MASTERFILE(5)

NAME

MASTERFILE(5)

mast er fi | e — Internet domain name server master data file

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

A nmasterfil e isatext file that contains authoritative data for a zone. Zones are defined in the

naned. boot file. A master file consists of resource records (which make up the actual data for the zone),
with optional additional directives. The available directives are as follows:

$1 NCLUDE masterfile
$ORI G N domain

Each resource record in the master file has the following format:

[name]

name

ttl

address class

record_type

406

[tt]] address class record type data

Includes the contents of masterfile in the interpretation of the current master file.
Establishes domain as the default domain.

(Optional) Domain name being defined within the current zone. When used as names, the
following symbols have special meanings:

Current domain
@ Current default domain ($ORI G N)

Root domain

(Optional) Time to live; a number that represents the amount of time this resource record

may be considered valid by another name server that queries this name server.

Class addressing used; typically, either I N (Internet class) or ANY (all classes).

Type of record; some valid record types include the following:

A
CNAME
HI NFO

PTR

Address of a machine

Specify an alias for a name
Information about a machine
Mailbox at which a user receives mail
Membership of a mailing list

Mailing list maintenance information
Mail alias for a user

Accept mail for another host

Name server for a domain

Pointer to another location in the domain

SR-2014

MASTERFILE(5)

data

EXAMPLES

MASTERFILE(5)

SQA Start of authority for a zone
TXT Text data
VKS Services available at an address through a given protocol

The data portion of a resource record depends on the record type. If enclosed by
parentheses, data may span more than one line; otherwise, the end of the line is taken as
the end of the resource record. For a complete explanation of the data formats for the
various resource records, and their use, see UNICOS Networking Facilities Administrator’s
Guide, Cray Research publication SG—2304.

The following is an example master file that describes a zone that contains two hosts:

$ORIA N

@

host

cray

station

our donmmi n. com

IN SOA host.ourdomain.com adm n. host. ourdomai n. com (

1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600 ;. M ninum
)
IN NS host . ourdonai n. com
IN M 0 host. ourdonmai n. com
IN A 123.45. 67. 89
IN A 123.45. 67. 89
IN H NFO Cray-2S/4-128 UN COs
IN VKS 123.45.67.89 TCP (Tel net FTP)
IN CNAME host
IN A 123.45.67. 90
IN H NFO Ceneric Co. Ws-1 UNI X
IN VKS 123.45.67.90 TCP (Tel net FTP)
IN VKS 123.45.67.90 UDB (Wo)

The following is a master file that maps, in reverse, the addresses in the previous master file:

SR-2014

407

MASTERFILE(5) MASTERFILE(5)

$ORIG N 123. 1 N- ADDR. ARPA
@ IN SOA host.ourdomain.com adm n. host. ourdomai n. com (
1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600 ;. M ninum
)
IN NS host . ourdonai n. com
45. 67. 89 IN PTR host . ourdonai n. com
45.67. 90 IN PTR station. ourdomai n. com
FILES
/ et ¢/ named. boot Domain name server configuration file
SEE ALSO

nanmed. boot (5)
naned(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304

408 SR-2014

MIB.TXT(5) MIB.TXT(5)

NAME
m b. t xt, snnpd. def s — Management information base for SNMP applications and SNMP agents,
respectively
SYNOPSIS
[etc/m b.txt
[et c/ snnmpd. def s

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them b. t xt and snnpd. def s files define the management information base that the simple network
management protocol (SNMP) uses. For a detailed explanation of the contents of this file, see RFCs 1155,
1212, and 1213. The mi b. t xt file defines the management information for SNMP applications such as
snimpwal k. You can change this file to add additional information that agents support in other machines on
the network.

Agent snnpd gets this information from the / et ¢/ snnpd. def s file. Thisfile is a compiled version of
the management information base (MIB) that describes only the variables the agent supports. You should
not change the snnpd. def s file.

FILES
/etc/ mb.txt File that defines MIB for SNMP applications
[et c/ snnpd. def s File that defines MIB for SNMP agents
SEE ALSO

snmpd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
RFCs 1155, 1212, 1213

SR-2014 409

MNTTAB (5)

NAME
mmt t ab — Mounted file system table format

SYNOPSIS

#i ncl ude <mmttab. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

MNTTAB (5)

The/ et c/ rmt t ab file contains a table of devices that are mounted by the mount (8) command. The

mmt t ab file has the following structure, as defined by the nmmt t ab. h include file:

struct mttab
{
char m _dev[128],
m _filsys[128];
short m_ro_flg;
time t nt_tine;
char m _fstyp[16] ;
char m _mtopt s[128]

P

The fields in the rmt t ab structure have the following meanings:

nt _dev Null-padded name of the directory on which the device is mounted (the mount point).

n_filsys Null-padded root name of the mounted specia file. For more information on file system
description files, see General UNICOS System Administration, Cray Research publication

SG-2301.
n_ro_flg Mounted device's read and write permissions.

n _tinme Date the device was mounted.

nt_fstyp Null-padded string that specifies the file system type. The file system type can be one of

the following:

NC1FS UNICOS file system on Cray PVP systems

SFS UNICOS shared file system
NFS UNICOS NFS file system
PROC / pr oc file system

I NODE /i node file system

For more information, see f st ab(5), pr oc(4), and i node(4).

410

SR-2014

MNTTAB (5) MNTTAB (5)

nt_mtopts Array that contains the text of the mount options specified after the file system type. For
example, the file system specification NFS, t i neo=7 places the value t i meo=7 in
nmt _mt opt s. Thisfield is used only if the NFS file system types is specified. For a
description of the options available, see mount (8).

The maximum number of entriesin mt t ab is based on the NMOUNT system parameter, which is located in
the confi g. h include file; NMOUNT defines the number of mounted devices allowed.

FILES
/etc/ mttab Mounted device table
/usr/include/ mttab. h Structure of entriesin/ etc/ Mmtt ab
SEE ALSO

f st ab(5), proc(4)

nmknod(8), mount (8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

General UNICOS System Administration, Cray Research publication SG—2301

SR-2014 411

MOTD(5) MOTD(5)

NAME
not d — File that contains message of the day

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et ¢/ not d fileis an ASCII file that contains the message of the day (MOTD). Its contents are
displayed by / et c/ profil e or/etc/ cshrc (seeprofil e(5) or cshrc(5), respectively). This occurs
at the start of an interactive or batch session, before the execution of the . pr of i | e file (for standard shell
users) or the . | ogi n and . cshr c files (for C shell users).

Super users can create and modify the / et ¢/ not d file. By convention, it contains short messages of
interest to all users. A common not d file contains the machine type and operating system version, the
system name, mention of scheduled down time, and announcements of software availability.

FILES
/etc/notd Message of the day file

SEE ALSO
cshrc(b5), i ssue(5), profil e(5)
I ogi n(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

412 SR-2014

MSG(5) MSG (5)

NAME
meg — Message queue structures

SYNOPSIS

#i ncl ude <sys/nsg. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The msg man page describes the constant and members of the structure msqi d_ds in the sys/ nsg. h
include file.

The following data types are defined through t ypedef :
msggnum t Used for the number of messages in the message queue.
msgl en_t Used for the number of bytes allowed in a message queue.
These types are unsigned integer types that can store values at least as large as aunsi gned short type.
The following message operation flag can be specified:
M5G_NOERROR
If this flag is specified and then a message that is larger than the buffer specified is received, the message is
truncated and an error is not received.

The msqi d_ds structure contains the following members:

SR-2014 413

MSG(5)

struct nsqid_ds {
struct ipc_perm nsg_perm

struct nsg
struct nsg

*meg_first;

*meg_| ast;

/*
/*
/*

MSG (5)

operation perm ssion struct */
ptr to first message on q */
ptr to last nmessage on q */

nmsgl en_t nmsg_chytes; /* current # bytes on q */
msggnum t nmsg_qgnum /* # of nessages on q */
nmsgl en_t msg_gbytes; /* max # of bytes on q */
pid_t msg_| spi d; /* pid of |ast msgsnd */
pid_t msg_| rpid; /* pid of |last msgrcv */
time_t nmsg_sti ne; /* last nsgsnd time */

| ong nmsg_padil; /* reserved for time_t expansion */
time_t nmsg_rtime; /* last nsgrcv time */

| ong nmsg_pad2; /* time_t expansion */
time_t nmsg_cti ne; /* last change time */

| ong nmsg_pad3; /* time expansion */

| ong nmsg_pad4[4] ; /* reserve area */

The msgsnd(2) and msgr cv(2) system calls are used to send and receive the messages, respectively. The
pid t,tine_t,key_ t,andsize_t typesare defined as described in the sys/ t ypes. h file.

The following are declared as functions and also may be defined as macros:
int msgctl (int msgid, int cmd, struct meqid_ds *buf);

int nsgget (key_t key, int msgflag);
int msgrcv (int msgid, void *msgp, size_t msgsz

long int msgtyp, int msgflg);
int msgsnd (int msgid, const void *msgp, size_t msgsz, int msgflg);

When this header file is included, all of the symbols from the sys/ i pc. h file also will be defined.

SEE ALSO

i pc(5), types(5)

nmsgct | (2), nsgget (2), msgr cv(2), nsgsnd(2) in the UNICOS System Calls Reference Manual, Cray
Research publication SR—2012

i pc(7) Online only

414 SR-2014

NAMED.BOOT(5) NAMED.BOOT(5)

NAME

nanmed. boot — Domain name server configuration file

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The/ et ¢/ named. boot file contains initial configuration information for the named domain name server.
The file lists administrative zones for which the local server has authority and the location (either a master
file or another server) at which the local server will find the authoritative data for each zone.

A naned. boot fileis atext file that contains lines that consist of a keyword and one or more fields
separated by spaces. Lega keyword lines and their formats are as follows:

directory directory_name

cache domain_name masterfile

pri mary domain_name masterfile

secondary domain_name Internet_address [. . .] file
forwarders Internet address [. . .]

; slave

The masterfile argument is the name of a text file that contains authoritative data for the associated zone.
The masterfile is specified in the Internet standard master file format. For the format of this file, see

mast erfil e(5). Any line that begins with a; symbol is a comment line and is ignored; blank lines also
are ignored.

The di r ect or y line causes the server to change its working directory to the directory specified. This
capability can be important for the correct processing of $I NCLUDE files in primary zone files.

The cache line specifies that data in the specified master file will be placed in the back-up cache. Its
primary use is to specify data such as locations of root domain servers. This cache is not used during
typical operation, but it is used as an aid to find the current root servers. You can specify more than one
cache file. You should retrieve the master file for the Internet root servers periodically from

FTP. RS. | NTERNI C. NET, because the list of root servers changes.

The pri mary line states that the specified master file contains authoritative data for the specified zone. The
specified file is a master copy of the domain name system (DNS) data for the zone (that is, this host is a
primary name server for the zone).

The secondary line states that the information for the specified zone will be transferred from a primary
name server at the specified Internet address and saved in the specified back-up file. The host at that Internet
address should be a primary name server for the zone. You should specify several primary nameserver
addresses for this zone so that at least one is always reachable. When named starts, the zone information is
loaded from the back-up file. When naned receives a zone update, the back-up file is updated
automatically.

SR-2014 415

NAMED.BOOT(5) NAMED.BOOT(5)

416

The f or war der s line specifies the addresses of other name servers that accept recursive queries from the
local naned. If the boot file specifies one or more forwarders, naned sends all queries for data not in the
cache to the forwarders first. Each forwarder is then asked, in turn, until an answer is returned or the list is
exhausted. If no answer is forthcoming from a forwarder, named continues as it would have without the
forwarders ling, unless it isin f or war d- onl y mode. The forwarding facility is useful to cause a large,
sitewide cache to be generated on a master, and to reduce traffic over links to outside servers. You also can
use the forwarding facility to allow name servers to run that do not have access directly to the Internet, but
want to perform as though they do have access.

The sl ave directive (not shown) is allowed for backward compatibility. Its meaning is identical to
options forward-only.

You can use the xf r net s directive (not shown) to implement primitive access control. If this directiveis
given, your name server answers only zone transfer requests from hosts that are on networks listed in your
xf rnet s directives. This directive also may be given ast cpl i st for compatibility with older, interim
servers.

You can use the i ncl ude directive (not shown) to process the contents of some other file as though they
appeared in place of the i ncl ude directive. This capability is useful if you have numerous zones or if you
have logical groupings of zones that various people maintain. The i ncl ude directive accepts one
argument: the name of the file with the contents that will be included. Quotation marks are not necessary
around the file name.

The bogusns directive (not shown) tells naned that no queries will be sent to the specified name server
addresses, which are specified as dotted quads, not as domain names. This capability is useful when you
know that some popular name server has bad data in a zone or cache, and you want to avoid contamination
while the problem is being fixed.

