL @
VEOF ECT
VEOL NUL
VEQOL2 NUL
VSWI'CH NUL
VSTRT DC1
VSTOP DC3
VSUSP SUB
VDSUSP EM
VREPRI NT DC2
VDI SCRD Sl
VWERSE ETB
VLNEXT SYN
Reserved

Ignores break condition

Signals interrupt on break

Ignores characters with parity errors
Marks parity errors

Enables input parity check

Strips character

Maps NL to CR on input

Ignores CR

Maps CR to NL on input

Maps uppercase to lowercase on input
Enables start and stop output control
Enables any character to restart output

Enables start and stop input control

TERMIO(4)

The initial input control value is BRKI NT, | GNPAR, | STRI P | XON, and | XANY. If set, the bits have the
following meanings:

SR-2014

209

TERMIO(4)

210

| GNBRK

BRKI NT

| GNPAR
PARMRK

I NPCK

| STRI P

I NLCR

| G\NCR

I CRNL
| UCLC

| XON

I XANY
| XOFF

TERMIO(4)

Ignores the break condition (a character-framing error with data that consists of all 0's); that
is, nothing is put on the input queue and therefore, a process does not read any break
character. Otherwise, if BRKI NT is set, the break condition flushes the input and output
gueues and, if the terminal is the controlling terminal of a foreground process group, sends the
interrupt (SI G NT) signal to that foreground process group. Otherwise, if neither | GNBRK
nor BRKI NT is set, a break condition is read as a single ASCIl NULL character ('\0") (if
PARMRK is s, it is read as as "\377°, "\0", "\0").

Generates an interrupt signal for the break condition and flushes both the input and output
queues if | GNBRK is set.

Ignores bytes that have framing or parity errors (other than break).

Reads any character that has a framing or parity error, other than break, that is not ignored
(I GNPAR is not set) as the 3-character sequence 0377, 0, X; X is the data of the character
received in error. To avoid ambiguity in this case, a valid character of 0377 is read as 0377,
0377 if | STRI P isnot set. If neither | GNPAR nor PARMRK is set, a character that has a
framing or parity error (other than break) is read as a single ASCII NULL character ('\0").

Enables input parity checking. If | NPCK is not set, input parity checking is disabled. This
allows output parity generation without input parity errors. Whether input parity checking is
enabled or disabled is independent of whether parity detection is enabled or disabled. If parity
detection is enabled but input parity checking is disabled, the hardware to which the terminal
is connected will recognize the parity bit, but the terminal specia file will not check whether
thisis set correctly.

Strips valid input characters to 7 bits; if | STRI P is not set, all 8 bits are processed.

Tranglates a received NL character into a CR character. If | GNCR is set, a received CR
character is ignored; otherwise, if | CRNL is set, a received CR character is trandated into a
NL character.

Ignores a received CR character. If | GNCRis not set, and | CRNL is set, areceived CR
character is translated into an NL character.

Translates a received CR character into an NL character if | GNCR is not set.

Tranglates a received uppercase a phabetic character into the corresponding lowercase
character.

Enables start and stop output control; a received STOP character suspends output, and a
received START character restarts output. The STOP and START characters are not read, but
they merely perform flow control functions. If 1 XANY is set, any input character restarts
output that has been suspended.

Any input character restarts suspended output.

Transmits a START character when the input queue is nearly empty and a STOP character
when the input queue is nearly full.

SR-2014

TERMIO(4)

Output Modes

The c_of | ag field specifies the system treatment of output, as follows:

OoPCST
aLcuc
ONLCR
OCRNL
ONOCR
ONLRET
OFI LL
OFDEL
NLDLY

CRDLY

TABDLY

TAB3
BSDLY

VTDLY

FFDLY

SR-2014

Postprocesses output
Maps lowercase to uppercase on output
Maps NL to CR- NL on output
Maps CR to NL on output
No CR output at column O
NL performs CR function
Uses fill characters for delay
Fill is DEL, else NULL
Selects newline delays:

NLO

NL1
Selects carriage-return delays:

CRO
CR1
CR2
CR3

Selects horizontal tab delays or tab expansion:

TABO
TAB1
TAB2
Expands tabs to spaces.
Selects backspace delays:
BSO
BS1
Selects vertical tab delays:
VTO
VT1
Selects form feed delays:

FFO
FF1

TERMIO(4)

211

TERMIO(4)

212

TERMIO(4)

The initial output control value is OPOST, ONLCR, and TAB3. If set, the bits have the following meanings:

OPCST

a.cuc

ONLCR
OCRNL

ONLRET

Postprocesses output characters as indicated by the remaining flags; if OPOST is not set,
characters are transmitted without change.

