INTRO(4P) INTRO(4P)

NAME

i ntro — Introduction to TCP/IP networking facilities and files

SYNOPSIS

#i ncl ude <sys/socket. h>
#i ncl ude <net/route. h>
#i ncl ude <net/if.h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

This section describes the TCP/IP networking facilities, protocols, and data files available in UNICOS.
Unless otherwise noted, all include (header) files mentioned in this section are in the / usr /i ncl ude
directory.

Protocols

228

All network protocols are associated with a protocol family. A protocol family provides the services that
allow the protocol implementation to function within a specific network environment. These services may
include packet fragmentation and reassembly, routing, addressing, and basic transport. A protocol family
may support multiple methods of addressing, although the current protocol implementations do not. A
protocol family usually is composed of several protocols. The current system fully supports the DARPA
Internet protocol family. Raw socket interfaces are provided to the Internet Protocol (1P) and Internet
Control Message Protocol (ICMP) layer of the DARPA Internet. For a description of the user protocols of
the Internet protocol family, see i net (4P); the protocols are further detailed in t cp(4P) and udp(4P). For
a description of Internet Protocol (1P) and Internet Control Message Protocol (ICMP), see the i cnp(4P) and
i p(4P) man pages.

A network interface is similar to a device interface. Network interfaces compose the lowest layer of the
networking subsystem, mapping the network system to the device drivers. Associated with a protocol family
is an address format. An interface may support more than one protocol family or address format. Protocols
generally accept only one type of address format, usually determined by the addressing structure inherent in
the design of the protocol family and network architecture. TCP/IP uses the following address format:

#define AF_INET 2 /* internetwork: UDP, TCP, etc. */

The network facilities provide limited packet routing. A routing table is a table in the UNICOS kernel
composed of a set of data structures; it is used to select the appropriate network interface when transmitting
packets. This table contains one entry for each route to a specific network or host. A user process, called
the routing daemon (gat ed(8)), maintains this database with the aid of a routing socket (see r out e(4P)).
Only the super user may perform routing table manipulations.

SR-2014

INTRO(4P)

INTRO(4P)

A routing table entry has the following format, as defined in the net / r out e. h include file:

SR-2014

struct rtentry {
struct radix_node rt_nodes[2]; /* tree glue, and other val ues */
#defi ne rt_key(r) ((struct sockaddr *)((r)->rt_nodes->rn_key))
#defi ne rt_mask(r) ((struct sockaddr *)((r)->rt_nodes->rn_mask))
struct sockaddr *rt_gateway; /* val ue */
#i f ndef _CRAY
short rt_flags; /* up/ down?, host/net */
#el se
i nt rt_flags; /* up/down?, host/net */
#endi f
short rt_refcnt; /* # held references */
u_long rt_use; /* raw # packets forwarded */
struct ifnet *rt_ifp; /* the answer: interface to use */
struct ifaddr *rt_ifa; /* the answer: interface to use */
struct sockaddr *rt_gennask; /* for generation of cloned routes */
caddr_t rt_IIlinfo; /* pointer to link level info cache */
struct rt_netrics rt_rnx; /* metrics used by rx’'ing protocols */
short rt_idle; /* easy to tell Ilayer still live */
#i f def _CRAY
#define NRTA@ D 32 /* maxi mum size of the gid list */
| ong rt_gi d[NRTA D ; /* list of gids for restricting */
u_long rt_admtu; /* Adm nistrator ntu for the route */
int rt_time; /* Tinme when the route was added */
| ong rt_pat hnt u; /* Est. mnimm MU over path */
i nt rt_pmt uchanged; /* Timer for last change to pathnmtu */
/* 0 neans it has never been changed */
/*
* Yes, these are |IP specific. Wen it becones necessary to
* break up rentries according to AF, we’'ll do something.
*/
char rt_iptos; /* 8-bit IP TOS field */
/* Handle group id list as a variable length array */
i nt rt_gidcnt; /* number of gid's in gidlist */
| ong *rt_gidlist; /* gid list */

#endif /* _CRAY */

}

)

229

INTRO(4P)

230

Thert fl ags variableis defined as follows:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

RTF_UP
RTF_GATEWAY
RTF_HOST
RTF_REJECT
RTF_DYNAM C
RTF_MODI FI ED
RTF_DONE
RTF_MASK
RTF_CLONI NG
RTF_LLI NFO
RTF_STATI C
RTF_NOFORWARD
RTF_EXCLGI D
RTF_PROTCOR2
RTF_PROTOL
RTF_TOSMATCH
RTF_NOMTUDI SC

Ox1

0x2

0x4

0x8
0x10
0x20
0x40
0x80
0x100
0x400
0x800
0x1000
0x2000
0x4000
0x8000
0x10000
0x40000

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

INTRO(4P)

route usabl e

destination is a gateway
host entry (net otherwi se)
host or net unreachable
created dynam cally (by redirect) */
nmodi fi ed dynam cally (by redirect)*/

*/
*/
*/
*/

message confirned */
subnet mask present */
generate new routes on use */
generated by ARP or ESI'S */
manual | y added */
do not forward through */
gid list is exclusive */
protocol -specific routing flag */
protocol -specific routing flag */
hi gh-1 evel match required for TOS */
don’t do path MIU discovery */

Three types of entries are in a routing table: the route for a host, the route for all hosts on a network, and
the route for any destination not matched by entries of the first two types (a wildcard route). When you boot
the system, each network interface that has been configured automatically installs a routing table entry when
it wants to have packets sent through it. Typically, the interface specifies the route through a direct
connection to the destination host or network. If the route is direct (that is, not through a gateway), the
transport layer of a protocol family usually requests that the packet be sent to the host specified in the
packet. Otherwise, the request may be to address the packet to a host different from the eventual recipient

(that is, the packet is forwarded).

Routing table entries installed by a user process may not specify the hash field (rt _hash), reference count
field (rt _refcnt), usefield (rt _use), interface field (rt _i f p), time when the route was added
(rt_tinme), discovered path MTU field (rt _pat hnt u) , or timer for the last change to the path MTU

(rt _pmt uchanged); the routing routines fill these in.

If arouteisin use when it is deleted (that is, rt _r ef cnt has a nonzero value), the resources associated
with it are not reclaimed until further references to it are released.

The routing code returns EEXI ST if requested to duplicate an existing entry, ESRCH if requested to delete a
nonexistent entry, or ENOBUFS if insufficient resources were available to install a new route.

User processes may read the routing tables through a routing socket or the / dev/ memspecia file (see

men(4)).

Thert _use field contains the number of packets sent along the route.

The system administrator may use thert _nt u field to specify a maximum transmission unit size for
connections established over the route.

SR-2014

INTRO(4P) INTRO(4P)

A wildcard routing entry is specified with a destination address value of | NADDR_ANY. (The symbol

| NADDR_ANY is defined in the net i net /i n. h include file as 0.) Wildcard routes are used only when the
system does not find a route to the destination host and network. The combination of wildcard routes and
routing redirects can provide an economical mechanism for routing traffic.

Addressing
An address format is associated with each protocol family. All network addresses adhere to a general
structure, called a sockaddr. However, each protocol imposes finer and more specific structure, generally
renaming the variant.

struct sockaddr {
u char sa_len:32;
u_char sa_famly: 32;
char sa_dat a[32];
s

The sa_| en field contains the total length of the structure, which may exceed 16 bytes. The following
address values for sa_f ani | y are known to the system (and additional formats are defined for possible
future implementation):

#define AF_UN X 1 /* local to host (pipes, portals) */
#define AF_I NET 2 /[* internetwork: UDP, TCP, etc. */
Interfaces

Each network interface in a system corresponds to a path through which messages may be sent and received.
The TCP/IP network interfaces supported on UNICOS are the loopback interface (I o(4)), the

HY PERchannel adapter interface (hy(4)), the VME network interface (vire(4)), the HSX channel interface
(hsx(4)), and the HIPPI interface (hi ppi (4)). A network interface usually has a hardware device
associated with it, although certain interfaces (such as | 0) do not.

i octl (2) Requests
You also can use the following i oct | (2) requests to manipulate network interfaces. Unless specified, the

request takes an i f r eq structure as its parameter. This structure is defined in the net /i f . h include file,
as follows:

SR-2014 231

INTRO(4P) INTRO(4P)

struct ifreq {

#defi ne I FNAMVSI Z 16
char i fr_nane[| FNAMVSI Z] ; /* if name, for exanple, "en0" */
uni on {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;

i nt ifru_netric;
caddr _t i fru_data;
struct {

mac_| abel _t ifru_m nl abel ;
mac_| abel t ifru_maxl abel;
} ifru_secl abel;
long ifru_auth;

}y oifr_ifru;
#defi ne i fr_addr ifr_ifru.ifru_addr /* address */
#defi ne i fr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
#define i fr_broadaddr ifr_ifru.ifru_broadaddr/* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_netric ifr_ifru.ifru_nmetric /* metric */
#define ifr_data ifr_ifru.ifru_data /* for use by interface */
#i f def _CRAY
#define ifr_mu ifr_ifru.ifru_metric [* if mu */
#define ifr_rbufs ifr ifru.ifrumetric /* if read buffers */
#define ifr_wbufs ifr_ifru.ifru_nmetric /* if wite buffers */
#define i fr_m nl abel ifr_ifru.ifru_seclabel.ifru_m nlabel /* mninumsec level */
#define i fr_maxl abel ifr_ifru.ifru_seclabel.ifru_maxlabel /* maximum sec |level */
#defi ne ifr_auth ifr_ifru.ifru_auth /* valid authorities */
#endi f /* _CRAY */
b
A list of the available i oct | (2) requests follows:
SI OCG FADDR Gets the interface address.
S| OCG FBRDADDR Gets the broadcast address for protocol family and interface.
SI OCd FCONF Gets the interface configuration list. This request takes ani f conf structure

as a value-result parameter. Initially, you should set thei f ¢c_| en field of
this structure to the size of the buffer to which i f ¢_buf points. On return, it
contains the length, in bytes, of the configuration list.

SI OCA FDSTADDR Gets the point-to-point address for the interface.
SI OCd FFLAGS Gets the interface flags.
SI OCA FLABEL Gets the interface security label.

232 SR-2014

INTRO(4P)

SI OCG FMETRI C
SI OCG FMIru

SI OCA FNETMASK
SI OCA FRBUFS
SI OCA FWBUFS
SI OCSI FADDR

SI OCSI FBRDADDR
SI OCSI FDSTADDR
SI OCSI FFLAGS

SI OCSI FLABEL
SI OCSI FMETRI C
SI OCSI FMIru

SI OCSI FRBUFS
SI OCSI FWBUFS

INTRO(4P)

Gets interface metric.

Gets interface maximum transmission unit size.

Gets interface subnet mask.

Gets count of read buffers posted to low-level driver.

Gets maximum count of write buffers that may be posted to low-level driver.

Sets the interface address. Following the address assignment, the initialization
routine for the interface is called.

Sets the broadcast address for protocol family and interface.
Sets the point-to-point address for the interface.

Sets the interface flags field. If the interface is marked as being down, any
processes currently routing packets through the interface are notified.

Sets the interface security label.

Sets interface routing metric. Only user-level routers use the metric.
Sets interface maximum transmission unit size.

Sets count of read buffers to post to low-level driver.

Sets maximum count of write buffers that may be posted to low-level driver.

Thei f conf structureis defined in net /i f. h, as follows:

/*

* Structure used in SI OCG FCONF request.
* Used to retrieve interface configuration for machi ne

* (useful
*/
struct ifconf {
i nt

uni on

progranms that nust know all networks accessible).

ifc_len; /* size of associated buffer */

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;

#define ifc_buf
#define ifc_req

}

Network Data Files

ifc_ifcu.ifcu_buf

/* buffer address */

ifc_ifcu.ifcu_req /* array of structures returned */

TCP/IP commands (described in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011, and the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022) and TCP/IP library functions (described in the UNICOS System Libraries Reference Manual, Cray
Research publication SR—2080) use network data files.

SR-2014

233

INTRO(4P) INTRO(4P)

A list of the network data files follows.

Data file Man page entry Description
ftpusers ft pusers(b5) List of unacceptable f t p(1B) users
host s, hosts. bin host s(5) Contains network host name database
hosts. equi v hosts. equi v(5) Public information for validating remote autologin
.netrc netrc(5) TCP/IP autologin information for
outbound f t p requests
net wor ks net wor ks(5) Network name database
protocol s pr ot ocol s(5) Protocol name database
.rhosts rhost s(5) List of trusted remote hosts and account names
services servi ces(5) Network service name database
FILES
/fusr/include/net/if.h Include file for i f r eq structure
/usr/include/ net/route.h Kernel packet forwarding database
/usr/include/sys/socket.h Include file that defines address families
SEE ALSO

234

hi ppi (4), hsx(4), hy(4), i cnp(4P), i net (4P), i p(4P), mem(4), r out e(4P), t cp(4P), udp(4P), vie(4),
ft puser s(5), host s(5), host s. equi v(5), net r c(5), net wor ks(5), pr ot ocol s(5), r host s(5),
servi ces(5)

ft p(1B), rensh(1B), r | ogi n(1B) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

i octl (2), socket (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

get pr ot (3C), get ser v(3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR—2080

gat ed(8), r out e(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

TCP/IP Network User’s Guide, Cray Research publication SG—2009
"Internet Transport Protocols,” XSIS 028112, Xerox System Integration Standard

SR-2014

ARP(4P) ARP (4P)

NAME

ar p — Address Resolution Protocol

SYNOPSIS

pseudo- devi ce ether

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The ar p protocol dynamically maps between DARPA Internet and 10-Mbyte/s Ethernet addresses. The
10-Mbyte/s Ethernet and FDDI interface drivers use ar p. It is not specific to the Internet protocols, to
FDDI, or to 10-Mbyte/s Ethernet, but this implementation currently supports only Ethernet and FDDI.

The ar p protocol caches Internet-Ethernet address mappings. When an interface requests a mapping for an
address not in the cache, ar p queues the message, which requires the mapping, and broadcasts a message on
the associated network that requested the address mapping. If a response is provided, the new mapping is
cached and any pending message is transmitted. ar p queues at most one packet while waiting for a
response to a mapping request; only the most recently transmitted packet is kept. If the target host does not
respond after several requests, the host is considered to be down for a short period (normally about 20
seconds), alowing an error to be returned to transmission attempts during this interval. The error is
EHOSTDOWN for a non-responding destination host, and EHOSTUNREACH for a non-responding router.

The ar p cache is stored in the system routing table as dynamically-created host routes. The route to a
directly-attached broadcast network is installed as a "cloning" route (one with the RTF_CLONI NG flag set),
causing routes to individua hosts on that network to be created on demand. These routes time out
periodically (normally 20 mintues after validation); entries are not validated when not in use. An entry for a
host which is not responding is a "reject" route (one with the RTF_REJECT fl ag set).

ar p entries may be added, deleted, or changed with the ar p(8) utility. Manually-added entries may be
temporary or permanent, and may be "published,” in which case the system will respond to ARP requests for
that host as if it were the target of the request. In the past, ARP was used to negotiate the use of atrailer
encapsulation. This is no longer supported.

The ar p protocol watches passively for hosts impersonating the local host (that is, a host that responds to an
ARP mapping request for the local host’s address).
MESSAGES

The following message indicates that ar p has discovered another host on the local network that responds to
mapping requests for its own Internet address:

duplicate I P address!! sent from ethernet address: ox: %: % %: %: %

SR-2014 235

ARP(4P) ARP (4P)

BUGS

ARP packets on the Ethernet use only 42 bytes of data; however, the smallest legal Ethernet packet is 60
bytes (not including the cyclic redundancy code (CRC)). Some systems may not enforce the minimum
packet size.

SEE ALSO

236

r out e(4P) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

r out e(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
i net (4P) for a description of Internet protocol family
ar p(8) to display address resolution display and control

i f confi g(8) to configure network interface parameters in the UNICOS Administrator Commands Reference
Manual, Cray Research publication SR—2022

An Ethernet Address Resolution Protocol, RFC 826, Dave Plummer, Network Information Center, SRI

SR-2014

ICMP (4P) ICMP (4P)

NAME
i cnp — Internet Control Message Protocol

SYNOPSIS

#i ncl ude <sys/socket. h>
#i nclude <netinet/in.h>

s = socket (AF_I NET, SOCK_RAW | PPROTO | CVP);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The Internet Control Message Protocol (ICMP) is a mechanism that hosts and gateways in an |P
internetwork use to exchange error messages and other maintenance information. The ICMP is defined in
DARPA Internet Request for Comments, RFC 792. UNICOS provides a limited interface to ICMP for user
programs; sending incorrect ICMP information can cause problems throughout the internetwork.

Transmission
ICMP is a datagram protocol; therefore, a raw ICMP socket has no connections (I i st en(2) and accept (2)
return errors). The sendt 0(2) system call is the normal method for transmission through an ICMP socket.
The connect (2) system call, though not supported by the underlying protocol, permanently associates the
socket with a destination for future transmissions, thus enabling use of the send(2) and wri t e(2) system
calls on the socket.

The entire contents of a transmission (the buffer in a sendt 0(2) system call, send(2) system call, or

wr it e(2) system call) is packaged into the data portion of one datagram for transmission. To be accepted
at the destination, the buffer to be transmitted must contain a valid ICMP datagram, beginning with an ICMP
header with a valid checksum. UNICOS does not enforce this locally; datagrams that are not valid appear to
be sent with no problems, but they confuse or are ignored by their recipients. An ICMP datagram structure
is defined in the net i net /i p_i cnp. h include file.

Reception
Ther ecvfrom?2) system call is the norma method for receiving data through an ICMP socket. The
connect (2) system call, though not supported by the underlying protocol, permanently associates the socket
with a source of future transmissions, thus enabling use of ther ecv(2) and r ead(2) system calls on the
socket.

Received ICMP datagrams are presented to the user from the socket with their ICMP header included. The
ICMP datagram structure is defined in net i net /i cnp. h asthei cnp structure.

Only ICMP datagrams that have correct data checksums are passed to user programs. Datagrams that have
incorrect checksums (which may have been corrupted in transit) are discarded without notice. The following
four kinds of ICMP datagrams are not available to user programs:

SR-2014 237

ICMP (4P) ICMP (4P)

¢ Echo request (type 8)

¢ Time-stamp request (type 13)

¢ Information request (type 15)

Address mask request (type 17)

These ICMP datagrams are handled in the kernel and then discarded.

If you do not provide enough buffer space for the entire available datagram in a call to r ecvf r om?2),
read(2), or r ecv(2), excess bytes at the end of the datagram will be silently discarded.

NOTES
Only the super user may create an ICMP socket.
ICMP provides no mechanism for out-of-band data.

Y ou cannot specify IP options for an outbound ICMP datagram.

MESSAGES
A socket operation may fail with one of the following errors returned:

EADDRNOTAVAI L
Returned if the process tried to create a socket with a network address for which no network
interface exists.

El SCONN
Returned if the socket already has a connection when a connection is tried, or if the process is
trying to send a datagram with the destination address specified when the socket is already
connected.

ENOBUFS
Returned if the system ran out of memory for an internal data structure.

ENOTCONN
Returned if the process is trying to send a datagram, but no destination address has been specified
and the socket is not already connected.

FILES

/usr/include/netinet/in.h Include file for Internet addresses
fusr/include/ netinet/ip_icnp.h Defines ICMP datagram structure

[usr/include/sys/socket.h Include file that defines address families

238 SR-2014

ICMP (4P) ICMP (4P)

SEE ALSO
i net (4P), i ntro(4P), i p(4P)

accept (2), connect (2), | i sten(2), read(2), recv(2), send(2), wi t e(2) in the UNICOS System
Calls Reference Manual, Cray Research publication SR—2012

pi ng(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
DARPA Internet Reguest for Comments, RFC 792

SR-2014 239

IGMP (4P) IGMP (4P)

NAME
i gnp — Internet Group Management Protocol

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The Internet Group Management Protocol (IGMP) is a mechanism that hosts and routers on the physical
network use to identify which hosts currently belong to which multicast groups. Multicast routers use this
information to determine which multicast diagrams to forward on to potential interfaces. The IGMP is
defined in DARPA Internet Request for Comments, RFC 1112.

IGMP is considered part of the Internet Protocol (1P) layer, and messages are transmitted in |P datagrams.

SEE ALSO
i net (4P), i ntro(4P), i p(4P)

240 SR-2014

INET (4P) INET (4P)

NAME

i net — Description of Internet protocol family

SYNOPSIS

#i ncl ude <sys/types. h>
#include <netinet/in.h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The Internet protocol family is a collection of protocols, piled on top of the Internet Protocol (1P) layer, that
use the Internet address format. The Internet protocol family is composed of the IP itself, the Internet
Control Message Protocol (ICMP), the Transmission Control Protocol (TCP), and the user datagram protocol
(UDP).

The Internet protocol family provides protocol support for the socket types SOCK_STREAM SOCK DGRAM
and SOCK_RAW TCP supports the SOCK _STREAM abstraction, UDP supports the SOCK_DGRAM
abstraction, and the SOCK_RAWSsocket type provides a raw interface to IP and ICMP.

Internet addresses are 4-byte quantities stored in network standard format. The neti net/i n. h include file
defines an Internet address, as follows:

struct {

u_l ong st _addr: 32;
} s_da;
#define s_addr s_da. st _addr

Sockets bound to the Internet protocol family use the following addressing structure:

struct sockaddr_in {
u_l ong sin_len:32;
u_long sin_famly:32;

_SHORTPAD
u_short sin_port;
struct in_addr sin_addr;

char sin_zero[16];

b
You may create sockets by using address | NADDR_ANY to cause wildcard matching on incoming messages.

SR-2014 241

INET (4P) INET (4P)

FILES
/usr/include/netinet/in.h Include file for Internet addresses
/usr/include/sys/types.h Include file for socket types
SEE ALSO

i cnp(4P), i p(4P), t cp(4P), udp(4P)

242 SR-2014

IP(4P) IP(4P)

NAME

i p — Description of Internet Protocol

SYNOPSIS

#i ncl ude <sys/socket. h>
#i nclude <netinet/in.h>

s = socket (AF_I NET, SOCK RAW protocol) ;

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The Internet Protocol (1P) is the network layer protocol that the Internet protocol family uses. IP provides
the functions necessary to deliver an Internet datagram from a source to a destination over a TCP/IP
network. 1P is defined in MIL-STD 1777 and in RFC 791. You probably will not have to use IP sockets
unless you are developing new upper-layer protocols. The Transmission Control Protocol (TCP) and user
datagram protocol (UDP) are for more general use. (For more information, see t cp(4P) and udp(4P),
respectively.)

Transmission
IP is a datagram protocol, so a raw P socket has no connections; that is, | i st en(2) and accept (2) return
errors. The sendt 0(2) system call is the normal method for transmission through an 1P socket. The
connect (2) system call, though not supported by the underlying protocol, permanently associates the socket
with a destination for future transmissions, thus enabling use of the send(2) and the wr i t e(2) system calls
on the socket.

The entire contents of a transmission (the buffer in a sendt o(2) system call, send(2) system call, or
wr it e(2) system call) is packaged into the data portion of one datagram for transmission. The kernel
provides the IP header. The protocol number in the IP header is the protocol number specified in the
socket (2) system call used to create the socket.

Reception
Ther ecvfr om2) system call is the norma method for receiving data through an IP socket. The
connect (2) system call, though not supported by the underlying protocol, permanently associates the socket
with a destination for future transmissions, thus enabling use of the r ecv(2) and r ead(2) system calls on
the socket.

Received IP datagrams are presented to the user from the socket with the IP header included. The IP header
structure is defined in the net i net /i p. h include file as the i p structure. The datagram contents
immediately follow the header in the receiving buffer. Because IP neither generates nor tests checksums on
the data, the data may be garbled in transmission.

SR-2014 243

IP(4P) IP(4P)

Only incoming datagrams that carry the protocol number specified in the socket (2) system call are
available from an 1P socket.

If you do not provide enough buffer space for the entire available datagram in a call to r ecvf r om?2),
read(2), or r ecv(2), excess bytes at the end of the datagram will be discarded without notice. To
determine whether bytes are missing, check the number of bytes returned from r ecvf r om2) against the
i p_I en field in the header of the received datagram.

Options
You may set options at the IP level when using higher-level protocols that are based on IP (such as TCP and
UDP). You also may access the IP protocol through a raw socket when developing higher-level protocols or
developing specia-purpose applications. The following are IP-level set sockopt (2) and get sockopt (2)
system call options:

| P_OPTI ONS
Provides IP options to be transmitted in the IP header of each outgoing packet or examines the
header options of incoming packets. You may use IP options with any socket type in the Internet
family. The IP protocol specification (RFC 791) specifies the format of 1P options to be sent,
except the list of addresses for Sour ce Rout e options must include the first-hop gateway at the
beginning of the list of gateways. The first-hop gateway address is extracted from the option list
and the size adjusted accordingly before use. To disable previously specified options, use a zero-
length buffer. An example of this option follows:

set sockopt (s, IPPROTO P, IP_OPTIONS, NULL, 0);

| P_RECVDSTADDR
Causes the r ecv(2) system call to return the destination 1P address for a UDP datagram. This
option is enabled only on a SOCK_DGRAM socket.

| P_TGCS, | P_TTL
Sets the type-of-service (TOS) and time-to-live (TTL) fields in the IP header for SOCK_STREAM
and SOCK_DGRAM sockets. The following example includes both these parameters:

int tos = | PTOS_ LOADELAY; /* see netinet/in.h */
set sockopt (s, IPPROTO IP, IP_TCS, &tos, sizeof(tos));

int ttl = 60; /* max = 255 */
set sockopt (s, IPPROTOIP, IP_TTL, &ttl, sizeof (ttl));

Multicast Options
IP multicasting is supported only on AF_| NET sockets of type SOCK_DGRAMand SOCK_RAWand only on
networks in which the interface driver supports multicasting. The following are multicast options:

| P_ADD_MEMBERSH P
Places a host in a multicast group. A host must become a member of a multicast group before it
can receive datagrams sent to the group. An example follows:

244 SR-2014

IP(4P)

IP(4P)

struct ip_nreq nreq;
set sockopt (s, IPPROTO IP, |P_ADD MEMBERSHI P, &nreq, sizeof(nreq));

In the previous example, nT eq has the following structure:

struct ip_nreq {
struct in_addr inr_nultiaddr; /* multicast group to join */
struct in_addr inr_interface; /* interface to join on */

}

Thei nr _i nt er f ace parameter should be | NADDR_ANY to choose the default multicast
interface, or the IP address of a particular multicast-capable interface if the host is multihomed.
Membership is associated with one interface; programs that run on multihomed hosts may have to
join the same group on more than one interface. Y ou may add up to the specified value in the

| P_MAX_MEMBERSH PS option on one socket.

| P_DROP_MEMBERSHI P
Drops a membership in a multicast group. The nt eq parameter contains the same values as those
used to add the membership. An example follows:

struct ip_nreq nreq;
set sockopt (s, IPPROTO I P, |P_DROP_MEMBERSH P, &nreq, sizeof(nreq));+

When the socket is closed or the process exits, memberships also are dropped.

| P_MULTI CAST_I F
Specifies the interface on which each multicast transmission is sent. The following is an example of
this option:

struct in_addr addr;
set sockopt (s, IPPROTO IP, IP_MILTICAST IF, &addr, sizeof (addr));

In this example, you can use addr to specify the local address of the desired interface, or

| NADDR_ANY to specify the default interface. To obtain the local 1P address and multicast
capability of an interface, use the i oct | (2) system calls SI OCGE FCONF and SI OCA FFLAGS.
Most applications do not have to use this option.

| P_MULTI CAST_LOCP
Gives the sender explicit control over whether subsequent datagrams are looped back. The
following is an example of this option:

u_char | oop; /* 0 = disable, 1 = enable (default) */
set sockopt (s, IPPROTO-IP, |IP_MILTICAST_LOOP, & oop, sizeof(loop));

SR-2014 245

IP(4P)

IP(4P)

If a multicast datagram is sent to a group to which the sending host itself belongs (on the outgoing
interface), a copy of the datagram is, by default, looped back by the IP layer for local delivery.
This option improves performance for applications that may have no more than one instance on a
single host (such as a router daemon) by eliminating the overhead of receiving their own
transmissions. Generally, applications for which more than one instance may be on a single host
(such as a conferencing program) or for which the sender does not belong to the destination group
(such as a time-querying program) should not use this option.

A multicast datagram sent with an inital TTL greater than 1 may be delivered to the sending host on
a different interface from that on which it was sent if the host belongs to the destination group on
that other interface. The loopback control option does not affect such delivery.

| P_MULTI CAST_TTL

Changes the TTL for outgoing multicast datagrams to control the scope of the multicasts. The
following example uses this option:

u_char ttl; /[* range: 0O to 255, default =1 */
set sockopt (s, IPPROTO IP, |P_MJLTICAST TTL, &ttl, sizeof (ttl));

Datagrams with a TTL of 1 are not forwarded beyond the local network. Multicast datagrams with
aTTL of O are not transmitted on any network, but they may be delivered locally if the sending
host belongs to the destination group and if multicast loopback has not been disabled on the sending
socket. If a multicast router is attached to the local network, multicast datagrams with a TTL
greater than 1 may be forwarded to other networks.

Raw IP Options

246

Raw P sockets are connectionless, and they usually are used with the sendt o(2) and r ecvf r om(2) system
cals. The connect (2) system call also may fix the destination for future packets, in which case, you may
usether ead(2) or recv(2), and wi t e(2) or send(2) system calls.

If the protocol argument is O, the default protocol | PPROTO_RAWis used for outgoing packets, and only
incoming packets destined for that protocol number are received. If pr ot o is a honzero value, that value is
used on outgoing packets and is used to filter incoming packets.

Outgoing packets automatically have an IP header prepended to them (based on the destination address and
the protocol number with which the socket is created), unless the | P_HDRI NCL option has been set.
Incoming packets are received with header and options intact. A raw IP option follows:

| P_HDRI NCL

Indicates the complete |P header is included with the data. Y ou may use this option only with the
SOCK_RAWtype. An example follows:

#i ncl ude <netinet/ip. h>
int hincl = 1,
set sockopt (s, IPPROTO IP, IP_HDRINCL, &hincl, sizeof(hincl));

Unlike previous UNICOS releases, the program must set al of the fields of the IP header, including
the following:

SR-2014

IP(4P) IP(4P)

i p->i p_v = | PVERSI ON;

i p->i p_hl hlen >> 2;

ip->ip_id O; /* 1 =o0n, 0 =off */
i p->ip_off = offset;

If the header source address is set to the kernel, the program chooses an appropriate address.

NOTES
Only the super user may create an |P socket.

IP provides no mechanism for out-of-band data.

MESSAGES

If a socket operation fails, it returns one of the following error messages:

EADDRNCOTAVAI L
The process tried to create a socket by using a network address for which no network interface
exists.

El SCONN
The socket already has a connection when a connection is tried, or the process is trying to send a
datagram with the destination address specified when the socket is already connected.

ENOBUFS
The system ran out of memory for an internal data structure.

ENOTCONN
The process is trying to send a datagram, but no destination address has been specified and the
socket is not aready connected.

When you are setting or getting IP options, the following errors specific to IP can occur:

[El NVAL]
An unknown socket option hame was specified.

[El NVAL]
An unknown socket descriptor was specified.

[El NVAL]
The IP option field was improperly formed (for example, an option field was shorter than the
minimum value or longer than the option buffer provided).

FILES
fusr/include/ netinet/in.h Include file for Internet addresses
/fusr/include/ netinet/ip.h Defines the IP header structure
/usr/include/sys/socket.h Defines address families

SR-2014 247

IP(4P) IP(4P)

SEE ALSO
i cnp(4P), i gnp(4P), i net (4P), i nt r o(4P), t cp(4P), udp(4P)

accept (2), connect (2), get sockopt (2), | i sten(2), read(2), recv(2), recvfrom?2), send(2),
socket (2), wi t e(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

RFC 791

248 SR-2014

NFS(4P) NFS(4P)

NAME
nf s — UNICOS network file system (UNICOS NFS)

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The UNICOS network file system (UNICOS NFS) is an implementation of the network file system (NFS)
for Cray Research systems running UNICOS. NFS was originally designed and developed to reduce the
need for local disk storage in distributed environments. NFS executes on a wide variety of computing
hardware and is implemented on operating systems other than its development home in the Berkeley UNIX
environment.