Thelim t directive can be used to change BIND’s internal limits, some of which (e.g., datasize) are
implemented by the system and others (e.g., t r ansf er s-i n) by BIND itself. The number following the
limit name can be scaled with "k" (kilobytes), "m" (megabytes), or "g" (gigabytes). The currently defined
arguments are as follows:

dat asi ze This sets the process data size enforced by the kernel. Not all systems provide a call to
implement this argument. Use of the dat asi ze parameter on systems without this call
will result in a warning message.

transfers-in
This sets the number of nanmed- xf er subprocesses which BIND will spawn at any one
time. transfers-per-ns This defines the maximum number of zone transfers to be
simultaneoudly initiated to any given remote name server.

The opt i ons directive introduces a boolean specifier that changes the behavior of BIND. More than one
option can be specified in a single directive. The currently defined options are as follows:

SR-2014

NAMED.BOOT(5)

no-recur si on

guery-1og

forward-only

f ake-i query

NAMED.BOOT(5)

This option will cause BIND to answer with a referral rather than actual data whenever it
receives a query for a name it is not authoritative for; this option should not be set on a
server that is listed in any host'sr esol v. conf file.

This option causes all queries to be logged via sysl og(3). This option should be used
with caution; the log uses a large amount of disk space.

This option causes the server to query only its forwarders. This option is normally used
on a machine that wishes to run a server, but for physical or administrative reasons, cannot
be given access to the Internet.

This option instructs BIND to send back a useless and bogus reply to i nver se
qguer i es rather than responding with an error. This option is helpful for sites with
multiple microcomuters, SunOS hosts, or both.

You can use the max- f et ch directive (not shown) to override the default limit (10) to the number of
naned- xf er subprocesses that named can spawn at any one time.

For a complete description of each keyword line and other information, see Appendix D in the UNICOS
Networking Facilities Administrator’s Guide, Cray Research publication SG—2304.

NOTES

The boot file directives domai n and suf f i xes are obsolete with the introduction of a more useful
resolver-based implementation to add suffixes to partially qualified domain names. The prior mechanisms
could fail under certain situations, especially when the local name server did not have complete information.

EXAMPLES

An example of a/ et ¢/ naned. boot file follows:

SR-2014

417

NAMED.BOOT(5)

FILES

directory

pri mary

pri mary
pri mary

secondary
secondary

/ et ¢/ naned. boot

SEE ALSO

418

masterfil e(5)

NAMED.BOOT(5)

[/ usr/ domai ns

zone file
cache
0.0.127.1 N- ADDR. ARPA | ocal
our domai n. com our domai n
54. 321. | N- ADDR. ARPA our domai n. rev
zone addresses file

thei rdomain. edu 34.56.78.90 56.78.90.12 theirdomain
34. 1 N- ADDR. ARPA 34.56.78.90 56.78.90.12 theirdomain.rev

Contains initial configuration information for the domain name server

naned(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304

SR-2014

NETGROUP (5) NETGROUP(5)

NAME

net gr oup — List of network groups

SYNOPSIS

/ et c/ net group

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The net gr oup file defines networkwide groups used for permission checking when doing remote mounts,
remote logins, and remote shells. For remote mounts, the information in net gr oup is used to classify
machines; for remote logins and remote shells, it is used to classify users. Each line of the net gr oup file
defines a group and has the format groupname members;, members is either another group name or a triple of
the format (hostname, username, domainname). Any of these fields can be empty, in which case, the empty
field signifies awildcard. Thus, uni ver sal (,,) defines a group to which everyone belongs. (In this
case, al three fields are wildcards).

The domainname field must be either the local domain name or empty for the network group entry to be
used. This field does not limit the network group or provide security. The domainname field refers to the
domain in which the triple is valid, it does not refer to the domain that contains the trusted host.

A gateway machine must be listed under all possible host names by which it can be recognized, as in the
following example:

wan (gateway,,) (gateway-ebb,,)

Field names that begin with something other than a letter, digit, or underscore (such as -) work in the
opposite fashion. For example, consider the following entries:

justmachi nes (analytica,-, sun)
j ustpeopl e (-, babbage, sun)

Machine anal yt i ca belongs to group j ust nachi nes in domain sun, but no users belong to it.
Similarly, user babbage belongs to group j ust peopl e in domain sun, but no machines belong to it.

NOTES

The netgroups feature port was designed to work only with the network information system (NIS). NIS
must be configured and running on the system to implement netgroups.

SR-2014 419

NETGROUP(5) NETGROUP(5)

WARNINGS

The triple (,,domainname) allows all users and machines trusted access, and it has the same effect as the
triple (,,,)-
To restrict access to a specific set of members correctly, use the hostname and username fields of the triple.

SEE ALSO
exports(5)

makedbm(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

420 SR-2014

NETRC(5) NETRC(5)

NAME
net r c — TCP/IP autologin information file for outbound f t p(1B) requests

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The . net r ¢ file contains login information required for f t p(1B) access to a remote machine. When

f t p(1B) is opening a connection to a specified remote machine, it checks for this file in the user’s home
directory on the machine initiating the file transfer. If the file exists, f t p(1B) checks it for login
information for the specified machine.

The . net r ¢ file contains one or more entries; each entry describes default values and macros to use when
connecting to a specified remote host. Each entry contains token pairs that consist of a key word and a
value. Five key words are recognized: machi ne, | ogi n, passwor d, account , and macdef .

The machi ne remote_hostname token pair defines the start of an entry; all other token pairs are optional
and may be given in any order, though they usually are given in the order that follows:

machi ne remote_hosthame
login login_name
password password

account account_name
macdef macro_name macro

Usually, each entry is on one line. Each token is a string of characters, separated by a space, tab, comma, or
newline character, or a string of characters between two double quotation marks. The \ symbol is a special
character, and you can embed any of the special characters (space, tab, comma, newline, double quotation
marks, and backdlash) into a token by preceding it with a backslash. The macdef token pair is different
from the other token pairs, in that after the macdef macro_name token pair, al characters up to a blank
line are assumed to be the definition of the macro.

As a security precaution, f t p(1B) requires that . net r ¢ be readable and writable only by its owner if it
contains any passwor d or account fieldsin any of the entries. If . net r ¢ does not exigt, or if it exists
but contains no entry or a partial entry for the specified machine, the user is prompted for the missing
information as needed.

CAUTIONS

Use of passwords in the . net r ¢ file creates a major security hole in the network. For security reasons,
passwords should not appear in files, even protected ones. Use the . net r ¢ file without the password
entries.

SR-2014 421

NETRC(5) NETRC(5)

EXAMPLES

An example of a. netr c file follows:

machi ne bi ol ogy | ogin bonnie
machi ne chemistry | ogin bonnie2
macdef | sf
Is -CF

macdef pwdl sf
pwd
Is -CF

machi ne bl ackhol e | ogi n anonynous password bonni e

FILES
$HOVE/ . netrc Contains login information required for f t p(1B) access to a remote machine

SEE ALSO

host s(5)
ft p(1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
r exec(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

422 SR-2014

NETWORKS(5) NETWORKS (5)

NAME

net wor ks — Network name database

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et ¢/ net wor ks file contains information regarding the known networks that compose the Internet
and network. For each network, a line contains the network type, the official network name, the network
number or address, and any aliases that exist for the network name. Items are separated by any number of
blanks, tab characters, or a combination of the two. A # symbol indicates the beginning of a comment;
additional characters up to the end of the line are not interpreted by the routines that search the file.

The supported network type isi net for Internet network entries. If you do not specify a network type,
i net isassumed.

For hosts on the DARPA Internet, this file may be created from the official network database maintained at
the Network Information Center (NIC), though local changes may be required to bring it up-to-date regarding
unofficial aliases or unknown networks.

You can specify network numbers in the conventional ". " (dot) notation by using the i net _net wor k
routine from the Internet address manipulation library, i net (3C).

Network names may contain any printable character other than a field delimiter, newline character, or
comment character.

EXAMPLES

The following is an example from an / et ¢/ net wor ks file:

#

| nt ernet net wor ks

#

| oopback 127

crayhy 84

backbone 192.9.0

nobel net 192.9.1

arsonnet 192.9.3

pubsnet 192. 9. 30

i net sof t net 192.6.2

SR-2014 423

NETWORKS(5) NETWORKS(5)

FILES
/ et ¢/ net wor ks Contains network information
SEE ALSO

get net (3C), i net (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080

424 SR-2014

NL_TYPES(5) NL_TYPES(5)

NAME
nl _types — Defines message system variables

SYNOPSIS

#i nclude <nl _types. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The <nl _t ypes. h> header file is required for C programs that use the UNICOS message system. This
file defines various types, macros, and functions that the message system uses.

The nl _cat d type definition is defined as the type of message catalog file descriptors.

The NL_MSGSET macro is defined as the set number for all messages, and the NL_ EXPSET macro is
defined as the set number for all explanations. These macros expand to integral constant expressions that
have distinct values, suitable for use as the second argument to the cat get nsg(3C) and cat get s(3C)
functions.

The NL_CAT_LOCALE macro is defined as the oflag argument to the cat open(3C) function that causes the
LC_MESSAGES category to be used instead of the LANG environment variable.

The <nl _t ypes. h> header file declares the following functions, which resideinthe/1i b/ i bc. a file.
For complete descriptions of these functions, see the man pages.

Function Description

cat open(3C) Opens message catalog

cat cl ose(3C) Closes message catalog

cat get msg(3C) Retrieves message to user buffer
cat get s(3C) Retrieves pointer to message
cat msgf nt (3C) Formats message for printing

These routines use the NLSPATH, LANG, and MSG_FORMAT user environment variables and the
LC_MESSAGES category in their processing. The NLSPATH and LANG variables are described on the

cat open(3C) man page, and the MSG_FORNAT variable is described on the expl ai n(1) man page. The
LC_MESSAGES category is described on the | ocal e(1) man page.

SR-2014 425

NL_TYPES(5) NL_TYPES(5)

SEE ALSO

cat err (1), cat xt (1), expl ai n(1), gencat (1), whi chcat (1) describe message system user commands
| ocal e(1) describes the LC_MESSAGES category
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

cat get msg(3C), cat get s(3C), cat nsgf nt (3C), cat open(3C) describe message system library
functions in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

Cray Message System Programmer’s Guide, Cray Research publication SG—2121, contains details about all
aspects of the message system

426 SR-2014

PASSWD(5) PASSWD(5)

NAME

passwd — Format of the password file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et ¢/ passwd file is an ASCII file that contains one entry for each user on the system. udbgen(8)
maintains this file automatically for compatibility with older system versions, but the system does not use it
for user validation.

Each entry contains the following fields:

Login name

Encrypted password

Numeric user ID (UID)
Numeric group 1D (GID)
Comment

Initial working directory

Shell (program to use as shell)

Each field in the user entry is separated from the next by a colon. The comment field can contain any
desired information; however, it cannot contain the colon or newline characters. Each user entry is separated
from the next by a newline character. The password field is present for compatibility, but it is always set to
* . If password aging is active, the * will be followed by a comma and the age control string (see

['i budb(3C)).

FILES
/ et c/ passwd Password file
/et c/udb User database file
/et c/udb_2/udb. i ndex Public extension index file
/etc/udb_2/udb. priva Private field extension file
/et c/udb_2/udb. pubva Public field extension file
/et c/udb. public Public user database file

SR-2014 427

PASSWD(5) PASSWD(5)

SEE ALSO
aci d(5), gr oup(5), udb(5)
[i budb(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

428 SR-2014

PRINTCAP(5) PRINTCAP(5)

NAME
print cap — Printer capability database

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ pri nt cap file is used when you send output to a printer by using the | pr (1B) command. The
[etc/ printcap file contains alist of names by which the | pr (1B), | pq(1B), and | pr n{1B) commands
know each printer. These printers are not necessarily connected directly to the system, but they are available
anywhere in the TCP/IP network. For a discussion of how to set up the database for a given printer, see
UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304.

Each entry in the database describes one printer. The spooling system accesses the pri nt cap file each
time a print command is used. This alows dynamic addition and deletion of printers.

The default printer is usually | p; to change the default printer, use the #PRI NTER environment variable.
Each spooling utility supports a - Pprinter option to specify a destination printer other than the default.

Each entry in the pri nt cap file describes a printer; it is a line that consists of a number of fields separated
by : symbols. The first entry for each printer gives the names that are known for the printer, separated by [
symbols. You should not use blanks in the printer’s name because this requires users to enclose the name in
guotation marks when specifying the - P option on the | pr (1B) command. Entries can continue onto
multiple lines through the use of a\ as the last character of aline, and empty fields may be included for
readability.

Printer capabilities, al introduced by 2-character codes, are of three types: Boolean, numeric, and string.
These capabilities are shown in the table that follows the description of the capabilities.

Boolean capabilities indicate that the printer has a particular feature. Boolean capabilities are indicated by
the word bool in the Type column of the capabilities table that follows. Their presence in the pri nt cap
file indicates that the associated feature is present on the printer being described.

Numeric capabilities supply information such as baud rates, number of lines per page, and so on. Numeric
capabilities are indicated by the word numin the Type column of the capabilities table that follows.
Numeric capabilities are entered as the 2-character capability code, followed by the # symbol, followed by
the numeric value (for example, : br #1200: is a numeric entry that states that this printer should run at
1200 Bd).