Transmits a lowercase alphabetic character as the corresponding uppercase character. This
function is often used in conjunction with | UCLC.

Transmits the NL character as the CR- NL character pair.
Transmits the CR character as the NL character.
Does not transmit a CR character when at column 0 (first position).

Performs the CR function. The NL character is assumed to do the carriage-return function; the
column pointer is set to 0, and the delays specified for CR are used. Otherwise, the NL
character is assumed to do just the line-feed function; the column pointer remains unchanged.
If the CR character is actually transmitted, the column pointer also is set to 0.

The following delay bits specify the length of time the transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0 indicates no delay.

OFI LL

OFDEL

NLDLY

CRDLY

TABDLY

TAB3

BSDLY

VTDLY

FFDLY

Transmits fill characters for a delay instead of atimed delay. Thisis useful for terminals that
have a high baud rate that need only a minimal delay.

Sets the fill character to DEL (NULL by default).

Selects newline delays. Newline delay lasts for about 0.10 seconds. If ONLRET is set, the
carriage-return delays are used instead of the newline delays. If OFI LL is set, two fill
characters are transmitted.

Selects carriage-return delays. Carriage-return delay type 1 depends on the current column
position; type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFI LL is set,
delay type 1 transmits two fill characters, and type 2 transmits four fill characters.

Selects horizontal tab delays. Horizontal-tab delay type 1 depends on the current column
position; type 2 is about 0.10 seconds, and type 3 specifies that tabs will be expanded into
spaces. If OFI LL is set, two fill characters are transmitted for any delay.

Expands tabs to spaces.

Selects backspace delays. Backspace delay lasts for about 0.05 seconds. If OFI LL is set, one
fill character is transmitted.

Selects vertical tab delays. Vertical-tab delay lasts for about 2 seconds. If OFI LL is set, two
fill characters are transmitted.

Selects form-feed delays. Form-feed delay lasts for about 2 seconds. If OFI LL is set, two fill
characters are transmitted.

SR-2014

TERMIO(4)

The actual delays depend on line speed and system load.

Control Modes

The c_cf | ag field describes the hardware control of the terminal, as follows:

CBAUD

CSl ZE

CSTOPB
CREAD
PARENB
PARCDD
HUPCL

SR-2014

Baud rate:

BO Hang up
B50 50 Bd
B75 75 Bd

B110 110 Bd
B134 134 Bd
B150 150 Bd
B200 200 Bd
B300 300 Bd
B600 600 Bd
B1200 1200 Bd
B1800 1800 Bd
B2400 2400 Bd
B4800 4800 Bd
B9600 9600 Bd
B19200 19200 Bd
EXTA External A
B38400 38400 Bd EXTB External B

Character size:

CS5 5 bits
CS6 6 bits
Cs7 7 bits
CS8 8 bits

Sends 2 stop bits, else 1
Enables receiver
Enables parity

Odd parity, else even

Hangs up on last close

TERMIO(4)

213

TERMIO(4)

Local Modes

214

CLOCAL

TERMIO(4)

Local line, else dia-up

The initial hardware control value after an open(2) system call is B9600, CS8, CREAD, and HUPCL.
If set, the bitsin the c_cf | ag field have the following meanings:

CBAUD

Csl ZE

CSTOPB

CREAD

PARENB

PARCDD
HUPCL

CLOCAL

Specifies the baud rate. The 0 Bd rate, BO, hangs up the connection. If BO is specified, the
data-terminal-ready signal is not asserted. Usually, this disconnects the line. For any
particular hardware, impossible speed changes are ignored. The default is B9600, which
specifies a 9600 Bd rate.