NFS allows file systems to be shared across a network of machines. The standard system calls for file
operations (cl ose(2), open(2), r ead(2), and wri t e(2)) system calls are used to access both local and
network-based files; the location of files can be transparent to the user. Standard permission mechanisms are
used to control file access.

The user interface to NFS is transparent; that is, there is no user interface. After a system is configured,
users simply read and write their files, whether they are on local disk or exist elsewhere on the network.

Client and Server Modes
Client NFS alows users to make standard system calls (cl ose(2), cr eat e(2), del et e(3C), open(2),
read(2), and wr i t (2)) to a portion of file name space on which a network file system has been mounted
(by using mount (8)). These calls are intercepted by a process in the client system, translated into the
corresponding NFS requests, and packaged for transmission across a network to a server machine. With
UNICOS NFS, the file system switch (FSS) facilitates mapping between local requests and NFS requests.

Server NFS implementations allow a portion of their local file system to be exported (made available for
remote mounting). When NFS requests for exported file systems are received, the server performs the
indicated operation; about 20 file system operations are supported. In the case of read or write requests, the
indicated data is returned to the remote NFS client (for a read operation), or written to local disk (for a write
operation).

Client and server implementations are logically separate. Some implementations (for example, the
implementation of NFS for MS-DOS) are client only; that is, they can make use of remote systems but
cannot export file systems of their own. Other implementations (for example, the implementation of NFS for
VMS) are server only; they can respond to requests from client systems but do not allow remote file systems
to be mounted on their local namespace. UNICOS NFS includes both client and server modes.

A server can grant access to a specific file system to certain clients by adding an entry for that file system to
the server's/ et c/ export s file (see export s(5)). A client gains access to that file system by using the
nmount (2) system call, which requests a file handle for the file system itself. After the client mounts the file
system, the server issues a file handle to the client for each file (or directory) the client accesses. If the file

is somehow removed on the server side, the file handle becomes stale (disassociated with a known file).

SR-2014 249

NFS(4P) NFS(4P)

A client cannot export file systems that it has mounted over the network; therefore, clients must mount file
systems directly from the server on which the file systems reside. The user ID (UID) and group ID (GID)
mappings must be the same between client and server; however, the server maps UID 0 (the super user) to
UID-2 before performing access checks for a client. This inhibits super-user privileges on remote file
systems.

Network Interface (RPC, XDR, and UDP/IP)
NFS is a set of high-level protocols, based on a remote procedure call (RPC) model; NFS network requests
are made through calls to remote procedures that implement NFS file system semantics. (The libraries that
contain these RPC procedures have been available since the UNICOS 2.0 release.)

RPC makes use of an intermediate data representation for all information sent to and received from the
network. This intermediate form is called External data representation (XDR). (The libraries that contain
these XDR procedures have been available since the UNICOS 2.0 release.)

Stateless Servers
Within NFS, all state information (such as open file status) is maintained by the client implementations,
while the servers are said to be stateless. Servers are thus relatively simple, and recovery operations are
more reliable than with stateful servers.

Mount and Lock Managers
Managers handle operations that are related to particular implementations of file systems, such as UNIX or
UNICOS file systems, but are not deemed to be universal operations. Currently, two managers are defined
for NFS: one handles the mount protocol; the other handles file locking. The managers typicaly run as
user-level processes, and they communicate with the kernel implementation in very carefully defined ways.

NOTES

UNICOS NFS is a licensed product that also requires UNICOS and UNICOS TCP/IP licenses. Therefore,
UNICOS NFS may not be available at your site.

In most NFS implementations, user ID (UID) and group ID (GID) values are the same between client and
server. The network information service (NIS) distributed data lookup service is often used to manage
passwd(5) and gr oup(5) files to ensure consistency across an entire NFS domain. For more information
about using the network information service (N1S) feature, see the UNICOS Networking Facilities
Administrator’s Guide, Cray Research publication SG—2304.

UNICOS NFS sites also can use the ID mapping facility, which provides for the operation of UNICOS NFS
in environments that are not administratively homogeneous. For more information, see the UNICOS
Networking Facilities Administrator’s Guide, Cray Research publication SG—2304. Typically, the server
maps UID 0 (root) to UID-2 before performing access checks for a client.

MESSAGES

Generally, physical disk 1/O errors detected on the server are returned to the client for action. If the server is
down or inaccessible, the client sees the following console message:

NFS: file server not responding: still trying.

250 SR-2014

NFS(4P) NFS(4P)

The client continues to send the request until it receives an acknowledgment from the server. This means
that the server can crash (or power down) and come back up without any special action required by the
client. It also means that the client process requesting the 1/0O will block and remain insensitive to signals,
deeping inside the kernel at priority PRI Bl O,

SEE ALSO
exports(5), f st ab(5)
nmount (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

i ntro(3C), r pc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

nmount (8), nf saddmap(8), nf scl ear (8), nf sd(8), nf sl i st (8), nf smer ge(8), nf sst at (8) in the
UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304

SR-2014 251

ROUTE (4P) ROUTE (4P)

NAME

r out e — Kernel packet forwarding database

SYNOPSIS

#i ncl ude <sys/socket. h>
#i nclude <net/if.h>
#i ncl ude <net/route. h>

int famly
s = socket (PF_ROUTE, SOCK RAW family);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

252

The r out e facility performs packet routing services. The kernel maintains a routing information database
known as a routing table, which selects the appropriate network interface when packets are transmitted. A
user process (or possibly multiple cooperating processes) maintains this routing table by sending messages
over a special kind of socket. The use of this routing table supersedes the use of the fixed-sizei oct | ,
implemented in earlier releases. Only the super user can make changes to the routing table.

The operating system might spontaneously emit routing messages in response to external events, such as
receipt of a redirect, or failure to locate a suitable route for a request.

Routing table entries can exist for a specific host or for al hosts on a generic subnetwork (as specified by a
bit mask and value under the mask). To achieve the effect of wildcard or default routes, use a mask of all
0's. Some routes might be hierarchical.

When the system is booted and addresses are assigned to the network interfaces, each protocol family installs
a routing table entry for each interface when it is ready for traffic. Usually, the protocol specifies the route
through each interface as a direct connection to the destination host or network. If the route is specified as
direct, the transport layer of a protocol family usually requests that the packet be sent to the same host
specified in the packet. Otherwise, it requests the interface to address the packet to the gateway listed in the
routing entry (that is, the packet is forwarded).

When the kernel is routing a packet, it first tries to find a route to the destination host. Failing that, it makes
a search for a route to the network of the destination. Finally, it chooses any route to a default (or wildcard)
gateway. If no entry is found, the destination is declared to be unreachable, and if any processes are
listening for messages on the routing socket, a routing-miss message is generated.

A wildcard routing entry is specified with a destination address value of 0. Wildcard routes are used only
when the system does not find a route to the destination host and network. The combination of wildcard
routes and routing redirects can provide an economical mechanism for routing traffic.

SR-2014

ROUTE (4P) ROUTE (4P)

You can open the channel for passing routing control messages by using the socket call shown in the
SYNOPSIS section. You can designate the family argument to be AF_UNSPEC, which provides routing
information for all address families, or you can restrict it to a specific address family by designating a
specific family argument. You can have more than one routing socket open per system.

Messages are formed with a header followed by a small humber of socket addresses (sockaddr fields),
interpreted by position, and delimited by the length entry in the sockaddr field (this length is variable).

A bit mask within the header specifies which address is present; the position sequence is least-significant to
most-significant bit within the vector. The kernel returns any messages it receives, and copies are sent to all
interested listeners. The kernel provides the process ID for the sender; the sender can use an additional
sequence field to distinguish between outstanding messages. However, when kernel buffers are exhausted,
message replies might be lost.

The kernel can reject certain messages; it indicates rejection by filling in thert m_er r no field. The routing
code returns EEXI ST if requested to duplicate an existing entry, ESRCH if requested to delete a nonexistent
entry, or ENOBUFS if insufficient resources were available to install a new route. In the current
implementation, all routing processes run locally; the values for rt m_er r no are available through the
normal er r no mechanism, even if the routing reply message is lost.

A process can avoid the expense of reading replies to its own messages by issuing a set sockopt () call
(see get sockopt (2)), indicating that the SO _USEL OOPBACK option at the SOL_ SOCKET level will be
turned off. A process can ignore all messages from the routing socket by issuing a shut down(2) system
call for further input.

If arouteisin use when it is deleted, the routing entry is marked down and removed from the routing table,
but the resources associated with it are not reclaimed until all referencesto it are released. User processes
can obtain information about the routing entry to a specific destination by using a RTM_GET message, or by
caling the sysct | routine.

Messages
Following is a list of the messages and their meanings that the routing facility generates:
#defi ne RTM _ADD Ox1 /* Add route */

#defi ne RTM DELETE 0x2 /* Delete route */

#define RTM CHANGE O0x3 /* Change netrics, flags, or gateway */
#define RTM _CGET 0x4 /* Report information */

#define RTM LOSING Ox5 /* Kernel suspects partitioning */
#define RTM REDI RECT 0x6 /* Told to use different route */

#define RTM_ M SS 0x7 /* Lookup failed on this address */
#define RTM RESOLVE Oxb /* Request to resolve dst to LL addr */
#defi ne RTM _LOCK Ox8 /* Lock metric val ues */

SR-2014 253

ROUTE (4P)

Message Headers
An example of a message header follows:

struct rt_msghdr {
u_short rm _nsglen;
u _char rtmuversion;
u_char rtmtype;
u_short rnt _index;
pid_t rm _pid;
i nt rtmaddrs;
i nt rtmseq;
rtm errno;
i nt rtmfl ags;
i nt rtmuse;
ulong rtminits;
struct rt_metrics rtmrnx;
1

Metrics Structure
The structure for the metrics is as follows:

struct rt_metrics {
u_l ong rnx_I ocks;
u_l ong rnx_ntu;
u_l ong rnx_hopcount;
u_l ong rnx_expire;
u_l ong rnx_recvpi pe;
u_l ong rnx_sendpi pe;
u_l ong rnx_ssthresh;
ulong rnx_rtt;
u_long rnx_rttvar;
b

Flags
Flags include the following values:

254

/*
/*
/*
/*
/*
/*
/*
/*
/*

ROUTE (4P)

/*
/*
/*

Ski p nonunder st ood nessages */
Future binary conpatibility */
Message type */

/* Index for associated ifp */
/* ldentify sender */
/* Bit mask for sockaddrs in nsg */

/* For sender to identify action */
/* Way failed

/* Kernel and nessage flags */

/* Fromrtentry */

/*
/*

Values to be initialized */
Metrics themsel ves */

Kernel nust |eave these val ues al one */
MIU for this path */

Max hops expected */

Lifetine for route (e.g., redirect) */
I nbound del ay- bandwi th product */

Qut bound del ay- bandw th product */

Qut bound gateway buffer limt */
Estimated round-trip time */

Estimated rtt variance */

SR-2014

ROUTE (4P)

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

RTF_UP ox1
RTF_GATEWAY Ox2
RTF_HOST 0x4

RTF_REJECT 0x8
RTF_DYNAM C 0x10

RTF_MODI FI ED 0x20
RTF_DONE 0x40
RTF_MASK 0x80
RTF_CLONI NG 0x100

RTF_LLI NFO 0x400
RTF_STATI C 0x800
RTF_NOFORWARD 0x1000

RTF_EXCLGI D 0x2000
RTF_PROTO2 0x4000
RTF_PROTO1 0x8000
RTF_TOSMATCH 0x10000

RTF_NOMIuUbl SC 0x40000

Metric Value Specifiers
Specifiers for metric valuesinrmx_| ocks and rt m_i ni t s are as follows:

Address Specifiers

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

RTV_Mru Ox1 I *
RTV_HOPCOUNT 0x2 /*
RTV_EXPIRE 0x4 /*
RTV_RPI PE 0x8 /*
RTV_SPI PE 0x10 /*
RTV_SSTHRESH 0x20 /*
RTV_RTT 0x40 /*
RTV_RTTVAR 0x80 /*

/* Route usable */
/* Destination is a gateway */
/* Host entry (net otherw se) */

/* Host or

/* Created dynanmically (by redirect)
/* Modified dynami cally (by redirect)

ROUTE (4P)

net unreachable */

/* Message confirmed */
/* Subnet nmask present
/* Cenerate new routes on use */
/* Generated by ARP or
/* Manual |y added */
/* Do not forward through */
is exclusive */

/* gid list
/* Protocol -specific routing flag */
/* Protocol -specific routing flag */

/* High-1eve

Initi
Initi
Initi
Initi
Initi
Initi
Initi
Initi

al i
al i
al i
al i
al i
al i
al i
al i

ze
ze
ze
ze
ze
ze
ze
ze

or
or
or
or
or
or
or
or

*/

ESI S */

*/
*/

mat ch required for TOS */
/* Do not do path MIU discovery */

| ock
| ock
| ock
| ock
| ock
| ock
| ock
| ock

Specifiers for which addresses are present in the messages are as follows:

SR-2014

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

RTA_DST Ox1 /*
RTA_GATEWAY 0x2 /*
RTA_NETMASK 0x4 /*

RTA_GENMASK 0x8 /*
RTA_I FP 0x10 /*
RTA_I FA 0x20 /*
RTA_AUTHOR 0x40 /*

Desti nati on sockaddr
Gat eway sockaddr
Net nask sockaddr

_m

u */

_hopcount */
_hopcount */
_recvpipe */
_sendpi pe */
_ssthresh */
rtt */
_rttvar */

Cl oni ng mask sockaddr
I nterface name sockaddr present

I nterface addr
sockaddr

for

aut hor

of

present */
present */
present */

present */

sockaddr present

redirect

*/
*/
*/

255

ROUTE (4P) ROUTE (4P)
SEE ALSO

get sockopt (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012
r out e(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

256 SR-2014

TCP(4P) TCP(4P)

NAME

t cp — Transmission Control Protocol

SYNOPSIS

#i ncl ude <sys/socket. h>
#i nclude <netinet/in.h>

s = socket (AF_I NET, SOCK STREAM 0);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The Transmission Control Protocol (TCP) provides reliable, flow-controlled, two-way byte streams between
pairs of programs running on hosts in an Internet Protocol (1P) network. The protocol is defined in DARPA
Internet Request for Comments, RFC 793.

TCP alows for multiple byte streams between a pair of hosts by associating each connection on a host with
a port number. The Internet addresses of the connected hosts and two port numbers, one on each host,
uniquely identifies a connection. Port numbers are integers, specified in the bi nd(2) or connect (2) system
cal, ranging in value from 1 to 65,535. By Internet convention, some ports are reserved for well-known
services (for example, hosts provide TELNET service by listening for connections on port 23). These
services are listed in DARPA Internet Request for Comments, RFC 1010. By Berkeley UNIX convention,
only the super user may bind to ports that have numbers lower than 1024.

Connection
Sockets that use the TCP protocol are either active or passive. Active sockets initiate connections to passive
sockets. TCP sockets are created as active sockets; to create a passive socket, you must have the
i sten(2) system call after the socket is bound to a port that has the bi nd(2) system call. Only passive
sockets may use the accept (2) system call to accept incoming connections. Only active sockets may use
the connect (2) system call to initiate connections. After a socket has been made passive, it cannot be
made active again.

Passive sockets may ‘‘underspecify’’ their location to match incoming connection requests from multiple
networks. This technique, termed wildcard addressing, allows one server to provide service to clients on
multiple networks. To create a socket that listens on al networks, bind the socket to the Internet address
| NADDR_ANY (defined in the net i net /i n. h include file). The TCP port may still be specified at this
time; if you do not specify the port, the system will assign one.

Transmission
TCP is a byte-stream protocol with connections; wr i t e(2) is the usual method of sending on a TCP socket.
The send(2) system call is useful for sending out-of-band data. The sendt 0(2) system call (see send(2))
works, but it is misleading because the destination address is ignored.

SR-2014 257

TCP(4P) TCP(4P)

TCP is a byte stream, not a word stream. Although you can send data types other than bytes over a TCP
connection, for example, by passing the address of an integer to wr i t e(2), no guarantee exists that an
integer will come out at the other end. The receiving host may have a different word size, a different byte
order, or other incompatibilities.

Reception

The r ead(2) system call is the usual method of receiving on a TCP socket. Ther ecv(2) system cal is
useful for receiving out-of-band data. The r ecvf r om(2) system call (seer ecv(2)) works, but it is
misleading because the source address is ignored.

Because TCP presents data from a socket in arbitrary chunks as the data becomes available from the
Internetwork, TCP sockets are more likely than regular files to return fewer bytes than requested. Be sure to
check the return value from r ead(2).

Disconnection

Executing the shut down(2) system call on a TCP socket before the cl ose(2) system call alows you to
close down one side of the connection.

Options

258

The SO_KEEPAL VE option (defined in the sys/ socket . h include file) causes the code in the kernel that
handles TCP protocol periodically to send packets that contain no data; these packets are acknowledged and
discarded. This tests whether the data path to the other end of the connection is open. If the other end fails
to respond to these keep-alive packets, the connection will be closed and the next socket operation will

return ETI MEDOUT.

Other options have their socket-level effects; the socket-level effect is explained in the get sockopt (2)
system call.

You can use options at the IP transport level with TCP (see i p(4P).

TCP supports several socket options that you can set by using set sockopt (2) and test by using
get sockopt (2). The option level for the set sockopt (2) cal is the protocol number for TCP, available
from get pr ot obynane(3C).

Most socket-level options take ani nt type value. For set sockopt (2), the value must be nonzero to
enable a Boolean option, or 0O to indicate that the option will be disabled. You can use the following options
with TCP:

Option Description
TCP_MAXSEG Gets maximum segment size. Y ou cannot set this option.
TCP_NCDELAY Toggles the no del ay flag. Under most circumstances, TCP sends data when it is

presented. When outstanding data has not yet been acknowledged, it gathers small
amounts of output to be sent in one packet after an acknowledgment has been
received. For afew clients (such as window systems that send a stream of mouse
events that receive no replies), this packetization might cause significant delays.
TCP provides this Boolean option to defeat this algorithm.

SR-2014

TCP(4P) TCP(4P)

NOTES

TCP_W NSHI FT Sets the TCP window shift count. You must set this option on a socket before the
use of the connect (2) or accept (2) system call. A value of —1 turns off window
shift; a value of O through 14 turns on window shift with the requested window size.
get sockopt (2) returns up to 24 bytes (the TR_SENDWNDSHI FT value in the first
word, the send window shift value in the second word, and the receive window shift
value in the third word).

Only the super user may bind a socket to a port number lower than 1024.

MESSAGES

FILES

A socket operation may fail with one of the following valuesin er r no:

EADDRI NUSE
An attempt is made to create a socket by using a port that has already been alocated.

EADDRNOTAVAI L
The process tried to create a socket with a network address for which no network interface exists.

ECONNREFUSED
The remote peer actively refuses connection establishment (usually because no process is listening
to the port).

ECONNRESET
The remote peer forces the connection to be closed.

El NVAL
An option value or socket that is not valid was specified for the set sockopt (2) system call.

El SCONN
The socket already has a connection when a connection is tried on the connect (2) system call, or
you cannot use the set sockopt (2) TCP_W NSHI FT option on an established connection.

ENOBUFS

The system ran out of memory for an internal data structure.
ETI MEDOUT

A connection was dropped because of excessive retransmissions.
{usr/include/netinet/in.h Include file for Internet addresses
/fusr/include/ netinet/tcp.h Include file for TCP addresses
/usr/include/sys/socket.h Address family definition

SR-2014 259

TCP(4P) TCP(4P)

SEE ALSO
i net (4P), i ntro(4P), i p(4P)

accept (2), bi nd(2), cl ose(2), connect (2), get sockopt (2), | i st en(2), read(2), recv(2),
set sockopt (2), shut down(2), wri t e(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

get pr ot obynane(3c) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

DARPA Internet Regquest for Comments, RFC 793 and RFC 1010

260 SR-2014

UDP(4P) UDP (4P)

NAME
udp — Internet User Datagram Protocol

SYNOPSIS

#i ncl ude <sys/socket. h>
#i nclude <netinet/in.h>

s = socket (AF_I NET, SOCK DGRAM 0);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The Internet User Datagram Protocol (UDP) is a ssmple datagram protocol that t f t p(1B) and the r pc(3C)
library routines use. The protocol is defined in DARPA Internet Request for Comments, RFC 768.

UDP alows for multiple endpoints on a host by associating each endpoint with a port number. Port
numbers are integers, specified by the bi nd(2) or connect (2) system call, ranging in value from 1 to
65,535. By Internet convention, some ports are reserved for well-known services, listed in DARPA |nternet
Request for Comments, RFC 1010; for example, hosts provide TFTP (see t f t p(1B)) service by listening for

datagrams on port 69. By Berkeley UNIX convention, only the super user may listen on ports with numbers
fewer than 1024.

Transmission
UDP is a datagram protocol, therefore, a UDP socket has no connections; that is, the | i st en(2) and
accept (2) system call return errors. The sendt 0(2) system call (see send(2)) is the norma method for
transmission through a UDP socket. The connect (2) system call, though not supported by the underlying
protocol, permanently associates the socket with a destination for future transmissions, thus enabling use of
the send(2) system call and the wr i t e(2) system call on the socket.

The entire contents of a transmission (the buffer in a sendt 0(2), send(2), or wr i t e(2) system call) are
packaged into the data portion of one datagram for transmission. The kernel provides the UDP and Internet
Protocol (IP) headers. You can configure the kernel to calculate the UDP data checksum; if not, UDP
packets will go out without protection against transmission errors.

Reception

Ther ecvfrom?2) system call (seer ecv(2)) is the normal method for receiving data through a UDP
socket. The connect (2) system call, though not supported by the underlying protocol, permanently
associates the socket with a destination for future transmissions, thus enabling use of the r ecv(2) system
call and the r ead(2) system call on the socket.

The kernel checks the UDP data checksum in arriving datagrams and discards garbled datagrams without
presenting them to the user through the socket.

SR-2014 261

UDP(4P) UDP (4P)

If you do not provide enough buffer space for the entire available datagram in a call to r ecvf r om?2),
read(2), or r ecv(2), excess bytes at the end of the datagram will be discarded without notice.

MESSAGES

A socket operation may fail with one of the following errors returned:

EADDRI NUSE
The process tries to create a socket by using a port that has already been alocated.

EADDRNOTAVAI L
The process tried to create a socket with a network address for which no network interface exists.

El SCONN
The socket already has a connection when a connection is tried, or the process is trying to send a
datagram with the destination address specified when the socket is already connected.

ENOBUFS
The system ran out of memory for an internal data structure.

ENOCTCONN
The process is trying to send a datagram, but no destination address has been specified and the
socket is not aready connected.

FILES
fusr/include/ netinet/in.h Include file for Internet addresses
[usr/include/ netinet/udp.h UDP header file
[usr/include/sys/socket.h Address family definition

SEE ALSO

262

i net (4P), i ntro(4P), t cp(4P)
tft p(1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

accept (2), bi nd(2), connect (2), i sten(2), read(2), r ecv(2), send(2) in the UNICOS System Calls
Reference Manual, Cray Research publication SR—2012

i ntro_svc(3R) in the Remote Procedure Call (RPC) Reference Manual, Cray Research publication
SR-2089

DARPA Internet Reguest for Comments, RFC 768 and RFC 1010

SR-2014

INTRO(5) INTRO(5)

NAME

i nt r o — Introduction to file formats

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Section 5 outlines the formats of certain UNICOS files. These files include header files, data files, and
output files from UNICOS tilities. The files in this section fall into one of three categories:

* User category
¢ Administrator category
¢ Anayst category

Within each of these categories, there are two subdivisions; files a user, administrator, or kernel process can
change, and files used as a reference, template, or data file.

The following three tables detail the division of the entries in section 5. Some entries fall into more than
one category; these are entries that a user references, but an administrator changes. For example, the

gr oup(5) entry describes the / et ¢/ gr oup file, which can be viewed by a user and changed by an
administrator.

Many entries in this section describe header files. Header files are files in a specific format that more than
one program (such as compilers, assemblers, and system utilities) use, often for data interchange between
programs. Y ou must enter the names of header files in the predefined format that is shown on the man page.
When applicable, the C st r uct declarations for the file formats are given. In this manual, header files are
referred to as include files because they usually are found in the / usr/ i ncl ude or / usr/i ncl ude/ sys
directory. Inthe DESCRIPTION section of the entries, the full path name for a header file is given only
when it is not in either of these directories.

User Category
The man pages in this category describe entries of interest to UNICOS users. An * symbol marks files that
users set up or modify.

Man page Description File(s)

al i ases Define alias database for sendnai | (8) [usr/lib/aliases

a. out Loader output file [fusr/include/a.out.h

ar Archive file format /usr/include/ar.h

bl d Relocatable library files format [fusr/src/cmd/ bl d/bld. h
cpi o cpi o(1) archive file format

cshrc C shdll start-up and termination files .cshrc*,.login* .l ogout*
def _seg Loader directives files /1iblsegdirs/def _seg*
exrc Start-up files for ex(1) and vi (1) .exrc*

SR-2014 263

INTRO(5) INTRO(5)
Man page Description File(s)
fentl File control options [fusr/include/fcntl.h
group Group-information file format [etc/ group
mailrc Start-up files for mai | x(1) .mailrc*
not d File that contains message of the day /etc/notd
netrc TCP/IP autologin information file for $HOWE/ . netrc*
outbound f t p(1B) requests
nl _types Defines message system variables nl _types.h
passwd Password file format [et c/ passwd
profile Format of Posix shell start-up file .profile*
publ i ckey Public key database [etc/ publickey*
relo Relocatable object table format under lfusr/include/relo.h
UNICOS
rhosts List of trusted remote hosts and account .rhosts*
names
sccsfile Source Code Control System (SCCS) file s. file
format
synbol UNICOS symbol table entry format [usr/include/synbol . h
tapetrace Tape daemon trace file format [usr/ spool /tape/ trace. daenon
[usr/ spool /t ape/ trace. bmxxxx
[usr/include/tapereq.h
taskcom Task common table format
types Definition of primitive system data types [usr/include/sys/types.h
updaters Configuration file for NIS updating [etc/ yp/ updat er s*
uuencode Encoded uuencode file format
val ues Machine-dependent values definition file [usr/include/val ues. h

Administrator Category

The man pages in this category describe files of interest to an administrator. An * symbol marks files that
the administrator modifies.

Man page Description File(s)

acid Account ID information file format /etcl/acid

acl User access control lists format /usr/include/sys/acl.h
aft ASCII flaw table letclaft/*

conf val Configuration file for various products

cshrc C shell start-up and termination files /etcl/cshrc*

dunp Incremental file system dump format [usr/src/cnmd/ fs/dunmp
exports Directories to export to NFS clients [etcl/exports*

264 SR-2014

INTRO(5)

INTRO(5)

Man page Description File(s)
fslrec File system error log record format [dev/ fsl og
[usr/include/sys/fslog.h
[fusr/include/sys/fslrec.h
[usr/include/sys/types.h
fstab File that contains static information /etc/fstab*
about file systems
ftpusers List of unacceptable f t p(1B) users [etc/ftpusers*
gat ed-config Gated configuration file syntax / et c/ gat ed. conf
gettydefs Speed and terminal settings used by /etcl/gettydefs
getty(8)
group Group-information file format [etc/ group*
host s TCP/IP host name database / etc/ hosts*

hosts. equi v

i netd. conf
inittab

i ptos

i ssue

krb. conf
krb.real ns
| desc
mailrc
masterfile

Public information for validating
remote autologin

Internet super-server configuration file
Script for i ni t process

IP Type-of-Service database

Login message file

Kerberos configuration file

Host to Kerberos ream trandlation file
Logical disk descriptor file

Start-up files for mai | x(2)

Internet domain name server master
data file

[etc/ hosts. equiv*

[etc/inetd. conf*
[etc/inittab*
/etcliptos
[etclissue*

[usr/include/sys/|desc.h
fusr/lib/milx/mailx.rc*

m b. t xt Management information base for [etc/ mb.txt
SNMP applications and SNMP agents
mttab Mounted file system table format [etc/mttab
not d File that contains message of the day [etc/ motd*
naned. boot Domain name server configuration file / et ¢/ naned. boot *
net gr oup List of network groups / et c/ net group
net wor ks Network name database / et ¢/ net wor ks*
nl _types Defines message system variables nl _types.h
passwd Password file format [etc/ passwd*
printcap Printer capability database [etc/printcap*
profile Format of POSIX shell start-up file [etcl/profile*
proto Prototype job file for at [fusr/lib/cron/.proto
pr ot ocol s Protocol name database [etc/protocol s*
publ i ckey Public key database [etc/ publickey*
gueuedef s Queue description file for at , bat ch, [usr/lib/cron/queuedefs
and cron

SR-2014

265

INTRO(5)

INTRO(5)
Man page Description File(s)
guot a Quota contral file format / sys/ quot a. h*

resol v. conf

rnt ab
sect ab

sendmai | . cf

servi ces

share

shel | s

text _tapeconfig
t aper eq

tar

term

termnfo
tmpdi r. users
udb

updaters
ut np

ypfiles

Domain name resolver configuration
file

List of remotely mounted file systems
Format for table of defined security
names and vaues

Configuration file for TCP/IP mail
service

Network service name database
Fair-share scheduler parameter table
List of available user shells

Tape subsystem configuration file
User tape daemon interface

Tape archive file format

Format of compiled t er mfile
Terminal capability database

List of authorized users for t npdi r (1)
Format of the user database file

Configuration file for NIS updating
ut np(5) and wt np file formats

Network information service (NIS)
database and directory structure

/etc/resol v. conf *

letc/rmtab
[usr/include/sys/sectab. h

lusr/libl/sendmail.cf*

/etc/services*

[usr/include/ sys/share. h
/etc/shells

/etc/config/text tapeconfig*
[usr/include/tapereq.h

/usr/include/termh
fusr/lib/termnfol*
[etc/tnpdir.users*
/ et c/ udb

[etc/udb. public

[etc/yp/updaters
[etc/utnp
[etc/wntp

Analyst Category
The man pages in this category describe files of interest to Cray Research analysts. Man pages in this
subcategory describe interna files, including those that the UNICOS kernel uses as a reference. Cray

Research or customer analysts do not change these files.

266

The files that an analyst sets up or modifies (to install or configure a UNICOS system) are not described in
this manual; for more information on these files, see General UNICOS System Administration, Cray Research

publication SG—2301.

Man page Description File(s)

acct Per-process accounting file format [usr/include/sys/acct.h
core Core file format

dir Directory file format lusr/include/sys/fs/cldir.h

SR-2014

INTRO(5)

INTRO(5)

Man page Description File(s)

di rent File-system-independent directory entry [fusr/include/sys/dirent.h
format

errfile Format of error-log file fusr/adnferrfile

[usr/include/sys/err.h

fs File system partition format [usr/include/sys/fs/clfilsys.h

i nfobl k Loader information table /usr/include/infobl k. h

i node Inode format [usr/include/sys/ino.h

| node Kernel user limits structure for fair-share [usr/include/sys/| node. h
scheduler

i pc Interprocess communication (IPC) access [usr/include/sys/ipc.h
structures

nsg Message queue structures [usr/include/sys/nsg. h

sem Semaphore facility [usr/include/sys/semh

shm Shared memory facility [usr/include/sys/shmh

slrec Security log record format [usr/include/sys/slrec.h

sysdunp System dump files [core. sys

SR-2014

267

ACCT(5)

NAME

acct — Per-process accounting file format

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/accthdr. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

ACCT(5)

Accounting files are produced if the acct (2) system call has enabled the system process accounting routine.
The sys/ acct . h include file gives the structure of these files.