String capabilities provide a device name, file name, or character sequence that can be used to perform a
particular printer operation such as cursor motion. String capabilities are indicated by the word st r in the
Type column of the capabilities table that follows. String capabilities are entered as the 2-character
capability code followed by an = symbol, and then a string ending at the next following : (for example,

I rp=spinwiter: isastring entry states that the remote printer is named spi nwri t er).

SR-2014 429

PRINTCAP(5)

PRINTCAP(5)

The following table shows printer capabilities:

Name Type Default Description

af str Null Specifies name of the accounting file. This capability is
useful only for locally attached printers.

br num None Sets the baud rate (i oct | request) if | p is atty.

cf str Null Specifies data filter for ci f pl ot .

df str Null Specifies TeX data filter (DVI format).

du str 0 Specifies user ID of user daenon.

fc num 0 Clears flag hits (sgtty. h) if | p isatty.

ff str \ f Sends this string for a form feed.

fo bool False Prints a form feed when device is opened.

fs num 0 Sets flag bits (sgt ty. h).

of str Null Graphs data filter (pl ot (3) format).

hl bool False Prints the burst header page last.

i f str Null Specifies name of text filter that does accounting. This
capability is useful only for locally attached printers.

| f str / dev/ consol e Specifies error logging file name.

l o str Lock Specifies name of lock file.

I p str /[dev/lp Specifies device name to open for output.

nma str | evel 0, 077 Specifies maximum security label allowed.

nc num 0 Specifies maximum number of copies.

m str | evel 0,0 Specifies minimum security label allowed.

nx num 1000 Specifies maximum file size (in BUFSI Z blocks), 0 =
unlimited.

nf str Null Specifies di t r of f (device-independent t r of f) data filter.

of str Null Specifies name of output filtering program. This capability
is useful only for locally attached printers.

pl num 66 Specifies page length (in lines). This capability is useful
only for locally attached printers.

pw num 132 Specifies page width (in characters). This capability is
useful only for locally attached printers.

pX num 0 Specifies horizontal page width (in pixels).

py num 0 Specifies vertical page length (in pixels).

rf str Null Specifies filter for printing Fortran-style text files.

rg str Null Specifies restricted group (only group members are allowed
access).

rm str Null Specifies machine name for remote printer.

rp str I p Specifies remote printer name argument.

rs bool False Restricts remote users to those with local accounts.

rw bool False Opens printer device read/write instead of read-only.

sb bool False Specifies short banner (one line only).

430

SR-2014

PRINTCAP(5) PRINTCAP(5)

NOTES

Name Type Default Description

sc bool False Suppresses multiple copies.

sd str [usr/spool /| pd Specifies spool directory.

sf bool False Suppresses form feeds.

sh bool False Suppresses printing of burst page header.
st str Status Specifies status file name.

tf str Null Specifiest r of f data filter.

tr str Null Specifies trailer string to print when queue empties.
vf str Null Specifies raster image filter.

XC num 0 Clears local mode hits, if | p is atty.

XS num 0 Sets local mode hits.

Error messages sent to the console have a carriage return and a line feed appended to them, rather than just a
line feed.

If the local line printer driver supports indentation, the daemon must understand how to invoke it.

Thefs, fc, xs, and xc fidds are flag masks, rather than flag values. Certain default device flags are set
when the device is opened by the line printer daemon if the device is a tty device. The flags indicated in the
f c field are then cleared; the flagsin the f s field are then set (or vice versa, depending on the order of

f c#nnnn and f s#nnnn in the / et ¢/ pri nt cap file). For example, to set the flags 06300 in the f s field,
enter the following:

:fc#0177777: f s#06300:

The same process applies to the xc and xs fields.

Two output filtering programs are supplied with Cray Research software. They are installed in the
[usr/1ib directory when| pr isinstalled. These programs process print files as follows:

| pf Reads nr of f output and converts lines that begin with ~H to overwritten lines. It also handles
multiple overwritten lines.
necf Reads the file to be printed and writes it to the printer one line at a time, as installed by default.

This filter program is only a skeleton program as supplied by Cray Research. If TTY is defined
during compile time, this program changes newline characters to carriage return characters,
followed by line-feed characters. If SHEETFEEDER is defined during compile time, this
program adds page gjects after every 66 lines to the file being printed.

SR-2014 431

PRINTCAP(5) PRINTCAP(5)

EXAMPLES

The following is an example of a simple pri nt cap file. Three printers are defined in this example. The
first line of the file is a comment.

The second line lists information for a printer named ps0. Printer psO is connected to the remote system
nobel , rather than existing on the local system. All files to be printed on this printer are sent to nobel
and are printed on the nobel printer named nobel _0. All files are spooled to the / usr/ spool / ps0O
directory before being sent to the remote system for printing.

The last two lines define the other two printers in a similar manner. The second printer has specified | p=,
which indicates that no local / dev entry exists for this printer. If you omit | p=, it defaultsto / dev/ | p.
When you specify r mer enot e_nane, the | p parameter is ignored.

Sanple printcap file

psO: r menobel : r p=nobel _0: sd=/usr/spool / psO:
psl:lp=:rmeferm :rp=ferm _10: sd=/usr/spool / psl:
ps2: rmesobrero: rp=sobrero_5:sd=/usr/ spool / ps2:

SEE ALSO

[pq(1B), | pr (1B), | pr m(1B) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

432 SR-2014

PROFILE(5) PROFILE(5)

NAME
profil e — Format of shell start-up file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/etc/ profil e and $HOVE/ . profi | e files are shell start-up files. On login, the system checks the
shel | field in auser’s entry in the UDB file (/ et ¢/ udb) to see what shell it specifies. If you specify

/ bin/sh or/bin/ksh,/etc/profil e then $SHOVE/ . profil e isrun. If you specify / bi n/ csh,
the C shell environment is run. For more information on the C shell, see csh(1) and cshr c(5).

If / bi n/ sh or/ bi n/ ksh is specified in the shell field of the password file, the following actions occur as
auser logsin:

1. Ifthe/etc/profil e fileexists, the POSIX shell (sh(1)) or Korn shell (ksh(1)) executesit. Among
other operations, / et ¢/ profi | e prints/ et ¢/ not d, the message of the day if that file exists (see
not d(5)).

2. If the user’s login directory contains a file named . profi | e, sh(1) or ksh(1) executesit. For the
Korn shell (ksh(1)), if the ENV environment variable is set, parameter substitution is performed on the
value. The result is expected to be a path name of a script that ksh(1) executes.

3. The user's terminal session begins.

The. profil e fileis useful for setting exported environment variables. (The environment variable for the
time zone, TZ, isset inthe/ et ¢/ i ni tt ab file. For more information, seei ni tt ab(5).)

EXAMPLES
An example of atypical . profil e file follows:

Make some environment variables gl oba

export MNAIL PATH

Set file creation mask

umask 22

Tell me when new mail comes in

MAI L=/ usr/ mai | / myname

Add nmy /bin directory to the shell search sequence
PATH=$PATH: $HOVE/ bi n

SR-2014 433

PROFILE(5) PROFILE(5)

FILES
$HOVE/ . profile Shell start-up file in user’s home directory
[etc/profile Systemwide shell start-up file

SEE ALSO

cshrc(5),inittab(5), not d(5), t er m5), udb(5)

csh(1), env(1), ksh(1), | ogi n(2), mai | (1), stty(1), su(l) in the UNICOS User Commands Reference
Manual, Cray Research publication SR—2011

434 SR-2014

PROTO(5) PROTO(5)

NAME
pr ot o — Prototype job file for at (1)

SYNOPSIS

fusr/lib/cron/.proto

[fusr/1lib/cron/.proto. queue

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

When ajob is submitted to at (1) or bat ch(1), the job is constructed as a shell script. The shell script is
constructed by a set of standard shell commands that makes the environment (see envi r on(7)) for the

at (1) job the same as the current environment. The at (1) utility then reads a prototype file, appending the
contents after the environment. Last, the commands specified as input to the at (1) command are appended
after the prototype file commands.

Text from the prototype file is copied to the job file, except for special variables that are replaced by other

text:

Variable Replaced by

$a Account 1D of the user

$d Current working directory

$I Current file size limit (seeul i m t (2))

$m Current umask (see umask(2))

$t Time at which the job should be run, expressed as seconds since January 1, 1970, 00:00
Greenwich Mean Time, preceded by a colon

$< Text read by at (1) from standard input (that is, the commands provided to at (1) to be run in
the job)

When the job is submitted in queue queue, at (1) usesthe/ usr/1i b/ cron/. prot o. queue file as the
prototype file if it exists; otherwise, it usesthe/ usr/|i b/ cron/. prot o file.

EXAMPLES
The standard . pr ot o file supplied with the UNICOS operating system is as follows:

SR-2014 435

PROTO(5) PROTO(5)

FILES

USM D @#) man/ man5/ proto.5 100.0 07/ 15/97 14:39: 30
newacct $a

cd $d
ulimt $I
umask $m

unset TMPDI R
export TMPDI R
$<

This file creates commands that change the account to the current user, change the current directory in the
job to the current directory at the time at (1) was run, set the file size limit to the current file size allowed
on the system, and change the umask in the job to the umask at the time at (1) was run, to be inserted
before the commands in the job. The TMPDI R shell variable also is unset, because this value defines a
temporary directory, which might not exist when the at (1) job is executed. Last, the commands provided to
at (1) are appended after the export command.

fusr/lib/cron/.proto Default prototype file for at (1) or bat ch(1) job

fusr/1lib/cron/.proto. queue Prototype file for at (1) or bat ch(1) job submitted in queue
queue

SEE ALSO

436

at (1), bat ch(1), ksh(2) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

ul i mt (2), umask(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

envi r on(7) (available only online)

SR-2014

PROTOCOLS(5) PROTOCOLS(5)

NAME

pr ot ocol s — Protocol name database

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ prot ocol s file contains information about the known protocols used in the Internet network.
For each protocol, one line should contain the official protocol name, the protocol number, and any aliases
that exist for the protocol name. Items are separated by any number of blanks and/or tab characters. A #
symbol indicates the beginning of a comment; if you specify this character, routines that search the file do
not interpret additional characters up to the end of the line.

Protocol names may contain any printable character other than a blank, tab, newline, or comment (#).
EXAMPLES

The following example shows typical entriesin / et ¢/ pr ot ocol s:

Internet (IP) protocols

ip 0O IP # internet protocol, pseudo protocol nunber
icnrp 1 ICMP # internet control message protocol
tcp 6 TCP # transmission control protocol
udp 17 UDP # user datagram protocol
FILES
/etc/protocol s Contains information about known protocols
SEE ALSO

get pr ot (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2014 437

PUBLICKEY (5) PUBLICKEY (5)

NAME
publ i ckey — Public key database

SYNOPSIS
[etc/ publickey

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The public key database, / et ¢/ publ i ckey, is used for secure networking. Each entry in the database
consists of a network user name (which may refer either to a user or a host name), followed by the user’s
public key (in hexadecimal notation), a colon, and then the user’s secret key encrypted with its login
password (also in hexadecimal notation).

Thisfile is altered either by the user through the chkey (1) command or by the system administrator through
the newkey(8) command. The/ et c/ publ i ckey file should contain only data on the network
information service (NIS) master machine, where it is converted into the NIS database

publ i ckey. byname. Cray Research strongly recommends that the Cray Research system not be used as
the NIS master machine for any NIS database, including publ i ckey.

SEE ALSO

chkey(2) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

publ i ckey(3R) in the Remote Procedure Call (RPC) Reference Manual, Cray Research publication
SR-2089

newkey(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304

438 SR-2014

QUEUEDEFS(5) QUEUEDEFS(5)

NAME

gueuedef s — Queue description file for at (1), bat ch(1), and cr on(8)

SYNOPSIS

fusr/1lib/cron/queuedefs

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The queuedef s file maintains definitions for al queues that cr on(8) manages. If this file does not exit,
the default values are used. Each noncomment line of queuedef s describes one queue and must have the
following format:

g-NNj NNnNNw

q The name of the job queue; must be a letter, a through z. a is the default queue for jobs that
at (1) starts. b is the default queue for jobs that bat ch(1) (see at (1)) starts.

NNj The limit on jobs that can run at any one time for the job queue. NN is an integer; the default is
100.

NOTE: You can increase the value NNj only up to the value of MAXRUN in cr on(8). The default
value of MAXRUN is 25. MAXRUN can be increased by using the - moption to cr on(8).

NNn The ni ce(1) value assigned to each command executed for the job queue. NN is an integer; the
default is 2.

NNw The time (in seconds) that cr on(8) waits before reexecuting a command, if the command could not
run at the first execution because all criteria for execution were not met. The default is 60.

Empty fields are initialized to the default values.

Lines that begin with # are comments and are ignored.

EXAMPLES

The following is an example of a queuedef s file:

a.4jln
b. 2j 2n90w

SR-2014 439

QUEUEDEFS(5) QUEUEDEFS(5)

This file specifies that the a queue, for at (1) jobs, can have up to four jobs running simultaneously; those
jobs will be run with ani ce(1) value of 1. Because a w (wait) value was not given, if ajob cannot be run
because too many other jobs are running, cr on(8) will wait 60 seconds before trying again to run it. The b
queue, for bat ch(1) jobs, can have no more than two jobs running simultaneously; those jobs will be run
with ani ce(1) value of 2. If ajob cannot be run because too many other jobs are running, cr on(8) will
wait 90 seconds before trying again to run it.