Specifies the character size (in bits) for both transmission and reception. This size does not
include the parity bit if any. The default is CS8, which specifies a character size of 8 bits.

Specifies the number of stop bits used. If CSTOPB is set, 2 stop bits are used; otherwise, 1
stop bit is used (for example, at 110 Bd, 2 stops bits are required).

Enables the receiver. If CREAD is not set, no characters are received. CREAD is set by
default.

Enables parity generation and detection, and adds a parity bit to each character. If parity is
enabled and the PARODD flag is set, odd parity is used; otherwise, even parity is used.

Specifies odd parity if PARENB is set.

Disconnects the line when the last process with that line open closes it or terminates; that is,
the data-terminal-ready signal is not asserted. HUPCL is set by default.

If CLOCAL is set, the line is assumed to be alocal, direct connection with no modem control.
If CLOCAL is not set, modem control is assumed.

Thec_| fl ag field of the argument structure is used by the line discipline to control terminal functions.
The basic line discipline provides the following:

ISIG

| CANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NCFLSH
TOSTOP
| EXTEN

Enables signals

Enables canonical input (erase and kill processing)
Enables canonical upper/lower presentation

Enables echo

Echoes erase character as BS- SP- BS

Echoes NL after kill character

Echoes NL

Disables flush after interrupt or quit

Sends SI GTTQU for background output

Enables extended (implementation-defined) functions

SR-2014

TERMIO(4)

TERMIO(4)

The initial line-discipline control value is | SI G, | CANON, ECHO, and ECHOK.

If set, the bits have the following meanings:

ISIG

| CANON

XCASE

ECHO
ECHOE
ECHOK
ECHONL
NCFLSH

SR-2014

Enables signals. Each input character is checked against the special control characters | NTR,
QUI T, SWICH, SUSP, STATUS, and DSUSP. If an input character matches one of these
control characters, the function associated with that character is performed. If | SI Gis not
set, checking is not done. Thus, these special input functions are possible only when | SI Gis
set. To disable these functions individually, change the value of the control character to an
unlikely or impossible value (for example, 0377).

Enables canonical processing. This enables the erase and kill edit functions, and the assembly
of input characters into lines delimited by NL, EOF, EQL, and EOL2. If | CANON is not set,
read requests are satisfied directly from the input queue. A read is not satisfied until at least
M N characters have been received, or the time-out value Tl ME has expired between
characters. This allows fast bursts of input to be read efficiently while still allowing
single-character input. The M N and Tl ME values are stored in the position for the EOF and
ECL characters, respectively.

The time value is represented in tenths of seconds.

Specifies canonical presentation of uppercase and lowercase characters. 1f XCASE is set and
| CANON also is set, an uppercase letter is accepted on input when prefaced by a \ character,
and an uppercase letter is prefaced by a\ character on output. In this mode, the following
escape sequences are generated on output and accepted on input:

For: Use:

\
O \!
-~ \ A
{ \(
} \)
\ \\

For example, Aisinput as\ a,\ n as\\ n,and\ Nas\\\ n.
Enables echo. If ECHO is set, characters are echoed as received.
Echoes the erase character as ASCII BS SP BS.

Echoes an NL character after the kill character.

Echoes an NL character.

Disables the normal flush of the input and output queues associated with the interrupt (I NTR),
quit (QUI T), and suspend (SUSP) characters. This bit should be set when restarting system
calls that read from or write to a terminal; see si gact i on(2).

215

TERMIO(4)

TERMIO(4)

TOSTOP Sends the SI GTTCQU signal for background output. 1f a process tries to write to its controlling
terminal when it is not in the foreground process group for that terminal, the signal is sent.
This signal usually stops the process. Otherwise, the output generated by that processis
output to the current output stream. Processes that are blocking or ignoring SI GTTOU signals
are excepted and allowed to produce output, if any.

| EXTEN Enables the following extended (implementation-defined) functions: special characters
(WERASE, REPRI NT, DI SCARD, and LNEXT) and locd flags (TOSTOP, ECHOCTL,
ECHOPRT, ECHOKE, FLUSHO, and PENDI N).