Systems Accounting File Structure

The file structures differ dlightly for accounting records on various Cray Research systems; the differences

are indicated in the following file structures:

/*
* Ker nel accounting structures
*
* Note: Al of the structures in the unified accounting record
* must have the ac_flag field follow ng the header
*
*/
typedef unsigned long conp_t; /* 21-bit floating-point nunber
/* 5-bit exponent, 16-bit */
/*
* Base-| evel accounting record.
*/
struct acctbs
{
struct achead ac_header; /* header
unsi gned ac_flag:8; /* accounting flags
unsi gned ac_stat:8; /* exit status
unsi gned ac_uid: 24; /* user |ID
unsi gned ac_gid: 24; /* group ID
dev_t ac_tty: 32; /* control typewiter
time_t ac_bti ne: 32; /* beginning time (seconds)
conp_t ac_utine: 21; /* user CPU time (clocks)
conp_t ac_stine: 21; /* system CPU tine (cl ocks)
conmp_t ac_etine: 21; /* elapsed tinme (cl ocks)
conp_t ac_nmem 21; /* 1st menory integral

268

/*

(click-tics)

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SR-2014

ACCT(5) ACCT(5)

comp_t ac_nen: 21; /* 2nd menmory integral */
/* (click-tics) */
conp_t ac_nens: 21; /* 3rd menory integral */
/* (click-tics) */
conp_t ac_io: 21; /* number of chars transferred */
comp_t ac_rw 21; /* number of physical /0O reqsts. */
conmp_t ac_iowtinme:21; /* I/Owait tinme (clocks) */
/* runs while process is |ocked */
/* in menory */
conp_t ac_i ownem 21; /* 1/Owait time nenory integral */
/* (click-tics) runs while */
/* process is locked in nmenory */
conmp_t ac_iosw 21; /* 1/ 0O swap count */
conp_t ac_lio: 21; /* nunmber of logical 1/0O requests */
unsi gned ac_pid: 21; /* process ID */
unsi gned ac_ppi d: 21; /* parent process ID */
conp_t ac_ctine: 21; /* process connect time (clocks) */
unsi gned ac_aci d: 24; /* account |ID */
unsi gned ac_j obi d: 24; /* job ID */
unsi gned ac_nice: 16; /* nice val ue */
char ac_commni 8] ; /* command nane */
conp_t ac_iobtinm 21; /* 1/Owait time (clocks) */
conp_t ac_hi mem 21; /* Hiwater menory mark (words) */
comp_t ac_sctine: 21; /* systemcall time */
3
/*
* End of Job record. Witten when the |last process is put to rest.
*/
struct accteoj {
struct achead ac_header; /* header */
unsi gned ac_flag: 8; /* accounting flag */
unsi gned ace_j obi d: 24; /* Job ID */
unsi gned ace_ui d: 24; /[* User ID */
conp_t ace_hi nem 21; /* Hwater mem mark(clicks)*/
comp_t ace_sdshi wat : 21; [* SDS Hi wat er mark */
unsi gned ace_ni ce: 16; /* Nice val ue */
| ong ace_fshbl kused; /* #of fs blocks consunmed */
time_t ace_etine: 32; /* time at end of job */
conp_t ace_shmint: 21; /* shmat integral (click-tics)*/
conp_t ace_shnsi ze: 21; /* shrmget total size (words) */
b
/*
* Devi ce specific 1/0O accounting record
* type field is filled in fromsuperblock on bl ock devices and
* from maj or nunber | ACCT_CHSP when used with a character device.
*/

SR-2014 269

ACCT(5)

270

ACCT(5)
#def i ne NODEVACCT 8 /* devio entries per account*/
/* records */
#defi ne ACCT_CHSP 0200 /* marker for character */
/* special devices */
#define ACCT_PERF 0400 /* marker for performance */
/* accounting */
#defi ne MAXPERFLVL 1 /* number of performance */
/* accounting levels */
struct acctio {
struct achead ac_header; /* header */
unsi gned ac_flag: 8; /* accounting flags */
struct {
ui nt acd_type: 8; /* maj or device no. */
conp_t acd_ioch: 21; /* characters transferred */
conp_t acd_lio:21; /* logical 1/0O reqs count */
} ac_devi o[NODEVACCT] ;
b
/ *
* SDS accounting record (except on CRAY EL series)
*/
struct acctsds {
struct achead ac_header; /* header */
char ac_fl ag; /* accounting flag */
conp_t acs_mem 21; /* menory integral - based */
/* on residency tinme, */
/* not execution tine */
conp_t acs_lio:21; /* logical 1/0Oreqgs count */
conp_t acs_ioch: 21; /* chars transferred */
conp_t acs_mnemnmsw. 21; /* memintegral - suspend/resune */
1
The following MPP accounting record of the acct file is for use only with Cray MPP systems:
/ *
* MPP accounting record.
*/
struct acctnpp {
struct achead ac_header; /* header */
char ac_fl ag; /* accounting flag */
unsi gned ac_npppe: 16; /* MPP processing el ements */
unsi gned ac_nppbb: 8; /* MPP barrier bits */
conp_t ac_npptinme:21; /* MPP tinme (in clocks) */
IS
SR-2014

ACCT(5) ACCT(5)

The following multitasking accounting record substructure is shared by all Cray Research systems, and the
record structures for specified systems are given.

/*
* Mul titasking accounting record substructure.
*/
struct mu {
ui nt 01
conp_t nD: 16;
conp_t mlL: 16;
conp_t nR: 16;
conp_t nB: 16;
s
struct acctnu {
struct achead ac_header; /* header */
unsi gned ac_flag:8; /* accounting flag */
| ong ac_smmi ne; /* semaphore wait tinme (clocks) */
struct mu ac_mutinme[MJSI ZE]; /* time (conpressed) connected */

/* to (i+1) CPUs (1/100 sec) */

SR-2014 271

ACCT(5) ACCT(5)

The rest of the acct file appliesto al Cray Research systems, except as specified:

/*
* Error accounting record.
*/
struct accter {
struct achead ac_header /* header */
unsi gned ac_flag:8; /* accounting flag */
short ac_errno; /* u_error returned fromwitei () */
struct acerror ac_error; /* error info fromwitei() */
b
/*
* Per f or mance accounting record.
*/
struct acctperf {
struct achead ac_header; /* header */
unsi gned ac_flag:8; /* accounting flag */
conp_t acp_rtine: 21; /* process start time (in clocks) */
/* past ac_btinme */
conp_t acp_tiowtinme: 21; /* terminal /O wait time */
conp_t acp_srunwtine:21; /* SRUN wait time (in seconds) */
conp_t acp_swapcl ocks: 21; /* swapped tinme (in clocks) */
| ong acp_rwbl ks: 21; [* # of bufrd physical blks noved */
| ong acp_phrwbl ks: 21; /* # of raw physical blks noved */
s
/*
* Uni fied accounting record.
*/
uni on acct {
struct acctbs acct bs;
struct acctio accti o;
struct acctnu acct mu;
struct accter accter;
struct acctsds acct sds
struct acctnpp acct npp;
struct acctperf acctperf;
struct accteoj acct eoj ;
b
#i f def KERNEL
extern struct acctind acctp[]; /* inode of accting files */
#endi f /* KERNEL */
/*
* Maxi mum nunmber of acct records per process

*

272 SR-2014

ACCT(5) ACCT(5)

* 1 Base record + 1 Multitasking record + 1 SDS record + 1 MPP record +

* 1 performance record + _MAXDEVI OREC devi ce.

* Note the end of job record is not added since it is always singular.

*/

#define _MAXDEVI OREC ((MAXBDEVNO + MAXCDEVNO + NODEVACCT - 1)/ NCDEVACCT)

#defi ne NOACCTREC (1+1+1+1+1+_ MAXDEVI OREC)

/*

* Flag definitions, for ac_flag.

*/

#define AFORK 01 /* has executed fork */
/* but no exec */

#define ASU 02 /* used super-user privil eges*/

#defi ne AMORE 04 /* nore accounting records */
/* follow for this process */

#define ACCTR 0370 /* record type */

#defi ne ACCTBASE 0000 /* base-level acctg records */

#define ACCTIO 0010 /* device-specific I/0O */
/* accounting record */

#define ACCTMJ 0020 /* multitasking acctg record */

#defi ne ACCTERR 0030 /* error accounting record */

#defi ne ACCTSDS 0040 /* SDS accounting record */

#define ACCTEQJ 0050 /* EQJ accounting record */

#defi ne ACCTPERF 0060 /* performance accting rcrd */

#defi ne ACCTMPP 0070 /* MPP accounting record */

/*

* Function types for devacct systemcall.

*/

#define ACCT_ON 1 /* Device accounting on */

#define ACCT_OFF 2 /* Device accounting off */

#defi ne ACCT_LABEL 3 /* Label block special */
/* device */

#define PERF_01 1 /* Additional performance */
/* accounting on */

#i f def KERNEL

/*

* Accounting file vnode pointers.

*/

struct acctind {

i nt di d; /* daenon identifier */
struct vnode *Vno, /* acct file vnode pointer */
b
#endi f /* KERNEL */

#i ncl ude <sys/cdefs.h>

__BEG N_DECLS

SR-2014 273

ACCT(5) ACCT(5)

extern int devacct _ ((char *_Device, int _Func, int _Type));

__END DECLS
#endi f /* KERNEL */
FILES
[usr/include/sys/acct.h Structure of per-process accounting files
fusr/src/cmd/acct/include/cacct. h Structure of condensed accounting files
/usr/src/cmd/acct/include/session.h Structure of session record files
/usr/src/cmd/ acct/include/tacct.h Structure of per-process total accounting files
SEE ALSO

acct com1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

acct (2), devacct (2), exec(2), f or k(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

acct (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

274 SR-2014

ACID(5) ACID(5)

NAME

aci d — Format of the account ID information file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ aci d file contains the following information for each account:

* Account name
e Account ID

The aci d fileis an ASCII file, which resides in the /et ¢ directory. The fields are separated by colons;
each account record is separated from the next by a newline character. udbgen(8) maintains the aci d file
automatically to match the information in the udb file.

The aci d file maps numeric account IDs (called ACIDs in the UDB) to account names. The account names
belong to the accounting subsystem and are not user names.

NOTES

Unlike the / et ¢/ passwd file, you must update the / et ¢/ aci d file manually to include new account 1Ds
and account names. When you update / et ¢/ aci d, ensure that the udbgen(8) utility is not running,
because udbgen would overwrite any changesto / et ¢/ aci d.

FILES

/etclacid Format of account ID information file

SEE ALSO
acct (5), gr oup(5), passwd(5), udb(5)
udbsee(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2014 275

ACL(5) ACL(5)

NAME

acl — User access control lists format

SYNOPSIS

#i ncl ude <sys/acl.h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

An access control list (ACL) is a mechanism for user (discretionary) file access control. An ACL contains
entries that define the allowed access to a file on a specific user and/or group basis.

To create and maintain an ACL file, use the spacl (1) command. You can use the spset -a command to
assign an existing ACL file to afile or list of files. Thespclr -a command removes an ACL from afile
or list of files.

An ACL file consists of multiple entries, one entry per user/group name pair. Each entry has the following
format:

user: group: permissions

user User name; to represent all users, use an * symbol.

group Group name; to represent all groups, use an * symbol; to represent the owning group, use
O

permissions Permissions for access. Permissions are specified as follows:
r Grants read permission

w Grants write permission

X Grants execute permission

n Denies access

You can specify any combination of r, w, and x, or n.

You can specify () for the group only when the specified user is*. You cannot specify * for both user and
group.

276 SR-2014

ACL(5) ACL(5)

The format of an ACL file is defined in the sys/ acl . h include file, as follows:

struct acl {

ui nt ac_usid : 24, [* user ID*/
ac_grid : 24, /* group ID */
ac_flag :4, /* ACL entry type */
ac_node : 4; /* access nobde - r/w x */
ac_sort :2, /* sort flag */
ac_sane : 6; /* same uid count */
b
struct acl _rec {
| ong ac_nmagi c;
ui nt ac_size . 24,

ac_owner 24,
ac_type . 8,

ac_fill . 8;
ui nt ac_links :24,

ac_gnmode : 3,

ac_vsn)

ac_resrv :31;
struct acl acl[ACLSI ZE];

I
#define ACLMAG C OxacOf f 12ee21ff Oca
/*

* ACL entry types
*/
#define FLAG U DG D 01 /[* uid.gid acl entry */
#defi ne FLAG Gl DONLY 02 /* gid only acl entry */
#define FLAG Ul DONLY 04 /* uid only acl entry */
#define FLAG OANG D 010 /* owning group ACL entry */

NOTES

The file's group permission bits are used as a mask, which is intersected with the ACL entry permissions to
determine the allowed access. This means that the group permission bits of the file always show the
maximum amount of access alowed any user and/or group specified in the ACL. You must specify the
permissions in both the mask and ACL entry to be allowed. For example, if the file's permission bits are set
to 750 (that is, the group bits are set to r-x) and a user’s ACL entry is set for read and write access only
(rw-), the user is allowed only read access to that file. The user is not allowed write or execute access
because both entries did not specify these permissions.

SR-2014 277

ACL(5) ACL(5)

For a complete description of the masking operation and the order that ACL entries are checked, see the
Security section in the General UNICOS System Administration, Cray Research publication SG—2301.

For a description of ACL creation and maintenance operations, see the spac! (1) command.

EXAMPLES

Example 1: The following ACL entry defines read, write, and execute permission to user f r ed, in any
group:
fred: *: rwx

Example 2: The following ACL entry defines user bet t y read and write permission when she isin group
admi n:

betty: admin: rw
Example 3: The following ACL entry denies user r al ph any permissions, in any group:
ral ph: *:n
Example 4: The following ACL entry defines read access for owning group:
A
The ACL mask is intersected with the ACL entry to determine the type of access granted.
FILES

[usr/include/sys/acl.h Format of user access control lists

SEE ALSO
sl og(4), sl rec(5)

chnod(1), cpi o(2), spacl (1), spcl r (1), spset (1), t ar (1) in the UNICOS User Commands Reference
Manual, Cray Research publication SR—2011

General UNICOS System Administration, Cray Research publication SG—2301

278 SR-2014

AFT(5) AFT(5)

NAME
aft — ASCII flaw table

IMPLEMENTATION
Cray PVP systems with an |OS model E

DESCRIPTION

Thefilesin/ et c/ af t contain information about physical disk defects. One af t file represents each
physical device. The aft files are used by the bb command, which translates physical disk addresses into
logical relative block addresses.

Thefilesin/ et c/ af t are named for the I/O paths of the physical devices they represent. They are created
by thei f t (8) command.

The af t files may be edited to add, delete, or change entries. They can then be used to initialize the
physical device spare sector maps by using the spmap(8) command.

EXAMPLES
A typical af t file follows:

*

* engineering flaw table for DD 49

*

* factory flaw map date: 09-08-89

*

* S/'N 7009

00O0O

* count head sector cylinder
1 7 43 1307
1 1 47 1547
1 1 50 1547
1 1 50 1557

To initialize an af t file, enter the following command line:
ift /dev/ift/0130.1 >/etc/ift/0130.1

SR-2014 279

AFT(5) AFT(5)

FILES
letclaft/~*

SEE ALSO

bb(8), i ft (8), spmap(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

280 SR-2014

ALIASES(5) ALIASES(5)

NAME

al i ases — Defines alias database for sendmai | (8)

SYNOPSIS

/usr/lib/aliases

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/usr/1ib/aliases file defines the alias database for sendnai | (8). The format of this file consists
of the following:

al i as_nane: recipient_1, recipient_2, recipient_3, ...
alias_name is the name to alias, and recipient_n is the alias for that name. Lines beginning with white space
(spaces or tabs) are continuation lines.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any person
more than once.

After aliasing has been done, local and valid recipients who have a . f or war d file in their home directory
will have their messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format in the
fusr/lib/aliases. pag file using the program newal i ases(1). A newal i ases command must be
executed each time the al i ases file has been changed before the changes will take effect.

NOTES

Blank lines and lines that begin with a# are comments.
The file must contain an alias for Postmaster and MAI LER _DAEMON.

EXAMPLES

The following is an example of entriesinan/ usr/1i b/ al i ases file:

Post naster: root
MAI LER- DAEMON: post mast er

SR-2014 281

ALIASES(5) ALIASES(5)

FILES

fusr/lib/aliases File that contains the alias database for sendmai | (8)

SEE ALSO

newal i ases(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
dbm(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080
sendmai | (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication

SR-2022

282 SR-2014

A.OUT(5) A.OUT(5)

NAME

a. out — Loader output file

SYNOPSIS

#i ncl ude <a.out. h>

IMPLEMENTATION
All Cray Research systems except Cray MPP systems.

DESCRIPTION

The a. out file is the output file generated when the | d(1) or segl dr (1) loader command is executed. If
all errors occurring during the load process were at the caution level or lower, both commands make file
a. out executable.

When the UNICOS operating system executes an a. out file that does not use shared text, it loads the file,
as follows:

1. Readsa_t ext wordsinto common memory at location a_ori gi n (usually 0); see the header format
that follows.

2. Readsthe following a_dat a words of initialized data in at location a_ori gi n+a_t ext .
3. Fillsa_bss words at location a_ori gi n+a_t ext +a_dat a with 0's.
4. Begins execution at parcel addressa_entry.

When the UNICOS operating system executes an a. out file that uses shared text, it loads the file, as
follows:

1. Readsa_t ext words into the instruction address space at location a_or i gi n (usually 0); see the
header format that follows.

Reads a_dat a words of initialized data into memory at address O of the data address space.
Fillsa_bss words at location a_or i gi n+a_dat a in the data space with 0's.

Begins execution at parcel address a_ent ry in the instruction space.

SR-2014 283

A.OUT(5)

284

The following shows the header format:

struct exec {
uni on {
| ong onmagi c;
struct {
unsi gned
unsi gned st : 1;
unsi gned C T,
unsi gned
unsigned id
} nmagic;
} u_nag;
| ong
| ong
| ong
| ong
| ong
| ong
uni on {
long ofill1;
struct {
unsi gned ptr :32;
unsi gned 31,
unsi gned str : 1;
} info;
}ou_fill1;

a_text;
a_dat a;
a_bss;
a_syms;
a_entry;
a_origin;

b

/* defines for

#defi ne a_magi c
#defi ne a_omagi c
#defi ne a filll

/* defines for new fields

#defi ne aid
#defi ne a_st
#define a_pm
#define a_infoptr
#defi ne a_str
#defi ne A MAG Cl
#defi ne A MAG C2
#defi ne A MAG C3

A.OUT(5)

/* old magi c nunber */

/* new, reserved - must be zero */

/* new, shared text indicator */

/* new, reserved - must be zero */

/* new, primary machi ne type */

/* magic identifier */

/* size of text area in words */

/* size of data area in words */

/* size of bss area in words */

/* size of synbol table in words */

/* entry point (parcel address) */

/* old base address (usually zero) */

/* flag, 1 = relocation info stripped */

/* new, byte offset of _infoblk */

/* new, reserved - must be zero */

/* new, stripped bit */
u_mag. nmagic.id

u_nmag. omagi ¢

u filll.info.str
*/

u_nmag. nmagic.id

u_nmag. nmagi c. st

u_nmag. nmagi c. pnt

u filll.info.ptr

u filll.info.str

0407 /* normal magic */
0410 /* shared text */
0411 /* normal ymp-32 bit magic */

conpatibility */

SR-2014

A.OUT(5) A.OUT(5)

#defi ne A MAG 4 0412 /* shared text ynp-32 bit magic */
#defi ne A MMGECID 0407 /* new magic id */
[* --- primary nmachi ne types ---*/

#def i ne A _PMI_UNDF 0 /* undefined nmachi ne type =>old hdr */
#defi ne A PMTI_I NC 1 /* increnental |oad code fragnent */
#define A PMI_CRAY1 2 /* CRAY- 1S */
#define A PMI_XMP_NCEMA 3 /* CRAY- X/ MP, 22-bit npde */
#defi ne A PMI_XMP_ANY 4 [* CRAY- X/ MP, node indifferent */
#define A PMI_XMP_EMA 5 /* CRAY- X/ MP, 24-bit npde */
#define A PMI_CRAY2 6 /* CRAY-2 */
#define A PMI_YMP 7 /* CRAY-Y/ MP */
#define A PMI_C90 8 /* CRAY C90 */

NOTES
The UNICOS object file format is uniqgue. AT& T common object files are not supported.

FILES

/fusr/include/a.out.h Default, executable, output file header format, which the | d(1) and
segl dr (1) commands produce

SEE ALSO

npp. a. out (5) for the description of the Cray MPP loader a. out file
r el o(5) for information about the relocatable object table format under the UNICOS operating system

| d(1) to invoke the link editor with traditional UNIX invocation
segl dr (1) to invoke the Cray segment loader (SEGLDR)
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

Segment Loader (SEGLDR) and Id Reference Manual, Cray Research publication SR—0066

SR-2014 285

AR(5) AR(5)

NAME

ar — Archive file format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

This entry describes the format of an archive file. The ar (1) archive command combines several files into
one. You can use archives as libraries through which the link editors | d(1) and segl dr (1) search;
however, the bl d(2) utility is recommended for this purpose.

Each archive begins with the following archive magic strings:
#define ARMAG "!<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string */

The individua files, which are called archive file members, follow the archive magic string. Each file
member is preceded by a file member header, which has the following format:

#define ARFMAG " "\n" /* header trailer string */
struct ar_hdr /* file menmber header */
{
char ar_nane[16]; [* "] terminated file nenber name */
char ar_date[12]; [* file member date */
char ar_uid[6]; [* file menmber user identification */
char ar_gid[6]; /[* file menmber group identification */
char ar_node[8]; [* file menmber node (octal) */
char ar_size[10]; [* file member size */
char ar_fmag[2]; /* header trailer string */
I

All information in the file member headersis in printable ASCII. The numeric information contained in the
headers is stored as decimal numbers (except for ar _node, which isin octal). Thus, if the archive contains
printable files, you can print the archive itself.

The ar _nane field is blank-filled and slash (/) terminated. The ar _dat e field contains the modification
date of the file at the time of its insertion into the archive. If you use the ar (1) portable archive command,
you can move common format archives from system to system.

Only the name field has any provision for overflow. If any file name consists of more than 14 characters or
contains an embedded <space>, the string "#1/ " followed by the ASCII length of the name is written in
the name field. The file size (stored in the archive header) is incremented by the length of the name. The
name is then written immediately following the archive header.

286 SR-2014

AR(5) AR(5)

Each archive file member begins on an even-byte boundary; if necessary, <newl i ne> characters are
inserted between files. If the file name is less than or equal to 14 characters and does not contain an
embedded <space>, the size specified (ar _si ze) reflects the actual size of the file, exclusive of padding.
Otherwise, the size specified reflects the actual size of the file, plus the number of charactersin the file
name.

No provision exists for empty areas in an archive file.
FILES
/fusr/include/ar.h Format of archive files

SEE ALSO

a. out (5) for loader output file information

ar (1) which is the archive and library maintainer for portable archives

bl d(1) to maintain relocatable libraries

segl dr (1) to invoke the Cray Research segment loader (SEGLDR)

in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014 287

ARRAYD.CONF(5) ARRAYD.CONF(5)

NAME

arrayd. conf, arrayd. aut h — Array services configuration files

SYNOPSIS

fusr/lib/array/arrayd. conf

fusr/lib/farray/arrayd. auth

IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The ar rayd. conf and arr ayd. aut h files describe the configuration of one or more arrays. The default
configuration filesare/ usr/ i b/ array/ arrayd. conf and/usr/1ib/array/arrayd. aut h,
although the system administrator can override this or specify additional files. Every machine running an
array services daemon (which should be every machine that is part of an array) must have its own
configuration file or files. The configuration files contain information about which arrays are known to the
array services daemon and the machines in each of them, the commands that can be executed by the array
services daemon, various local options, and information used for authenticating messages passed between
array services daemons on different machines.

The ar rayd. conf fileistypically readable by all users, while the ar r ayd. aut h file is generally
readable only by root. Other than their initial access permissions upon installation, there is no functional
difference between the two files; either may contain any sort of configuration information. However,
because ar r ayd. aut h is not readable by most users, it is most appropriate for secure information such as
authentication keys, while ar r ayd. conf is intended to contain public information such as the array and
command definitions.

The initial configuration files that are installed with array services are very minimal. These files describe a
single array, made up only of the local machine, and no authentication. Every site installing array services
will need to customize the configuration file to describe its local arrangement.

General Syntax

288

The configuration file itself is made up of regular, human-readable ASCII text. Blank lines and comments
(introduced by a # character) are ignored. There are four types of entries in the configuration file: array
definitions, command definitions, local options, and authentication information. A typical entry may consist
of several subentries; by convention, each should be on a separate line. Similarly, some subentries may have
options, which should be on separate lines as well. Leading white space is ignored, so subentries and
options can (and should) be indented for improved readability. The entries in a configuration file and the
subentries within an individual entry need not be in any particular order.

SR-2014

ARRAYD.CONF(5) ARRAYD.CONF(5)

Arguments

Most of the various entries, subentries, and options take arguments. ar r ayd. conf accepts the following
arguments:

names These are simple identifiers, similar to variable names. They can contain upper- and lower-case
letters, the characters - and _, and numeric digits (although the first character must not be a
digit).

numbers These are treated as signed 64-bit integers and may be specified in hexadecimal, octal, or
decimal, with hexadecimal values being preceded by Ox and octal values being preceded by 0.

environment variables

A name preceded by a $ is presumed to refer to an environment variable and will be substituted
accordingly.

strings Any arbitrary string of characters enclosed in double quotes. Double quotes and backslashes can
be embedded within the string by preceding them with a backslash. Newlines and tabs can be
included using "\ n" and "\t ", respectively. A rea newline may aso be embedded by
preceding it with a backslash, thus allowing a string to span several lines in a configuration file.

substitution variables
A name preceded by a %is referred to as a substitution variable and will be replaced with some
other value. Recognized substitution variables include the following:

uw, 9, ..., 98
These represent the first nine arguments specified for an ar r ay command. For
example, if a user invokes an arr ay command witharray killjob 1354
t oken, then %4 would be replaced with 1354 (the first argument to the command
killjob), and %2 would be replaced with t oken. Arguments that do not exist (%3
in this case) are replaced with an empty string.

YALLARGS
This is replaced with all of the arguments that were specified for an ar r ay command.
When used with subentries that take multiple arguments, each individual command-line
argument is treated as an individual argument in the subentry as well. When used with

subentries that take only a single argument, only the first command-line argument is
actually substituted.

YARRAY
This is replaced with the name of the array that is the target of the current ar r ay
command. This is primarily of use when a machine belongs to two or more separate
arrays.

%ASH This is replaced with the array session handle of the program that invoked the current
array command. It isin hexadecimal and is preceded by the string Ox.

YEROUP
This is replaced with the name corresponding to the effective group ID of the process
that invoked the current ar r ay command.

SR-2014 289

ARRAYD.CONF(5) ARRAYD.CONF(5)

290

94 OCAL
This is replaced with the name of the local machine, as specified in a LOCAL
HOSTNAME entry. This is useful if several machines share a configuration file
containing commands.

%Rl G N
This is replaced with the primary hostname of the network interface that transmitted the
request from the client machine. If the client and server are the same machine, then
thisis| ocal host. Thisis often not the same as the client’s machine name, as it
typically includes the network name as well (for example, machi ne. domai n. com
not just machi ne).

YOUTFI LE
This variable is valid only as part of a merge command. It is replaced with alist of
one or more temporary files. Each file contains the output from a single machine of the
related ar r ay command. When the merge command is finished, the temporary files
are automatically removed. The files in the list are not in any particular order; if the
merge command needs to know which machine a specific file came from, the origina
ar r ay command should include that data in its output. When used with subentries
that take multiple arguments, each individual pathname is treated as an individual
argument in the subentry as well. When used with subentries that take only a single
argument, only the first output file pathname is actually substituted.

YREALGROUP
If the process that invoked the current ar r ay command has different real and effective
group IDs, then this is replaced with the name corresponding to the real group ID. If
the real and effective group 1Ds are the same, then <sane> is substituted instead.

YREALUSER
If the process that invoked the current ar r ay command has different real and effective
user 1Ds, then this is replaced with the name corresponding to the real user ID. If the
real and effective user IDs are the same, then <sane> is substituted instead.

%JSER This is replaced with the name corresponding to the effective user ID of the process that
invoked the current ar r ay command.

Note that the names of these substitution variables may be in either upper- or lower-case. If an
unrecognized variable name is specified, a warning is issued, and the variable is replaced with an
empty string.

substitution functions

A substitution variable followed immediately by one or more arguments enclosed in parentheses
is a subgtitution function. An argument to a substitution function can generally be anything that
is valid as the argument to an entry or subentry, except for another substitution function.
Recognized substitution functions include

SR-2014

ARRAYD.CONF(5) ARRAYD.CONF(5)

%ARG number)
This is replaced with the command argument specified by number, which should be a
numeric value. If the argument does not exist, a warning is generated, and an empty
string is substituted.

%OPTARG(number)
Thisis similar to %ARG(. . .), except that no warning is generated if the specified
argument does not exist. This is useful for specifying optional arguments.

9%l D(ash)
ash specifies an array session handle. This is replaced with alist of all process IDs
(PIDs) that belong to the specified array session on the local machine. For entries that

take more than one argument, each PID is treated as a separate argument (see
YALLARGS).

As with substitution variables, an unrecognized substitution function is replaced with an empty
string and causes a warning to be generated.

literal arguments

A literal argument is any argument that can be evaluated when the array services daemon is first
started. This includes names, strings, numbers, and environment variables, but specifically does
not include substitution variables or functions.

numeric arguments

Array Entries

A numeric argument is an argument that can be resolved to a numeric value when the array
services daemon is first started. This includes actua numbers, as well as strings and
environment variables. An error occurs if a string or environment variable cannot be converted
to proper numeric values.

An array entry is a configuration file entry that defines the machines and other details that make up a
particular array. The general format is as follows:

ARRAY array-name
ARRAY_ATTRI BUTE name=value
ARRAY_ATTRI BUTE litarg. . .

| DENT number

SEQFI LE pathname

MACHI NE machine-name-1
machine options

MACHI NE machine-name-2

SR-2014

291

ARRAYD.CONF(5) ARRAYD.CONF(5)

292

Keywords such as ARRAY, MACHI NE, and | DENT may be in either upper- or lower-case; upper-case is used
here to distinguish them from other fields. The various subentries do not necessarily have to occur in any
particular order. However, they should not appear between options in a MACHI NE subentry.

array-name is the name that will be used to refer to the array as a whole; it may be of any length. Thisis
the name that would be used with the - a option of the ar r ay(1) command.

The ARRAY_ATTRI BUTE subentry is used to specify one or more arbitrary values that will be maintained in
the configuration database, but will otherwise be ignored by the array services daemon. Programs that obtain
array configuration information (for example, using the asl i st ar r ays(3X) function) will be provided
with a list of these attributes. Thus, these could be useful for maintaining miscellaneous configuration
information that may be needed by other programs. The ARRAY_ATTRI BUTE subentry may be specified
more than once. If the attribute starts with a simple identifier followed by an equal sign, then the remainder
of the line (with multiple blanks and tabs converted to a single space) is appended to form a single attribute.
Such an attribute could be used along with the asget at t r (3X) function in a manner similar to
environment variables. If the attribute is formed of any other literal argument, it is presumed to end as soon
as white space is encountered. In this case, multiple attributes could be specified on a single line.

The SEQFI LE subentry specifies the pathname of a file used to keep an array session sequence number for
the array. The default sequence file is located in the directory specified by LOCAL DI R (see below) and has
a name formed by appending the array name to the string . seqfi l e. .

The | DENT subentry specifies a numeric value that is used when generating global array session handles for
the array. No other array should have the same | DENT value. If an | DENT value is not specified, a random
one will be generated. The value should be in the range of 1 to 32767.