All other queues can have up to 100 jobs running simultaneously; they will be run with a ni ce(1) value of
2, and if ajob cannot be run because too many other jobs are running, cr on(8) will wait 60 seconds before
trying again to run it.

Changes to queue definitions take effect before the cr on(8) daemon executes the next job.
FILES
[fusr/1lib/cron/queuedefs Definesall queues managed by cr on(8)

SEE ALSO

at (1), ni ce(2) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
cr on(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

440 SR-2014

QUOTA(5) QUOTA(5)

NAME

guot a — Quota control file format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

File quota enforcement controls the amount of file system space consumed by placing an upper bound on the
number and size of files available to an account, group, or user. All quota control information resides in
guota control files.

One quota control file exists per controlled file system or a number of file systems organized into a quota
control group. The default name for the quota control file is . Quot a60. By default, when a quota control
file is associated with one file system, the file appears in the root directory of its related file system. In the
case of quota control groups, you must specify explicitly the location and name of the file. The

guadm n(8) command allows the name and location of a quota control file to be other than the default.

The system administrator creates and modifies quota control files by using the quadm n(8) command. For
more information about all aspects of administering file quotas, see the description of the command in
UNICOS Resource Administration, Cray Research publication SG—2302.

The quota control file consists of one header structure followed by the hash table with the remainder of the
file consisting of an arbitrary number of quota control structures. The file has a hashed access organization
that use the ID value as the key. Quota control structures that have 1Ds with synonymous hash values are
linked together with the most recently added record at the head of the chain.

IDs can belong to any one of three control classes. The control classes are account 1Ds (aci d), group IDs
(gi d), and user IDs (ui d).
The header and control structures are defined in the sys/ quot a. h file.

Quota File Header
The gqf _header structure identifies the quota file and contains general information needed by the various
components of the file system quota control feature. The qf _header appears at offset O in the quota file

and consists of 1256 bytes. The first object in the header is a magic number that is used to determine
whether the file has been generated on a release of UNICOS that has compatible quota control files.

SR-2014 441

QUOTA(5)

442

QUOTA(5)

The gqf _header structure is defined as follows:

struct gf _header {

}s

gf _magi c

g_header

gf _m n_dm
gf _I vl

gf _eval

gf _style

hef 1

hef 2

| ong gf _magi c; /* quota version identification */
struct g_header

acct _h, /* account header */

group_h, /* group header */

user _h; /* user header */

time_t gf _mn_dm /* mnimumdata mgration threshold */

ui nt gf _Ivl : 8, /* Q_ON _DEFAULT enable |evel */

gf _eval : 8, /* eval uator sel ector */

gf _style : 1, /* 1 if aggregate (DWMF) quotas, */

/* 0 if online */

gf _spare : 47, /* reserved */

| ong hef 1, /* field 1 reserved for evaluator’s use */

hef 2; /* field 2 reserved for evaluator’'s use */

ui nt gf _qgf nanesi ze; /* size of gf _namg[] */

ui nt gf _hashents; /* length of the hash table in entries */

of f _t gf _hashtaboffs; /* offset of the hash table */

char gf _name[PATH_MAX+1]; /* nane of the quota file */

Magic number to identify the format of the file; this field is reserved for future use with
alternative file formats.

Three q_header structures occur in the gf _header . Each of the control classes has a
g_header structure: account, group, and user. The format of the q_header structure
is defined following the description of the qf _header structure.

Minimum data migration threshold. This field is reserved for future use.

Default enable level when Q_ON_DEFAULT is requested. This field records the quota
enable level (count, enforce, or inform) that was last selected. The default on a newly
created file is count (Q_ON_COUNT).

Oversubscription evaluation algorithm selector. This may contain one of the values
QEVAL_NONE, QEVAL_EXP, QEVAL_LI N, QEVAL_RSV1, or QEVAL_RSV2. If this
field contains QEVAL _NONE, the default, oversubscription is disabled.

Flag for online or aggregate quotas. O means online; 1 means aggregate. If aggregate
quotas are selected, both disk block online and then migrated offline by DMF are counted.

Evaluation field 1. This field is reserved for use by the evaluation algorithm selected in
gf _eval .

Evaluation field 2. This field is reserved for use by the evaluation algorithm selected in
gf _eval .

gf _gf nanesi ze

Size (in bytes) of gf _nane.

SR-2014

QUOTA(5)

QUOTA(5)

gf _hashents Number of entries in the hash table. The released system uses a hash table size of 2039.
gf _hasht aboffs

gf _name

Byte offset from the beginning of the file to the hash table.

Name of the quota file. The kernel records the name most recently used to open the quota
filein this field. quadm n(8) also uses this field for verification.

The q_header structure is defined as follows:

struct g_header {

i
hdr _fl ags

wf_fq

def _ig

def _fq

warn_fq

SR-2014

ui nt hdr _fl ags; /* header flags (Q-C_HDR xx) */
fl oat wf_faq; /* file quota warning fraction */
fl oat wf_iq; /* inode quota warning fraction */
ui nt def _fq; /* default file quota */
ui nt def _iq; /* default inode quota */
ui nt war n_f q; /* file quota warning val ue */
ui nt war n_i q; /* inode quota warning val ue */

Header flags. This field sets the default quota enforcement mode. Valid modes are file
quotas, inode quotas, or both.

Warning fraction for file quota. A floating fraction in the range 0.0 <wf _f q < 1.0 that
specifies where the default warning threshold will occur in relation to the file quota.
Unmodified wf _f q structures contain a default value of 0.9, which places the warning
window at 90% of the quota.

Warning fraction for inode quota. A floating fraction in the range 0.0 <wWf _i g < 1.0 that
specifies where the default warning threshold will occur in relation to the inode quota.
Unmodified wWf _i q structures contain a default value of 0.9, which places the warning
window at 90% of the quota.

Default inode quota. This field contains the inode quota that will be enforced if a quota
entry indicates use of the default. Unmodified q_header structures contain a default
value of 200 inodes for all control classes.

Default file quota. This field contains the file quota that will be enforced if a quota entry
indicates use of the default. Unmodified q_header structures contain a default value of
5000 blocks for all control classes.

Default file warning value in blocks. quadm n(8) computes this value based on def _f q
and wf _f q. For example, if the def _f q file quota is 5000 and the wf _f g warning
fraction is 0.9, this field will be set to 4500. When the amount of file space in use
exceeds this value, a warning signal (SI G NFO) is issued.

443

QUOTA(5) QUOTA(5)

warn_iq Default inode warning value. quadm n(8) computes this value based on def _i g and
wf _i g. For example, if the def _i g inode quota is 200 and the wf _i g warning fraction
is 0.9, this field will be set to 180. When the number of inodes in use exceeds this value,
awarning signal (SI G NFO) is issued.

Quota Control Structures

444

Each ID, whether an account, group, or user ID, occupies one offset in the quota control file and has control
information for each class of 1D being controlled.

Each ID value created in the file consists of a qf _ent ry structure. This structure contains a quota control
structure (q_ent ry) for each of the three ID classes (account, group, and user), along with identification
and chaining fields.

Because al 1Ds of the same value in each ID class are not always defined, some of the space in each
structure may be unused. For example, if your system has 123 defined as a user 1D, but 123 does not occur
as an account or group 1D, only the q_ent ry structure named user _q will be occupied.

A gf _ent ry structure consists of 216 bytes. The location of the structure that corresponds to a specific ID
is found by evaluating the following expression to access the correct hash table entry and following the chain
rooted in that entry until the record is found:

(1D % 2039)

The format of the gf _ent ry entry is defined as follows:
struct gf _entry {

struct gf _i dent
gf _i dent; /* record’ s identification */
ui nt resl : 32, /* reserved space */
id: 32 /* id (account, group and user) */
struct g_entry
acct _q, /* account quota */
group_dg, /* group quota */
user_qd; /* user quota */
of f t g_next; /* next record in hash chain */
i
gf _i dent Record’ s identification. The type and size of the record is kept in this structure for future
multiple record type support.
id Account, group, or user ID to which the quota information pertains.
g_entry Account, group, and user quota control definitions. Each quota control structure is defined

as follows:

SR-2014

QUOTA(5)

QUOTA(5)

struct g_entry {
time_t f wtinme; /* time when file warning was reached */
ui nt f _quota : 32, /* file quota (bl ocks) */
f _runquota : 32; [/* running quota if non-zero */
ui nt f_warn : 32, /* file warning val ue */
f_use : 32; /* file usage (bl ocks) */
ui nt i_quota : 32, /* inode quota (units) */
res : 32; /* reserved */
ui nt i_warn : 32, /* inode warning val ue */
i _use : 32; /* inode usage (units) */
ui nt ef1 : 32, /* field 1 reserved for evaluator’s use */
ef2 : 32; /* field 2 reserved for evaluator’s use */
ui nt ef3 : 32, /* field 3 reserved for evaluator’s use */
ef4 : 32; /* field 4 reserved for evaluator’'s use */
| ong ef 5; /* field 5 reserved for evaluator’'s use */

}s

For the file and inode quota (f _quot a andi _quot a) and warning (f _warn and i _war n) specia values
have been defined. Except for 0 and QFV_M NVALUE, the specia values are defined to be greater than the
maximum value allowed in afield. The values are at the upper end of the range for 32-bit values and are
defined in sys/ quot a. h. Their symbolic names are used here.

Value

0

QFV_M NVALUE
QFV_NMAXVALUE
QFV_DEFAULT
QFV_NCEVAL
QFV_PREVENT

Definition

Value not specified.

Smallest value allowed in afield (1).

Largest value alowed in afield (4294967285)

The quota value is determined by the corresponding default in the header.
Quota control is disabled. The quota is unlimited.

No more resources may be allocated.

The fields in the q_ent ry structure are defined as follows:

Field
f wine
f _quota

Definition
Time at which the first file warning was reached. Specia values do not apply to this field.
File quota or when oversubscription is enabled, the upper bound of file allocation. Specia

values apply to this field.

f _runquota

If this field is nonzero, this is the oversubscription threshold value. Special values apply

to this field.

f_warn

File quota warning value. The specia values mentioned previously apply to this field,

except that QFV_NOEVAL means that a warning will never be issued.

SR-2014

445

QUOTA(5)

f _use

i _quota

i _warn

i _use

efl

ef 2

ef 3

ef4

ef5

FILES

sys/ quota. h

SEE ALSO

QUOTA(5)

File usage. The current accumulated file usage. The kernel maintains this field during
operation, and the qudu(8) command computes current file usage for initial quota setup or
correction. Special values do not apply to this field.

Inode quota. The maximum number of inodes allowed for the ID. Special values apply to
this field.

Inode quota warning value. The specia values mentioned previously apply to this field,
except that QFV_NOEVAL means that a warning will never be issued.

Inode usage. The current number of inodes. The kernel maintains this field during
operation and the qudu(8) command computes current inode usage for initial quota setup
or correction. Specia values do not apply to this field.

Field reserved for evaluator’'s use. See the documentation on the specific algorithms in
UNICOS Resource Administration, Cray Research publication SG—2302.

Field reserved for evaluator’'s use. See the documentation on the specific algorithms in
UNICOS Resource Administration, Cray Research publication SG—2302.

Field reserved for evaluator’'s use. See the documentation on the specific algorithms in
UNICOS Resource Administration, Cray Research publication SG—2302.

Field reserved for evaluator’'s use. See the documentation on the specific algorithms in
UNICOS Resource Administration, Cray Research publication SG—2302.

Field reserved for evaluator’'s use. See the documentation on the specific algorithms in
UNICOS Resource Administration, Cray Research publication SG—2302.

Quota control definition file

guadm n(8), qudu(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

UNICOS Resource Administration, Cray Research publication SG—2302

446

SR-2014

RELO(5) RELO(5)

NAME
r el o — Relocatable object table format under UNICOS

SYNOPSIS

#i ncl ude <relo. h>

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The assembler and the compilers generate relocatable object tables, as described in this entry. Some
UNICOS commands that process rel ocatable object tables use internal definitions rather than ther el 0. h
include file.

The relocatable binary tables are presented as C language code.

Compilation or assembly produces a file that contains one or more relocatable modules. To combine
relocatable modules into library files, use ar (1), bl d(1), or t sar (8). Thel d(1) and segl dr (1) loaders
process the modules to create an executable file with an optional symbol table. This manual entry describes
the bit fields in the relocatable binary Program Descriptor table (PDT), the Text table (TXT), the Relocation
table (REL), the Extended Relocation table (XRL), and the Module Termination table (MTT). For a
description of the Debug Symbol table (SMT), see the

When a set of routines is compiled or assembled and a set of relocatable object modules is produced, each
object module set contains the instructions, data, and relocation information needed for linking the module,
which creates an executable image.