When | CANON is set, the following echo functions are possible:

¢ |f ECHO and ECHOE are set, the erase character (ERASE and WERASE) is echoed as ASCII BS SP BS,
which clears the last character from a terminal.

¢ |f ECHOK is set and ECHOKE is not set, the NL character is echoed after the kill character to emphasize
that the line is deleted. An escape character (\) or an LNEXT character that precedes the erase or kill
character removes any special function.

e |f ECHONL is set, the NL character is echoed even if ECHO s not set. This is useful for terminals set to
local echo (half-duplex).

Minimum and Time-out
The M N and Tl ME values are described in the Noncanonical Mode Input Processing subsection. The initial
value of M Nis 1, and the initial value of Tl ME is 0.

Terminal Size
The number of lines and columns on the terminal’s display is specified in the wi nsi ze structure defined by
sys/ term os. h, which includes the following members:

unsi gned
unsi gned
unsi gned
unsi gned

term o Structure
Somei oct | (2) requests use the t er mi o structure. It is defined by the sys/t er mi 0. h include file and

216

includes the following members:

unsi gned
unsi gned
unsi gned
unsi gned
char

unsi gned

short
short
short
short

short
short
short
short

char

WS_ I ow, /*
ws_col ; /*
ws_xpi xel; [*

ws_ypixel; [*

c_iflag;
c_ofl ag;
c_cflag;
c_|Iflag;
c_line;
c_cc[NCC ;

rows, in characters */
colums, in characters */
hori zontal size, in pixels */

vertical size, in pixels */

/*
/*
/*
/*
/*
/*

i nput nodes */
out put nodes */
control nodes * [
| ocal nobdes * [
line discipline */
control characters */

SR-2014

TERMIO(4)

TERMIO(4)

The c_cc array defines the special control characters. The symbolic name NCC is the size of the
control-character array and also is defined by the sys/ t er mi 0. h include file. The relative positions,
subscript names, and typical default values for each function are as follows:

N~No o~ WwWNPEO

VI NTR DEL
VQUI T FS
VERASE #
VKI LL @
VEOF EOT
VEOL NUL
VEQOL2 NUL
reserved

The calls that use thet er m o structure affect only the flags and control characters that can be stored in the
t er mi o structure; al other flags and control characters are unaffected.

Supported i oct |

Requests

This subsection lists the primary i oct | (2) requests supported by devices and STREAMS modules providing
thet er m os interface (seet er m nal (3C)). All devices or modules may not support somei oct | (2)
requests. The functionality provided by these requests also is available through the preferred function call
interface specified on the t er m nal (3C) man page.

The following i oct | requests are supported:

TCFLSH

TCGETA

TCSBRK
TCSETA

TCSETAF

TCSETAW

TCXONC

TI OCGW NSZ

TI OCSW NSZ

TCCLRCTTY

SR-2014

Flushes input and/or output queues. If arg is 0, TCFLSH flushes the input queue; if arg is
1, it flushes the output queue; if arg is 2, it flushes both the input and output queues.

Gets the parameters associated with the terminal and stores them in thet er m o structure
referenced by arg.

Waits for the output to drain. If argis 0, TCSBRK sends a break (0 bits for 0.25 seconds).

Sets the parameters associated with the terminal from the t er mi o structure referenced by
arg. The change is immediate.

Waits for the output queue to empty, then flushes the input queue and sets the new
parameters from the t er ni o structure referenced by arg.

Waits for the output queue to empty before setting the new parameters from thet er mi o
structure referenced by arg. When changing parameters that affect output, use this request.

Enables start and stop control. If arg is 0, TCXONC suspends output; if arg is 1, it restarts
suspended output; if arg is 2, it suspends input; and if arg is 3, it restarts suspended input.

Stores the terminal size in the wi nsi ze structure to which arg points.

Sets the termina size from the wi nsi ze structure to which arg points. If the new sizes
are different from the old sizes, a SI GAf NCH signal is set to the process group of the
terminal.

Clears the controlling tty connection.