Each MACHI NE subentry specifies a single machine that is a member of the array. Each ARRAY entry must
have at least one MACHI NE subentry. machine-name is the name that is used to refer to this machine.
Ordinarily this would be the machine’'s host name; however, that is merely a convention and not a
requirement. A MACHI NE subentry may have zero or more options. These include

MACHI NE_ATTRI BUTE litarg. .. or name=value
The MACHI NE_ATTRI BUTE option is similar to the ARRAY_ATTRI BUTE subentry in that it is
used to specify one or more arbitrary values that are maintained in the configuration database,
but otherwise are ignored by the array services daemon. Programs that obtain machine
configuration information (for example, using the asl i st machi nes(3X) function) are
provided with alist of these attributes. Thus, these are useful for maintaining miscellaneous
configuration information that may be needed by other programs. The MACHI NE_ATTRI BUTE
option may be specified more than once, and it has the same syntax as ARRAY_ATTRI BUTE.

[SERVER] HOSTNAME "string"
This specifies the full host name or 1P address of the machine. The value should be enclosed in
double quotation marks. 1f a HOSTNAME is not specified, the machine name will be used. The
string SERVER is optional.

SR-2014

ARRAYD.CONF(5) ARRAYD.CONF(5)

SERVER | DENT number
This specifies the numeric identifier of the array services daemon on the specified machine. This
value may be used for generating global array session handles or uniquely identifying the
machine. If a SERVER | DENT is specified for a machine, it should match the LOCAL | DENT
that is specified in that machine's local array services configuration file. Unlike the syntax for
the HOSTNAME and PORT options, the string SERVER that comes before | DENT is required.

[SERVER] PORT number
This specifies the port on which the array services daemon for this machine is listening. This
would override the default port number of 5434. The string SERVER is optional.

Command Definitions
A command entry defines the actual program that is invoked by the array services daemon when it receives
an ar ray command. Its format is similar to that for an array entry:

COMVAND cmd-name
I NVOKE any-args. . .
MERGE any-args. . .
GROUP any-arg
USER any-arg

OPTI ONS litarg. . .

cmd-name specifies the actual command name. This is what the user would use when invoking the
command with ar r ay (1).

The | NVOKE subentry specifies the actual program to be executed, plus any arguments that should be
supplied to it. Any number of arguments may be specified for the | NVOKE subentry. Groups of arguments
that are not separated by white space are concatenated to form single values (white space embedded in a
string is not considered to be white space for these purposes). Each resulting value is passed to the program
to be executed as a single argument. Thus, if auser typed array foo a b c, and the | NVOKE subentry
for the command f oo were as follows:

INVOKE /usr/bin/test%d 9%2"this is a test" 93

The argument list for the program to be executed would consist of the following:

argv[0] = "/usr/bin/testa"
argv[1l] = "bthis is a test"
argv[2] = "c"

The first value in the argument list also specifies the actual pathname of the program to be executed
(/usr/ bin/testainthiscase). The array services daemon does not have a search path, so this must
specify either an absolute path to the file to be executed, or a path relative to the array services daemon’s
current directory (see the DI R local option).

SR-2014 293

ARRAYD.CONF(5) ARRAYD.CONF(5)

The MERGE subentry is used to specify a merge command. Ordinarily, when an ar r ay command is run on
several machines, the results and output from each machine are returned as separate streams of data.
However, if a merge command is specified, it is run after the ar r ay command itself has been completed on
all machines, and only the results and output of the merge command are returned. When used with the
Y%OUTFI LES substitution variable, this could be a convenient way to consolidate or summarize the results of
the ar r ay command. The MERGE command is executed in the same way as a normal | NVOKE command,
except that it always runs on the same machine as the array services daemon, even if that particular machine
is not a member of the array on which the ar r ay command was run.

The GROUP and USER subentries are optional and specify the name of the group and user under which the
program should be run. Each of these take a single argument. To run with the IDs of the user who invoked
the ar r ay command, these could be specified as %GROUP and YAJSER, respectively. If these are not
specified for a particular command entry, they default first to the values set in the local options, or, if those
are not present, to user and group guest . By default, the GROUP and USER subentries affect only the
effective group and user 1Ds of the program; the real group and user 1Ds will be the same as those of the
process that invoked the program. This behavior can be changed by using the SETRG D and SETRUI D
command options (see below).

The OPTI ONS subentry is used to specify additional details about how the command should be processed.
It should be followed by one or more arguments from the following list. The arguments may be in either
upper- or lower-case. They may also be preceded by the string NO to negate their effects.

LOCAL Executes the command on the same machine as the array services daemon only, even if a
target array was specified explicitly or by default.

NEWSESSI ON Executes the command in a new global array session. Normally the command would be
run in the same array session as the process that invoked it.

QU ET Discards any output generated by the command. If a merge command has been specified,
QUI ET applies to the merge command and not the invoke command. This would allow a
merge command to quietly act on the output of the invoke commands.

SETRG D Runs the command with both its real and effective group IDs set to the value specified by
the GROUP subentry. Normally, only the effective group ID is taken from the GROUP
subentry, while the real group ID is taken from the process that invoked the command.

SETRUI D Runs the command with both its real and effective user IDs set to the value specified by
the USER subentry. Normally, only the effective user ID is taken from the USER
subentry, while the real user ID is taken from the process that invoked the command.

VAI T Waits for each invoked program to complete execution before returning control to the
process that requested the command. This is the default behavior. If NOMAI T is
specified, control is returned to the requester immediately after the invoked programs are
started. NOMAI T implies QUI ET and causes any merge command to be ignored.

294 SR-2014

ARRAYD.CONF(5) ARRAYD.CONF(5)

Local Options

A local options entry specifies options to be used by the array services daemon itself. If more than one local
options entry is specified, settings in later entries silently override those in earlier entries. A local options
entry looks like this:

LCOCAL

SR-2014

DI R literal-arg DESTI NATI ON ARRAY literal-arg GROUP literal-arg
HOSTNAME literal-args | DENT numrarg PORT num-arg
USER literal-arg OPTI ONS literal-arg. . .

All of the subentries in a local entry are optional.

DIR Specifies an absolute pathname for the array services daemon’s working directory. The
default is/ usr/ i b/ array.

DESTI NATI ON ARRAY
Specifies the default target array for ar r ay commands when one has not been specified
explicitly by the user. There is no default value unless only one array is defined (in
which case it becomes the default); if a user omits the target array and there is no
default, an error occurs.

GROUP and USER
Specify the names of the group and user under which an ar r ay command should be
run. A GROUP or USER specified in a particular command entry always overrides these
values. These subentries default to the group and user that is running the array services
daemon.

HOSTNAME
Specifies the value that is returned by the %4 OCAL substitution variable. The results of
array services commands initiated with ascomrand(3X) also refer to this name. The
default is the actual host name of the local machine.

| DENT Specifies a numeric value that is included in global array session handles generated by
this array services daemon. Some versions of UNICOS may also make use of this
value to generate their own global array session handles. No other array services
daemon should have the same | DENT value. If an | DENT value is not specified, one is
generated from the host i d of the local machine. The value must be in the range of 1
to 32767.

PORT Specifies the network port on which this array services daemon listens for requests.
The default is the standard sgi - arrayd servi ce, 5434.

OPTI ONS
Specifies additional details about the operation of the array services daemon. It should
be followed by one or more arguments from the following list. The arguments may be
in either upper- or lower-case. They may also be preceded by the string NO to negate
their effects.

295

ARRAYD.CONF(5) ARRAYD.CONF(5)

CHKLQOCALI D Instructs ar r ayd to make certain authentication checks when accepting
a connection from a local user, such as ensuring that the user is
formally authorized for their current group. Note that these checks may
fail on systems that have mechanisms for changing the real group of a
user to a setting that is not in one of the standard administrative files
(for example, / et ¢/ gr oup or its corresponding network information
service (NIS) map).

SETMACHI D Some versions of UNICOS permit setting a system machine identifier,
which is used by the kernel for generating global array session handles.
If the current system has this facility, and SETMACHI D is specified,
arrayd sets the machine ID to the value specified by a
LOCAL | DENT statement in the configuration file or on the command
line with the - moption.

SVRASI GS Instructs ar r ayd to use SVR4 semantics for the SI GXCPU and
SI GXFSZ signals when starting a new process to handle a remote
execution request (such as those issued by the Array Services
ar shel | (1) command). In this mode, the new process ignores
SI GXCPU and SI GXFSZ signals unless it specifically alters the
behavior for those signals with a system call such as si gnal (2) or
si gset (2). Thisis different from the default behavior for processes
started by ar r ayd to handle remote execution requests, in which
SI GXCPU and SI GXFSZ will cause the process to abort with a core
dump. (This feature requires the Array Services 3.1 for IRIX release or
later.)

Authentication Information

296

An authentication information entry is used to describe the type of authentication that should be done when
passing messages to and from another array services daemon. Authentication information entries do not
accumulate: if more than one is encountered in the various configuration files processed by an array services
daemon, only the last one has any effect; all information from previous entries is discarded. There is
currently only one type of authentication provided, although more may be provided in the future. Its entry is
as follows:

AUTHENTI CATI ON SI MPLE
HOSTNAME literal-arg KEY num-arg HOSTNAME literal-arg KEY numtarg ...

This entry contains one or more subentries consisting of machine/key pairs. literal-arg is the network host
name of a machine. Notice that the network host name is not necessarily the same as the machine name
used to identify a machine in an array entry (see above). num-arg is a 64-bit unsigned integer that is to be
used as the authentication key for all messages originating from that machine. If a key of 0 is specified,
authentication is not performed on messages originating from that machine. Similarly, if a machine has no
subentry at al, no authentication is performed on messages received from it.

SR-2014

ARRAYD.CONF(5) ARRAYD.CONF(5)

If a machine appears in more than one array entry, it needs to have only one subentry in the authentication
information. Conversely, the machine in an authentication information subentry does not need to appear in
any array entries.

With the SI MPLE scheme, a digital signature is calculated for each message by using the authentication key
associated with the sending machine, and this value is then sent along with the message. When an array
services daemon receives a message from another machine, it checks its private database for the
authentication key associated with the machine that sent the message, recalculates the digital signature, and
ensures that it matches the one sent with the message. This provides some basic protection against forged
messages because a forger (presumably) would not have access to the authentication key that is required to
calculate a proper digital signature.

Because this approach depends on the secrecy of the authentication keys, it is important to put this type of
authentication information entry in a configuration file that is not accessible to general users (for example,
the ar r ayd. aut h file in the default installation). Because both the sender and receiver need to have the
same authentication key for a given machine, the administrator must take special care to ensure that the
authentication information in each machine's configuration files is consistent with that in the corresponding
file.

There are some circumstances in which array services may be needed on an array of only one machine (for
example, systems that use the MPI message passing library). For these systems, an aternative to using
simple authentication is to simply disallow any requests from remote systems. This can be done by
specifying an authentication information entry of the form

AUTHENTI CATI ON NOREMOTE

For the purposes of array services, any request to an |P address other than 127.0.0.1 is considered to be
remote. Therefore, the HOSTNANME entry for the local machine in any array should be either 127. 0. 0. 1 or
| ocal host if NOREMOTE is being used. While this blocks any incoming array services requests from
remote machines, it does not prevent outgoing array services requests originating on the local machine from
being sent to remote machines.

If an array is on a private network with trusted peers, or perhaps is carefully hidden behind a good firewall,
authentication may be unnecessary. It is possible to disable authentication entirely by using an
authentication information entry of the form

AUTHENTI CATI ON NONE

This is the default setting when the array services are first installed. However, unless the environment is
reasonably secure, this should be changed to one of the other authentication settings as soon as possible.

WARNINGS

The UNICOS operating system is dependent on the nobody user being configured in order to use array
services and the message passing interface (MPI).

SR-2014 297

ARRAYD.CONF(5) ARRAYD.CONF(5)

SEE ALSO

arr ayd(8) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
arshel | (1)

array_services(7),array_sessi ons(7)

298 SR-2014

BLD(5) BLD(5)

NAME
bl d — Relocatable library files format

IMPLEMENTATION
Cray PVP systems only

DESCRIPTION

When the bl d(1) command collects relocatable modules, it creates a relocatable library file called a build
file or abl d file. The build file consists of a header table, a collection of relocatable modules, and a
contents table (also called a termination table).

The header table precedes the relocatable modules; it has the following format:

struct bld_hdr {
struct tbl _hdr hdr;

| ong pdt _of f set; /* file offset to the build */
/* term nation table */
/* (1 = no pdt entries) */
| ong pdt _si ze; /* size (in words) of the build */
/* term nation table */
/* (1 = no pdt entries) */

}s

The contents table follows the relocatable modules; it consists of a table header followed by copies of all
Program Descriptor tables (PDTs) that occur in the modules within the relocatable library. (Seer el o(5) for
descriptions of the table header and PDTs.) Thel d(1) and segl dr (1) loader commands use the build
header table and contents table.

The bl d(1) command uses the pdt scl field in each PDT in the build contents table to store a file pointer
to the associated module.

FILES
fusr/src/cmd/ bl d/bld.h Format of relocatable library files

SEE ALSO
ar (5), rel o(5)

ar (1), bl d(1), segl dr (1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

SR-2014 299

CONFVAL (5) CONFVAL (5)

NAME

conf val — Configuration file for various products

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The conf val file contains configuration information for various products in the following format:

product. field : value [value . . .]

product Name of the product
field Product-specific field identifier

value Text string (or list of text strings, separated by white space) that the product expects to see for
the given configuration field

You must separate the product and field strings by using a period (.), and you must use a colon (:) to
separate the field and first value strings. The backslash continuation character (\) is honored if it is
immediately followed by a newline character (\ n).

Any line that starts with a# symbol is considered a comment line and is ignored. Blank lines also are
ignored.

To delimit the starting and ending locations of a value, use the " symbol; however, new lines are not
allowed within a delimited value.

Options:

| ogi n. defl bl _as_mi nl bl
Thisis a UNICOS centralized user Identification/Authentication (I/A) option for determining a
user’s mandatory access control (MAC) attributes. If this option is selected, the user’s default 1abel
also will be used as the user’s minimum label. This provides the ability to define a user’s minimum
compartment set. i a_ml suser (3C) processes this option.

| ogi n. | ogbadpass
This is a UNICOS centralized user Identification/Authentication (I/A) failure processing option. If
this option is selected, the failed I/A attempts are logged in the syslog by i a_f ai | ur e(3C). This
configuration option is only for systems that have SECURE_SYS configured off.
i a_fail ure(3C) processes this option.

CAUTIONS

If you edit this file on a running (multiuser) system, binary files may not detect the new configuration
information because of the internal buffering of data performed by get conf val (3C). For best results,
restart the affected binary file and/or binary files.

300 SR-2014

CONFVAL (5) CONFVAL (5)

EXAMPLES

A partial example of a/ et c/ confi g/ confval filefollows:

Partial exanple for gated(8) configuration

#

gat ed. debug: 1

gated. rip: qui et

gat ed. static: "128.162.82.124 rip metric 1 active"

#

Partial exanple login(8) configuration, set so that:

1. Causes user’'s default |abel to be used as both the default and m nimum
| abel for all UDB references for user’s mninmumlabel (not just |ogin)
2. Failed login attenpts are not put into the system | og

3. The user has unlinmted attenpts during a connection to try to log in
login.deflbl _as mnlbl: 1

| ogi n. | ogbadpass: 0

login.login_attenpts: 0

SEE ALSO

get conf val (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2014 301

CORE(5) CORE(5)

NAME

cor e — Core file format

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/user.h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

302

A corefile is the image of a terminated process; the UNICOS system writes out a core file when various
errors occur. The most common errors are memory violations, illegal instructions, and user-generated quit
signals; see si gnal (2) for a complete list of possible errors. The process image is written to a file called
cor e in the working directory of the process if that directory is writable or if a core file aready exists and
iswritable. If extended core file naming is turned on, the process image is written to a file named

cor e. pid in the working directory of the process if that directory is writable. A process with an effective
user 1D different from the real user ID does not produce a core file. See set ui d(2) for more information
on setting user and group IDs.

The core image has two sections. The first section of the image contains the user common structure,
ucomm which is of size UCSI ZE (in clicks) (on Cray Research systems, a click is 4096 bytes). It is
described in the sys/ par am h include file. The ucommstructure is followed by one or more user
structures; each user structure is size ULSI ZE (in clicks). USI ZE is till available for compatibility.

The format of a user structure also is described in the sys/ user . h include file. When the process is not
multitasked, exactly one user structure exists; when it is multitasked, one user structure exists for each
process (task). The number of user structures in the cor e file is specified by the uc_cor e variable in the
ucommstructure. The user structures start at offset UCSI ZE clicks in the cor e file and continue for
uc_usof f clicks; each user structure has a flag in the user structure, u_act i ve, set to a nonzero value if
the user structure isin use.

The second section of the image is the user memory area. The second section of the core image is written
only when the size of the process is less than the core file size limit, as defined in the pc_corel i m t field
in sys/ proc. h. (The core file size limit for each user defaults to unl i m t ed, but might have been
reduced by the system administrator using the ue_pcor el i mfield in the user database (UDB) or by the
user using the | i mi t (1) command with the - d option. For information about determining the core file size
limits, seethe | i m t (1) man page.) If the attempt to write a complete restartable core file fails, an attempt
is made to write a truncated core file, in which only the first section of the core image is written.

SR-2014

CORE(5) CORE(5)
Only the data area is dumped if the instruction area is separate from the data area (this is called split 1&D or

shared text).

NOTES

The cr ash(8) command can write a core file.

FILES
/usr/include/sys/param h System parameter file
[usr/include/sys/proc.h Format of the process common structure
/usr/include/sys/types.h Data type definition file
[usr/include/sys/user.h Format of the user common structure
SEE ALSO

adb(1), I i m t (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

set ui d(2), si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

cr ash(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 303

CPIO(5) CPIO(5)

NAME

cpi 0 — cpi o archive file format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The cpi o archive file is the output from the cpi 0(1) command, which collects files into an archive. Each
file within the archive is preceded by a header that has two possible formats. When you omit the - ¢ option
of cpi o(1), the header structure is as follows:

struct header {

i nt h_magi c,
h_dev;

ui nt h_i no,
h_node,
h_ui d,
h_gid;

i nt h_nlink,
h_rdev;

i nt h_paran 8] ;

| ong h_ntime;

i nt h_nanesi ze;

| ong h filesize;

char h_nane[h_namesize rounded to word] ;

}

When the - ¢ option of cpi 0(1) is used, the header information is described by the following:

sscanf (Chdr, " %60%60%60%60%60%60%60%6 0% 11 0%60% 1| 0%s",
&Hdr . h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_node,
&Hdr . h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
& ongtine, &Hdr.h_nanesize, &ongfile, Hdr.h_nanme);

Longti me and Longfil e areequal to Hdr. h_nti me and Hdr . h_fi | esi ze, respectively. The
contents of each file immediately follow the archive header that describes the file.

If h_acl count is nonzero, the access control list (ACL) entries immediately precede the header for the
following file.

Each instance of h_magi ¢ contains the constant 070707 (octal). Items h_dev through h_nti e
correspond to the items in the st at structure explained in st at (2). The length of the null-terminated path
name h_nane, including the null byte, is given by h_namesi ze.

304 SR-2014

CPIO(5)

CPIO(5)

The last record of the cpi o archive aways contains the name TRAI LER! I'! . Specia files, directories, and
the trailer are recorded with h_f i | esi ze equal to O.

For a cpi o archive that contains security labeling, the - ¢ option is not allowed. The following header
structure precedes the previously described header structure for each archived file:

/* Secure cpio header format */
struct sheader {

i nt h_smagi c;

i nt h_slevel;

| ong h_conpart;

| ong h_acl dsk;

i nt h_acl count;

| ong h_hdrvsn;

SR-2014

}

Each instance of h_smagi ¢ contains the constant 060606 (octal). The h_sl evel and h_conpart fields
contain the file's security level and compartments, respectively. The h_acl dsk field is a flag that indicates
whether an ACL has been archived for this file, and h_acl count holds the number of entries in that ACL.

The following secondary security header structure immediately follows the sheader structure:

/*
* Additional cpio secure header
*/
struct nheader {
i nt h_nmagi c;
i nt h_intcls;
| ong h_intcat;
| ong h_secfl g;
i nt h mnlvl;
i nt h_max| vl ;
| ong h_val cnp;
| ong h_reserved[16];
}

Each instance of h_nmagi ¢ contains the constant 050505 (octal).

If PHdr isin the archive, the first item in the archive is the PHdr . The PHdr contains the privilege
authorization list (PAL) header. The PAL header has the following structure and a magic number of
040404:

struct pheader {
i nt h_pmagi c;
pal _t h_pal ;

} PHdr;

305

CPIO(5) CPIO(5)
SEE ALSO

cpi o(2), fi nd(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
st at (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

306 SR-2014

CSHRC(5) CSHRC(5)

NAME

cshrc, | ogi n, | ogout — C shell start-up and termination files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The /et c/ cshrc, $HOVE/ . cshrc, and $HOVE/ . | ogi n files are C shell start-up files. On login, the
system checks the shel | field in a user’s entry in the UDB file (/ et ¢/ udb) to see what shell it specifies.
If you specify / bi n/ sh or / bi n/ ksh, /et c/ profil e then $HOVE/ . profil e isrun. For more
information, see sh(1), ksh(1), and pr of i | e(5).

If you specify / bi n/ csh in the shell field of the password file, the following actions occur as a user logs
in:

1. If the/ et c/ cshrc file exists, the C shell (csh(1)) executes it. Among other operations,
[etc/ cshrc prints/ et c/ not d, the message of the day, if that file exists (see ot d(5)).

2. If the user’s login directory contains a file named . cshr c, csh(1) executes it.
3. If the user’slogin directory contains a file named . | ogi n, csh(1) executes it.
4. The user's terminal session begins.

Files/ et c/ cshrc and . | ogi n are executed only on login, but file . cshr ¢ is executed each time
csh(l) is executed. Therefore, . | ogi n is useful for setting and exporting environment variables and for
executing commands desired on login (for example, cal endar (1)); . cshr c is useful for setting up aliases
and other environment parameters that should be set each time csh(2) is executed.

When alogin C shell terminates, the $HOVE/ . | ogout file is executed. The user or system administrator
creates the . | ogout file, which contains commands to be executed on shell termination. For example, a
. I ogout file might include commands to clear the screen and to erase temporary files.

EXAMPLES

Example 1: An example of atypical . | ogi n fileis as follows:

Set file creation nask:

umask 22

Echo a greeting:

echo "Wl cone to the Cray Research computer systent
Establish command search path

set env pat h=($PATH $HOME/ bi n)

SR-2014 307

CSHRC(5) CSHRC(5)

Example 2: An example of atypical . cshr ¢ fileis as follows:

Check for interactive node and set pronpt and history:
if ($?pronpt) then

set pronmpt = "CRAY> "

set history = 22
endi f

Set sone ali ases:
alias | s -al
alias h history -r

Example 3: An example of atypical . | ogout fileis as follows:

Rermove files in personal tenporary directory
rm $HOVE/ t np/ *
Clear the screen

cl ear

FILES
$HOVE/ . cshrc C shell start-up file in user’s home directory
$HOVE/ . | ogi n C shell start-up file in user’s home directory
$HOVE/ . | ogout C shell termination file in user's home directory
/ bi n/csh ¢sh command
/etcl/cshrc Systemwide C shell start-up file
/et c/udb User information file

SEE ALSO

not d(5), pr ofi | e(5)

csh(1), env(1), ksh(1), | ogi n(2), mai | (1), pri nt env(1B), sh(1) in the UNICOS User Commands
Reference Manual, Cray Research publication SR—2011

308 SR-2014

DEF_SEG(5) DEF_SEG(5)

NAME
def _seg, def | d,| d_Flib — Loader directives files

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/lib/segdirs/def_seg,/lib/segdirs/def _ld,and/Iib/segdirs/lId_Flib filesare
loader directives files. The default directives files contain initial information used for the loading process.
This information includes machine-specific program construction data, the library names (if any) that are
searched by default, and the location of the libraries to be searched.

The/li b/ segdirs/def_seg fileis the default directives file for the segl dr (1) command;
/1ib/lsegdirs/def _I|d isthe default directives file for the | d(1) command. When either loader
command begins execution, it reads the contents of the default directives file for that command.

When you specify the - F option on the | d(1) command line, the | d(1) command uses the
/1iblsegdirs/Id_Flib file It describes the libraries | d(1) should search when flowtracing has been
enabled or when a user wants to include the complete set of default libraries. This file should identify the
same libraries that the def _seg file specifies for segl dr.

The initial contents of these files are created when the system is installed. To customize the loader actions,
the system administrator can add or remove directives in any of the files.
EXAMPLES

The following examples show the contents of the three loader directives files.
Sample def _seg file:

syst em=uni cos /* set the target operating system */
start =$START /* declare the name of the programentry point */
cal | xf er =MpA$I $N /* declare the name of the transfer reference */
compr ess=1000 /* decl are the conpression threshold val ue */
har dr ef =t r bk /* force hard references to entry ’trbk’ */
deflib=libc.a /[* identify the default libraries */

deflib=libu.a
deflib=libma
deflib=libf.a
deflib=libio.a
deflib=libsci.a
deflib=libp.a

SR-2014 309

DEF_SEG(5)

FILES

SEE ALSO
[d(1), segl dr (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

310

Sample def _1 d file:

syst em=uni cos
start =$START

cal | xf er=MBASI $N
conmpr ess=1000

| bin=_start_.o

Sample| d_Fl i b file:

deflib=libc.a
deflib=libu.a
deflib=libma
deflib=libf.a
deflib=libio.a
deflib=libsci.a
deflib=libp.a

/1iblsegdirs/def_Id
/1ibl/segdirs/def_seg
/libl/segdirs/Id_Flib

/* set the target operating system

DEF_SEG(5)

*/

/* declare the nane of the programentry point */

/* declare the name of the transfer

reference */

/* decl are the conpression threshold val ue */
/* load the system start-up routine first */

/* identify the default

Default directives file for | d
Default directives file for segl dr
Identifies libraries used by | d

libraries

*/

SR-2014

DIR(5) DIR(5)

NAME

di r, ncdi r — Directory file format

SYNOPSIS

#i nclude <sys/fs/ncdir. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

A directory functions as a regular file, except that no user may write to a directory. The mode field of a
file's inode entry indicates whether afile is a directory.

struct cdirect

{
unsi gned long cd_ino; /* I node for nane */
unsi gned |l ong cd_sino; /* Reserved for future use */
unsi gned short cd_reserved: 10, /* Reserved for future use */
cd_signature: 22, /* Name signature */
cd_reclen: 22, /* Record length (bytes) */
cd_nanel en: 10; /* Length of nanme (bytes); */
unsi gned char cd_nane[COVMAXNAMELEN]; /* Directory nane */
b
By convention, the first two entries in each directory are". " and ". . ". Thefirst is an entry for the
directory itself, and the second is for the parent directory. The meaning of ". . " is modified for the r oot
directory of the master file system; because no parent directory exists, ". . " has the same meaning as . ".

An unused directory entry, identified by cd_i no=cd_nanel en=0, is permitted only at the beginning of
a block.

Directory names are null-padded to the nearest word boundary. If the name length is a multiple of 8, a
null-terminator is not guaranteed.

FILES
fusr/include/sys/dir.h Not used; retained for compatibility.
fusr/include/sys/fs/ncdir.h NC1FS file systems.

SEE ALSO

di rent (5), f s(5)

SR-2014 311

DIRENT(5)

NAME

DIRENT(5)

di r ent — File system-independent directory entry format

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <sys/dirent. h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

312

Different file system types may have different directory entries. The di r ent structure defines a file
system-independent directory entry, which contains information common to directory entries in different file
system types. The get dent s(2) system call returns a set of these structures; you can access these
structures by using the cl osedi r (3C), opendi r (3C), r eaddi r (3C), r ewi nddi r (3C), seekdi r (3C),
and t el | di r (3C) routines (see di r ect or y(3C)).

The di r ent structure is defined as follows:

struct dirent {
| ong d_i no;
of f _t d_off;
unsi gned short d_reclen;
char d_nane[1] ;
i
d_ino Unique number for each file in the file system.
d_off Offset from the beginning of the file to the end of the current entry.
d_reclen Record length of the entry; defined as the number of bytes required between the current
entry and the next one to ensure that the next entry is on a word boundary.
d_nane Beginning of the character array that gives the name of the directory entry. This name is
null-terminated and has a maximum character length of MAXNAM_EN characters. This
results in file system-independent directory entries being variable-length entities.
/fusr/include/sys/dirent.h File system-independent directory entry definition file
[usr/include/sys/types.h Data type definition file

SR-2014

DIRENT(5) DIRENT(5)

SEE ALSO
dir(5), fs(5
get dent s(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012
di r ect or y(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2014 313

DUMP(5)

NAME

DUMP(5)

dunp, dunpdat es — Incrementa file system dump format

SYNOPSIS

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

IMPLEMENTATION

<sys/types. h>
<sys/ param h>
<sys/ fs/ncli no. h>
<dunprestor. h>

All Cray Research systems

DESCRIPTION

File system dump tapes used by the dunp(8) and r est or e(8) commands contain the following

information:

¢ A header record

* Two groups of bitmap records

* A group of records that describes directories

* A group of records that describes nondirectory files

A trailing bitmap

The following symbols are defined in dunpr est or . h, (the entries prefaced with TS _ are used in the
c_t ype field to indicate the header type):

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

CNTREC
TS_TAPE
TS_| NODE

314

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CNTREC
TS_TAPE
TS_| NODE
TS BI TS
TS_ADDR
TS_END
TS_CLRI
TS_ACL
TS_PAL
DR_MAGI C
CHECKSUM

int) 60012
int) 84446

NN O N O WN P

Number of 4096-byte records in a physical tape block.
First block of dump outpuit.

File or directory follows. The c_di node field is a copy of the disk inode; it contains
bits that specify the type of the file.

SR-2014

DUMP(5)

TS BI TS

TS_ADDR
TS_END
TS CLRI

TS_ACL
TS_PAL

DR_MAG C
CHECKSUM

DUMP(5)

Bit map follows. This bitmap consists of 1 bit for each inode that was dumped. At the
end of the dump output, a second TS_BI TS bitmap indicates the inodes that were updated
during execution of dunp.

A subrecord of a file description, (see the description of ¢c_addr).
End-of-tape record.

Bit map follows. This bitmap contains a 0 bit for all inodes that were empty when the file
system was dumped.

Access control list (ACL) block follows.
Privilege assignment list (PAL) block follows.
A magic number.

Checksum for header records.

Header Record Format
The dunpr est or . h include file defines the format of the header record and of the first record of each

description.

uni on cu_spcl {

}s
#defi ne

c_type
c_date
c_ddate
c_t apea
c_i nunber

c_checksum

SR-2014

char dummy[BSI ZE] ;
struct c_spcl {
i nt c_type;
time_t c_date;
time_t c_ddate;

| ong c_t apea;

| ong C_i number ;

i nt c_checksum
struct cdi node c_di node;
i nt c_count;

char c_addr[NI NDI R] ;

} c_spcl;

cspcl cu_spcl.c_spcl

Header type.

Date of dump.

Date of previous incremental dump.

Current number of this 4096-byte record.

Number of inode being dumped if TS | NODE is set.

The value needed to make the record’ s checksum equal to CHECKSUM

315

DUMP(5) DUMP(5)

c_di node Copy of inode as it appears in the file system; for a description of the inode format, see
f s(5).
c_count Count of charactersin c_addr.
c_addr Array of characters that describes the blocks of the dumped file, 1 bit per character. If the

block associated with that character was not present on the file system when it was
dumped, a character is O; otherwise, the character is nonzero. If the block was not present
on the file system, the block will be restored as a hole in the file. If there is not sufficient
space in this record to describe all of the blocks in afile, TS _ADDR subrecords are
scattered throughout the file, each one starting where the last one left off.