A relocatable object file consists of a contiguous set of one or more such relocatable object modules. The
relocatable modules that the compiler produces may be linked separately, or the subroutines may be merged
before linking by using bl d(1). Library modules are linked with the object files as needed. The loaders
produce an executable file with an optional Global Symbol table (GST) to describe the global variables.
Usually, the GST is joined to the end of the executable file to form one file.

Each relocatable module consists of a sequence of relocatable tables. A single relocatable module
corresponds to an i dent /end segquence in assembly language, a source file in C, a Fortran subroutine, or a
Pascal compilation unit. The first table of each module is the PDT, which defines the blocks, entry points,
and externals used in the routine. Any number of TXTs, RELs, XRLs, and SMTs may come between the
beginning PDT and the ending MTT. The TXT contains the instructions and data that will be linked into the
program block, and the REL and XRL contain the relocation information. The SMT describes all identifiers
used in a given module. The last table of each object module is an MTT; it terminates the set of tables that
define the object module for a one routine.

SR-2014 447

RELO(5) RELO(5)

Each table begins with a header word (t bl _hdr) that contains the table type (hdr _t ype) and word count
(hdr _I en) of the table. These fields provide the record structure of the relocatable binary file and appear
as the first word of every table. The table type identifies the binary table. The word-count field gives the
number of words in the table. This field permits the tables to vary in length. All variable-length fields also
contain, or are preceded by, a field that specifies their length. In particular, all ASCII names vary in length;
each is preceded by a character count in an 8-bit field. Globa names, entry points, and externals are limited
to 255 characters.

In the C language representation of these tables, FIELD denotes an unsigned long variable.

Schematic Representations

448

A Cray Research system word contains 64 bits. You may divide each word into consecutive strings of bits,
which are referred to as bit fields.

Table header word

The first word of each table is a table header that contains a table type code, an optional block index field,
and a table length. This table header structure is used for the Program Descriptor table (PDT), Text table

(TXT), Relocation table (REL), Extended Relocation table (XRL), Module Termination table (MTT), build
Library (bl d(1)), Header table (LHT), Build Library (bl d(1)), and Directory table (BLD). It is defined as
follows:

struct tbl_hdr {

FIELD hdr_type : 7; [/* Table type */
FI ELD D9 /* (Unused, reserved by CRI) */
FI ELD hdr _bi : 16; [/* Block index (optional) */
FIELD hdr_len : 32; [/* Table length */

The constants for the table type codes, which are used in the first word of all tables, are defined as follows:

#define PDT_TYPE 017 /* Program descriptor table */
#define TXT_TYPE 016 /* Text table */
#define REL_TYPE 015 /* Relocation table */
#define XRL_TYPE 014 /* Extended rel ocation table */
#define MIT_TYPE 010 /* Module term nation table */
#define LHT_TYPE 001 /* Library (build) header table */
#define BLD TYPE 002 /* Build directory table */
#define SYM TYPE 011 /* Mdule synbol table */
#define CMB_TYPE 021 /* Common bl ock synbol table */
#define GNT_TYPE 027 /* d obal synbol table */

The PDT, TXT, REL, XRL, and MTT contain the text and relocation information that defines the contents of
the module. These tables are described in this section. bl d(1) creates the LHT and BLD for library files.
The SMT and CMB contain information describing the symbols within the modules. The GST resides in the
executable file and contains information that describes the global symbols in an entire program. The,
describes the SMT, CMB, and GST.

SR-2014

RELO(5)

Program Descriptor Table (PDT)
The PDT is the first table for a routine.

RELO(5)

It contains information needed to link the module to other modules

(such as a list of blocks, entry points, and externals used in the routine) and maintenance information (such
as the date and time of compilation or assembly, the generating product name and version, and the
generating user number). The four sections of the PDT are the PDT Header, PDT Block Names, PDT Entry

Points, and PDT External Names.

PDT header
The following structure defines the fields in the Program Descriptor table (PDT) header.
struct pdttabl {

SR-2014

FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD

FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD

pdt hdr;
pdt hdsz
pdt bl sz
pdt ensz
pdt exsz
pdt mdy;
pdt hns;
pdt cnpi d;
pdt cnpvr ;
pdt osvr;
pdt udt ;

pdtfe
pdt bd
pdt npa
pdt dc
pdt usr

pdt nf

pdt f nl
pdt ml
pdt ss
pdt ugnm

pdt mul
pdt cnt |
pdt nt |

/*
16; /*
16; /*
16; /*
16; /*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
8; /*
8; /*
32; /*

/*
32; /*
16; /*
8; /*
8; /*

NRPORRRPRERE

Use tbl _hdr structure here */
Wrd size of header area */
Wrd size of block area */
Wrd size of entry area */
Wrd size of external area?*/
MM DD YY - this conpil ation
HH: MM SS - this conpil ation

Cenerating product name */
Cenerating product version?*/
Host OS version */

UNI COS tinme stanmp (date) */

(Unused, reserved by CRI) */
Fatal error flag (1==true) */
Bl ock data modul e (1==true)
Modul e passed address flag */
Dual case names flag(l==true)
(Unused, reserved for user)
(Unused, reserved by CRI) */
Modul e flag for Fortran 90:

0 = i ndependent */
1 =first of a nodule */
2 = in a nodul e set */
3 = last of a nodule */
Char count in file nane */
Char count in nmodule name */
Stack size requirenent */
Uni que I D for nodul e nane */

(Unused, reserved by CRI) */
Length of nodule use field*/
Length of comrents field */
Length of nachine type field

/* Remaining fields follow */

*/
*/

*/

*/

*/

*/

449

RELO(5) RELO(5)

450

PDT block name
The block section of the PDT contains zero or more block entries, each of which has the following format:

struct pdtblck {

FI ELD pdt bkcb 1; /* Common bl ock flag (1==true) */
FI ELD pdt bkl 3; /* Block location */

FI ELD pdt bkc 3; /* Block contents */

FI ELD pdt bkt 3; /* Block type */

FI ELD pdt bal 1; /* Block align flag */

FI ELD pdt bef 1; /* Block entry flag */

FI ELD 4, /* (Unused, reserved by CRI) */

FI ELD pdt busr 8; /* (Unused, reserved for user) */
FI ELD pdt bknl : 8; /* Char count in block nanme */

FI ELD pdt bkl n : 32; /* Block length (words) */

/* Block nanme fol | ows */

b

The block name follows the pdt bkl n field in the minimum number of words required to store pdt bknl
characters. This name is left justified and zero filled within this field.

The constants for the block location field (pdt bkl) are defined as follows:

#define BKL_CM 0 /* Conmon nmenory */
#defi ne BKL_AX 4 /* CRAY Y-MP auxiliary menory*/

The constants for the block contents field (pdt bkc) are defined as follows:

#define BKC_UNK O /* Unknown */
#define BKC I X 1 /* Instructions only */
#defi ne BKC DT 2 /* Data only */
#defi ne BKC_BS 3 /* Data only with no text (bss) */
#defi ne BKC_CN 4 /* Constants only */
#defi ne BKC _zZD 5 /* Data only with no text */
/[* (zero fill assunmed) */

The constants for the block type field (pdt bkt) are defined as follows:

#define BKT_CM 0 /* Regul ar conmon bl ock */
#define BKT_TCM 2 /* Task common bl ock */
#define BKT_DBF 4 /* Dynami c block */

The constants for the block align flag (pdt bal) are defined as follows:

#define BAL_NA 0 /* No alignnment */
#define BAL_AL 1 /* Align to instruction buffer boundary */

SR-2014

RELO(5)

PDT Entry Point
The entry point section of the PDT contains zero or more entries, each of which has the following format:

struct pdtent {

b

| ong

FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD

pdt epv;
pdt epf

pdt enl
pdt erm

pdt eusr
pdt ebi

. 27;

RELO(5)

/* Entry point (signed) val ue*/

1; /* Primary entry flag (1l==true) */
/* (Unused, reserved by CRI) */

8; /* Char count in entry nane */

3; /* Suggested rel ocati on nmode */

/* (Unused, reserved by CRI) */

8; /* (Unused, reserved for user) */

16; /* Bl ock index */
/* Entry nanme follows */

The entry name follows the block index field (pdt ebi) in the minimum number of words required to store
pdt enl characters. This name is left justified and zero filled within this field.

The constants for the suggested relocation mode field (pdt er m) are defined as follows:

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

PDT External
The externals section of the PDT contains zero or more entries, each of which has the following format:

RM_WORD
RM_HALF
RM_PARC
RM BYTE
RM BI T

RM_ENTR

0
1
2
3
6

7

/*
/*
/*
/*
/*
/*

Word address */
Hal f word address */
Par cel address */
Byt e address */
Bit address */
Rel ocati on nmode from*/

/* associated entry (pdterm; */
on external references only. */

/* 1egal

struct pdtext ({

}s

FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD
FI ELD

pdt xm

pdt xnl
pdt xsf
pdt xct
pdt xpa

pdt xusr

. 42;

1; /* Modul e specification*/

/* (Unused, reserved by CRI) */

8; /* Char count in external name */
1; /* Soft external (1==true) */

2; [* Call tree information */

1; /* External passed as argunent */
/* (Unused, reserved by CRI) */

8; /* (Unused, reserved for user) */
/* External nanme follows */

The external name follows the pdt xusr field in the minimum number of words required to store pdt xnl
characters. This name is left justified and zero filled within this field.

SR-2014

451

RELO(5) RELO(5)

The constants for the call tree information field (pdt xct) are defined as follows:

/*
/*

#define XCT_EXT O
#define XCT_THDO 1

Regul ar ext er nal */
External is task head */

Text Table (TXT)

The TXT follows the PDT; any number of TXTs can be after the PDT and before the MTT. You may
intermix RELs, XRLs, and TXTs, but TXTs should precede RELs and XRLs that relocate the locations
filled in by the TXT. The TXT contains the instructions and data to be linked into the program. The TXT
begins with the table header word t bl _hdr at word O; the hdr _t ype field identifies it as a text table.
One or more item entries follow the header word.

struct txtitem {

long txtinc : 17; /* Incr between dups (signed) */

FI ELD t xt sba : 38; /* Starting bit address */

FI ELD t xt nbl : 6; /* Number of bits in |last word */
FI ELD t xtusr1 : 3; /* (Unused, reserved for user) */
FI ELD t xt usr 2 : 5; /* (Unused, reserved for user) */
FI ELD 8; /* (Unused, reserved by CRI) */

FI ELD t xt ndp : 19; /* Number of duplications */

FI ELD t xt nt w 32; /* Number of text words */

/* Text words follow */

I
The text words immediately follow the item header.

Relocation Table (REL)
Any number of REL tables may be between the PDT and the MTT. You may intermix RELs, XRLs, and
TXTs; but RELs should follow any TXTs that fill in the locations relocated by the REL. The REL contains
relocation information for the module. The REL begins with the table header word t bl _hdr at word 0; the
hdr _t ype field identifies it as a relocation table.

struct relitem{
FIELD rel rt 1; /* Rel ocation type */
FIELD rel ri 16; /* Rel ocation index */
FI ELD rel rba 38; /* Rightnost bit address */
FI ELD rel f1 6; /* Field length in bits */
/* to relocate */
FIELD rel rm 3; /* Rel ocati on node */
I

The constants for the relocation type field (r el rt) are defined as follows:

0
1

/*
/*

#define RT_BLK
#define RT_EXT

Bl ock entry */
External entry */

The constants for the relocation mode field (r el r m) are defined as follows:

452

SR-2014

RELO(5)

#def i
#def i
#def i
#def i
#def i
#def i

Extended Relocation Table (XRL)

ne RM WORD
ne RM HALF
ne RM_PARC
ne RM BYTE
ne RMBIT
ne RM ENTR

O WNPEFLO

7

/* Word address */
/* Half word address */
/* Parcel address */
/* Byte address */
/* Bit address */
/* Rel ocation node from*/

/* associated entry (pdterm; */

/* 1egal

on external references only.