217

TERMIO(4)

FILES

TCSETCTTY
TCGETPGRP
TCSETPGRP
TCSI G

TCGETDEV
TCTTRD
TCRDFL

/ dev/ *
[dev/tty*

TERMIO(4)

Defines the terminal as the controlling tty for a session.
Gets the foreground process group ID for the session.
Sets the foreground process group ID for the session.

Interrupts all outstanding asynchronous 1/O in the foreground process group, and it sends
the process group a signal.

Gets the device number of the terminal.
Reserved for use by the SCP Interactive facility.
Enables the "master read failure with user reads’ option.

/usr/include/termo.h

SEE ALSO
st ty(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

fork(2),ioctl (2), set pgrp(2), setsid(2), sigaction(2),signal (2) inthe UNICOS System Calls
Reference Manual, Cray Research publication SR—2012

t er m nal (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

getty(8), t el net d(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

218

SR-2014

TPDDEM(4) TPDDEM(4)

NAME

t pddem— Tape daemon interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The tape pseudo device driver provides user-level control over the tape devices. That is, the tape daemon
(TPD) interface. Thet pddeminterface provides a mechanism for the tape daemon to control the tape
devices. The daemon handles alocation and scheduling of tape devices. Only a process with asysadm
category may have direct accessto a TPD device.

The t pddeminterface contains hooks at critical points such as open operations, the first 1/O operation, error
recovery, and close operations. The tape daemon uses these hooks to control user access to the tape devices,
including validation of open operations, automatic volume switching, label processing, and error recovery.
When the tape daemon activates one of these hooks, the t pddeminterface suspends the current user process
and sends a signal to the tape daemon. When the controlling process completes, it sendsani oct | (2)
system call to the t pddemdriver to resume the user process. The controlling process may resume the user
process that has an error.

The hooks in the tape device drivers cause the tape daemon process that has the TPD device open to
preempt the user process that is using a tape device. If no process has TPD open, the tape driver fals
through these hooks.

The t pddeminterface supports the cl ose(2), i oct | (2), and open(2) system calls. The open(2) system
call activates hooks in the TPD driver for the calling process. The super user must run the calling process,
the device is exclusive (only one process may have the device open). The cl ose(2) system call deactivates
the hooks in the TPD driver. Thei oct | (2) system call sends commands to the tape driver.

The t pddemstructure that follows, as defined in the sys/ t pddem h include file, is used to communicate
between the driver and the controlling process.

SR-2014 219

TPDDEM(4)

220

/*

TPD daenon control table */

struct tpddem {

s

i nt
i nt
i nt
struct

| ong
| ong
| ong
| ong
| ong
struct

flags;
owner ;
pi d;
proc *p;

dendev;

reservedO;
reservedl;
reserved?2;
reserved3;

TPDDEM(4)
/* open/close flags */
/* 1D of controlling process */
/* process I D of tape denobn */
/* proc address of controlling */
/* process */
/* tpddev device (major, minor) */
/* reserved for future use */
/* reserved for future use */
/* reserved for future use */
/* reserved for future use */

bdt ab tab[TPD_MAXBMXDV]; /* substructure 1 per device */

/* TPD device control/status structure */

st

/*

/*

ruct

Fol

For

bdt ab {

word nane; /* Nanme of device

i nt dev; /* M nor device number

i nt flag; /* Device requires daenon process
i nt func; [* Current tpd device function

i nt user; /[* User ID

long status; /* Current device status

i nt error; [* Error return to user

i nt reslct; /* Device in reselect

i nt wait; /* User sleeping on this table

i nt rval ; /* Function-dependent return val ue

| owi ng used for

i nt

newdev; /* Odi

resel ect to new device */

nal of new device table

tape positioning and user end-of-vol ume communi cation

nt
nt
nt
nt
nt
nt
nt

i
i
i
i
i
i
i
i nt

dnm_intl
dnm_int2
dnm_int3
dnmm_int4
partition;
fil esec;
dat abl ock;
absaddr;

/[* Partition to position to

/* File section to position to

/* Databl ock to position to

/* Absolute address to position to

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

*/
*/
*/
*/

SR-2014

TPDDEM(4)

b

| ong
| ong
| ong
| ong
| ong

TPDDEM(4)
dm_t pvdev; /* tpd device number */
of I ags; /* open flags */
dnmm_reservedl; /* reserved for future use */
dnmm_reserved2; /* reserved for future use */
dnmm_reserved3; /* reserved for future use */

The available i oct | requests, as defined in the sys/ t pddem h include file, are as follows:

TDM_BFNMON
TDM_CUEOV
TDM_FI RST
TDM GET
TDM OBI T

TDM RLS
TDM RSL
TDM_RSM

TDM RSV

TDM SET

TDM_SUEOV
TDM VDN

Buffer monitor.