Dump History
The dump history is kept in the / et ¢/ dunpdat es file. The format of an entry in / et ¢/ dunpdat es is
as follows:

name level date(timestamp) volume[: volume]

name Name of dumped file system.
level Level number of dump tape (see dunp(8)).
date Date of incremental dump in dat e(1) format.

timestamp Date of the incremental dump in seconds since 00:00:00 GMT, January 1, 1970.

volume Volume serial number of the dump tape; if the dumped file system is contained on more than
one tape, the numbers are separated by colons (:). If the file system was not dumped to a
tape, the word NULL appears in this field.

To specify this field, use the - T option on the dunp(8) command. The default is the first 40
characters of the VSN list.

FILES
/ et c/ dunpdat es Incremental file system dump file
[usr/include/ dunprestor.h File system dump tape header definition
/usr/include/sys/inode. h Inode structure definition
/fusr/include/sys/types.h Data type definition file

SEE ALSO

fs(5), t ypes(5)
scanf (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

dunp(8), r est or e(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

316 SR-2014

ERRFILE(5) ERRFILE(5)

NAME

errfil e — Error-log file format

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/erec. h>

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

When the system detects hardware errors, an error record is generated and passed to the error-logging

daemon, er r denon(8). The error-logging daemon records the error record in the error-log file for later
analysis. The default error-log fileis/ usr/adm errfil e.

The format of an error record in an error-log file depends on the type of error encountered. Each record
however, has a header with the following format defined in the sys/ er ec. h include file:

struct errhdr {

short e_type; /* record type */
short e_len; /* bytes in record (w th header) */
time_t e tine; /* time of day */

} o

The permissible record types are as follows:

SR-2014 317

ERRFILE(5)

318

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

E_GOTS

E_STOP

E_TCHG

E_SSD
E_MEM
E SDI'S
E_SEN
E 108
E_DSK
E_D29
E_D39
E_D49
E_D40
E_D10

ERRFILE(5)
ne E GOTS 010 /[* Start for UN COS/ TS */
ne E STOP 012 [* Stop */
ne E TCHG 013 /* Tinme change */
ne E SSD 0100 /* SSD error record */
ne E_MEM 01000 /* CRAY menory error */
ne ESDIS 01001 /[* Single-bit error detection disabled */
ne E_SEN 01002 [* Single-bit error detection enabled */
ne E I CS 01003 [* 10S error packet (s) */
ne E_DSK 01004 /* Disk driver error report */
ne E D29 01005 /* DD29 error record */
ne E D39 01006 /* DD39 error record */
ne E D49 01007 /* DD49 error record */
ne E D40 01010 /* DD40 error record */
ne E D10 01011 /* DD10 error record */
ne E D50 01012 /* DD50 error record */
ne E D11 01013 /* DD11 error record */
ne E D41 01014 /* DD41 error record */
ne E TAPE 01021 [* Tape error record */
ne E_ PARI TY 01030 /* Register parity */
ne E_H PPl 01050 /* H PPl error */

Error-logging start-up record; when logging is first activated, one of these is sent to the

error-logging daemon.

Error-logging termination record; when it stops logging errors, one of these is sent to the

daemon.

Time-change record; whenever the system’s time of day is changed, one of these is sent to the

daemon.

SSD error record; one of these is generated for each SSD error.
Memory error record; one of these is generated for each memory error.
Marker record signifying that single-bit error detection is disabled.
Marker record signifying that single-bit error detection is enabled.
|OS error record.

Disk error record.

DD-29 error record.

DD-39 error record.

DD-49 error record.

DD-40 error record.

DD-10 error record.

SR-2014

ERRFILE(5) ERRFILE(5)

E D50 DD-50 error record.
E D11 DD-11 error record.
E D41 DD-41 error record.

E TAPE Tape error structure.
E PARI TY Register parity error record.
E HI PPI HIPPI error record.

The error file contains some administrative records. These include E_GOTS (the start-up record entered into
the file when logging is activated), E_STOP (the record written when the error-logging daemon is terminated
gracefully), and E_TCHG (the time-change record that accounts for changes in the system’s time of day).
The formats for these records are defined in the sys/ er ec. h include file.

FILES
fusr/admerrfile Default error-logging file
/usr/include/sys/erec.h Error-log header format
SEE ALSO

err denmon(8), er r pt (8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2014 319

EXPORTS(5) EXPORTS(5)

NAME

exports, xt ab — Directories to export to NFS clients

SYNOPSIS

[etclexports
/etc/xtab

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

320

The/ et c/ export s file contains entries for directories that can be exported to NFS clients. The
export f s(8) command reads this file automatically. If you change this file, you must run export f s(8)
for the changes to affect the daemon’s operation.

The / et ¢/ xt ab file contains entries for directories that are currently exported. (To remove entries from
this file, use the - u option of export f s(8).)

An entry for a directory consists of a line that has the following format:

directory - option[, option] . . .

directory Path name of a directory
The following are valid options:
ro Exports the directory read-only. If you omit this option, the directory is exported read-write.

r w=hostname] : hostname] . ..
Exports the directory read-mostly. Read-mostly means read-only to most hosts, but read-write
to the hosts that are specified by hostname. If you omit this option, the directory is exported
read-write to al. r o and r w are mutually-exclusive options.

anon=uid Specifies uid as the effective user ID when a request comes from an unknown user.

Users who are logged in as root (uid 0) are always considered unknown by the NFS server,
unless they are included in the root option that follows. The default value for the anon
option is—2. To disable anonymous access, set anon = - 1.

r oot =hostname| : hostname] . ..
Gives root access only to the root users from a specified host. The default is that no hosts are
granted root access.

access=client[: client] ...
Gives mount access to each client listed. The default value alows any machine to mount the
given directory.

cksum Checksums packets that are returned to clients.

SR-2014

EXPORTS(5) EXPORTS(5)

krb Indicates that Kerberos authentication is required for access to this export.

nosync Specifies that write operations to this file system are delayed. This option can significantly
improve write performance, but its use can cause loss of data if the server crashes before the
data is written to disk.

A # symbol anywhere in the file indicates a comment, which extends to the end of the line.
The client argument can specify the name of a host or the name of a netgroup. For information on how to
use a netgroup file, see net gr oup(5).

CAUTIONS

You cannot export either a parent directory or a subdirectory of an exported directory that is within the same
file system. When both directories reside on the same disk partition, it isillegal, for example, to export both
{fusr and/usr/ | ocal .

EXAMPLES

An example of an export s file follows:

/usr -access=clients # export to ny clients

/usr/ | ocal # export to the world

/usr?2 -access=hernmes: zi p: aspen # export to only these machi nes

/fusr/sun -root =hernes: zi p # give root access only to these
hosts

/usr/new -anon=0 # give all machines root access

/fusr/bin -ro # export read-only to everyone

/fusr/stuff -access=zip, anon=-3,ro0 # several options on one line

[usr/other -rw=host1:host2:host3 # read-write to listed hosts

FILES

/etclexports Contains a list of directories that are exportable to NFS clients

/etc/ hosts Contains a list of known hosts on a network
/etc/xtab Contains a list of directories that are currently exported
SEE ALSO

host s(5), net gr oup(5)

export f s(8), nf sd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2014 321

EXRC(5) EXRC(5)

NAME

exr ¢ — Start-up files for ex(1) and vi (1)

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

NOTES

The . exr c file is a start-up file for the ex (1) and vi (1) text editors. In this file, you can enter editor
commands that you want the editor to execute every time you edit a file. When you invoke ex(1) or vi (1),
the editor checks for afile named . exr ¢ in your home directory ($HOVE) and runs editor commands it
finds there. Then the editor checks for a file named . exr c in the current directory. The . exr c file in the
current directory is, by default, processed only if you are the owner. This default can be changed only to
allow the processing of . exr c files that you do not own at the time the editor command is built.

You can enter each editor command on a separate line or enter several separate commands on the same line
and separate the commands with a | symbol.

If you have the EXI NI T environment variable defined, the . exr c files are not processed.

EXAMPLES

322

Three useful editor commands that are commonly included in . exr ¢ files are shown in the following
examples. For a complete description of all editor commands, see ex(1) or vi (1).

Example 1: In the following example, the file contains the set command twice with two separate options.
The first option turns off wr apscan, so that when a search is in progress, the editor does not wrap to the
beginning when the end of the file has been reached. The second option sets showmat ch, which tells the
editor to show the match to a right parenthesis ()) or right brace (}) when either of these charactersis
entered.

set nowr apscan | set showmatch
Example 2: To replace a keystroke entered in the vi (1) command mode with a series of vi (1) commands,

use the map command. The following example uses map to set the "=" character to the vi (1) command
5x. When a user types the string =, vi (1) executes 5x, deleting 5 characters.

mp = b5x
Example 3: The vi (1) command, abbr evi at e, is specified in the following example. When this
command is in effect, vi (1) automatically replaces string "cri" with "Cray Research, Incorporated’ when you

type the string in insert mode. (This substitution occurs only when "cri" is surrounded by spaces, tabs, or
punctuation; this ensures that substitutions do not occur in the middle of words.)

abbreviate cri Cray Research, Incorporated

SR-2014

EXRC(5) EXRC(5)

FILES
$HOMVE/ . exrc Editor start-up file in your home directory
.l .exrc Editor start-up file in the current directory
SEE ALSO

ex(1), vi (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014 323

FCNTL(5) FCNTL(5)

NAME

fcntl — File control options

SYNOPSIS

#i ncl ude <fcntl. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thef cnt | (2) system call provides control over open files. Thef cnt | . h include file describes the
available requests and arguments to f cnt | (2) and open(2).

/* Flag val ues accessible to open(2) and fcntl (2) */
[* (The first three can only be set by open) */

#define O RDONLY O
#define O WRONLY 1

#defi ne O RDWR 2

#define O NDELAY 04 /* Non-bl ocking I/0O */

#define O APPEND 010 /* append (wites guaranteed at the end) */

#define O_SYNC 020 /* synchronous wite option */

#defi ne O NONBLOCK 040 /* Non-bl ocking /0O (POSI X) */

#defi ne O RAW 0100 /* direct to user space */
/* (no system buffering) 1/0 */

#defi ne O _SSD 0200 /* 1/0O addresses are SDS rel ati ve */
/* (CRAY Y-MP systens) */

#define O _ASYNC 0200000 /* Asynch 1/O for sockets */

/* Flag val ues accessible only to open(2) */

#defi ne O _CREAT 000400 /* open with file create */

/* (uses third open arg) */
#define O _ TRUNC 001000 /* open with truncation */
#define O EXCL 002000 /* exclusive open */
#define O NOCTTY 004000 /* No controlling TTY (POSI X) */
#defi ne O RESTART 040000 /* create file as a restart file */

[* fcntl (2) requests */

#defi ne F_DUPFD 0 /* Duplicate fil des */
#define F_GETFD 1 /* Get fildes flags */
#define F_SETFD 2 /* Set fildes flags */

324 SR-2014

FCNTL(5)

FILES

fusr/include/fcntl.h

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

/* file segnent

/*

ne
ne
ne
ne
ne
ne

ne
ne

F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW
F_CHKFL

F_GETOWN
F_SETOWN

coO~NO Ol hWwW

9

10

| ocki ng set

[* Get
/* Set
[* Get
/* Set
/* Set

file flags
file flags
file lock
file lock
file lock and wait

/* Check legality of
/* file flag change
/* Internal use only

[* Get
/* Set

SI Gl O SI GURG proc/ pgrp
SI Gl O SI GURG proc/ pgrp

data type

- informati on passed to system by user

struct flock {

b

/* file segnent

short
short
| ong
| ong
short
short

#defi ne F_RDLCK
#defi ne F_WRLCK
#defi ne F_UNLCK

SEE ALSO
fcntl (2), open(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2014

01
02
03

_len; /* len

| ocki ng types */

= 0 nmeans until end of file

/* Read | ock
/* Wite |ock
/* Renmpve | ock(s)

File control options file

FCNTL(5)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/
*/
*/

325

FS(5)

NAME

f s — File system partition format

SYNOPSIS

IMPLEMENTATION

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<sys/types. h>

<sys/ param h>

<sys/ map. h>
<sys/fs/nclfilsys. h>
<sys/fs/clfilsys. h>

Cray PVP systems

DESCRIPTION

The NCL1FS file system is created by The nkf s(8) command. For further information about the file system
structure of the NC1FS file system, see General UNICOS System Administration, Cray Research publication

SG-2301.
The format of the file system blocks for the NC1FS file system is as follows:
/ *
* I node region descriptor.
* The first block of an inode region is a
* bit map for the inodes in that region.
*/
struct nclireg_sb {
ui nt i _unused: 16, /* reserved
i _nbl : 16, /* nunber of bl ocks
i _sblk :32; /* start bl ock numrber
H
struct nclireg_db {
ui nt i _avail; /* nunber of avail able inodes
b
#defi ne NC1MAXI REG 4 /* Maxi mum i node regions per partition
#defi ne NC1l MAPBLKS 1 /* nunber of blocks in inode map
struct nclfdev_sb
{

326

| ong
ui nt

fd_nane; /* Physical device nane
fd sblk :32, /* Start bl ock number
fd nblk :32; /* Nunber of bl ocks

FS(5)

*/
*/
*/

*/

*/
*/

*/
*/
*/

SR-2014

FS(5)

#def i
#def i
#def i
#def i
#def i
#def i

#def i

/*

* Structure of the super-block

*/

ne
ne
ne
ne
ne
ne

ne

struct

{

SR-2014

struct nclireg_sb

nclfdev_db

i nt

struct nclireg_db

FDNC1_DOWN

fd_flag;

01

FDNC1_RDONLY 2

FDNC1_NOALLOC 4
FDNC1_SBDB 010
FDNC1_RTDI R 020
FDNC1_SECALL 0100
NC1MAXPART 64

nclfil sys

| ong S_magi c;
char s_fnane[8];
char s_f pack][8];
dev _t s_dev;

daddr _t s _fsize;

i nt
| ong
| ong

| ong

i nt

i nt

| ong
tinme_t

s_isize;
s_bigfile;
s_bigunit;

s_secure
s_maxl| vl ;
s_mnlvl;
s_val cnp;
s tine;

bl kno_t s_dboff;

i no_t
struct

S_root;

/*
/*
/*
/*

/*
/*
/*

ncldbl ock *s_pdb;
bl kno_t s_mapoff;

magi ¢ nunber to indicate file systemtype
file system name

file system pack name
maj or/ mi nor device, for verification
size in blocks of entire volunme

Nurmber of total inodes

nunber of bytes at which a file is big

/* m ni mum nunber of bl ocks allocated for
big files
/* security: secure FS | abel
/* security: maxi mum security |eve
/* security: mnimmsecurity |eve
/* security: valid security conpartments
/* last super block update
/* Dynam ¢ bl ock nunber
/* root inode
/* pointer to dynanic block (when nounted)
[* Start map bl ock nunber

FS(5)

fd_ireg] NCIMAXI REG ; /* |node regions */
/* flag word */
fd_ireg] NCIMAXI REG]; /* Inode regions */

/* Slice not avail able */

/[* Slice is read only */

/* Slice is not available for allocation */

/* Slice has valid FS tables */

/* Slice has valid ROOT | node and directory */

/* Slice sector allocated */

/* Maxi mum nunber of partitions */

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

327

FS(5)

b

struct

{

328

i nt s_mapbl ks; /*
i nt s_nscpys; /*
i nt S_npart; /*
i nt s_ifract; /*
bl kno_t s _sfs; /*
| ong s_flag; /*
st ruct
i nt s_iounit; /*
| ong s_nuniresbl ks; [*
/*
/*
| ong S_priparts; /*
| ong s_pri bl ock; /*
/*
| ong s_pri nbl ks; /*
| ong s_secparts; /*
| ong s_sechl ock; /*
/*
| ong s_secnbl ks; /*
| ong s_shdbparts; /*
/*
/*
/*
| ong s_rootdparts; /*
/*
| ong s_nudparts; /*
/*
| ong s fill[94]; /*
ncldbl ock
| ong db_magi c; /*
daddr _t db_tfree; /*
i nt db_ifree; /*
i nt db_ni node; /*
| ong db_st at e; /*
time_t db_tine; /*
| ong db_type; /*
i nt db_spart; /*
i nt db_ifptr; /*
i nt db_act ype; /*
| ong db_fl ag; /*

Last map bl ock nunber

Nunmber of copies of s.b per partition
Nunber of partitions

Rati o of inodes to bl ocks

reserved

Flag word

nclf dev_sb s_part[NCLMAXPART]; /* Partition descriptors

Physi cal bl ock size

nunber of inode reservation bl ocks
per region (currently 1)

0 = 1*(AU) words, n = (n+l1)*(AU) words
bitmap of primary partitions

bl ock size of primary partition(s)

0 = 1*512 words, n = (n+l1)*512 words
nunber of 512 wds blocks in primary
bi t map of secondary partitions

bl ock size of secondary partition(s)
0 = 1*512 words, n = (n+l1)*512 words
nunber of 512 wds bl ocks in secondary

FS(5)

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

bitmap of partitions with file systemdata */

i ncl udi ng super bl ocks, dynam c bl ock
and free block bitmaps (only primary
partitions may contain these)

bitmap of partitions with root directory

(only primary partitions)

bi t map of no-user-data partitions
(only primary partitions)
reserved

magi ¢ nunber to indicate file systemtype

total free bl ocks

total free inodes

total allocated inodes
file systemstate

| ast dynami c bl ock update
type of new file system

Partition from which system nounted
I node all ocation pointer

devi ce accounting type (for billing)
Fl ag word

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SR-2014

FS(5)

s

#def i
#def i
#def i

/*
* Fi
*

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i
#def i

| ong db_resi;

struct buf *db_fbuf;
struct map db_f pmap;
struct

| ockinfo_t db_I ockinf;
i nt db_dpfptr;

i nt db_dsfptr;
daddr _t db_sfree;
struct map db_fsmap;

| ong db_fill[157];

ne db_proc

/* reserved

/* Free block map buffer descriptor

/* Free block map header -

nclf dev_db db_part [NCLMAXPART] ;

db_1 ocki nf . hi _proc

/*
/*
/*
/*
/*
/*

primary parts

/* Partition descriptors

secondary parts

/* proc of process |ocking fil esystem

Fil esystem out of space
Round robin file allocation

Round robin al
Round robin 1st

File
File
File
File
File
File
File

Round robin al

File

directories

| evel directories
system read only

system checked
syst em nmount ed

system | ock want ed
system | ocked

system update in progress
system wakeup after update
user file data
systemdirty

/* File system shared

/* s_magi ¢ nunber
db_magi ¢ nunber

ne db_fptr db_ifptr

ne db_frmap db_f pmap

| esystem fl ags

ne Fs_NOSPC 1 /*
ne Fs_RRFI LE 2 /*
ne Fs_RRALLDI R 4 /*
ne Fs_RR1STDI R 010 /*
ne Fs_RDONLY 020 /*
ne Fs_CHECKED 040 /*
ne Fs_MOUNTED 0100 /*
ne Fs_WANTED 0200 [*
ne Fs_LOCKED 0400 [*
ne Fs_UPDATE 01000 /*
ne Fs_WJPDAT 02000 /*
ne Fs_RRALLUDATA 020000 /*
ne Fs_DI RTY 0100000 /*
ne Fs_SFS 010000000
ne FsMAG C_NC1 0x6e6331667331636e

ne DbMAG C_NC1 0x6e6331646231636e /*
ne FsSECURE 0xcd076d1771d670cd /*
ne NC1NSUPER 10 /*
ne NC1M NPARTSZ (6+NCLNSUPER) /*

SR-2014

S_Secure:

Copi es of s.b. per
M ni mum bl ocks per

secure file system

partition
partition

FS(5)

*/
*/
*/

*/

proc of the process locking the filesystem */
primary partitions allocation pointer
secondary partitions allocation pointer
secondary parts free bl ocks

Free bl ock map header -
reserved

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/

329

FS(5) FS(5)

#def i ne NC1DB(fp) \
((struct ncldbl ock *)(fp->s_pdb))
#def i ne nclgetfs(np) \
((struct ncifilsys *)(((struct buf *)(np)->m bufp)->b_waddr))
#def i ne nclget db(np) \
((struct ncldblock *)(((struct buf *)(np)->mdbufp)->b waddr))

FILES
{usr/include/sys/fs/nclfilsys.h Format of file system partitions for NC1FS file
systems
[usr/include/sys/ map. h Definitions for bit map management
[usr/include/sys/param h System parameter file
/usr/include/sys/types.h Data type definition file
SEE ALSO

di r (5), di rent (5), i node(5)

f sck(8), nkf s(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

General UNICOS System Administration, Cray Research publication SG—2301

330 SR-2014

FSLREC(5) FSLREC(5)

NAME

f sl rec — File system error log record format

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <sys/fslrec. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

File system error log records are written to / dev/ f sl og by the UNICOS kernel as part of the panic-less
file system feature. The file system error log daemon, f s| 0gd(8), reads and processes log records.

The format of each file system error log record is defined as follows:

struct fslgrec {

time_t fsl _tine; /* time (seconds since ’'70) */
i nt fsl _type; /* error type */
i nt fsl _subtype; /* error sub-type */
char *fsl_ptr; /* generic pointer to struct in err */
b

The following list summarizes the file system error log record types:

FSLG GO (Deferred) File system error log start record

FSLG STOP (Deferred) File system error log stop record

FSLG FS The UNICOS kernel has detected a file system data structure error

FSLG DR The UNICOS kernel has detected a directory block error
FSLG | NODE The UNICOS kernel has detected an error in the memory copy of a file inode

FILES
/ dev/ f sl og File system error log device
/usr/include/sys/fslog.h File system error log header file
fusr/include/sys/fslrec.h Format of file system error log record
/usr/include/sys/types.h Data type definition file

SR-2014 331

FSLREC(5) FSLREC(5)

SEE ALSO

fsl og(4)

f sl 0ogd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

332 SR-2014

FSTAB(5) FSTAB(5)

NAME

f st ab, mt ent — File that contains static information about file systems

SYNOPSIS

#i ncl ude <mtent. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ f st ab file describes the file systems and swapping partitions that UNICOS uses. The "nmount
directory" form of the nount (8) command uses this information. The command searchesthe / et ¢/ f st ab
file for an entry that has a mount point named directory and mounts the file system as the entry describes.

File system quot a commands also use this information. For more information, see quadm n(8),
guot a(1), and qudu(8).

The nf sck(8) command also uses this information. For more information, see nf sck(8).

The system administrator creates the f st ab file by using a text editor or the UNICOS installation and
configuration menu system. The nount (8) command processes it as a source of default options. The
[et c/fstab fileis not changed by programs; it is only read. The system administrator must properly
create and maintain this file.

The controlling agent for mounting root file systems isthe/ et ¢/ confi g/ r copti ons file, which is
defined with the UNICOS installation and configuration menu system and is used at system startup.

The/ et c/ f st ab file consists of severa lines of the following form:
filesystem directory type options frequency passnumber
Each line in the file constitutes a file system entry. The entry fields are separated by white space. The

mmt ent structure definition explains the meaning of each field. A # as the first nonwhite character on a line
indicates a comment.

The entriesin / et ¢/ f st ab are accessed using the routines in get mt ent (3C), which return a structure
that has the following format:

struct mmtent {

char *mmt _f snanme; /* file system name */
char *mmt _dir; /* file system path prefix */
char *mmt _t ype; /* file systemtype */
char *mmt _opts; /* ro, quota, etc. */
int mt_freq; /* dunp frequency, in days */
int mt_passno; /* pass number on parallel fsck */

SR-2014 333

FSTAB(5)

334

mt _f snane
mt _dir

mt _t ype
mt _opts
mt _freq

mmt _passno

f sckopt

quot a

FSTAB(5)

Name of the block specid file to be mounted.
Directory mount point for the specia file.

Type of file system specified in mt _f snane. Valid types are NC1FS, NFS, PRCC,
I NODE, SFS, and i gnor e. If themmt _t ype is specified asi gnor e, the entry is
ignored. Thisis useful for showing disk partitions that are currently unused.

String of comma-separated options. The description of the f sckopt and quot a options
follow, but the other options are documented with mount (8).

Optional field referenced by the - w option of the dunp(8) command to determine the
frequency of system dumps.

Optional field referenced by the nf sck(8) program to determine the order that file
systems are checked using the f sck(8) command.

Specifies the file system nf sck(8) options when invoking f sck(8). This option takes the
following form:

f sckopt =q

Using q asthe f sckopt specifies that nf sck(8) use file system flags to determine when
the file system is checked. Specifying u as the f sckopt implies an unconditiona file
system check, which is the default.

Specifies the file quota configuration of the mt _opt s entry. This option takes one of
three forms:

1. quot a=quota file relative name

This form is used if the quot a control file will reside on the file system it controls.
The file name is relative to the root directory of the file system, and if the default
name is used as recommended, the option generally would be written as

quot a=$QFI LE.

The specia name $QFI LE means the default quot a file name (as defined in
guadm n(8)). The default name is. Quot a60 so that the preceding quot a option
would resolve to quot a=. Quot a60 in the root directory of the file system.

2. quot a=quota file full_name

This form is used if the quot a control files will reside in some arbitrary place (for
example, if the quot a files were to reside in the / et ¢/ admi n/ quot a60 directory,
this form could be written as quot a=/ et ¢/ adm n/ quot a60/ $FI LESYS).

The specia name $FI LESYS is the last component of the filesystem name on this
fstab line. If thisline had been written as

/ dev/ dsk/ sl ash_b /b NC1FS quot a=/et c/adm n/ quot a60/ $FI LESYS

it would be resolved to

SR-2014

FSTAB(5) FSTAB(5)

guot a=/ et ¢/ adm n/ quot a60/ sl ash_b

A directory, quot a60, was created to hold all of the quot a control files. The file
system name identifies each individual quot a control file within the directory.

3. quot a=/dev/dsk/filesystem name

This form shows that this file system is under the control of a quot a file defined and
used to control another file system. When multiple file systems are controlled as a
group, this form is used. For example, assume that three lines from / et ¢/ f st ab
were written as follows:

/dev/dsk/tnmp_1 /tnp_1 NCLFS quota=$QFI LE
/dev/dsk/tnmp_2 /tnp_2 NCLFS quota=/dev/dsk/tmp_1
/dev/dsk/tnmp_3 /tnp_3 NCLFS quota=/dev/dsk/tmp_1

These lines define the quot a control file as. Quot a60 residing in the root directory
of / dev/ dsk/tnp_1. The same quot a control file controls file systems

[dev/ dsk/tnmp_2 and / dev/ dsk/ t np_3; therefore, the quot a information for
usage of any or all of the three file systems is common and reflects the combined
usages of all three.

The rule for using this form is if the right-hand side of a quot a option matches one
of the other file system namesin/ et c/ f st ab, it is the third form of declaration (as
defined previously), and the file system must contain a quot a option naming a file.
Only one level of indirection is supported.

EXAMPLES

FILES

File system / usr/ si er r a from remote host si er r a will be mounted on local directory / nf s/ si erra.
File system type is NFS with options bg, sof t, rsi ze, and wsi ze. For a description of the options, see
nmount (8).

sierra:/usr/sierra /nfs/sierra NFS soft,bg,rsize=8192, wsi ze=8192

Mount the / pr oc file system on the / pr oc directory.
/ proc / proc PROC

[etc/fstab File system static information

/usr/include/ Mmtent. h Structure definition of f st ab entries

SR-2014 335

FSTAB(5) FSTAB(5)

SEE ALSO
mt t ab(5)
guot a(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
get mt ent (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

dunp(8), f sck(8), nf sck(8), nount (8), quadm n(8), qudu(8) in the UNICOS Administrator Commands
Reference Manual, Cray Research publication SR—2022

336 SR-2014

FTPUSERS(5) FTPUSERS(5)

NAME
ftpusers — List of unacceptable f t p(1B) users

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ftpusers file contains alist of unacceptable f t p(1B) users, one user name per line. When
ftp(1B) isrun, ft pd(8) checksft puser s for the login name of the user trying to open a connection. If
the user’s login name appears in the file, f t pd(8) denies the user access.

If ft pusers is nonexistent or empty, all valid UNICOS users are considered valid users of f t p(1B).
FILES
/etc/ftpusers File that contains unacceptable f t p(1B) users

SEE ALSO
ft p(1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
f t pd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 337

GATED-CONFIG(5) GATED-CONFIG(5)

NAME

gat ed- conf i g — Gated configuration file syntax

SYNOPSIS

/ et c/ gat ed. conf

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

338

The gat ed- conf i g file consists of a sequence of statements. Statements are composed of tokens
separated by white space. Most statements are terminated by a ; symbol. However, directive statements are
terminated with a newline. For most statements, white space may contain any combination of blanks, tabs,
and newlines; however, directive statements may use only blanks and tabs.

Comments start with a # symbol and run to the end of the line.

There are eight classes of statements in the following list. Statements from the first two classes may occur
anywhere in the file.

Class Description

Directive Specifies included files and the current directory. The parser immediately acts on
directives.

Trace option Controls tracing options.

You must specify the six remaining classes in the following order:

Class Description

Options Allows specification of some global options.

Interface Specifies interface options.

Definition Specifies options, the autonomous system, and martian networks.

Protocol Enables or disables protocols, and sets protocol options.

Route Defines static routes by using st at i ¢ statements.

Control Defines routes that are imported from routing peers and routes that are exported to these
peers.

Detailed definitions of these classes of statements follow. Primitives that are used in the following
definitions are as follows:

host Any host. You can specify a host by its IP address or by a domain name. If you specify
a domain name with multiple 1P addresses, it is considered an error. The host bits in the
IP address must be nonzero.

SR-2014

GATED-CONFIG(5)

network

destination
dest_ mask

gateway

interface

gateway _list

interface list

preference

metric

GATED-CONFIG(5)

Any network. You can specify a network by its IP address or a network name. The host
bits in a network specification must be 0. To specify the default network (0.0.0.0), you
also may use def aul t .

Any host or network.

Any host or network that has an optional mask. dest_mask can be any of the following
formats:

al |

network

network mask mask
network mask-I| engt h bits
host host

A mask is a dotted quad that specifies which bits of the destination are significant. To
indicate that any |P address can be matched, use al I . You may use the number of
contiguous bits instead of an explicit mask.

A host on an attached network.

An interface specified by IP address, domain name, or interface name. Be careful with the
use of interface names because future UNIX operating systems may allow more than one
address per interface.

A list of one or more gateways.

A list of one or more interface names, wildcard names, or addresses, or the token al | ;
al | refersto dl interfaces. A wildcard name is an interface name without the number.

A number between 0 and 255; 0 is the most preferred, and 255 is the least preferred.
preference determines the order of routes to the same destination in the routing table.
gat ed alows one route to a destination per protocol per autonomous system. For
multiple routes, the route to use is chosen by preference.

When a preference tie exists, if the two routes are from the same protocol and from the
same autonomous system, gat ed chooses the route that has the lowest metric. Otherwise,
gat ed selects the route with the lowest numeric next-hop gateway address.

A valid metric for the specified protocol.

Directives Statements
Directive statements are as follows:

%li r ect ory path_name
Sets the current directory to path_name. This is the directory in which gat ed looks for included
files that do not begin with a/ symbol.

This statement does not actually change the current directory, it simply specifies the prefix applied
to included file names.

SR-2014

339

GATED-CONFIG(5)

% ncl ude filename

GATED-CONFIG(5)

Causes the specified file to be parsed completely before resuming with this file. Nesting up to 10
levels is supported. To increase the maximum nesting level, change the definition of FI _MAX in

par se. h.

Trace Option Statements
Trace option statements are as follows:

340

tracefil e [filename[r epl ace]] [si ze sizel k | m] fil es files];
Specifies the file to contain tracing output. 1f you specify filename, trace information is appended to
this file, unless you specify r epl ace.