RELO(5)

*/

Any number of XRLs may be between the PDT and MTT. RELSs, XRLs, and TXTs, but XRLs should
follow any TXTs that fill in locations relocated by the XRL. The XRL contains the relocation information
for the module. The XRL begins with the table header word t bl _hdr at word O; the hdr _t ype field
identifies it as an extended relocation table. The XRL resembles the REL with the addition of the xr | usr,
xrln, and xrl sr fields.

struct xrlitem {

b

The constants for the extended relocation type field (xr | rt) are defined as follows:

#def i
#def i

FI ELD xrlrt
FI ELD xrlri
FI ELD xr |l usr
FI ELD

FI ELD xrl sp
FI ELD xrln
FI ELD xrl sr
FI ELD xrl fl

FI ELD xrlrm
FI ELD
FI ELD xrl r ba

ne RT_BLK
ne RT_EXT

0
1

1; /* Rel ocation type */
16; /* Rel ocation index */
; nused, reserve or user
8 /* (U d df) */
; nused, reserve
23 /* (U d d by CRI) */
3; /* Special relocation */
1; /* Sign before rel ocation */
3; /* Sign specification of result */
6; /* Field length in bits */
/* to relocate */
3; /* Rel ocation node */

26; /* (Unused, reserved by CRI) */
38; /* Rightnmost bit address */

/* Block entry */
/* External entry */

The constants for the specia relocation field (xr | sp) are defined as follows:

#def i
#def i
#def i

SR-2014

ne SP_NONE
ne SP_RVHF
ne SP_3PRL

0
1
2

/* No special relocation

*/

/* Reversed hal ves rel ocation*/

/* Three parcel relocation

453

RELO(5)

The constants for the sign specification of result field (xr | sr) are defined as follows:

#defi ne SR_NONE
#defi ne SR _PCOS
#defi ne SR_NEG

0
1
2
#defi ne SR_EXT 3

/*
/*
/*
/*

Sign does not matter */

Field nust be positive */
Field nust be negative */
Field is sign extended */

The constants for the extended relocation mode field (xr | r m) are defined as follows:

#defi ne RM WORD
#defi ne RM HALF
#defi ne RM _PARC
#defi ne RM BYTE
#define RMBIT

#define RM ENTR 7

OWNPEFLO

/*
/*
/*
/*
/*
/*

Word address */
Hal f word address */
Par cel address */
Byt e address */
Bit address */
Rel ocati on nmode from*/

/* associated entry (pdterm; */

/* 1egal

Module Termination Table (MTT)

on external references only. */

RELO(5)

The MTT is at the end of the relocatable binary module. The MTT terminates the set of tables defining the
object module for one routine. The MTT begins with the table header word t bl _hdr at word O; the

hdr _t ype field identifies it as an MTT.

The MTT is defined by the following structure.

struct ntttabl {
FI ELD ntt hdr;
FI ELD nttcksm

b

FILES

/usr/include/rel o.h

454

/*
/*

Use tbl _hdr structure here*/
Checksum */

Format of relocatable object tables

SR-2014

RELO(5) RELO(5)

SEE ALSO
symbol (5) for a description of the UNICOS symbol table entry format

ar (1) to invoke the archive and library maintainer for portable archives

bl d(1) to maintain relocatable libraries

cc(2) to invoke the Cray Standard C compiler

dat e(1) to print and set the date

ed(1) to invoke the text editor

| d(1) to invoke the link editor with traditional UNIX invocation

pascal (1) to invoke the Pascal compiler

segl dr (1) to invoke the Cray Research segment loader (SEGLDR)

in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

t sar (8) to invoke the system data processing language processor
in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 455

RESOLV.CONF(5) RESOLV.CONF(5)

NAME

resol v. conf — Domain name resolver configuration file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The resolver configuration file / et ¢/ r esol v. conf contains information that the resolver routines read
the first time they are invoked by a process. The file is human readable and contains a list of keywords with
values that provide various types of resolver information.

If the only name server to be used is the local server and the host name, configured el sewhere through the
host name(1) command, is the fully qualified domain name, the r esol v. conf file probably is not
needed. Otherwise, configure this file to specify the name servers, local domain, and other optional
configuration information.

The configuration options are as follows:

domai n | ocal . domai n
The domai n keyword designates | ocal . donai n as the default domain for queries that are not
fully qualified. Thel ocal . domai n parameter is appended to unqualified domain names in an
attempt to form a fully qualified domain name. Most queries for names within this domain can use
short names, relative to the local domain. If no domain entry is present, the domain is determined
from the local host name returned by get host nane(2); the domain part is everything after the
first period (.). Finaly, if the host name does not contain a domain part, the root domain is
assumed.

nameserver address
The nameser ver keyword designates a name server that answers domain name queries for this
machine. The addr ess parameter specifies the Internet address (in dot notation) of alocal or
remote server that the resolver should query. You can list up to MAXNS (currently 3) name servers,
one per keyword. If multiple servers exist, the resolver library queries them in the order listed. If
Nno name server entries are present, the default uses the name server on the local machine. The
algorithm used is to try a name server, and if the query times out, try the next, and so on until all
name servers are tried; then repeat trying all of the name servers until a maximum number of retries
are made.

options option
The opt i ons keyword designates internal resolver variable settings to be modified. The opti on
parameter may be one of the following:

debug Sets RES DEBUG In r es. opti ons.

456 SR-2014

RESOLV.CONF(5) RESOLV.CONF(5)

ndot s: n Sets a threshold for the number of dots that must appear in a name given to
res_quer y(3C) before an initial absolute query is made. The default for n is 1,
meaning that if any dots are in a name, the name is tried first as an absolute name
before any search list elements are appended to it.

search search.li st

sortli

The sear ch keyword designates sear ch. | i st as aset of domains to try when attempting to
resolve a domain name. By default, sear ch. | i st contains only the local domain name. This
may be changed by listing the desired domain search path following the sear ch keyword with
spaces or tabs separating the names. Most resolver queries are tried using each component of the
search path in turn until a match is found. This processis slow and generates a lot of network
traffic if the servers for the listed domains are not local. Queries will time out if no server is
available for one of the domains. The search |i st is currently limited to six domains and a
total of 256 characters.

st address.|i st

Thesortlist keyword designates a preferred ordering of addresses returned by

get host byname(3C). The get host byname(3C) call returns addresses that match one of the
addr ess. | i st entries before those that do not match. The addr ess. | i st specifies a set of IP
address net mask pairs. The net mask is optional and defaults to the natural net mask of the
net. The IP address and optional network pairs are separated by slashes. You may specify up to 10
pairs.

The following example returns addresses on the 130. 155. 160. 0/ 255. 255. 240. 0 network
first, then addresses on the 130. 155. 0. O network, and finally, other addresses:

sortlist 130.155.160.0/255. 255.240.0 130.155.0.0

The domai n and sear ch keywords are mutually exclusive. If more than one instance of these keywords
is present, the last instance wins.

To override the sear ch keyword of a system’sr esol v. conf file on a per process basis, set the
LOCALDOVAI N environment variable to a space-separated list of search domains.

To amend the opt i ons keyword of a system’s r esol v. conf file on a per process basis, set the
RES_OPTI ONS environment variable to a space-separated list of resolver options.

The keyword and value must appear on a single line, and the keyword (for example, naneser ver) must
start the line. The value follows the keyword, separated by a space.

EXAMPLES

The following example shows a file that lists one local and two remote hame servers and establishes a
default domain name of our domai n. com

SR-2014

457

RESOLV.CONF(5)

FILES

nanmeserver
nanmeserver
nanmeserver
domai n

/etc/resol v. conf

SEE ALSO

get host nane(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

get host byname(3C) (see get host (3C)), res_quer y(3C) (seer esol ver (3C)) in the UNICOS System
Libraries Reference Manual, Cray Research publication SR—2080

nanmed(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304

458

RESOLV.CONF(5)

127.0.0.1

123. 45. 67. 89
234.56. 78. 90
our domai n. com

Domain name query reference file

SR-2014

RHOSTS(5) RHOSTS(5)

NAME

rhost s — Specifies a list of trusted remote hosts and account names

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The . r host s file lets you specify alist of remote hosts and account names (users) that may log in to your
account free of the normal user validation. Remote account names that are listed in your . r host s file may
do the following:

* Login (using r | ogi n(1B)) to the local host with your local account name without being asked to
provide the password for that account

* Copy files (using r cp(1)) between the remote host and the local host, and vice versa
¢ Execute commands remotely (using r ensh(1B)) on the local host from a remote host

The. r host s fileis an optional file. If present, it must be in your home directory on the local host, it must
be owned by either you or the super user (r oot), and it must not be world or group writable.

Your . r host s file is checked only after a remote login request is not matched by an entry in

/et c/ hosts. equi v (see host s. equi v(5)). Each entry in. r host s identifies a remote host and an
account name on that host. If either of these fields is not matched by an incoming request, that entry is not
matched.

If an entry in . r host s contains only the name of a remote host, a request coming from that remote host
will be matched only if the remote account name is the same as your local account name. If none of the
entries is matched, automatic login is denied; you are then prompted for a password (unless you used

r sh(1B), in which case, r sh displays the message Per mi ssi on deni ed and closes the connection).

An* symbol in. r host s alows your account to perform from any remote host the functions that
. rhost s controls.

The format of an entry in. r host s is as follows:

remote_host
or
remote_host remote_account_name

or
*

You must separate remote_host from remote_account_name by one space.

SR-2014 459

RHOSTS(5) RHOSTS(5)

NOTES

Use of the . r host s file presents a security risk. In situations in which security is a concern, use the file
very cautiously or not at all.

The system configuration may require the / et ¢/ host s. equi v and . r host s files each to contain a
match for the remote host, and it also may require the remote user and local user names to match.

MESSAGES

The following error message may occur:

per m ssi on deni ed
The . r host s file must not be owned by another user or writable by the world or group. If it is,
the . r host s file will not be read, and this message will appear.

SEE ALSO

host s. equi v(5)

rcp(l), rensh(1B), r| ogi n(1B) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

r cnd(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

r1 ogi nd(8), r shd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

TCP/IP Network User’s Guide, Cray Research publication SG—2009

460 SR-2014

RMTAB (5) RMTAB (5)

NAME
rm ab — List of remotely mounted file systems

IMPLEMENTATION
All Cray Research systems
DESCRIPTION

The/ et c/ rnt ab file contains alist of al file systems on this machine that have been mounted remotely
by other machines. Whenever a file system is mounted remotely, the machine providing the file system
makes an entry in r nt ab.

Ther nt ab file is a series of lines that has the following format:

hostname: directory

This file is used only for administrator information. The system does not use it during remote mount
operations.

BUGS
Ther nt ab table is not aways completely accurate.

FILES
[etc/rntab List of remotely mounted file systems

SEE ALSO

nmount (8), mount d(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2014 461

SCCSFILE(5) SCCSFILE(5)

NAME
sccsfil e — Source Code Control System (SCCS) file format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

An SCCSfile is an ASCII file that contains control and data information to record multiple versions of a
single ASCII source file. The SCCS file consists of six logical parts:

Checksum Sum of al characters in the file except those of the first line
Delta table Information about each delta

User names Login names or numerical group 1Ds of users who may add deltas
Flags Definitions of internal keywords

Comments Users descriptive information about the file

Body Actual text lines intermixed with control lines

Throughout an SCCS file, there are lines that begin with the ASCII SOH (start of heading) character (octal
001). This character is hereafter referred to as the control character and is represented graphically as " @".
A line of user-supplied text may not begin with the control character.

Each logical part of an SCCS file is described in detail by the following. Entries of the form DDDDD
represent a 5-digit string (a number between 00000 and 99999).

Checksum The checksum is the first line of an SCCS file. The form of the line is as follows:
@DDDDD
The value of the checksum is the sum of all characters except those of the first line. The
@h characters provide a magic number for SCCS.

Delta table The delta table of an SCCS file consists of one or more entries, each of which contains
information about one version of the source file. Each entry in the delta table has the
following format:

462 SR-2014

SCCSFILE(5)

User names

Flags

SR-2014

SCCSFILE(5)

DDDDD/ DDDDD/ DDDDD

type SCCSID yy/mm/dd hh:mm:ss pgmr DDDDD DDDDD
DDDDD . . .

DDDDD . . .

DDDDD . . .

@n MR-number

ReQ®

@ comments . . .

@

Each of these entries is described as follows:

@ DDDDD/ DDDDD/ DDDDD
Number of lines inserted, deleted, and unchanged, respectively.

@ type SCCSID yy/mm/dd hh:mm:ss pgmr DDDDD DDDDD
Type of the delta (currently, D=normal and R=removed), the SCCS ID of the
delta, the date and time of creation of the delta, the login name that
corresponds to the real user 1D at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

@ DDDDD . . .

Serial numbers of deltas included; this line is optional.
@x DDDDD ...

Serial numbers of deltas excluded; this line is optional.
@g DDDDD ...

Serial numbers of deltas ignored; this line is optional.
@m MR-number

Modification request (MR) number associated with the delta; this line is
optional. More than one @mline can exist, each containing one MR number.

@c comments ...
User-supplied comments associated with the delta. This line is optional; more
than one @c line can exist.

@e End of the delta table entry.

The list of login names or numerical group IDs of users who may add deltas to the file,
one name to aline. The lines that contain these login names and numerical group IDs are
surrounded by the bracketing lines @u and @U. They may not begin with the control
character. An empty list alows any user to make a delta. Any line that starts with a'!
prohibits the succeeding group or user from making deltas.

Flags are keywords used internally (for more information on their use, see admi n(1)).
Each flag line takes the following form:

463

SCCSFILE(5)

464

SCCSFILE(5)

@ flag optional text

The flags are defined as follows:

@ft type of program
Defines the replacement for the %Y %identification keyword.

@fv program name
Controls prompting for MR numbers in addition to prompting for comments; if
program name is present, it defines an MR number validity-checking program that
is called when making changes to the SCCS file.

@fi keyword string
Controls the warning/error aspect of the **No id keywords’ message. When the
i flag is not present, this message is only a warning; when the flag is present, this
message causes a fatal error (the file is not retrieved or the delta is not made).

@fb Causes a branch in the delta tree when used with the - b keyletter of the SCCS
get (1) command.

@fm module name
Defines the first choice for the replacement text of the %vPbidentification

keyword.