Clears user end-of-volume (EQV) flag.

First daemon function.

Returns the structure t pddemto the passed-in address.

Returns a list of job IDs for jobs that have terminated and are still recorded in the
system reservation table.

Removes the passed-in job ID from the system reservation table.
Reselects to a new device.

Resumes the user process for the device specified by the passed-in structure bdt ab.
The er r or member of bdt ab is set into the user’s error status. This request must
follow the TDM_SET request.

Saves the process group ID passed in the system reservation table. When the last
member of a process group exits and it is recorded in this table, a signal is sent to the
controlling process for resource control.

Sets the fields in the bdt ab system structure from the passed-in structure bdt ab.
Also clears the f | ag member of bdt ab. This request must precede the TDM _RSM
request.

Sets user EOV flag.

Waits for the specified device to complete its current operation.

The tape daemon reason codes, which are used to signal the tape daemon, are as follows:

TDR_ABN
TDR_CLOSE

TDR_DEMPROC

TDR | O
TDR_OPEN

TDR_RDONLY
TDR_REASON

SR-2014

abn flag set.

User cl ose flag.

Tape daemon processing flag.

First 1/0 request.

User open flag.

Request to write on a read-only file.

First reason code flag. All reason codes must be greater than this value.

221

TPDDEM(4) TPDDEM(4)

TDR_USRREQ User function.
TDM WI'M Write tape mark flag.
FILES
/ dev/ bxnmdem Tape daemon (TPD) interface
[usr/include/sys/tpddem h Structure definition of t pddem
SEE ALSO
t ape(4)
cl ose(2),i octl (2), open(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

Tape Subsystem User’s Guide, Cray Research publication SG—2051

222 SR-2014

TTY(4) TTY(4)

NAME

tty — Controlling termina interface

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ dev/tty fileisasynonym for the control terminal, if any, associated with the process group of each
process. It is useful for programs or shell sequences that want to be sure of writing messages on the
terminal no matter how output has been redirected. When output to the terminal is desired, you also can use
/ dev/ tty for programs that require the name of afile for output. In this way, the program does not have
to find out the terminal that is currently in use.

FILES
/dev/tty

SEE ALSO
pty(4), term o(4), t p(4) (CRAY Y-MP systems)

SR-2014 223

VME (4) VME (4)

NAME

vire — VME (FEI-3) network interface

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

The VME (FEI-3) network interface is a channel-to-VME backplane adapter that connects a Cray Research
system with a VMEbus based, front-end computer.

The speciadl files for the FEI-3 interface are in the / dev directory.
FEI-3 special file names have the following naming convention:

/ dev/ vmenn

nn Minor device number ("logical path" in 10S terminology) for the VME interface

Support for the FEI-3 is provided through the 10S as if the FEI-3 were an NSC adapter. The device is
otherwise treated as an NSC adapter; for more information, see hy (4).

/ dev/ vme*
[usr/include/sys/hy.h
[usr/include/sys/hysys. h

SEE ALSO

224

hy(4)
ioctl (2),listio(2),read(2),reada(2),wite(2),witea(2) inthe UNICOS System Calls Reference
Manual, Cray Research publication SR—2012

SR-2014

XDD(4) XDD(4)

NAME
xdd — Physical disk device interface

IMPLEMENTATION

CRAY J90se systems
CRAY T90 systems

DESCRIPTION

Thefilesin / dev/ xdd are special files that allow read and write operations to physical disk
devicesconnected to the MPN-1 (SCSI disks), the FCN-1 (Fibre SCSI disks), or the HPN-1/HPN-2 (HIPPI
disks). Each file represents one dlice of a physical disk device. Thefilesin/ dev/ xdd are character
special files that may be used directly to read and write physical disk dlices. Usually, they are called to
perform 1/O on behalf of higher-level logical disk device drivers. For 1/O on a character disk device, read
and write operations must transfer multiples of the physical device sector size and all seek operations must
be on physical sector size boundaries.