If specified, size and files cause the trace file to be limited to size, with files files kept (including the
active file). To create the back-up file names, append a period and a number to the trace file name,
starting with . 0. The minimum size that you can specify is 10Kbytes, the minimum number of
files that you can specify is 2. The default is not to rotate log files.

traceopti ons [traceoption [traceoption [. . .]] [except traceoption [traceoption [. . .]]];
Changes the tracing options to those specified. If you do not specify any options, tracing is turned
off. If you specify the except keyword, flags listed before the keyword are turned on, and flags
listed after it are turned off. This is a simple method to turn on all but a few flags. Trace flags are

as follows:
Flag

al |

ext er nal

gener al

icnp

i nt er nal
ker nel

mar k

nost anp
ospf
par se

pr ot ocol

rip
route

Description

Turns on al of the following options except nost anp.
Produces external error messages.

Turnsoni nternal ,external ,androute.

Lists ICMP redirect packets sent and received. To modify it, use updat e. Redirect
packets that are processed are traced under the r out e option.

Produces internal error and informational messages.
Changes to the kernel’s routing table.

Indicates that a message will be sent to the trace log every 10 minutes to ensure that
gat ed(8) is till running.

Specifies that all messages in the trace file should not be time-stamped.
Lists OSPF packets sent and received. To modify it, use pr ot ocol .
Lists tokens that the parser recognizes in the configuration file.

Provides messages about protocol state machine transitions when used with ospf or
ker nel .

Lists RIP packets sent and received. To modify it, use updat e.
Changes to the gat ed(8) routing table.

SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

t ask Displays task scheduling, signal handling, and packet reception.
timer Displays timer scheduling.
updat e Traces the contents of protocol packets.

Options Statements
Options statements are as follows:

opt i ons option_list ;
Sets gat ed options. option_list can have these following values:

noi nst al I Does not change the kernel routing table. Useful for verifying configuration
files.

nor esol v Does not try to resolve symbolic names into IP addresses by using the host or
network tables or domain name system (DNS). This option is intended for
systems in which a lack of routing information could cause a DNS lookup to
hang.

nosend Does not send any packets. This lets you run gat ed(8) on a live network to
test protocol interactions without actually participating in the routing protocols.
To verify that gat ed(8) is functioning properly, examine the packet traces in
the gat ed(8) log. Thisis most useful for the RIP protocol.

sysl og [upt o log_level] log_level
Controls the amount of data gat ed(8) logs by using the system log on systems
in which the set | ogmask() routine is supported. The set | ogmask(3C)
man page defines the log levels and other terminology. The default is
equivaent to sysl og upto info.

Interface Statements
Definition statements are as follows:

interfaces {
options [strictinterfaces] [scaninterval timel ;
i nt erface interface list interface options ;
define address [br oadcast broad addr| poi nt opoi nt local_addr]
[net mask subnetmask] [rulticast] ;

b
The interface statement includes the following parameters:
options Sets some global options related to interfaces. The options are as follows:

strictinterfaces
Indicates that it is a fatal error to reference an interface in the configuration file
that is not listed in adef i ne statement or not present when gat ed(8) is started.
Without this option, a warning message is issued and gat ed(8) continues.

SR-2014 341

GATED-CONFIG(5) GATED-CONFIG(5)

scani nterval time
Specifies how often gat ed(8) scans the kernel interface list for changes. The
default is every 15 seconds. gat ed(8) also scans the interface list on receipt of a
SI GUSR2 signal.

i nterface Sets interface options on the specified interfaces. interface list options are as follows:
al | Specifies the options that apply to all interfaces.

interface list Specifies a list of interface names, domain names, or numeric addresses.
See the warning about interface names in the DESCRIPTION section.

The options are as follows:

pr ef er ence pref
Sets the preference for routes to this interface when it is up. The default
isO.

down preference pref
Sets the preference for routes to this interface when gat ed(8) believes
it to be down because of a lack of routing information received. The
default is 120.

passi ve Prevents gat ed from changing the preference of the route to this
interface if it is believed to be down because of a lack of routing
information received.

defi ne Defines interfaces that may not be present when gat ed(8) is started. If you specify
strictinterfaces, gat ed(8) considers it an error to reference a nonexistent
interface in the configuration file. This clause alows specification of that interface so that
it can be referenced in the configuration file.

Definition keywords are as follows:

br oadcast broad addr
Defines the interface as broadcast capable (for example, Ethernet and
FDDI), and specifies the broadcast address.

poi nt opoi nt local_addr
Defines the interface as a point-to-point interface, and specifies the
address on the local side. For this type of interface, the address
parameter specifies the address of the remote host.

An interface not defined as br oadcast or poi nt opoi nt is assumed
to be nonbroadcast multiaccess (NBMA), such as HIPPI.

net mask subnetmask
Specifies the nonstandard subnet mask to be used on this interface. This
mask is currently ignored on point-to-point interfaces.

mul ti cast Specifies that the interface is multicast-capable.

342 SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

Definition Statements
Definition statements are as follows:

aut ononpussyst emautonomous_system;
Sets the autonomous system of this router to be autonomous_system.

routerid host;
Sets the router identifier for use by the OSPF protocol. The default is the address of the first
interface gat ed(8) encounters. The address of a honpoint-to-point interface is preferred over the
local address of a point-to-point interface. The most preferred is an address on a loopback interface
that is not the loopback address (127.0.0.1).

martians {martian list};
Defines alist of martian addresses about which al routing information is ignored. The martian _list
is a semicolon-separated list of symbolic or numeric hosts that has optional masks. See dest_mask.
You also may specify the al | ow parameter to allow explicitly a subset of a range that was
disallowed.

Protocol Statements
Protocol statements enable or disable use of a protocol and control protocol options. You may specify the
protocols in any order. For al protocols, pr ef er ence controls the choice of routes learned through this
protocol or from this autonomous system in relation to routes learned from other protocols or autonomous
systems.

The default metric used when exporting routes learned from other protocols is specified by using
def aul t netri c, which itself defaults to the highest valid metric for this protocol; for the RIP protocol,
this signifies a lack of reachability.

For distance vector protocols (RIP) and redirects (ICMP), the t r ust edgat eways clause supplies a list of
gateways that provides valid routing information, and routing packets from others are ignored. This defaults
to all gateways on the attached networks. Routing packets may be sent not only to the remote end of
point-to-point links and the broadcast address of broadcast-capable interfaces, but also to specific gateways if
they are listed in a sour cegat eways clause and yes or on is specified. If you specify nobr oadcast ,
routing updates are sent only to gateways listed in the sour cegat eways clause, and not to the broadcast
address. To disable the transmission and reception of routing packets for a particular protocol, use the

i nterface clause. Tooverrideani nt er f ace clause that disables sending or receiving protocol packets
for specific peers, use the t r ust edgat eways and sour cegat eways clauses.

Any protocol can have atr aceopt i ons clause, which enables tracing for a particular protocol, group, or
peer. The alowable protocol-specific options are al | , gener al , i nt er nal , ext ernal , r out e,
updat e, t ask, ti ner, prot ocol , or ker nel .

ri p Statement

One of the most widely used interior gateway protocols is the Routing Information Protocol (RIP). It
classifies routers as active and passive (silent). Active routers advertise their routes (reachability
information) to others; passive routers listen and update their routes based on advertisements, but they do not
advertise. Typically, routers run RIP in active mode, and hosts use passive mode.

SR-2014 343

GATED-CONFIG(5) GATED-CONFIG(5)

A router running RIP in active mode broadcasts updates at set intervals. Each update contains paired values
in which each pair consists of an IP network address and an integer distance to that network. RIP uses a
hop count metric to measure the distance to a destination. In the RIP metric, a router advertises directly
connected networks at a metric of 1. Networks that are reachable through one other gateway are two hops,
and so on. Thus, the number of hops or the hop count along a path from a given source to a given
destination refers to the number of gateways that a datagram would encounter along that path.

A RIP routing daemon dynamically builds on information received through RIP updates. When started, it
issues a request for routing information and then listens for responses to the request. If a system configured
to supply RIP hears the request, it responds with a response packet based on information in its routing
database. The response packet contains destination network addresses and the routing metric for each
destination.

When a RIP response packet is received, the routing daemon takes the information and rebuilds the routing
database adding new routes and "better" (lower metric) routes to destinations already listed in the database.
RIP also deletes routes from the database if the next router to that destination indicates that the route
contains more than 15 hops, or if the route is deleted. If no updates are received from that gateway for a
specified time period, al routes through a gateway are deleted. Generally, routing updates are issued every
30 seconds. In many implementations, if a gateway is not heard from for 180 seconds, all routes from that
gateway are deleted from the routing database. This 180-second interval also applies to deletion of specific
routes.

RIP version 2 (more commonly known as RIP 1) adds additional capabilities to RIP. For more information
about RIP |1, see RFC 1388.

The syntax for ther i p statement follows:

rip yes | no| on | off [{
broadcast ;
nobr oadcast ;
nocheckzero ;
preference preference ;
def aul tnetri c metric ;
i nterface interface list
[nori pin]
[nori pout]
[metricin metric]
[metricout metric]
[version 1]|[version 2 [rmulticast| broadcast]]
[aut henti cation [none | password]] ;
trust edgat eways gateway list ;
sour cegat eways gateway list ;
traceopti ons trace options ;

|

344 SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

Theri p statement enables or disables RIP. If you do not specify ther i p statement, the default isri p
on. If enabled, RIP assumes nobr oadcast when only one interface exists and br oadcast when more
than one exists.

The options are as follows:

br oadcast Specifies that RIP packets are broadcast regardless of the number of interfaces present.
This option is useful when propagating static routes or routes learned from anther protocol
into RIP. In some cases, the use of br oadcast when only one network interface is
present can cause data packets to traverse a single network twice.

nobr oadcast Specifies that RIP packets are not broadcast on attached interfaces, even if more than one
exists. If asour cegat eways clause is present, routes are still unicast directly to that
gateway.

nocheckzer o Specifiesthat RIP should not check to make sure that reserved fields in incoming version
1 RIP packets are 0. Usually, when the reserved fields are not 0, RIP rejects packets.

pr ef er ence preference
Sets the preference for routes learned from RIP. The default preferenceis 100. To
override this preference, specify a preference in import policy.

def aul t netri c metric
Defines the metric used when advertising routes by using RIP that were learned from other
protocols. If you omit this option, the default value is 16 (unreachable). This choice of
default values requires you to specify a metric explicitly to export routes from other
protocols into RIP. To override this metric, specify a metric in export policy.

i nt erface interface list
Controls various attributes of sending RIP on specific interfaces. For the description of the
interface list, see the section on interface list specification. The following are the
possible parameters:

nori pi n Specifies that RIP packets received using the specified interface are ignored.
The default is to listen to RIP on all interfaces.

nori pout Specifies that no RIP packets are sent on the specified interfaces. When in
br oadcast mode, the default is to send RIP on al interfaces.

metrici n metric
Specifies the RIP metric to add to incoming routes before they are installed
in the routing table. The default is the kernel interface metric plus 1 (which
is the default RIP hop count). If you specify this value, it is used as the
absolute value. The kernel metric is not added. This option is used to
make RIP routes learned through the specified interfaces less preferable than
RIP routes from other interfaces.

SR-2014 345

GATED-CONFIG(5) GATED-CONFIG(5)

346

nmetricout metric
Specifies the RIP metric to be added to routes that are sent using the
specified interfaces. The default is 0. This option is used to make other
routers prefer RIP routes from other interfaces over RIP routes learned using
the specified interfaces.

versi on 1 Specifiesthat RIP packets sent using the specified interfaces are version 1
packets. This is the default.

versi on 2 Specifies that RIP version 2 packets are sent on the specified interfaces. If
Internet Protocol (1P) multicast support is available on this interface, the
default is to send full version 2 packets. If it is not available, version 2
packets that are compatible with version 1 are sent.

mul ti cast Specifies that RIP version 2 packets should be multicast on this interface.
This is the default for RIP version 2.

br oadcast Specifies that RIP version 2 packets that are compatible with version 1
should be broadcast on this interface, even if IP multicast is available.

aut henti cati on
Defines the authentication type to use. It applies only to RIP version 2 and
isignored for RIP version-1 packets. The default authentication type is
none. If you specify a password, the authentication type used is simple.
The password should be a quoted string between 0 and 16 characters.

trust edgat eways gateway list
Defines the list of gateways from which RIP will accept updates. The gateway list is
simply alist of host names or IP addresses. By default, all routers on the shared network
are trusted to supply routing information. But, if you specify the t r ust edgat eways
clause, only updates from the gateways in the gateway list are accepted.

sour cegat eways gateway list
Defines a list of routers to which RIP sends packets directly, not through multicast or
broadcast. By default, RIP packets are broadcast to every system on the shared network.
If you use the sour cegat eways statement, updates are sent only to the gateways in the
gateway list.

traceopti ons trace options
Specifies the tracing options for RIP (see the Trace Options subsection of this man page).

Open Shortest Path First (OSPF) protocol

Open Shortest Path First (OSPF) routing protocol is a shortest path first (SPF) or link-state protocol. OSPF
is an interior gateway protocol that distributes routing information between routers in a single autonomous
system. OSPF is suitable for complex networks that have many routers. Each network that has at least two
attached routers has a designated router and a back-up designated router. The designated router floods a
link-state advertisement for the network and has other specia responsibilities. The designated router concept
reduces the number of adjacencies required on a network.

SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

OSPF allows networks to be grouped into areas. Routing information passed between areas is abstracted,
potentially allowing a significant reduction in routing traffic. OSPF uses four different types of routes, listed
in order of preference: intra-area, inter-area, type 1 external, and type 2 external. Intra-area paths have
destinations within the same area; inter-area paths have destinations in other OSPF areas; and Autonomous
System External (ASE) routes are routes to destinations external to the AS. Routes imported into OSPF as
type 1 ASE routes are supposed to be from peers whose external metrics are directly comparable to OSPF
metrics. Type 2 ASEs are used for peers whose metrics are not comparable to OSPF metrics.

OSPF intra- and inter-area routes are always imported into the gat ed(8) routing database with a preference
of 10. If an OSPF router did not participate fully in the area’s OSPF, it would be a violation of the
protocol, it would update the protocal; therefore, you cannot override this. Although you can give other
routes lower preference values explicitly, you should not do so.

Hardware multicast capabilities also are used when possible to deliver link-status messages.

OSPF areas are connected by the backbone area, the area with identifier 0.0.0.0. All areas must be logically
contiguous, and the backbone is no exception. To permit maximum flexibility, OSPF allows the
configuration of virtual links to enable the backbone area to appear contiguous despite the physical reality.

All routers in an area must agree on that area’s parameters. Most configuration parameters are defined on a
per area basis. All routers that belong to an area must agree on that area’ s configuration.

ospf Statement
The syntax for the ospf statement follows:

ospf yes | no | on | off [{

defaults {
preference preference ;
cost cost ;
tag [as] tag ;
type 1] 2

b

exportlimt routes ;
exportinterval time ;
traceopti ons trace options ;
noni t or aut hkey authkey ;
backbone | (area area) {
authtype 0| 1| none | sinple ;
stub [cost cost] ;
net wor ks {
network ;
network mask mask ;
network maskl en number ;
host host ;
b
stubhosts {
host cost cost ;

SR-2014 347

GATED-CONFIG(5) GATED-CONFIG(5)

348

b

i nt erface interface list; [cost cost | {
interface parameters

b

i nt erface interface list nonbroadcast [cost cost | {
pol l'interval time ;
routers {

gateway [eligible] ;

.
interface parameters

b

Backbone only:

virtual l'i nk nei ghborid router_id transitarea area {
interface parameters

b
i
1

The following are the interface_parameters referred to previously. You may specify them on any class of
interface, and they are described under the i nt er f ace clause.

enable | disable ;
retransmtinterval time ;
transi tdel ay time ;
priority priority ;

hel | oi nterval time ;
rout er deadi nterval time ;
aut hkey auth key ;

defaul ts
These parameters specify the def aul t s used when importing OSPF ASE routes into the gat ed(8) routing
table and exporting routes from the gat ed(8) routing table into OSPF ASEs.

pr ef er ence preference
The preference determines how OSPF routes compete with routes from other protocols in the
gat ed routing table. The default value is 150.

cost cost The cost is used when exporting a non-OSPF route from the gat ed routing table into OSPF
as an ASE. The default value is 1. You may explicitly override this value in the export

policy.

SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

tag [as] tag
OSPF ASE routes have a 32-bit tag field that the OSPF protocol does not use, but which
export policy may use to filter routes. When OSPF is interacting with an exterior gateway
protocol, the tag field may be used to propagate AS path information; in which case, the as
keyword is specified because the tag is limited to 12 bits of information. If you omit this
parameter, the tag is set to 0.

type 1 02 Routes exported from the gat ed routing table into OSPF default to becoming type 1 ASEs.
You may explicitly change this default here and override it in the export policy.

Because of the nature of OSPF, you must limit the rate at which ASEs are flooded. To adjust those rate
limits, use the following two parameters:

exportinterval time
Specifies how often a batch of ASE link-state advertisements are generated and flooded into
OSPF. The default is once per second.

exportlimt routes
Specifies how many ASEs are generated and flooded in each batch. The default is 100.

t raceopti ons trace options
Specifies the tracing options for OSPF. See the Trace Options subsection and the OSPF-
specific tracing options.

noni t or aut hkey authkey
OSPF state may be queried using the ospf _noni t or utility. This utility sends nonstandard
OSPF packets, which generate a text response from gat ed(8). By default, these requests are
not authenticated. If an authentication key is configured, the incoming requests must match
the specified authentication key. These packets cannot change an OSPF state, but the act of
guerying OSPF can use system resources.

backbone area Oarea
You must configure each OSPF router into at least one OSPF area. If you configure more
than one area, at least one must be the backbone. You can configure the backbone only by
using the backbone keyword; you cannot specify it asar ea 0. Each area must have at
least one interface. The backbone interface may be avi rtual | i nk.

aut ht ype 0 01 Onone Osi npl e
OSPF specifies an authentication scheme per area. Each interface in the area
must use this same authentication scheme although it may use a different
aut henti cati onkey. The currently valid values are none (0) for no
authentication, or si npl e (1) for simple password authentication.

st ub [cost cost]
A st ub areais one in which there are no ASE routes. If you specify a cost ,
this is used to inject a default route into the area with the specified cost.

SR-2014 349

GATED-CONFIG(5)

350

net wor ks

st ubhost s

GATED-CONFIG(5)

The net wor ks list describes the scope of an area. Intra-area L SAs that fall
within the specified ranges are not advertised into other areas as inter-area
routes. Instead, the specified ranges are advertised as summary net wor k
LSAs. Inter-area LSAs that do not fall into any range also are advertised as
summary network LSAs. This option is very useful on well-designed networks
in reducing the amount of routing information propagated between areas.

This option specifies directly attached hosts that should be advertised as
reachable from this router and the costs with which they should be advertised.
Y ou should specify point-to-point interfaces on which it is not desirable to run
OSPF.

It also is useful to assign an additional address to the loopback interface (one
not on the 127 network) and advertise it as a stub host. If this address is the
same one used as the router 1D, it enables routing to OSPF routers by router
ID, rather than by interface address. This is more reliable than routing to one
of the routers’ interface addresses, which may not always be reachable.

i nterface interface list [cost cost]

This form of the interface clause is used to configure a br oadcast (which
requires |P multicast support) or a poi nt -t 0- poi nt interface. For the
description of interface list, see the section on interface list specification.

Each interface has acost . The costs of al interfaces a packet must cross to
reach a destination are summed to get the cost to that destination. The default
cost is 1, but you may specify another nonzero value.

Interface parameters are common to all types of interfaces:

retransm tinterval time

The number of seconds between link-state advertisement retransmissions for
adjacencies that belong to this interface.

transitdel ay time

The estimated number of seconds required to transmit a link-state update over
thisinterface. transi t del ay takes into account transmission and
propagation delays, and it must be greater than O.

priority priority

A number between 0 and 255 that specifies the priority for becoming the
designated router on this interface. When two routers attached to a network
both try to become designated router, the one that has the highest priority wins.
A router that has the router priority set to O is ineligible to become designated
router.

hel | oi nt erval time

The length of time, in seconds, between Hello packets that the router sends on

the interface.

SR-2014

GATED-CONFIG(5)

GATED-CONFIG(5)

rout er deadi nt erval time
If a neighbor router’s Hello packet is not heard for time seconds, gat ed
declares that the neighbor is down.

aut hkey auth key
Used by OSPF authentication to generate and verify the authentication field in
the OSPF header. Y ou can configure the authentication key on a per interface
basis. It is specified by 1 to 8 decimal digits separated by periods, a 1-to-8
byte hexadecimal string preceded byOx, or a 1-to-8 character string in double
guotation marks.

i nterface interface list nonbr oadcast [cost cost]
This form of the interface clause is used to specify a nonbr oadcast interface
on a nonbroadcast multiaccess (NBMA) media. Because an OSPF
br oadcast media must support IP multicasting, you must configure a
broadcast-capable media (such as Ethernet) that does not support 1P
multicasting as a nonbroadcast interface.

A nonbroadcast interface supports any of the preceding standard i nt er f ace clauses, plus
the following two that are specific to nonbroadcast interfaces:

pol I i nterval time
Before an adjacency is established with a neighbor, OSPF packets are sent
periodically at the specified pol |'i nt erval .

routers By definition, you cannot send broadcast packets to discover OSPF neighbors
on a nonbroadcast interface; therefore, you must configure al neighbors. The
router list includes one or more neighbors and an indication of their eligibility
to become a designated router.

virtual i nk nei ghborid router_idtransitarea area
Virtual links are used to establish or increase connectivity of the backbone area.
The nei ghbori d isthe router_id of the other end of the virtual link. The
transit area specified also must be configured on this system. You may specify
all standard interface parameters defined by the i nt er f ace clause on a virtua
link.

Tracing options
In addition to the following OSPF-specific trace flags, OSPF supports the al | , ospf , and pr ot ocol flags.
The pr ot ocol flag traces interface and neighbor state machine transitions.

OSPF-specific
| sabuil d
spf

| satransm

| sar ecei ve

SR-2014

trace flags are as follows:
Link State Advertisement creation
Shortest Path First (SPF) calculations
t Link State Advertisement (LSA) transmission

L SA reception

351

GATED-CONFIG(5) GATED-CONFIG(5)

You may modify the following packet tracing options by using the updat e flag:

hel | o OSPF HELL O packets, which are used to determine neighbor reachability.

dd OSPF Database Description packets, which are used to synchronize OSPF databases.
request OSPF Link State Request packets, which are used to synchronize OSPF databases.

[su OSPF Link State Update packets, which are used to synchronize OSPF databases.

ack OSPF Link State Acknowledgment packets, which are used to synchronize OSPF databases.

redirect Statement
The syntax for ther edi r ect statement follows:

redirect yes|nojon|off [{
pref erence preference ;
i nterface interface list ;
trust edgat eways gateway list ;

|

Controls whether ICMP redirects are listened to. If you omit this statement, the default is to listen to ICMP
redirects, unless RIP is enabled and more than one interface exists. When ICMP redirects are disabled,

gat ed must actively remove the effects of redirects from the kernel, because the kernel always processes
ICMP redirects.

The default preference is 30.

Route Statements
The st at i ¢ statements defines the static routes that gat ed(8) uses. A single st ati ¢ statement can
specify any number of routes. The st at i ¢ statements occur after protocol statements and before control
statements in the gat ed. conf file. You may specify any number of st at i ¢ statements, each containing
any number of static route definitions. Routes from other protocols that have better preference values can
override these routes.

static {
(host host) | default | (network [(mask mask) | (nmasklen number)])
gat eway gateway list
[interface interface list]
[pref erence preference]
[retain]
[noinstal]
[static_options] ;

network [(mask mask) | (nmaskl en number)] interface interface
[pref erence preference]
[retain]

[noinstal]
[static_options] ;

b

352 SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

host host gat eway gateway list
network [(mask mask) O0(maskl en number)] gat eway gateway list
def aul t gat eway gateway list

This is the most general form of the static statement. It defines a static route through one or more gateways.
Static routes are installed when one or more of the gat eways listed are available on directly attached
interfaces. If more than one eligible gateway is available, they are limited by the number of multipath
destinations supported (this compile time parameter is currently four).

Parameters for static routes are as follows:

i nt erface interface list
When you specify this parameter, gateways are considered valid only when they are on one of
these interfaces. For the description of the interface list, see the section on interface list
specification.

pr ef er ence preference

This option selects the preference of this static route. The preference controls how this route
competes with routes from other protocols. The default preference is 60.

retain Usually, gat ed(8) removes all routes except interface routes from the kernel forwarding table
during a graceful shutdown. You may use ther et ai n option to prevent specific static routes
from being removed. This is useful to ensure that some routing is available when gat ed(8)
iS not running.

noi nst al I Typicaly, the route with the lowest preference is installed in the kernel forwarding table and
is the route exported to other protocols. When you specify noi nst al | on aroute, it is not
eligible to be installed in the kernel forwarding table when it is active, but it is still eligible to
be exported to other protocols.

network [(mask mask) O(maskl en number)] i nt er f ace interface
This form defines a static interface route that is used for primitive support of multiple network
addresses on one interface. The pr ef er ence, r et ai n, and noi nst al | options are the
same as described previously.

Static options are as follows:

admmt u number
Sets the maximum transmission unit (mtu) size for the route to humber.

genmask mask
Sets the generation mask for the route to mask.

gi d grouplist
Restricts the route that the groups specified in grouplist can use.

net mask mask
Sets the netmask for the route to mask. This is an obsolete form of specifying the netmask.

servi ce tos
Specifies tos as the IP type of service.

SR-2014 353

GATED-CONFIG(5) GATED-CONFIG(5)

tosmat ch Indicates that a client must explicitly request (that is, match) the type of service specified for
the route to be able to use it.

The following static options have no effect on the route table. They may be implemented in a future release
of the UNICOS operating system.

hopcount number
Sets the hopcount (number of gateway hops to the destination of) for the route to number.

expi r e number
Sets the lifetime (in seconds) for the route to number.

| ock Indicates that the next option must be locked against further changes.

| ockrest Indicatesthat all remaining options specified for the route must be locked against further
changes.

mt u number Sets the maximum transmission unit size for the route to number.

recvpi pe number
Sets the inbound delay-bandwidth product for the route to number.

rtt number Setsthe estimated round-trip time for the route to number.

rttvar number
Sets the estimated round-trip time variance for the route to number.

sendpi pe number
Sets the outbound delay-bandwidth product for the route to number.

sst hr esh number
Sets the outbound gateway buffer limit for the route to number.

Control Statements
Thei nport and export statements control importation of routes from routing protocol peers and
exportation of routes to routing protocol peers. In the following i nport and export statement formats,
the use of the token al | for interface list is redundant; therefore, it is not allowed.

Thei nport statement can have the following syntax:

354 SR-2014

GATED-CONFIG(5)

i mport proto rip|redirect

i mport proto rip|redirect
[preference preference] {
import_list

b

i mport proto rip|redirect

i mport proto rip|redirect
[preference preference] {
import_list

b

i mport proto rip|redirect

i mport proto rip|redirect
[preference preference] {
import_list

b

i nport proto ospfase [tag

i mport proto ospfase [tag
[preference preference]
import_list

H:

[{

GATED-CONFIG(5)

restrict ;

i nterface interface list restrict ;

i nterface interface list

gat eway gateway list restrict ;

gat eway gateway list

ospf tag] restrict ;

ospf_tag]

If you specify an ospf_tag specification, only routes matching that tag specification are considered; otherwise,
any tag is considered. An OSPF tag specification may be a decimal, hexadecimal, or a dotted quad number.

If you specify more than one import statement relevant to a protocol, they are processed most specific to
least specific (for example, for RIP, gateway, interface, and protocol), then in the order specified in the

configuration file.

The import statement r est ri ct parameter causes routes learned by the import statement to be ignored.
The pr ef er ence parameter specifies the preference of routes learned from this import statement.

The following is the format of an import_list:

dest mask [[restrict] |

[preference preference]] ;

An import_list consists of zero or more destinations (with optional mask). You may specify one of two
parameters. restrict to prevent a set of destinations from being imported, or a specific pr ef er ence

for this set of destinations.

SR-2014

355

GATED-CONFIG(5) GATED-CONFIG(5)

356

The contents of an import_list are sorted internally so that entries that have the most specific masks are
examined first. The order in which dest_mask entries are specified does not matter.

If you specify an import list, the import list is scanned for a match. If no match is found, the route is
discarded. Anall restrict entryisassumed in animport list.

The export statement can have the following formats:

export proto rip restrict ;

export proto rip [netric metric] {
export_list
b

export proto rip interface interface list restrict ;

export proto rip interface interface list
[metric metric] {
export_list

b

export proto rip gateway gateway list restrict ;

export proto rip gateway gateway list
[metric metric] {

export_list

b

export proto ospfase [type 1|2] [tag ospf tag] restrict ;

export proto ospfase [type 1| 2] [tag ospf tag]
[cost ospf_cost] {

export_list

b

The export statement distributes routes to a destination protocol, gateway, or interface. Therestri ct
parameter prevents the routes specified by the export statement from being exported.

SR-2014

GATED-CONFIG(5) GATED-CONFIG(5)

The export list specifies the source of the routes that are distributed by the export statement. The format of
an export list follows:

proto rip|direct|static
[restrict] | [netric metric] [{
announce list

F1os

proto rip|direct|static interface interface list
[restrict] | [netric metric] [{
announce list

F1os

proto rip gateway gateway list
[restrict] | [netric metric] [{
announce list

F1os

proto ospf [restrict] | [metric metric] [{
announce list ;

Pl

proto ospfase [restrict | netric metricl]] [{
announce list ;

Pl

proto proto tag tag
[restrict] | [netric metric] [{
announce list

Pl

If you specify atag, only routes with that tag will be considered; otherwise, any tag will be considered. An
OSPF tag on an export statement may be a decimal or hexadecimal. An OSPF tag on an export list is a 31-
bit number that is matched against the tag present (if any) on that route.

If you specify more than one export statement relevant to a protocol, they are processed most specific to
least specific (for example, for RIP, gateway, interface, and protocol), then in the order specified in the
configuration file.

By default, interface routes are exported to all protocols. RIP also exports its own routes. An export
specification that hasonly arestri ct prevents these defaults from being exported. You cannot change
the metric RIP uses for its own routes; if you try to override this metric, it is silently ignored.

SR-2014

357

GATED-CONFIG(5) GATED-CONFIG(5)

FILES

You may specify any protocol for import lists that referr to AS paths and tags. Tags are currently
meaningful only for OSPF ASE routes.

An announce _list consists of zero or more destinations (with optional mask). You may specify one of two

parameters: restrict to prevent a set of destinations from being exported, or a specific metric for this set
of destinations.

dest mask [[restrict] O[metric metric]] ;

The contents of an announce list are sorted internally so that entries that have the most specific masks are
examined first. The order in which dest_mask entries are specified does not matter.

If you omit announce list, all destinations are announced. If you specify an announce list, an al |
restrict isassumed. Therefore, an empty announce list is the equivalent of al | restrict.

To announce routes that specify a next hop of the loopback interface (for example, static routes) through

RIP, you must specify the metric at some level in the export clause; setting a default metric for RIP is not
sufficient.

/ et c/ gat ed. conf

SEE ALSO

net st at (1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

set | ognmask(3C) (see sysl 0g(3C) in the UNICOS System Libraries Reference Manual, Cray Research
publication SR—2080

ar p(8), gat ed(8), i f confi g(8) in the UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

Routing Information Protocol, RFC 1058
Routing Information Protocol version 2, RFC 1388
Open Shortest Path First Protocol version 2, RFC 1583

COPYRIGHT INFORMATION

358

This software and associated documentation is Copyright 1990, 1991, 1992 Cornell University, all rights
reserved.

This daemon contains code that is Copyright 1988 Regents of the University of California, all right reserved.
It also contains code that is Copyright 1989, 1990, 1991 The University of Maryland, College Park,
Maryland, all rights reserved; and also contains code that is Copyright 1991 D.L.S. Associates, all rights
reserved.

SR-2014

GETTYDEFS(5)

NAME

GETTYDEFS(5)

get t ydef s — Speed and terminal settings used by getty

IMPLEMENTATION

CRAY Y-MP systems

DESCRIPTION

The/ et c/ get t ydef s file contains information that get t y(8) uses to set up the speed and terminal
settings for aline. This method of terminal handling is used for 10S terminals.