@ff floor
Defines the floor release; that is, the release below which no deltas may be added.

@fc celling
Defines the ceiling release; that is, the release above which no deltas may be
added.

@fd default SD
Defines the default SCCS ID to be used when none is specified on a get
command.

@fn Causes the command del t a(1) to insert a null delta (a delta that applies no
changes) in releases skipped when a deltais made in a new release (for example,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be completely empty.

@fj Causes the SCCS get command to alow concurrent edits of the same base
SCCS ID.

@fl lock releases
Defines a list of releases that are locked against editing (the SCCS get command
with the - e keyletter).

@fq user-defined text
Defines the replacement for the ¥6®oidentification keyword.

SR-2014

SCCSFILE(5)

Comments

Body

SEE ALSO

SCCSFILE(5)

@fz application name
Reserved for use in certain specialized interface programs.

User-supplied comments are surrounded by the bracketing lines @t and @T. This
comment information is sometimes called descriptive text. It is separate from the per-delta
comments in the delta table and is sometimes used to describe the purpose of the source
file. These comment lines cannot begin with the control character.

The body consists of text lines and control lines. Text lines may not begin with the
control character. There are three kinds of control lines: insert, delete, and end. DDDDD
is the serial number that corresponds to the delta for the control line.

@l DDDDD
Insert

@D DDDDD
Delete

@E DDDDD
End

admi n(1), del t a(1), get (1), pr s(2) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

SR-2014

465

SECTAB(5) SECTAB(5)

NAME

sect ab — Format for table of defined security names and values

SYNOPSIS

#i ncl ude <sys/sectab. h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

The sect ab structure is used to hold security names and associated values. This structure is defined as
follows:

#defi ne MAXNAMES 64
#defi ne MAXNAMELEN 256

struct sectab {
char tb_name[MAXNAMES] [MAXNAMELEN] ; /* Security names */
| ong tb_nuni{ MAXNAMES + 1]; /* Security name val ues /*

b

The get sect ab(2) system call uses the sect ab structure to hold a maximum of 64 security name strings,
each of which may consist of 255 characters plus a NULL terminator. It also holds a maximum of 64 values
that are associated with the security names. get sect ab(2) terminates the list of values with —1.

/usr/include/sys/sectab. h

SEE ALSO

466

get sect ab(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2014

SEM(5) SEM(5)

NAME
sem— Semaphore facility

SYNOPSIS

#i ncl ude <sys/sem h>

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX, XPG4

DESCRIPTION
The semman page describes the constants and structures in the sys/ sem h include file.
The following semaphore operation flag can be specified:
SEM_UNDO Sets up adjust on exit entry.

The command definitions for the sentt | (2) system cal are as follows:

GETNCNT Gets sermcnt .

GETPI D Gets senpi d.

GETVAL Gets senval .

GETALL Gets all cases of senval .

GETZCNT Getssenecnt .

SETVAL Sets senval .

SETALL Sets all cases of senval .

The sem d_ds structure contains the following members:
struct ipc_perm sem perm /* operation permssion structure */
unsi gned short int sem nsens /* nunmber of semaphores in set */
time_t semotine /* last sermop(2) tinme */
time_t sem ctine /* last time changed by senctl (2) */

Thepid_t,time_t,key t,andsize_t typesare defined as described in sys/ t ypes. h.

A semaphore is represented by a structure that contains the following members:

SR-2014 467

SEM(5) SEM(5)

unsi gned short int semval /* semaphore val ue */

pid_t sempi d /* process ID of |ast operation */

unsi gned short int semcnt /* nunber of processes waiting for semval
to becone greater than current val ue */

unsi gned short int senmzcnt /* nunmber of processes waiting for semval

to become zero */

The structure senbuf contains the following members:

unsi gned short int sem num /* semaphore nunber */
short int sem op /* semaphore operation */
short int sem flg /* operation flags */

The following are declared as functions and also may be defined as macros:

int senctl (int semid, int semnum, int cnd .. .);
int senmget (key_t key, int nsems, int semflg);
int semop (int semid, struct senbuf *sops, size_t nsops);

When this header file is included, all of the symbols from sys/i pc. h aso will be defined.

SEE ALSO

i pc(5), types(5)

senct | (2), senget (2), senop(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

i pc(7) Online only

468 SR-2014

SENDMAIL.CF(5) SENDMAIL.CF(5)

NAME

sendmai | . cf — Configuration file for TCP/IP mail service

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The sendmai | (8) program works with three mail services: mai | (1), mai | x(1), and the DARPA Simple
Mail Transfer Protocol (SMTP) (see sendmai | (8)).

Theusr/Ilib/sendmail . cf fileisacryptic set of rules and definitions that the sendnai | (8) program
uses to determine the next step a mail message should take toward its destination and to transfer the mail
message to the next step.

Although the actual determination is at the discretion of the system administrator or the author of the
contents of the sendmai | . cf file, mail messages with recipients specified by a DARPA-style address (for
example, user @nost) traditionally are delivered to the destination host by using SMTP, and mail messages
addressed to local users are delivered through a local mail delivery agent. (Under UNICOS, this delivery
agent is the mai | (1) program.)

For information on configuring the sendmai | . cf file, see UNICOS Networking Facilities Administrator’s
Guide, Cray Research publication SG—2304.

FILES
fusr/lib/sendmail . cf TCP/IP mail handler file

SEE ALSO
mai | (1), mai | x(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011
sendmai | (8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304
DARPA Internet Request for Comments, RFC 819, RFC 821, and RFC 822

SR-2014 469

SERVICES(5) SERVICES(5)

NAME

servi ces — Network service name database

SYNOPSIS

/ etc/ services

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et ¢/ servi ces file contains the database of known services available in the network.

TCP/IP entries:
For each service, one line in the ser vi ces file should contain the official service name, the port
number, the protocol name, and any aliases that exist for the service name. Items are separated by any
number of blanks, tab characters, or a combination of both. The port number and protocol name are
considered one item; use a / symbol to separate the port and protocol specified (for example,
512/ t cp).

A # symbol indicates the beginning of a comment; if you specify this symbol, routines that search the file do
not interpret additional characters up to the end of the line.

Service names may contain any printable character other than a field delimiter, newline, or comment (#).

When you modify TCP/IP entries that have privileged port numbers (512 to 1023), use the r svpor t bm(8)
command to update the kernel’s reserved port table. The bi ndr esvport (3C) and r r esvport (3C)
routines query the kernel table to ensure that a port in the / et c/ ser vi ces fileis not used. The

r svport bm(8) command usualy is run at system startup.

EXAMPLES

The following example shows sample entries for / et ¢/ ser vi ces:

470 SR-2014

SERVICES(5) SERVICES(5)

#
Network services, Internet style
#
ftp 21/ tcp
t el net 23/ tcp
sntp 25/ tcp mai |
hostnanes 101/tcp hostnane # usually fromsri-nic
sunr pc 111/ udp
sunr pc 111/tcp
#
Host specific functions
#
tftp 69/ udp
finger 79/ tcp
#
UNI X specific services
#
exec 512/tcp
login 513/tcp
shel | 514/tcp cmd # no passwords used
tal k 517/ udp
FILES
[etc/services Network database file
SEE ALSO

get ser v(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

r svport bm(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

SR-2014 471

SHARE(5)

NAME

shar e — Fair-share scheduler parameter table

SYNOPSIS

#i ncl ude <sys/share. h>

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

SHARE(5)

The kernel uses the shar e structure to define and retain the variables used as constants and feedback values

in the calculations performed by the fair-share scheduler.

The system administrator can manipulate the values in the shar e structure that are treated as constants by

using the shr adni n(8) administrator command.

The format of the shar e structure is defined in the sys/ shar e. h include file, as follows:

/*
** Share schedul i ng paraneters
*/
struct sh_consts
{
[** Parameters **/

i nt sc_fl; /*
i nt sc_del ta; /*
i nt sc_nxusers; /* Max.
i nt sc_nxgroups; /* Max.
fl oat sc_rat edecay; /*

Scheduling flags */
Run rate for
number
group nesting */
Decay rate for

schedul er in secs. */
of active users */

“tkl _rate’’ */

fl oat sc_nxpri; /* Max. absolute priority */

fl oat sc_nxupri ; /* Max. priority for a normal process */
fl oat sc_nxusage; /* Max. usage considered */

fl oat sc_decay; /* Decay factor for *‘kl.l_usage ’ */

i nt sc_syscal | ; /* Cost of systemcall */

i nt sc_bi o; /* " " logical block i/o */

i nt sc_tio; /* " " streamil/o */

i nt sc_tick; /* " " cpu tick */

i nt sc_click; /* " " menory tick */

fl oat sc_basepri decay; /* Base for decay for sharepri */

fl oat sc_pri decay; /* Decay rate for maximally niced processes */
float sc_maxushare; /* Factor for max effective user share */
fl oat sc_m ngshare; /* Factor for mn effective group share */

472

SR-2014

SHARE(5)

fl oat
fl oat
fl oat
ui nt

i nt

SR-2014

/*
/*
/*
/*
/*
/*

sc_percent;
sc_sharem n;
sc_pspare[2] ;
sc_syncsec: 32
Sc_procmax: 32
SC_menmmax;

/** Feedback **/
i nt
i nt
fl oat
fl oat
i nt
i nt
i nt
i nt
i nt
fl oat

sc_users;
sc_groups;
sc_hi ghshpri;
sc_nxcusage
sc_csyscal |
sc_chi o;
sc_ctio;
sc_ctick;
sc_cclick;
sc_fspare[2];

b

#i f def KERNEL
extern struct sh_consts
#endi f

#defi ne DecayRat e
#defi ne DecayUsage
#define LASTPARAM
#def i ne MAXGROUPS
#define MAXSHAREPRI
#def i ne MAXUPRI
#def i ne MAXUSAGE
#def i ne MAXUSERS
#def i ne MAXUSHARE
#def i ne Max Shar ePri
#defi ne MaxUsage
#def i ne M NGSHARE
#defi ne SHARE M N
#defi ne Pri Decay
#defi ne Pri DecayBase
#defi ne Shar ef | ags

SHARE(5)

Current charging % 1.0 = 100% */
M ni mum user share */

<spare> */

Sync I nodes with UDB every N secs */
Maxi mum number of processes */

Maxi mum aggregate nmem clicks */

/*
/*
/*
/*
/*

Nunber of active users */
Number of active groups */
H gh val ue of p_sharepri */
Max. current usage */

Count systemcalls */

/* " | ogi cal block i/os */
/* " streami/os */

/* " cpu ticks */

/* " menory ticks */

/* <spare> */

shconst s;

shconsts.
shconsts.
shconst s.
shconsts.
shconsts.
shconsts.
shconsts.
shconsts.
shconst s.
shconsts.
shconst s.
shconsts.
shconsts.
shconsts.
shconsts.
shconsts.

sc_rat edecay
sc_decay
sc_pspar e[0]
sc_nxgroups
sc_nxpri
sc_nxupri
sc_nxusage
sc_nxusers
sc_maxushare
sc_hi ghshpri
sc_nxcusage
sc_m ngshare
sc_sharem n
sc_pri decay
sc_basepri decay
sc_fl

473

SHARE(5)

474

/*

* %

*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i

Share scheduling flags

SHARE(5)

ne NOSHARE 01 /* Don’t run scheduler at all */
ne ADJ GROUPS 02 /* Adj ust group usages */
ne LI MSHARE 04 /* Limt maximum share */
ne SHAREBYACCT 010 /* Share base on acct# */
ne NOSCHED 020 /* Don't use FSS to schedule CPUs */
ne ALL ONDEFSHARE 040 /* Allow default shares from setshare() */
ne USRLEVLFSS 0100 /* Let shrdaemon cal cul ate | node val ues */
/-k

** Wei ghting factors for cal cul ati on of process rates

*/

#defi ne RUN_WI 1.0 /* factor for runnable process */
#defi ne SSLP_WI 0.6 /* factor for soft sleepers */

#defi ne SWP_\WI 0.2 /* factor for swapped process */

#i f def KERNEL

/-k

** Table for pre-calculated priority decays

*/

extern fl oat

Ni ceDecays[];

pre-calcul ated rate increments

/-k

* Tabl e for

*/

extern fl oat Ni ceRates[];

/-k

*x Table for pre-calculated tick costs
*/

extern int
#endi f

Ni ceTi cks[];

The shar e. h structure isused in the / usr/ src/ ut s/ nd/ | owrem c file to define the share constants
and feedback-variables table.

SR-2014

SHARE(5) SHARE(5)

You can retrieve the shconst s structure by using the pol i cy(2) system call by using

pol i cy(FAI R_SHARE, GET_COSTS) , and the privileged user can set it by using

pol i cy(FAI R_SHARE, SET_COSTS) . The privileged user can set the SC_MXUSAGE field by using
pol i cy(FAI R_SHARE, MOD_MXUSG) .