Thefilesin / dev/ xdd are not usually mountable as file systems, although you may combine one or more
physical disk slices to make a mountable logical disk device (see dsk(4), | dd(4), and nount (8)).

Thefilesin / dev/ xdd are created by using the nknod command (see nknod(8)). Each must have a
unique minor device number, along with other parameters used to define a physical disk dlice.

The mknod(8) command for physical disk devices is as follows:

nmknod name type major minor dtype iopath start length flags altpath unit [ifield]

name Descriptive file name for the device (for example, xdd/ scr 0230).
type Type of the device data being transferred. Devicesin / dev/ xdd are character devices denoted
by ac.

major Major device number for physical disk devices. The dev_xdd name label in the
/usr/src/uts/cl/cf/devsw. c file denotes the major device number for physical disk
devices. You can specify the major number as dev_xdd.

minor Minor device number for this dlice.

dtype Physical disk device type defition, consisting of 32 bits defined as follows:
Bit0-11 Defines the sector size.
Bit 12 - 19 Defines the type field. Currently this field is not used.

Mode bit Mode bit. If mode is 1, the sector size given is in words per sector. If mode is 0
(the default value), the sector size given isiouni ts. Aniounit is 512 words. The
mode bit is not currently supported.

iopath Specifies the GigaRing number on which the device is located, the node number to which the
disk is connected, and the controller slot number (ION channel number) of the device.

SR-2014 225

XDD(4) XDD(4)

Bit0-2 Defines the controller slot number.
Bit 3-8 Defines the ION node number.
Bit 9- 15 Defines the Ring number.

For example: An iopath of 0110204(octal) indicates Controller Number 4, ION node number 2,
and Ring Number 011(octal) or 9(decimal).

For disk devices connected to the MPN-1 (SCSI disks), the SCSI controller slot number is in the
range O through 8. For disk devices connected to the FCN-1 (Fibre SCSI disks), the controller
number is in the range O through 4.

For HIPPI disks, the iopath is represented by an octal number in the format Orrrnnc where:
rer - The GigaRing number

nn The node number of the HPN

c The channel on the HPN

start Absolute starting sector number of the dlice.

length Number of blocks (sectors) in the slice.

flags Flags for physical disk device control. They are mainly used for diagnostic and maintenance
purposes. Usually, the flags field should be O for dlicesin / dev/ xdd. For HIPPI disks, the
flags field is O.
#define S _CONTRCOL 001 /* control device */
#define S_NOBBF 002 /* no bad bl ock forwarding */
#define S _NCERREC 004 /* no error recovery */
#define S_NOLOG 010 /* no error |ogging */
#define S _NOARI TEB 020 /* no wite behind */
#define S CWE 040 /* control device wite enable */
#define S_NOSORT 0200 /* no disk sort */
#define S _NODEVI NT 0400 /* no device intimte functions */
#define S_MODE_MASK 0777 /* Mask contai ning special flags */

altpath Optiona alternate iopath that you can use as a back-up path to the physical disk device's second
port.

unit The disk device unit number for device types that support multiple units on the same channel.

The unit number is defined as follows:
Bit0-7 Disk unit number
Bit 8 - 15 Logical Unit Number
For HIPPI disks, this is the disk’s facility number.
ifield (HIPPI disks only). The hardware address of the HIPPI disk in the HIPPI network.

226 SR-2014

XDD(4) XDD(4)

FILES

[dev/ xdd/ *
/usr/include/sys/xdd. h

/usr/src/cll/iol xdd. c

SEE ALSO
dsk(4), | dd(4), mdd(4), qdd(4), sdd(4),

ddst at (8), mknod(8), mount (8), sdconf (8), sdst at (8) in the UNICOS Administrator Commands
Reference Manual, Cray Research publication SR—2022

SR-2014 227