The information in the get t ydef s file also specifies the appearance of the login prompt (usualy | ogi n:

by default).

Each entry in the / et ¢/ get t ydef s file has the following format:
label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted characters of the form \ b,
\'n, or\ c, aswell as\ nnn; nnn is the octal value of the desired character. The various fields are as

follows:
label

initial-flags

final-flags

login-prompt

next-label

SR-2014

String against which get t y(8) tries to match its second argument. This is often the baud
rate at which the terminal is supposed to run (for example, 1200) but it need not be (see
the definition of next-label). Speed settings have no effect on 10S terminals.

Initial i oct | (2) settings to which the terminal will be set if a terminal type is not
specified to get t y(8). These flags are the same as those in the sys/ t er m 0. h include
file. Usually, only the speed flag is required in initial-flags. The get t y(8) program
automatically sets the terminal to raw input mode and handles most of the other flags.
The initial-flag settings remain in effect until get t y(8) executes | ogi n(1).

These flags accept the same values as the initial-flags and are set just before get t y(8)
executes | ogi n(1). The speed flag is again required. The SANE composite flag handles
most of the other flags that must be set so that the processor and terminal are
communicating according to the same protocol. Two commonly specified final-flags are
TAB3, which send tabs to the terminal as spaces, and HUPCL, which hangs up the line on
the final close.

This entire field is printed as the login prompt. Unlike the preceding fields, in which
white space (a space, tab, or newline character) is ignored, it is included in the login
prompt field.

If this entry does not specify the desired speed, indicated by the typing of a br eak
character, get t y(8) searches for the entry with next-label as its label field and sets up the
terminal for those settings. Usually, a series of speeds is linked in this fashion to form a
closed set; for example, 2400 is linked to 1200, which in turn is linked to 300, which
finaly is linked to 2400.

359

GETTYDEFS(5) GETTYDEFS(5)

If getty(8) is called without a second argument, the first entry of get t ydef s is used, thus making the
first entry of get t ydef s the default entry. It also is used if get t y(8) cannot find the specified label. If
the get t ydef s file itself is missing, one entry is built into get t y(8) that will bring up a terminal (at 9600
Bd).

After you create or modify a get t ydef s file, run it through get t y(8) by using the - ¢ (check) option to
ensure that no errors exist.

FILES
[etc/gettydefs File of terminal information used by get t y(8)
fusr/include/sys/termo.h Structure used by i oct | (2) system calls to terminal devices
SEE ALSO
term o(4)

I ogi n(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
i octl (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012
get t y(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

360 SR-2014

GROUP(5) GROUP(5)

NAME

gr oup — Format of the group-information file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The / et ¢/ gr oup file contains the following information for each user group:

¢ Group name

¢ Encrypted password

* Numeric group ID (GID)

¢ Commar-separated list of user names alowed in the group

The gr oup file is an ASCII file. The fields are separated by colons; each group is separated from the next
by a newline character. udbgen(8) automatically maintains this file to match the information in the udb(5)
file. The password field is present for compatibility, but it is always set to *.

Thisfile resides in the / et ¢ directory and has general read permission so that it can be used, for example,
to map numeric group IDs to names.

NOTES

The encrypted password field is available under the UNICOS operating system, but Cray Research does not
support it.

The list of user names can become very long for groups shared by many users. To keep the line length
reasonable, udbgen(8) generates the group file that has a maximum membership list of about 400
characters. If the group list exceeds this length, additional lines are created to hold the remainder of the list.
The additional lines will be adjacent and will begin with the identical group name and group ID. For
example, if the group list for group gr 1 with GID 123 were long enough to occupy three lines, that
fragment of the group file would appear as follows:

grl:*:123:usr1l, usr2,usr3,usr4, usr6,usrlo
grl:*:123:usr101, usr102, usr 103, usr 104, usr 105
grl:*:123:usr563, usr570

The first two lines would have a group list that consists of about 400 characters (the example shows a short
list for brevity) and the final line would consist of the remainder of the list. The 400-character limit is
approximate because the line is broken at the end of the name that causes the length to exceed 400
characters.

Unlike the / et ¢/ passwd file, you must update the / et ¢/ gr oup file manually to include new group 1Ds
and group names. When you update / et ¢/ gr oup, ensure that the udbgen(8) utility is not running,
because udbgen would overwrite any changesto / et ¢/ gr oup.

SR-2014 361

GROUP(5) GROUP(5)

FILES

[etc/ group File that contains user group information

SEE ALSO
aci d(5), passwd(5), udb(5)
udbsee(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
get gr ent (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

362 SR-2014

HOSTS(5) HOSTS(5)

NAME

host s, host s. bi n — Contains network host name database

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et ¢/ host s file contains the database of al locally known hosts on the TCP/IP network. The
/ et c/ host s. bi n fileis the binary version of the host s file; the mkbi nhost (8) command creates it.

For each host, one line should contain the network type (optional), the host’s Internet address, the official
host name, and any aliases that exist for the host name. The recognized value for the network type field is
i net (the default). Items are separated by any number of blanks and/or tab characters. A # symbol
indicates the beginning of a comment; when you use the # symbol, the routines that search the file ignore
additional characters up to the end of the line. The host s file is searched sequentially; therefore, if you
specify more than one host name with a given Internet address, the first entry is used and al others are
ignored. Specify Internet network addresses in the conventional "." (dot) notation, using the i net _addr
routine from the Internet address manipulation library, i net (3C).

Host names can contain any printable character other than a blank, tab, new line, or comment (#).

NOTES

All library routines in get host (3C) check for the existence of the / et ¢/ host s. usenaned file. If it
exists, they use the domain name service (seer esol ver (3C)) to perform host name and address |ookups;
otherwise, they use host s. bi n if it exists. If it does not exist, the library routines get information from
hosts. When/ et ¢/ host s is modified, you should run mkbi nhost to update / et ¢/ host s. bi n.

Avoid using both uppercase and lowercase letters in hosts names, because some implementations of TCP/IP
cannot handle mixed-case host names.

SR-2014 363

HOSTS(5) HOSTS(5)

EXAMPLES
The following is an example of entriesin an / et ¢/ host s file:
#
HYPERchannel addresses
#
84.0.0xc4.5 snl101 snl101-i net
84. 0. 0x13. 0 nobel nobel -i net
#
Et her net addresses
#

#192.9.1 nobel net
192.9.1.17 nobel mail host
192.9.1.18 ranger
192.9.1.19 |Ips

192.9.1.20 sol

FILES
/etcl/hosts File that contains names of known hosts on TCP/IP network.
/etc/hosts. bin Binary version of / et ¢/ host s file.
[et c/ host s. usenaned The existence of this file turns on domain name service (nhamed) lookup
for host names and addresses.
SEE ALSO

get host (3C), get host i nf 0(3C), i net (3C), r esol ver (3C) in the UNICOS System Libraries
Reference Manual, Cray Research publication SR—2080

nmkbi nhost (8), naned(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

364 SR-2014

HOSTS.EQUIV(5) HOSTS.EQUIV(5)

NAME

host s. equi v — Contains public information for validating remote autologin

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ hosts. equi v and . r host s files provide the remote authentication database for

r1 ogi n(1B), rensh(1B), r cp(1), and r cnd(3C). If the Network Queuing System (NQS) is using file
validation, it also will usethe/ et c/ host s. equi v file. If a. ngshost s file does not exist, NQS will
use the . r host s file. The files specify remote hosts and users that are considered trusted. Trusted users
are allowed to access the local system without supplying a password. The r user ok() library routine (see
r cnd(3C)) performs the authentication procedure for programs by using the / et ¢/ host s. equi v and
.rhost s files. The/ et c/ hosts. equi v file applies to the entire system, but individual users can
maintain their own . r host s files in their home directories.

These files bypass the standard password-based user authentication mechanism. To maintain system security,
you must take care when creating and maintaining these files.

The remote authentication procedure determines whether a remote user from a remote host should be allowed
to access the local system as a (possibly different) local user. This procedure first checks the

/ et c/ host s. equi v file and then checks the . r host s file in the home directory of the local user for
whom access is being tried. Entries in these files can be positive entries, which explicitly allow access, and
negative entries, which explicitly deny access. The authentication succeeds as soon as a matching positive
entry is found. The procedure fails when a matching negative entry is found or if no matching entry is
found in either file. The order of entries, therefore, can be important; if the file contains both matching
positive and negative entries, the entry that appears first will prevail. If the remote authentication procedure
fails, the r enrsh(1B) and r cp(1) programs fail, but the r | ogi n(1B) command falls back to the standard
password-based login procedure.

Both the / et ¢/ host s. equi v and . r host s files are formatted as a list of one-line entries. Each entry
has the following form:

hostname [username]

If the following form is used, users from the host hostname are trusted; that is, they may access the system
by using the same user name as they have on the remote system.

hostname

You may use this form in both the / et ¢/ host s. equi v and . r host s files.

If the line is in the following form, the user username from the host hostname can access the system:
hostname username

You may use this form in individual . r host s files to allow remote users to access the system as a different
local user. If thisformisusedinthe/etc/ hosts. equiv fil e, theuser username is allowed to access
the system as any local user.

SR-2014 365

HOSTS.EQUIV(5) HOSTS.EQUIV(5)

NOTES

Negative entries disallow access and are preceded by a— symbol. The following form disallows access by
the user username only from the host hostname:

hostname —username
The following form disallows all access from the host hostname:
—hostname

To match all users or all hosts, use an * symbol. For example, entering * alows any user from any host to
log in under the same user name. Entering * username allows the user username access from any remote
host. Entering hostname * in a. r host s file alows any user from the remote host hostname to access the
system as the user in whose . r host s file the entry appeared.

Y ou should use positive entriesin / et ¢/ host s. equi v that include a username field with extreme
caution. Because/ et ¢/ host s. equi v applies systemwide, these entries can alow one, or a group of,
remote users access to the system as any local user. This can be a security problem.

To authenticate the user, the system configuration can require an entry in both the user’s . r host and
/ et c/ hosts. equi v files, and it also may require the remote user name to match the local user name.

FILES
[etc/ hosts. equiv File that contains name(s) for a remote host
/et c/udb File that contains remote user names

SEE ALSO
rhost s(5)

366

rcp(l), rensh(1B), r| ogi n(1B) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

r cnd(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

r1 ogi nd(8), r shd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

TCP/IP Network User’s Guide, Cray Research publication SG—2009
UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304
UNICOS NQS and NQE Administrator’s Guide, Cray Research publication SG—2305

SR-2014

INETD.CONF(5)

NAME

INETD.CONF(5)

i net d. conf — Internet super-server configuration file

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The/ et c/inetd. conf file contains the configuration information used by the Internet super-server
configuration file, which listens for incoming service requests. The i net d(8) command is invoked at boot

time.

Upon execution, i net d reads its configuration information from a configuration file which, by default, is
/etc/inted. conf. There must be an entry for each field of the configuration file, with entries for each
field separated by atab or a space. Comments are denoted by a "#" at the beginning of aline.

The fields of the configuration file are as follows:

service name

socket type

protocol

SR-2014

There are several types of servicesthat i net d can start: st andar d, TCPMUX, and RPC.
The service name field consists of a valid service in the / et ¢/ ser vi ces file or a port
number on which the i net d daemon can listen for incoming requests. For internal
services, the server name must be the official name of the service (the first entry in

[etc/services). For TCPMUX services, the value of the service name field consists of
the string tcpmux followed by a slash and the locally-chosen service name. The service
names listed in / et ¢/ ser vi ces and the name help are reserved. Try to choose unique
names for your TCPMUX services by prefixing them with your organization's name and
suffixing them with a version number. For RPC services, service name consists of the
RPC service name followed by a slash and either a version number or a range of version
numbers (e.g., rstat/2-4).

Should be one of the following values:

dgram Indicates that the socket is a datagram
raw Indicates that the socket is raw
rdm (Not implemented) Indicates that the socket is a reliably delivered message

segpacket (Not implemented) Indicates that the socket is a sequenced packet socket
stream Indicates that the socket is a stream. TCPMUX services must use st r eam

The valid protocol as given in the / et ¢/ pr ot ocol s file. Protocol is usually t cp or
udp. TCPMJX services must use tcp. For RPC services, protocol consists of the string

r pc followed by a slash and the name of the protocol. For example, r pc/ t cp indicates
that an RPC server is using the TCP protocol as its transport mechanism.

367

INETD.CONF(5)

wai t | nowai t

user

server program

INETD.CONF(5)

This entry is applicable to datagram sockets only (other sockets should have a nowai t
entry in this space). If a datagram server connects to its peer and thus frees the socket so
that i net d(8) can receive further messages on the socket, it is a multithreaded server, and
it should use the nowai t entry.

For datagram servers that process all incoming datagrams on a socket and eventually time
out, the server is single-threaded and should use awai t entry. tal k is an example of
the latter type of datagram server.

Thet ft pd server is an exception; it is a datagram server that establishes
pseudo-connections. To avoid arace, it must be listed as wai t ; the server reads the first
packet, creates a new socket, and then forks and exits to allow i net d to check for new
service requests to spawn new servers.

TCPMJUX services must use nowai t .

User name of the user as whom the server should run. By associating a user with the
daemon, servers can be given less permission than root. Theftp,tel net, shel |, and
| ogi n servers need root permission; the f i nger andt ft p servers should be run as a
user with limited capability.

Path name of the program that i net d will execute when a request is found on its socket.
If i net d provides this service internally, this entry should be i nt er nal .

server program arguments

CAUTIONS

Arguments to the exec(2) system call, starting with argv[0], which is the name of the
program.

For security reasons, you should use f i nger d(8) as a user with limited priority and disable t f t pd(8).

TCPMUX

RFC 1078 describes the TCPMUX protocol: "A TCP client connects to a foreign host on TCP port 1. It sends
the service name followed by a carriage-return line-feed <CRLF>. The service name is never case sensitive.
The server replies with a single character indicating positive (+) or negative(-) acknowledgement,
immediately followed by an optional message of explanation, terminated with a <CRLF>. If the reply was
positive, the selected protocol begins; otherwise the connection is closed." The program is passed the TCP
connection as file descriptors 0 and 1.

368

If the TCPMUX service name begins with a"+", i net d returns the positive reply for the program. This
allows you to invoke programs that use st di n/ st dout without putting any special server code in them.

The special service name help causesi net d to list TCPMUX servicesin i net d. conf.

SR-2014

INETD.CONF(5)

EXAMPLES

INETD.CONF(5)

Following is a sample i net d. conf file. In this example, the servicesuucp, tft p, consat , t al k, and
nt al k are not needed and have been commented out. Each service is listed with its associated socket type

and protocol; use this example as a reference to socket types and protocols.

SR-2014

r oot
r oot
root
root
root

letc/ftpd

configurati on database

/etc/tel netd

/etc/rshd

/
/

etc/rl ogind
et c/rexecd

ftpd

tel netd
rshd

rl ogi nd
rexecd

f you don’'t want uucpd’ s wtnp entries.

#

Internet server

#

ftp stream tcp nowait
tel net stream tcp nowait
shel | stream tcp nowait
| ogi n stream tcp nowait
exec stream tcp nowait
Run as user "uucp"

#uucp stream tcp nowait
finger stream tcp nowait
#ftp dgram udp wait
#consat dgram udp wait
#t al k dgram udp wait
#nt al k dgram udp wait
echo stream tcp nowait
discard stream tcp nowait
chargen stream tcp nowait
daytime stream tcp nowait
tinme stream tcp nowait
t cpnux stream tcp nowait
echo dgram udp wait
discard dgram udp wait
chargen dgram udp wait
daytime dgram udp wait
tinme dgram udp wait

#

TCPMUX service syntax:

#

tcpnux/ +dat e

streamtcp nowait

r oot /etc/uucpd uucpd
nobody /etc/fingerd fingerd
tftp /etc/tftpd tftpd

r oot /etc/consat consat
r oot /etc/talkd talkd

r oot /etc/ntal kd ntal kd
r oot i nt erna

r oot i nt erna

r oot i nt erna

r oot i nterna

r oot i nt erna

r oot i nterna

r oot i nt erna

r oot i nt erna

r oot i nt erna

r oot i nterna

r oot i nt erna

guest

/ bi n/ date date

t cpnux/ phonebook streamtcp nowait guest /usr/| ocal/bin/phonebook phonebook

#
#
RPC services syntax:

<rpc_prog>/ <vers> <socket_type> rpc/<proto> <flags> <user> <pat hname> <ar gs>

ypupdat ed/ 1 stream
rstatd/2-4 dgr am
rusersd/ 1-2 dgr am
sprayd/ 1 dgr am
rwal | d/ 1 dgr am

rpc/tcp
rpc/udp
rpc/ udp
rpc/ udp
rpc/ udp

wai t
wai t
wai t
wai t
wai t

r oot
r oot
r oot
r oot
r oot

/ et c/ ypupdat ed ypupdat ed

/etc/rstatd
/et c/rusersd
[etcl/sprayd
/etc/walld

rstatd
rusersd
sprayd
rwal | d

369

INETD.CONF(5) INETD.CONF(5)

FILES
[etc/inetd. conf Contains configuration information used by the Internet super-server configuration
file
[etc/protocols Lists the valid protocols
[etc/services Lists valid services
SEE ALSO

pr ot ocol s(5), servi ces(5)

fingerd(8),i netd(8),tftpd(8) inthe UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

RFC 1078: TCP Port Service Multiplexer (TCPMUX)

370 SR-2014

INFOBLK (5) INFOBLK (5)

NAME
i nf obl k — Loader information table

SYNOPSIS

#i ncl ude <infobl k. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The segl dr (1) and | d(1) commands build the i nf obl k loader information table into all hormal
executable programs. The contents of _i nf obl k provide information about the time and date of program
creation, size and structure of the program’s memory usage, and so on. To access the table contents within
the program, use the C global structure name _i nf obl k, as follows:

extern struct infoblk _infoblk;
/*

* the infoblk structure, which SEGLDR puts in every binary
(referenced by _infoblk)

*/
struct infoblk {
unsi gned i _vers: 7; /* version of _infoblk table */
unsi gned : 24; /* unused */
unsigned i _a: 1; /[* fill address generation flag */
unsigned i _len: 32; /* no. of words in infoblk */
char i _nane[8]; /* table nane - "infoblk" */
long i _cksum /* table checksum */
char i _date[8]; /* date of program creation */
char i _tinme[8]; /* time of program creation */
char i _pid[8]; /* name of generating program */
char i _pvr[8]; /* version of generating program */
char i _osvr[8]; /[* O S. version at generation time */
long i _udt; /* creation timestanp */
long i _fill; /* value to fill uninitialized areas */
unsi gned i _tbase: 32; /* text area base address */
unsi gned i _dbase: 32; /* data area base address */
unsigned i _tlen: 32; /* text section length */
unsi gned i _dlen: 32; /* data section length */

SR-2014 371

INFOBLK(5)
unsi gned i _blen: 32; /*
unsi gned i _zlen: 32 /*
unsigned i _cdatalen: 32; /*
unsigned i_Inmen: 32; /*
unsigned i _anl en: 32; /*
unsi gned i _nbase: 32; /*
unsigned i_hinit: 32; /*
unsi gned i _hinc: 32; /*
unsigned i_sinit: 32; /*
unsi gned i_sinc: 32; /*
unsi gned i _usxf: 32; /*
unsi gned i _usxl: 32; /*
unsigned i _mptr: 32; /*
unsigned i_cnptr: 32; /*
unsi gned i _enlen: 32; /*
unsigned i_enptr: 32; /*
unsi gned i_sgptr: 32; /*
unsi gned : 32; /*
unsi gned i _taskstk: 32; /*
unsigned i _taskincr: 32; [/*
I ong i _user1,; /*
I ong i _user?2; /*
H
FILES

bss section length
zeroset section length

INFOBLK (5)

*/
*/

data section |l ength before expansion */

CRAY-2 |l ocal memory |ength */
auxiliary menory | ength */
base address of heap */
initial heap size */
heap i ncrenment */
initial stack size */
stack increnent */
USX table first address */
USX table | ast address */
machi ne targeting bl ock address */
expansion entry |list address */
saved arg/env |length */
environnent pointer (currently 0) */
poi nter to $SEGRES table */
unused */
slave task initial stack size */
sl ave task increment val ue */
user value word 1 */
user val ue word 2 */

/usr/include/infoblk.h Loader information table include file

SEE ALSO
[d(1), segl dr (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

372

SR-2014

INITTAB (5) INITTAB (5)

NAME
i nittab — Script fori ni t (8) process

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/etc/inittab fileisthe script for i ni t (8), the general process spawner. Processes dispatched by
i nit(8) are, typicaly, the daemons required for the multiuser run levels and the shell for the UNICOS
system console.

Thei ni tt ab file is composed of position-dependent entries that have the following format:

id: rstate: action: process

A newline character delimits each entry; however, a backslash (\) preceding a newline character indicates a
continuation of the entry. Up to 512 characters for each entry are permitted. You may insert comments in
the process field, using the sh(1) convention for comments. No limits (other than the maximum entry size)
are imposed on the number of entriesin thei ni tt ab file. The entry fields are as follows:

id One to four characters used to identify an entry uniquely.

rstate Run level in which this entry will be processed. A run level is a configuration of the system;
each run level alows only a selected group of processes to exist. Each process that i ni t (8)
spawns is assigned one or more run levels in which it is allowed to exist. Multiuser mode
consists of seven run levels. The run levels are represented by a number that ranges from 0
through 6. For example, if the system isin run-level 1, only entries that have a 1 in the rstate
field are processed.

When i ni t (8) is requested to change run levels, al processes that do not have an entry in the
rstate field for the target run level are sent a warning signal (SI GTERM) and allowed 20 seconds
before being forcibly terminated by a kill signal (SI GKI LL).

The rstate field can define multiple run levels for a process by selecting more than one run level
in any combination from O through 6. If you do not specify a run level, action is taken on this
process for all run levels 0 through 6.

Three other values (a, b, and c¢) can appear in the rstate field, even though they are not true run
levels. Entries that have these values in the rstate field are processed only when the

telinit (8) process (seei ni t (8)) requests that they be run (regardless of the current run level
of the system). They differ from run levels in that the system is in these states only for as long
as it takes to execute all entries associated with the states. A processthat an a, b, or ¢
command starts is not killed when i ni t (8) changes levels. It iskilled only if itsline in
/etc/inittab ismarked of f in the action field, its line is deleted entirely from
/etc/inittab, orinit(8) goesinto the single-user state.

SR-2014 373

INITTAB (5)

374

action

INITTAB (5)

Keywords in this field specify how to treat the process in the process field. i ni t (8) recognizes
the following actions:

boot

boot wai t

generic

i ni tdefault

| dsynct m

of f

once

Thei ni t (8) command processes the entry only when reading the i ni t t ab
file a boot time; i ni t (8) starts the process and does not wait for its
termination. When the process dies, i ni t (8) does not restart it. For this
instruction to be meaningful, rstate should be either the default or a match of
the run level of i ni t (8) at boot time. This action is useful for an
initialization function that follows a hardware reboot of the system.

Thei ni t (8) command processes the entry only when reading the i ni t t ab
file a boot time; i ni t (8) starts the process and waits for its termination.
When the process dies, i ni t (8) does not restart it.

When a privileged daemon process initiates a new login session, it sends a
request to i ni t (8) through the / et c/ i ni t r eq pipe (FIFO specid file).
This request includes the terminal to be used, the associated remote host, and
the generic ID specified in the id field. Thei ni t (8) command verifies that
i ni ttab contains aline with the specified id field and that the rstate field
includes the current run level. Then i ni t (8) starts a login process on the
specified terminal.

Thei ni t (8) command scans an entry with this action only when it is initially
invoked; i ni t (8) uses this entry, if it exists, to determine which run level to
enter initially. It does this by taking the highest run level specified in the
rstate field and using that as its initial state. If the rstate field is empty, the
run level is interpreted as 0123456; i ni t (8) enters run level 6. You can use
thei ni t def aul t entry to specify that i ni t (8) should start in the
single-user state. If i nit (8) doesnot find ani ni t def aul t entry in
[etc/inittab, itaso requests an initia run level from the/ dev/ syscon
terminal at reboot time.

Setstheinit | dsynct mvariable, which determines the system | dsync
interval. The process field for this entry is specified in seconds. For details,
see | dsync(8).

When the process associated with this entry is currently running, i ni t (8)
sends the warning signal (SI GTERM) and waits 20 seconds before forcibly
terminating the process by using the kill signal (SI GKI LL). When the
process is nonexistent, i ni t (8) ignores the entry.

On entering a run level that matches the rstate for the entry, i ni t (8) starts
the process and does not wait for its termination. When the process dies,

i ni t (8) does not restart it. If, on entering a new run level, the process is still
running from a previous run-level change, the program will not be restarted.

SR-2014

INITTAB (5)

ondenand

respawn

sl eepti nme

sysinit

ti mezone

wai t

INITTAB (5)

This instruction is really a synonym for the r espawn action. Itis
functionally identical to r espawn, but it is given a different keyword to
divorce it from run levels. Thisis used only with the a, b, or ¢ values
discussed in the rstate field description.

If the process does not exist, i ni t (8) will start the process; it will not wait
for process termination (that is, it will continue to scan thei ni tt ab file).
When the process dies, i ni t (8) restartsit. If the process currently exists,

i ni t (8) will do nothing and will continue to scan thei ni tt ab file.

Setstheinit sl eepti me variable, which determines the system sync
interval. The process field for this entry is specified in seconds. For details,
see sync(l).

Thei ni t (8) command executes entries of this type before trying to access
the console. Y ou should use this entry to initialize only the devices for which
i ni t (8) might ask for arun level; i ni t (8) executes and waits for these
entries before continuing.

Sets the systemwide local time zone. The contents of the process field are
used to set the TZ environment variable. For a definition of the format for
TZ,seecti me(3C). Theti mezone entry should follow the

i nitdefault entry.

On entering the run level that matches the rstate of the entry, i ni t (8) starts
the process and waits for its termination. While i ni t (8) is in the same run

level, all subsequent reads of the i ni tt ab file causei ni t (8) to ignore this
entry.

process Anentry in thisfield is a sh(1) command to be executed. Thei ni t (8) command prefixes the
entire process field with the exec(2) string and passes it to a forked sh process as
sh -c ’exec command . Therefore, any legal sh syntax can appear in the process field.
You can insert comments with the #comment syntax.

EXAMPLES

The following is an example of ani ni t t ab entry for Minnesota in the central time zone in the U.S.A.:
tz::timezone: TZ=CST6CDT

Thei ni t (8) command passes this value to its children, they pass it to theirs, and so on, so that all
processes interpret the time according to thisi ni tt ab entry.

Theinit sl eeptinme and| dsynct mvariables default to 30 seconds and 120 seconds, respectively. To
reset these variables, create i ni t t ab entries such as the following:

st :: sleeptine: 60
[t::ldsynctm: 180

SR-2014

375

INITTAB (5) INITTAB (5)

The preceding i ni t (8) commands reset the sl eepti me and | dsynct mvariables to 60 seconds and 180
seconds, respectively.

FILES

[etc/initreq Pipe used when initiating a new login session
/etc/inittab Script for i ni t (8) process
fusr/include/initreq.h Definition of request structure

SEE ALSO

sh(1), sync(1), who(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

exec(2), open(2), si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

cti me(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

getty(8),init(8),1 dsync(8) inthe UNICOS Administrator Commands Reference Manual, Cray
Research publication SR—2022

General UNICOS System Administration, Cray Research publication SG—2301

376 SR-2014

INODE (5) INODE (5)

NAME

i node — Inode format

SYNOPSIS

#i ncl ude <sys/types. h>

#i ncl ude <sys/param h>

#i ncl ude <sys/ino. h>
IMPLEMENTATION

Cray PVP systems

DESCRIPTION

An inode for a regular file or a directory in a file system has a structure defined by the sys/ i no. h include
file.

The structure of an inode for NC1FS file systems is as follows:

struct cdi node {

ui nt cdi _rsrvd_1 : 8, /* Reserved for expansion of cdi _node */
cdi _nmode 224, |/* node and type of file (4-bits still free)*/
cdi _msref 1, /* Modification signature is referenced flag*/
cdi _mns 214, /* Modification signature */

Cdi:nlink :17; /* #of links to file (can hold > 100, 000) */

ui nt cdi _rsrvd_2 : 8, /* Reserved for expansion of cdi _uid */
cdi _uid 224, [* Omer’s user-I1D */
cdi _rsrvd_3 : 8, /* Reserved for expansion of cdi _gid */
cdi _gid :24; |/* Omer’s group-I1D */
ui nt cdi _rsrvd_4 : 8, /* Reserved for expansion of cdi _acid */
cdi _acid 124, [* Account-ID */
cdi _gen :32; /* Inode generation nunber */
| ong cdi _si ze; /* Nunmber of bytes in the file */
| ong cdi _moffset; /* Modification offset for current signature*/
ui nt cdi _blocks :52, /* Quotas: #of blocks actually all ocated */
cdi _extconp : 1, /* Security: extended compartnents flag */
cdi _secrsvdl:11; /* Security: reserved */

SR-2014 377

INODE (5) INODE (5)

uni on {
long smallcnmps; /* Conpartnments if [0..63] */
} cdi _conpart; /* Security: conpartments info */
ui nt cdi _slevel : 8, /* Security: security |evel */
cdi _intcls : 8, /* Security: integrity class (obsolete) */
cdi _secflg :16, /* Security: flag settings */
cdi _intcat :32; /* Security: integrity category (obsolete) */
| ong cdi _permts; /* Security: Permssions inherited at */
/* execution tine. */
uni on {
daddr _t daddr; /* Extent descriptor */
dbl k_t dbl k; /* Block descriptor */
} cdi _acl; /* Security: ACL location */
ui nt cdi _cpart 8, /'* Next partition fromchits to use */
cdi _rsrvd_5 : 8, /* Reserved by the Kernel group. */
cdi _dnkey :48; /* Data-M gration: key */
ui nt cdi _allocf : 4, /* Data-Block allocation flags */
cdi _all oc : 4, |/* Data-Block allocation techni que */
cdi _cbl ks 224, |/* Number of blocks to allocate per part */
cdi _dmm d :32; /* Data-Mgration: machine-1D */
ui nt cdi _atnmsec :34, /* Access tinme (secs) */
cdi _natnsec :30; /* Access time (nanosecs) */
ui nt cdi _mmsec :34, /* Modification time (secs) */
cdi _nmnsec :30; /* Modification time (nanosecs) */
ui nt cdi _ctnmsec :34, /* Tinme of last inode nodification (secs) */
cdi _nctnsec :30; /* Tine of last inode nodification (nanosecs)*/
| ong cdi _chits; [* bit mask, file placenent within cluster */

378 SR-2014

INODE (5)

FILES

uni on {

daddr t daddr;

dbl k_t dbl k;

| ong whol e;
ui nt

} half;
ui nt

} quarter;
ui nt

} eighth;

} cdi _addr[8];

| ong

| ong

| ong

cdi _rsrvd[5];

cdi _sl ock[2] ;

cdi _sitebits;

/fusr/include/sys/ino.h

/usr/include/sys/types.h

SR-2014

INODE(5)
/* Extent descriptor */
/* Bl ock descriptor */
struct {
one 1 32, /* half 1 */
two 1 32; /* half 2 */
struct {
one : 16, /* quarter 1 */
t wo 116, /* quarter 2 */
three :16, /* quarter 3 */
four :16; [* quarter 4 */
struct {
one 8, /* eighth 1 */
t wo : 8, /* eighth 2 */
three : 8, /* eighth 3 */
f our 8, /* eighth 4 */
five 8, /* eighth 5 */
Si X : 8, /* eighth 6 */
seven :@ 8§, /[* eighth 7 */
ei ght 8; /* eighth 8 */
/* File allocation |ocators */
/* The #define for NCLINADDR must not be > 8 */

/* Reserved by the Kernel

group for use in */

/* future rel eases of UN COCS. */

/* No notification w !l
/* words will

be gi ven when these */
be enpl oyed by future versions*/

/* of UNI CCS. */

/* Reserved for

/* Wbrd reserved for

SFS | ock structure */

site use. */

Inode structure definition

Data types definition file

379

INODE (5) INODE (5)
SEE ALSO

fs(5), t ypes(5)
st at (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

380 SR-2014

IPC(5) IPC(5)

NAME

i pc — Interprocess communication (IPC) access structure

SYNOPSIS

#i ncl ude <sys/ipc. h>

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION

Three mechanisms use the sys/ i pc. h include file for interprocess communication (IPC): messages,
semaphores, and shared memory. All use a common structure type, i pc_per m to pass information used in
determining permission to perform an 1PC operation.

The i pc_per mstructure contains the following members:

uid t uid Owner’s user ID
gid_t gid Owner’s group ID

uid t cui d Creator’'s user ID
gid_t cgid Creator’s group 1D
node_t node Read/write permission

Theuid_t,gid_t,node_t,and key_t types are defined as described in sys/ t ypes. h.

Definitions are given for the following constants:

Mode bits:

| PC_CREAT Creates entry if key does not exist.

| PC_EXCL Failsif key exists.

| PC_NOMAIT Returns an error if request must wait.
Keys:

| PC_PRI VATE Specifies a private key.

Control commands:

| PC_GETACL Gets access control list.

| PC_RM D Removes identifier.

| PC_SET Sets options.

SR-2014 381

IPC(5) IPC(5)

| PC_SETACL Sets access control list.
| PC_SETLABEL Sets security label.
| PC_STAT Gets options.

SEE ALSO

msg(5), sem5), shn5), t ypes(5)
i pcs(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

nmsgct | (2), sentt!| (2), shnctt | (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

i pc(7) Online only

382 SR-2014

IPTOS(5) IPTOS(5)

NAME
i pt os — IP Type-of-Service database

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ i pt os file contains the database of Type-of-Service (TOS) names used for the Internet Protocol
(IP) TOS option.

Each entry must consist of a single line that contains the name of the TOS entry, the protocol name for
which the entry is appropriate, the TOS value for the entry, and any aliases that exist for the entry. Items
are separated by any number of blanks and/or tab characters. A # symbol indicates that the remaining
portion of the line is a comment and is not interpreted by routines that search the file. Blank lines in the file
are ignored.

TOS entry names may contain any printable character other than a blank, tab, new line, or comment (#).
A protocol name of * (one asterisk) indicates that the entry is valid for all protocols.

The TOS value for the entry must be a list of either symbolic names or numbers (octal, decimal, or
hexadecimal) that correspond to TOS option bits or TOS precedence values, separated by | symbols.
Recognized symbolic names for TOS option bits are as follows:

none 0x00
del ay 0x10
t hr oughput 0x08
reliability 0x04
reservedl 0x02
reserved2 0x01

Recognized symbolic names for TOS precedence values are as follows:

net cont r ol Oxe0
internetcontrol 0xcO
crticlecp Oxa0
flashoverride 0x80
flash 0x60
i nmedi ate 0x40
priority 0x20
routine 0x00

SR-2014 383

IPTOS(5)

EXAMPLES

The following example shows typical entriesin/ et c/ i pt os:

#
Format of this file:
Application

#

The Proto field may be "*"
#

For multiple val ues,
#

del ay *
reliability *

t hr oughput *

dat a tcp
dat a udp
interactive tcp
interactive udp
boot p *
domai n udp del ay
domai n tcp none
egp udp none
ftp-control tcp
ftp-data tcp
icnp-errors i cnp

i cnp-queries icnp

igp *

nnt p *

snt p- cnd tcp
snt p- dat a tcp
#snt p tcp
snmp udp
tftp udp

384

Proto TCS-bits

al i ases

mean it doesn’'t matter.

use a "|", e.g, delay]|throughput
del ay | owdel ay
reliability highreliability

t hr oughput hi ght hr oughput

t hr oughput
del ay

bul k-data batch rcp
bul k-data batch tftp
del ay rlogin tel net
del ay

none
nanmeserver
nanmeserver

del ay

t hr oughput
none

none
reliability
none

del ay

t hr oughput
none
reliability
del ay

route router routed

IPTOS(5)

only if you can't switch !!!

SR-2014

IPTOS(5) IPTOS(5)

FILES
/etcliptos Contains names and TOS values

SEE ALSO
get t 0s(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2014 385

ISSUE(5) ISSUE(5)

NAME

i ssue — Login message file
IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The/ et c/ i ssue file contains a message for interactive users that will be printed before the login prompt.
The default login prompt is as follows:

| ogi n:
Thei ssue fileis an ASCII file that is read by | ogi n(1) and written to the terminal.

NOTES

Origindly, get t y(8) printed the message in / et ¢/ i ssue; this occurred before | ogi n(1) executed during
an interactive login. To facilitate network logins, this functionality has been duplicated in | ogi n(1).

FILES
[etclissue Login message file

SEE ALSO
i nittab(b)
I ogi n(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
get t y(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

386 SR-2014

KRB.CONF(5) KRB.CONF(5)

NAME

krb. conf — Kerberos configuration file

SYNOPSIS
/ et c/ krb. conf

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The kr b. conf file contains configuration information that describes the Kerberos realm and the Kerberos
key distribution center (KDC) servers for known realms. kr b. conf contains the name of the local realm
in the first line, followed by lines indicating realm and host entries. The first token is a realm name; the
second is the host name of a host running a KDC for that reelm. The words adni n server following
the host name indicate that the host also provides an administrative database server, as in the following
example.

ATHENA. M T. EDU

ATHENA. M T. EDU ker beros-1.nit.edu adm n server
ATHENA. M T. EDU ker beros-2.mt. edu

LCS. M T. EDU kerberos.lcs. mt.edu adm n server

SEE ALSO

krb. real ms(5)

krb_get krbhst (3K), kr b_get _| r eal m(3K) in the Kerberos User’s Guide, Cray Research publication
SG—2409

SR-2014 387

KRB.REALMS(5) KRB.REALMS(5)

NAME

krb. real ns — Host to Kerberos realm trandation file

SYNOPSIS

/etc/krb.real ns

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The kr b. r eal s file provides a translation from a host name to the Kerberos realm name for the services
provided by that host. For simple configurations in which only a single realm is being used, this file is not
required.

Each line of the trandation file is in one of the following forms:

host_name kerberos realm

domain_name kerberos realm

The domain_name field should be of the form . XXX. YYY (for example, . LCS. M T. EDU).

If a host name exactly matches the host_name field in a line of the first form, the corresponding realm is the
realm of the host. If a host name does not match any host name in the file, but its domain exactly matches
the domain_name field in a line of the second form, the corresponding realm is the realm of the host.

If no trandation entry applies, the realm of the host is considered to be the domain portion of the host name,
converted to uppercase.

SEE ALSO

388

kr b_r eal nof host (3K) in the Kerberos User’s Guide, Cray Research publication SG—2409

SR-2014

LDESC(5) LDESC(5)

NAME
| desc — Logical disk descriptor file

SYNOPSIS

#i nclude sys/ldesc.h

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

A logical disk descriptor file is used to combine one or more character or block special disk files to form one
logical disk device. Thel desc structurein/ usr/ i ncl ude/ sys/ | desc. h, which defines the logical
descriptor file, appears as follows:

struct |desc {
wor d magi c;
wor d nsli ces; /* # of slices listed bel ow */
char slice[64][48]; /* max 64 | logical device */
b
#defi ne LDMAG C "LDMAG C /* magic word */

The logical descriptor file can contain up to 64 absolute path names; each may consist of up to 48 characters.
Each absolute path name is said to be "a member" or "a dice" of the logical disk device. The members are
combined in a manner prescribed by the character or block special device logical device that references it.

To create alogical descriptor file, use the mknod(8) command, as follows:
nmknod name L member0 [memberl member2 . . .]
FILES

/usr/include/sys/ldesc.h

SEE ALSO
dsk(4), | dd(4), pdd(4)
nmknod(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 389

LICENSE.DAT(5) LICENSE.DAT(5)

NAME

I i cense. dat — License configuration file for FLEXIm licensed applications

SYNOPSIS

/usr/local/flexlmlicenses/|icense. dat

IMPLEMENTATION
All supported platforms

DESCRIPTION

Thel i cense. dat file contains the information that the flexible license manager (FLEXIm) network
licensing package uses to determine the licenses that are available at a particular site. Thel i cense. dat
file contains the list of server nodes, list of vendor daemons, and list of features enabled for the site.
FLEXIm programs and routines find the license file by an algorithm described in the Finding the License
File section of this man page.

The format of the license file is a server line (or lines), followed by one or more daemon lines, followed by
one or more feature lines. The system administrator can change only the following four data items in the
license file, allowing the administrator to configure the licensed software to fit into the environment:

* Node names on the server ling(s)

¢ Port numbers on the server ling(s)

¢ Path names on the daemon ling(s)

¢ Options file path names on the daemon ling(s)
The data in the license file is case-sensitive.

All other data in the license file is used to compute the encryption code, and you should enter it exactly as
supplied by your software vendor.

Each lineinthel i cense. dat file starts with a keyword that identifies the information on that line. The
keyword may be SERVER, DAEMON, or FEATURE. On unlimited node-locked features, such as UNICOS
systems, server and daemon lines are not required.

Server Line
The server line specifies the node name and host ID of the license server and the port number of the license
manager daemon (I ngr d). Usualy, a license file has one server line; more than one server line indicates
that you are using redundant servers.

The server line has the following form:
SERVER nodename hostid [port-number]

390 SR-2014

LICENSE.DAT(5)

LICENSE.DAT(5)

The server line accepts the following arguments:

nodename

hostid

port-number

Specifies the string returned by the UNICOS host name(1) command. The system
administrator can change the nodename field.

Specifies the string returned by the | mhost i d(1) command. The host IDs from all of the
server lines are encrypted into the feature lines; therefore, the system administrator cannot
change host i d.

Specifies the TCP port number to use; if you omit this argument, the FLEXIm TCP
service must be present in the network services database. The system administrator can
change the optional port-number field at any time, which lets system administrators select
a port number that does not conflict with the other services, software packages, or
FLEXIm vendors on their system. The default port number for Cray Research licenses is
7169.

At sites that have multiple redundant servers, one of the serversis selected as the master node. If the order
of the server lines is the same in the license files for all redundant servers, the first server in the list will be
the master; otherwise, the server whose name is aphabetically first will be the master.

Daemon Line

The daemon line specifies the daemon name and path. The daemon line has the following form:

DAEMON daemon-name pathname [options-file-pathname]

The daemon line accepts the following arguments:

daemon-name

pathname

Specifies the name of the vendor daemon used to serve feature(s) in the file; the system
administrator cannot change daemon-name.

Specifies the path name to the executable file for this daemon. System administrators can
change the pathname field, which lets them place the vendor daemon in any convenient
location.

options-file-pathname

Feature Line

Specifies the full path name of the end-user-specified options file for the daemon.
FLEXIm does not require an options file. The system administrator can change the
location of the options file, which describes various options that the system administrator
can modify (seethel i cense. opti ons(5) man page).

The feature line describes the name of the feature to be licensed. A feature can be the name of a program, a
program module, or option. Any amount of white space of any type (that is, tabs or spaces) can separate the
components of aline. NOTE: The system administrator cannot change the information in the feature line.

The feature line has the following form:

FEATURE name daemon version expdate nlic code "vendor_string” [hostid]

SR-2014

391

LICENSE.DAT(5)

LICENSE.DAT(5)

The feature line accepts the following arguments:

name

daemon

version

expdate

nlic

code

"vendor_string"

hostid

Specifies the name given to the feature by the vendor; the system administrator cannot
change name.

Specifies the name of the vendor daemon; also found in the daemon line. The specified
daemon serves this feature. The system administrator cannot change daemon.

Specifies the version of the feature this license supports; the system administrator cannot
change version.

Specifies the expiration date (for example, 7-may-1998). If the year is O, the license never
expires. The system administrator cannot change expdate.

Specifies the number of concurrent licenses for the feature. If the number of usersis set to
0, the licenses for the feature are uncounted and no | ngr d is required. The system
administrator cannot change nlic.

Specifies the encrypted password for the feature line. The start date is encoded into the
code; thus, identical codes created with different start dates will be different. The system
administrator cannot change code.

Specifies the vendor-defined string, enclosed in double quotation marks. The string can
contain any 64 characters, except a quotation mark (white space is ignored). The system
administrator cannot change "vendor_string".

Specifies the string returned by the | mhost i d(1) command. hostid is used only if the
feature will be bound to a particular host, whether or not its use is counted. Numeric
hostids are case-insensitive. The system administrator cannot change hostid.

Finding the License File
Most programs that read the | i cense. dat file accept a command-line option (typicaly - ¢), which you
can use to specify the location of the license file if it is not
fusr/local/flexlmlicenses/license.dat. If youdo not specify a command-line argument,
the value of the LM LI CENSE_FI LE environment variable will be used to find the license file. If you do
not specify the option or the command-line argument, the default location,
lfusr/local/flexI mlicenses/license. dat, will be used.

You can use the LM LI CENSE_FI LE environment variable to specify as many different license files as
needed. To do this, you should set the environment variable to one string that contains all of the license file
paths separated by colons. The following is an example, using the csh shell:

setenv LM LI CENSE FILE /usr/| ocal/foo.dat:/u2/flexlmbar.dat:/ul2/lic.dat

EXAMPLES

An example of al i cense. dat file follows; it illustrates the license file for one vendor that has two
features and a set of three server nodes, any two of which must be running for the system to function:

392

SR-2014

LICENSE.DAT(5) LICENSE.DAT(5)

SERVER pat 3e9 7169

SERVER | ee 1fb 7169

SERVER terry 2a3 7169

DAEMON crayl nmd /etc/craylm

FEATURE great _program crayl md 1.000 01-jan-1995 10 1EF890030EABF324 ""
FEATURE greater_program craylmd 1.000 01-jan-1995 10 0784561FE98BA073 ""

An example of al i cense. dat file for unlimited node-locked features follows:

FEATURE ngs_nl none 1.000 1-jul-95 0 AWQHGR47YUNS48E390DF "" 3e9
FEATURE ngs_fl none 1.000 1-jul-95 0 AVBHGI30YUNSECE3WPX "" 3e9
FEATURE ngx none 1.000 1-jul-95 0 PIMB93SE27XGF860GV09 "" 3e9
FEATURE onc none 1.000 1-jul-95 0 2QDTY572TO9KML14BL90 "" 3e9
FEATURE dfs_c none 1.000 1-jul-95 0 RD2CP3I OGON8206JU73A "" 3e9
FEATURE dfs_s none 1.000 1-jul-95 0 SJS1046LAP0213KOMXX5 "" 3e9
FEATURE sfs none 1.000 1-jul-95 0 YAPA02947NUKE330TQ21 "" 3e9
FEATURE tsr none 1.000 1-jul-95 0 29BHS90EQJ83XZ4UPO7W "" 3e9
FEATURE HEXAR none 1.000 1-jul-95 0 70BCTO4MV3DE2NJUOOL3 "" 3e9

FILES

fusr/local/flexlmlicenses/license. dat
Default location of license configuration file for FLEXIm licensed applications
SEE ALSO
| mgr d(1) for information about starting up FLEXIm license daemons

I i cense. opti ons(5) for information about the system administrator options file for FLEXIm licensed
applications in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2014 393

LICENSE.OPTIONS(5) LICENSE.OPTIONS(5)

NAME
I i cense. opti ons — System administrator options file for FLEXIm licensed applications

SYNOPSIS

/fusr/local/flexlmoptions/license. opt

IMPLEMENTATION
All supported platforms

DESCRIPTION

Thel i cense. opt file contains optional flexible license manager (FLEXIm) information supplied by the
system administrator at the end-user site. Y ou can use this information to tailor the behavior of the license
daemons. The options file can contain the following information:

* Reserved license information

* Log file control options

* License time-out control

* License access control

Lines that begin with a # are ignored, and you can use them as comments.

No default location or name for the options file exigts; it is active only if it has been specified in the
| i cense. dat file as the fourth argument on the daemon line. If multiple daemon lines are in the
I i cense. dat file, multiple options files can exist, one for each daemon line.

Each line in the options file controls one option; each line starts with a keyword (EXCLUDE, EXCLUDEALL,
GROUP, | NCLUDE, | NCLUDEALL, NOLOG, RESERVE, or TI MEQUT) that identifies the information on that
line. Not all of the lines in an options file refer to a feature; therefore, to use the nolog line, the system
administrator must set up separate options files.

Reserve Line
The reserve line reserves licenses for a user; it has the following form:

RESERVE numlic featurename type reservename

The reserve line accepts the following arguments:
numlic Specifies the number of licenses to reserve.
featurename Specifies the feature to reserve.

type Specifies the type of user for which to reserve licenses; type may be GROUP, USER, HOST,
or DI SPLAY.

reservename Specifies the name of the user or group for which to reserve licenses.

394 SR-2014

LICENSE.OPTIONS(5) LICENSE.OPTIONS(5)

Any licenses reserved for a use are dedicated to that user; even when that user is not actively using the
license, it will be unavailable to other users.

Nolog Line
The nolog line turns off logging of specific events from the | ngr d(1) command. Specifying a nolog line
reduces the amount of output to the log file, which can be useful in those cases in which the log file grows
too quickly. The nolog line has the following form:

NOLOG what

The nolog line accepts the following argument:

what Specifies what to turn off; what may be I N (checkins), OUT (checkouts), DENI ED (denied
reguests), or QUEUED (queued requests).

Group Line
The group line defines collections of users, which you can then use in reserve, include, or exclude lines.
The group line has the following form:

GROUP groupname usernamelist

The group line accepts the following arguments:
groupname Specifies the name of the group being defined.
usernamelist Specifies the list of user names in that group.

In the FLEXIm v3.0 release, multiple group lines adds all of the users specified into the group; before the
FLEXIm v3.0 release, daemons do not allow multiple group lines to concatenate.

Include and Exclude Lines
The include and exclude lines specify a user, host, display, group of users, or Internet addresses in the list of
users who are alowed (on include ling) or not allowed (on exclude line) to use the feature. Specifying an
include line has the effect of excluding everyone else from that feature; thus, only those users specified in
the include line for a specified feature can use that feature. Any user specified in the exclude line for a
specified feature cannot use that feature.

The include and exclude lines have the following form:
[NCLUDE | EXCLUDE] feature type name

The include and exclude lines accept the following arguments:

feature Specifies the name of the feature being affected.

type Specifies the type to be included or excluded; type may be USER, HOST, DI SPLAY,
GROUP, or | NTERNET.

name Specifies the name of the user or group to include or exclude.

SR-2014 395

LICENSE.OPTIONS(5) LICENSE.OPTIONS(5)

Includeall and Excludeall Lines
The includeall and excludeall lines specify which users, hosts, displays, groups, or Internet addresses can use
all features that this daemon supports. Specifying an includeall line has the effect of excluding everyone else
from al features; thus, only those users specified in the includeall line can use the daemon’s features. Any
user specified in the excludeall line cannot use any of the features that this daemon supports.

The includeall and excludeall lines have the following form:
[NCLUDEALL | EXCLUDEALL] type name

The includeall and excludeall lines accept the following arguments:

type Specifies the type to be included or excluded; type may be USER, HOST, DI SPLAY,
GROUP, or | NTERNET.
name Specifies the name of the user or group to include or exclude.

The Internet address is specified in the standard 1P address notation, and parts of the address can be
wildcarded with a* symbol. An example is as follows:

192.9. 200.1

192.9. 200. *
For example, the following line would allow only users from the 192.9.200 network to use the features of
this daemon; any users from machines on another network would not have access to these features:

| NCLUDEALL | NTERNET 192.9. 200. *
The includeall and excludeall lines and the | NTERNET type are available only in the FLEXIm v2.4 release
or later.

Timeout Line
The timeout line sets up a minimum idle time after which a user will lose the license if it is not in use.
Using this line allows the system administrator to prevent users from wasting a license (by keeping it
checked out when users are not using it) when someone else wants a license. The timeout line has the
following form:

TI MEQUT feature idletime

The timeout line accepts the following arguments:
feature Specifies the name of the feature.

idletime Specifies the number of seconds after which an inactive license is reclaimed. If you do not
specify atime-out value (idletime) in your options file, no time-out exists for that feature.

396 SR-2014

LICENSE.OPTIONS(5) LICENSE.OPTIONS(5)

EXAMPLES
An example of an options file follows:

RESERVE 1 f1 USER pat

RESERVE 1 f1 USER | ess
RESERVE 1 f1 HOST terry

NOLOG QUEUED

| NCLUDE f1 USER bob

EXCLUDE f1 USER hank

| NCLUDEALL USER sallie
EXCLUDEALL HOST chaos

GROUP Hackers bob howard james
TI MEQUT f1 3600

FILES

/fusr/local/flexlnloptions/license. opt
Default location of system administrator options file for FLEXIm licensed applications

SEE ALSO
| mgr d(1) for information about starting up FLEXIm license daemons

I i cense. dat (5) for information about the license configuration file for FLEXIm licensed applications in
the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

SR-2014 397

LNODE(5) LNODE(5)

NAME

| node — Kernel user limits structure for fair-share scheduler

SYNOPSIS

#i ncl ude <sys/I| node. h>

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

398

The fair-share scheduler uses the kernel | node structure to maintain per-user resource limits while a user
has processes running. The | ogi n(1) command establishes the Inodes by using the | i i t s(2) system call
when a new user logs in to the system. An Inode is dead when the last process attached to that Inode exits.
shr daenon(8) removes dead Inodes.

The kernel maintains a table of entries that contains per-user resource limits information. The
ker n_I| node structure defines each entry in the kernel’s table. The fair-share scheduler uses this
information to calculate and check limits for processes run by active users.

Within each ker n_| node structure entry is a subentry defined by the | node structure. The subentry
contains information that the kernel maintains and stores for all users (active and inactive). Therefore, the
structure of a user’s Inode depends on whether that user is active. An active user's | node structure is
defined in the ker n_I node structure and is located in the kernel | node table. Aninactive user's| node
structure is defined in the | node structure and is stored in the file system.

An Inode is defined in the sys/ | node. h include file; the structure | node includes the following
elements:

SR-2014

LNODE(5)

struct

}s

I node {
char

i nt

i nt

| ong
short
short
mimt _t
time_t
time_t

int
time_t
i nt

| ong
fl oat
fl oat

_nane[16] ;
_uid;
_group;
_flags;
_shares;
_plimt;
_mimt;
_cpu_used;

/* systemw de uni que
/* real uid for owner

LNODE(5)

user nanme
of this node

/[* uid for this node's scheduling group

[* flags
/* allocated shares
/* max # of processes

al | oned

/* max clicks usable by all procs

/* used cpu budget in

_cpulimt[L_NLI MIYPES];
/* total cpu budget in hertz for abs,

_hcpuacti on;
_lowcpul val ;
_| owcput ype;
_reserved[2]
_usage;
_charge

/* hard and soft

hertz

/* hard cpu action: term nate, chkpnt
/* lowest cpu limt val ue
/* lowest cpu limt type: abs, hard, soft

/* Reserved

/* decayi ng accunul ated costs
/* long term accumul at ed costs

The following flags are defined in the | _f | ags field. Knowledge of these flags can be useful when
examining output from the cr ash(8) and shr t r ee(8) commands.

#defi ne

#defi ne
#defi ne
#defi ne
#define
#defi ne

LASTREF

020

ACTI VELNODE 010000
CHNGDLIM TS 020000

NOT SHARED

040000

DEFERTORESGRP 0100000
SHAREHCOLDER 01000000

/*
/*
/*
/*
/*
/*
/*

set for L_DEADLIM if
thi s | node

| ast reference to

this Inode is on active |ist
this Inode’s limts have changed
this | node does not get a share of the nic

use | _group for this
Defines UDB entry for

user’s | node
nesting share |evels

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

The |l _char ge field comes from the shchar ge field in the UDB; it is the long-term accumulated charge
for consumption of resources. For group leaders, it represents the charge for the whole group.

The | _usage field comes from the shusage field in the UDB; it represents recent usage of resources.
The scheduler uses this field to determine whether processes that the Inode owns are entitled to CPU
resources.

An Inode is part of the kernel Inode (ker n_| node) structure. The kernel Inode structure holds temporary
values that the scheduler uses, as well as static values associated with the user. The ker n_| node structure

contains the following fields:

SR-2014

399

LNODE(5)

typedef struct kern_l node *

struct

b

kern_l node {
KL_p
KL_p
KL_p
KL_p
KL_p
struct
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat
fl oat

i nt

| node

fl oat
int
int
int
int
fl oat
fl oat

kl _next;

kl _prev;

kl _parent;
kl _gnext;
kl _ghead;
kl ;

kl _gshares;
kl _eshare;
kl _norns;
kl _usage;
kl totuse;
kl rate;

kl _tenp;

kl cost;

kl _rshare;
kl _cpu;

kl _nuse;

kl _refcount;
kl _children;
kl _nrun;

kl _adj;

KL

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

LNODE(5)

_Ps

next in active |ist */
prev in active list */
group parent */
next in parent’s group */
start of this group */
the limts (as above) */
total shares for this group */
effective share for this group */

nor mal i sed shares for |node */
kl .1 _usage / kIl _norns */
sum of 1/usage */
active process rate for |node */
tenmporary for schedul er */
cost accunulating in */
current period */
current dynam ¢ machi ne share */
unwei ghted CPU clicks (OS_HZ) */

actual number of pages used */
processes attached to this | node*/
I nodes attached to this | node */
runnabl e proc’s on this | node */
adj ust mrent factor (adjgroups) */

The ker n_| node structures in the kernel table are grouped together in atree. At any level in the tree, the
share of resources allocated to an individual Inode is that proportion of the group’s resources represented by
the ratio of the Inode’ s shares to the total shares of al Inodes in the group. The |l _gr oup field represents
the user ID of the parent Inode for an individual Inode. (All Inodes in a group have the same parent Inode).
The root’s Inode, which is initialized at system boot time, represents the top of the tree. An Inode used by
all idle processes also is started at boot time with a 0% share of the machine.

When the last process referencing the Inode has exited, the LASTREF bit in| _f | ags is set for use by the
[imts(2) system cal. If thisInode was the last one referencing its group, the DEADGROUP bit is set.
Thel i m t s(2) system call collects dead groups.

400

SR-2014

LNODE(5) LNODE(5)

The scheduling priority of each running process is recalculated each minor clock tick by the following
method. The recent usage (k| _usage) for the process is multiplied by the user’s active process rate

(kI _r at e) and the result is added to the scheduling priority for the process in the structure of the process.
This scheduling priority value decays by an amount that depends on the nice value for the process (the lower
the priority of the process, the slower the decay). The scheduling priority is copied to the structure of the
process for use by the UNICOS low-level scheduler. (The low-level scheduler recalculates the priority of
each nonrunning process by using this value.)

FILES
/usr/include/sys/| node. h Kernel user limits structure

SEE ALSO
shar e(5)
[imts(2) inthe UNICOS System Calls Reference Manual, Cray Research publication SR—2012

shr daenon(8), shrtree(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

UNICOS Resource Administration, Cray Research publication SG—2302

SR-2014 401

MAILRC(5) MAILRC(5)

NAME

mai | rc, mai | x. rc — Start-up files for mai | x(1)

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/usr/lib/mailx/mailx.rc and. mail rc files are start-up files for the UNICOS mail program
mai | x(1). When mai | x(1) is invoked, it reads commands from a system file,
fusr/1ib/mailx/milx.rc, toinitialize certain parameters and variables on a systemwide basis. The
mai | x(1) program then looks in your home directory for afile called . mai | rc; if . mai | r c exists,

mai | x(1) reads in the commands in that file.

Most rmai | x(1) commands are legal inside a start-up file. The most useful and appropriate commands for
inclusion in the . mai | r ¢ file modify the display, disposition, and sending of messages. A list of such
commands follows (for a complete list and description of all valid commands, see mai | x(1)):

Comment line; mai | x(1) ignores the rest of the line.
alias Declares an alias.

al ternates Ligts alternative account names that can access your mail.

di scard Suppresses printing of specified header fields in messages.
group Declares a group.

i f Allows conditional processing (with el se and endi f).

i gnore Suppresses printing of specified header fields in messages.
nmbox Specifies a file for storage of read messages.

set Sets mai | x(1) environment variables.

unset Clears mai | x(1) environment variables.

version Prints the version of the mai | x program.

The following mai | x(1) commands are not legal in a start-up file: !, Copy, edi t, f ol | owup,
Fol | owup, hol d, mai |, preserve, reply, Reply, shel |, and vi sual . If any of these commands
occurs in a start-up file, the remaining lines in the file are ignored. For a description of these commands, see
mai | x(1).

NOTES

Any errorsin a start-up file cause the remaining lines in the file to be ignored.

402 SR-2014

MAILRC(5) MAILRC(5)

EXAMPLES

Example 1: The following is an example of atypical / usr/Ii b/ mai | x/ mai | x. r ¢ file:

Use sendmail to deliver mail
set sendmmil =/usr/1ib/sendmi l

Example 2: The following is an example of atypica . rmai | r ¢ file:

Append nessages to the end of $HOVE/ nbox

set append

Ask for a subject line when sending mail

set asksub header

Enable printing of header information when reading mail
set header

Set screen size to 20 lines

set crt=20

Use nore to paginate | ong nmessages

set PAGER=nore

Store a copy of mail | send in outgoing. nail

set record=$HOVE/ out goi ng. mai |

Don't display certain fields in messages

i gnore Received Date Message-1d In-Reply-To Status

FILES
$HOVE/ . mai l rc Personal start-up file
$HOVE/ mbox Secondary storage file
/tmp/ R engsx] * Temporary files for mai | x
fusr/1lib/mailx/mailx. hel p* mai | x(1) help message files
fusr/lib/mailx/milx.rc Systemwide start-up file
fusr/mil/* Primary storage files

SEE ALSO

mai | x(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014 403

MAKEFILE (5) MAKEFILE (5)

NAME

MAKEFI LE — File containing site—specific make(1) rules

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The / et ¢/ MAKEFI LE file can be created by a site’s system administrator and used to define make(1) rules
for an environment specific to the site. This file is controlled by the site system administrator, and its content
is unrestricted: anything allowed for a user makefile can be in the / et ¢/ MAKEFI LE file.

/ et ¢/ MAKEFI LE must have world read permission.

Typical uses for / et ¢/ MAKEFI LE would be to add new suffix rules, to modify built—in make(1) default
rules, or to specify special targets. For example, if / et ¢/ MAKEFI LE contains the special target . PCSI X,
the make(1) built—in default POSIX rules are used. If / et ¢/ MAKEFI LE contains the special target

. SUFFI XES (without parameters), all make(1) default suffix rules are ignored, and / et ¢/ MAKEFI LE can
define a new set of suffix rules.

The / et ¢/ MAKEFI LE file functions much like the make(1) i ncl ude file. The/ et ¢/ MAKEFI LE fileis
read as the first file when make(1) is invoked, before any of the user makefiles are processed.

Users may need to ignore / et ¢/ MAKEFI LE if their preexisting makefiles do not work with the rules
defined in / et ¢/ MAKEFI LE. You can ignore / et ¢/ MAKEFI LE by using the - | option of make(1).

EXAMPLES

404

The following is an example / et ¢/ MAKEFI LE that specifies the following site-specific rules:
* Require POSIX rules (. PCSI X:)

¢ Execute commands but do not echo them (. SI LENT:)

¢ Add new suffixes (. u. v)

¢ Change existing suffixes (. c. 0)

. POSI X:

. SI LENT:

. SUFFI XES: .u .v
u. v:

echo target $* from $<
c. o:

$(CC) -c $< -0 $@

SR-2014

MAKEFILE (5) MAKEFILE (5)

FILES
/ et ¢/ MAKEFI LE Contains site—specific default make rules

SEE ALSO
make(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014 405