FILES
/usr/include/sys/share. h Kernel user limits structure

SEE ALSO
I node(5)
shrvi ew(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

[imts(2), policy(2) inthe UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

shradm n(8), shr daenon(8), shrli ni t (8), shrnon(8), shrtree(8) in the UNICOS Administrator
Commands Reference Manual, Cray Research publication SR—2022

UNICOS Resource Administration, Cray Research publication SG—2302

SR-2014 475

SHELLS(5) SHELLS(5)

NAME
shel | s — List of available user shells

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The/ et c/ shel | s file contains a list of shells (command interpreters) that are available under UNICOS.
These shell names are used with the chsh(1B) and f t p(1B) commands.

The file is formatted with the full path name of each shell on a separate line.

Any line that does not begin with the full path name of a shell (that is, that does not have a slash character
in the first column) isignored. (Traditionally, however, the # symbol is used in the first column to indicate
aline of comment.) Also, a white-space character (space or tab) or the comment symbol # following a full
path name indicates that the remainder of the line is ignored as a comment.

EXAMPLES

An example of a/ et ¢/ shel | s file follows:

List of acceptable shells for chsh and ftp;

ftpd will not all ow users to connect who do not have one of these shells
#

The POSI X shel |

/ bi n/sh

The C shell

/ bi n/csh

The Korn shell

/ bi n/ ksh

FILES

/etc/shells File that contains a list of available shells.

SEE ALSO

chsh(1B), csh(1), ft p(1B), sh(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

476 SR-2014

SHM(5) SHM(5)

NAME

shm— Shared memory facility

SYNOPSIS

#i ncl ude <sys/shm h>

IMPLEMENTATION
CRAY T90 series

STANDARDS
POSIX, XPG4
DESCRIPTION
The shmman page describes the symbolic constants and the shm d_ds structure in the sys/ shm h
include file.
SHM _RDONLY Attaches read-only (defaut is read-write).
SHM _RND Rounds attach address to SHVLBA.
SHMLBA Specifies segments low boundary address multiple.

The following data types are defined through t ypedef :

shmatt _t Unsigned integer used for the number of times the segment is currently attached. It
must be able to store values at least as large as a type unsi gned short.

The shmi d_ds structure contains the following members:

struct ipc_perm shm perm /* operation permssion structure */

i nt shm segsz /* size of segnent in bytes */

pid_t shm | pi d /* process ID of last shared nenory operation */
pid_t shm cpi d /* process |ID of creator */

shmatt t shm nattch /* nunber of current attaches */

time_t shm ati me /* time of last shmat(2) */

time_t shm dti me /* time of last shmdt(2) */

time_t shm ctime /* time of |ast change by shnctl (2) */

Thepid_t,time_t,key t,andsize_t typesare defined as described in sys/ t ypes. h.
The following are declared as functions and also may be defined as macros:

void *shmat (int shmid, const void *shmaddr, int shmflg);
i nt shnctl (int shmid, int cmd, struct shm d_ds *buf);
i nt shmdt (const voi d *shmaddr) ;

i nt shmget (key_t key, size_t size, int shnflg);

SR-2014 477

SHM(5) SHM(5)

When this header file is included, all of the symbols from sys/i pc. h aso will be defined.

SEE ALSO

i pc(5), types(5)
shmat (2), shntt | (2), shidt (2), shnget (2) in the UNICOS System Calls Reference Manual, Cray
Research publication SR—2012

i pc(7) Online only

478 SR-2014

SLREC(5)

NAME

sl rec — Security log record format

SYNOPSIS
#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

IMPLEMENTATION

<sys/types. h>

<sys/ ut sname. h>

<sys/secparm h>

<sys/slrec. h>

All Cray Research systems

DESCRIPTION

SLREC(5)

System security information is recorded in a security log. The security audit trail is a set of records that
documents processing and aids in tracing individual user transactions.

Every security log record has a header. There are two types of security log headers: the header used on
pre-UNICOS 8.0 systems and the expanded header introduced in UNICOS 8.0, which includes subject and
object compartments. The pre-UNICOS 8.0 version was retained for compatibility reasons; it also is used
for al sl gent ry(2) callsissued by commands that have not been modified to use the new header format.

The pre-UNICOS 8.0 header is defined as follows:

struct

SR-2014

sl ghdr 0 {

time_t sl _tine;

i nt sl _uid

i nt sl _gid

i nt sl _len

i nt sl _ruid

i nt sl _rgid

i nt sl _slvl

i nt sl _ol vl

i nt sl _type
nt sl _scls

i nt sl _jid

i nt sl _pid

i nt sl _sl og

i nt sl _subt

i nt sl _version:

i nt sl _juid

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

time (seconds since '70) */

subjects uid */

subjects gid */

record length in bytes inc header */
subjects real uid */

subjects real gid */

subject’s level */

object’s level */

record type */

subject’s integrity class (obsolete) */
subject’s unique jid */

subject’s unique pid */

magic identifier */

record_subtype */

Version ID */

job owner uid */

479

SLREC(5)

struct

b

The expanded header is defined as follows:

sl ghdr {

time_t

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
ong
ong

#define SLG MAG C

480

SLREC(5)
sl _tine; /* time (seconds since '70) */
sl _uid : 24 /* subjects uid */
sl _gid : 24 /* subjects gid */
sl _len : 16; /* record length in bytes inc header */
sl _ruid : 24; /* subjects real uid */
sl _rgid : 24 /* subjects real gid */
sl _slvl : 8 /* subject’s level */
sl _olvl : 8 /* object’s level */
sl _type : 8; /* record type */
sl _scls : 8; /* subject’s integrity class (obsolete) */

sl _jid : 24 /* subject’s unique jid */
sl_pid : 24 /* subject’s unique pid */

sl _slog : 32; /[* magic identifier */

sl _subt : 4, /* record_subtype */

sl _version: 4, /* Version ID */

sl _juid : 24 /* job owner uid */

sl _sconp; /* subject conpartments */
sl _oconp; /* object conpartnents */

016333067547 /* slog magic identifier */

The subject is a validated user. The object is afile, directory, block, character specia file, FIFO specid file
(named pipe), socket, message, or process.

The following list summarizes the security log record types (you can find the format of each type in the

sys/ sl rec. h file):

Record type
SLG GO
SLG STOP
SLG _TCHG
SLG_CCHG
SLG DI SC

SLG DI SC_7

SLG_MAND

SLG_MAND 7

Description

Security log start record.

System stop record.

Time change record.

System configuration change record.

Discretionary access record. Used on pre-7.0 UNICOS MLS systems.

Discretionary access record. Used on 7.0 and later security systems. Record
includes requested access mode, which is not included in the SLG_DI SC record.

Mandatory access record. Used on pre-7.0 UNICOS MLS systems.

Mandatory access record. Used on 7.0 and later security systems. Record includes
reguested access mode, which is not included in the SLG_MAND record.

SR-2014

SLREC(5)

SLREC(5)

SLG _OPER (Deferred) Operational access record.

SLG LOGN Login validation process record.

SLG _NETW Network access record.

SLG DI SKI O (Deferred) Disk 1/O record.

SLG SSDI O (Deferred) SSD 1/0 record.

SLG TAPE Tape 1/O record.

SLG EQJ End-of-job record. This record documents an end-of-job event.

SLG CHDI R Change directory record. If you select optional path name tracking, this record is
logged each time a change directory system call is executed.

SLG_SECSYS Non-inode security system calls record (for example, set ucat (2)).

SLG_NAM NAMI functions record (for example, nkdi r (8) and | n(2)).

SLG DAC Discretionary access control change.

SLG _SETU D set ui d(2) system call record.

SLG SU su(l) attempts record.

SLG | PNET IP layer security violations record.

SLG_NFS Cray NFS requests record.

SLG FXFR File transfer logging record.

SLG _NETCF Network configuration changes record.

SLG AUDI T Security auditing option changes record.

SLG _N@S NQS activity record.

SLG_NQSCF NQS configuration changes record.

SLG TRUST Trusted process activity record.

SLG PRIV Privilege use record.

SLG CRL Cray/REEL librarian activity.

SLG OTHR (Deferred) Special Cases. . .Other.

The kernel generates most entry types. However, some records are written by trusted user-level commands
(for example, | ogi n(1)). To write these records, the sl gent r y(2) system call is used, and it accepts only
the following record types, as defined by the al | _sl gent ry structure:

SR-2014 481

SLREC(5)

FILES

uni on all _slgentry {

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

sl gerl
slgfil exfr
sl glogin
sl gngs

sl gngscf
sl gsetuid
sl gt ape

sl gt apel
sl gudb

sl gha

sl gwal

sl ginterface
sl gmap

sl gi pnet

#i fdef PATHSI ZE

struct
struct

/fusr/adm sl /slogfile

sl gt rust
sl gtrust2

fusr/include/sys/slog.h

/fusr/include/sys/slrec.h

[usr/include/sys/types.h

[usr/include/sys/utsnane. h

fusr/src/uts//cf.SN config.h

SEE ALSO

482

sl og(4)

crl;
filexfr;
| ogi n;
ngs;
ngschg;
set ui d;
tape;
tapel,;
udbchg;
nal chg;
wal chg;
i ntfchg;
mapchg;
i pnet chg;

trust;
trust2;

Security log

Security log header file
Format of security log record

Data type definition file

System names

UNICOS tunable constants definitions

SLREC(5)

spset (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
sl gent r y(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012
sl ogdenon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication

SR-2022

General UNICOS System Administration, Cray Research publication SG—2301

SR-2014

SYMBOL (5) SYMBOL (5)

NAME

symbol — UNICOS symbol table entry format

SYNOPSIS

#i ncl ude <synbol . h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

A symbol table is part of the relocatable binary table produced or used by UNICOS compilers, assemblers,
and loaders. Symbol table format is defined in the synbol . h include file, and the , describes it in detail.
Relocatable binary table format is described in the r el o(5) entry. Some commands that process symbol
tables use internal definitions, rather than the synbol . h include file.

UNICOS compilers produce symbol tables with module scope. These are either module symbol tables or
common block symbol tables. A module symbol table is headed by a Module Table Header (structure nt h,
defined in synbol . h) and has the table type SYM TYPE (seer el 0(5)). A common block symbol table is
headed by a Common Block Table Header (structure cbt , defined in synbol . h) and has the table type
CVB_TYPE (seer el o(5)).

UNICOS loader produce symbol tables with global scope. These begin with an instance of the Global
Symbol table (GST) Header (structure gnt , defined in symbol . h) and have the table type GNT_TYPE (see
rel o(5)).

Thenl i st (3C) library routine and the adb(1) debugger use the GST to look up global symbols.

[usr/include/ synbol . h UNICOS symbol table entry format

SEE ALSO

a.out (5), rel o(5)

adb(1), cc(1), | d(2), segl dr (1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

nl i st (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

SR-2014 483

TAPEREQ(5)

NAME

TAPEREQ(5)

t aper eq — Tape daemon interface definition file

SYNOPSIS

#i ncl ude <tapereq. h>

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The t aper eq interface provides a mechanism that lets users send requests to the tape daemon,
t pdaenon(8), through a FIFO special file (named pipe).

Each user request to the tape daemon has a different format, but they all include the r eghdr structure. The
t aper eq. h include file defines these requests and the r eghdr structure, as follows:

struct

s

reqghdr {

int size; /* size of this request */
int code; /* request code */
int jid; /* requester’s job ID */
char qsub[16]; /* NQS batch job ID */
int echo; /* echo field */
char rpn[MAXPATH]; /* reply pipe name */

All requests to the tape daemon include the name of a reply pipe through which the tape daemon sends a
reply to the user’s request. The user must create this pipe before issuing the request. All of the replies from
the tape daemon to the user contain the r ephdr structure. The replies and the r ephdr structure are
defined in t aper eq. h, as follows:

struct

s

rephdr {

int size; [/* size of reply */
int echo; [/* echo field * [
int rc; /* return code * [

A tape daemon request code, TR | NFQ, is available to the user. It returns tape-specific data about the
user’s tape file. This request code is defined in t aper eq. h; the status information provided also is defined

int apereq. h.

The error codes that the tape daemon returns are defined in the / usr /i ncl ude/ t aperr. h file.

484

SR-2014

TAPEREQ(5) TAPEREQ(5)

FILES
/usr/include/tapedef.h Definitions for trace file size
/usr/include/tapereqg.h Tape daemon interface definition file
[fusr/include/taperr.h Tape daemon error codes

/usr/ spool /tape/trace. bmxxxx Tape daemon trace files

SEE ALSO

ris(),rsv(l),tpmt (1), tprst(1),tpstat (1) in the UNICOS User Commands Reference Manual,
Cray Research publication SR—2011

t pdaenon(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

Tape Subsystem Administration, Cray Research publication SG—2307

SR-2014 485

TAPETRACE(5) TAPETRACE(5)

NAME

t apet r ace — Tape daemon trace file format

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

486

The tape daemon, t pdaenon(8), produces trace files to debug and trace user processes. The trace files are
ASCII files; use any UNICOS editor to edit them.

A tracefile (t r ace. daenon) exists for the tape daemon. A trace file also exists for tracing user activity at
the device level and has the form t r ace. bmxxxx.

A tracefile (t race. avr _0) aso exists for the automatic volume recognition process (avr pr oc). Trace
files named t r ace. DUMMYNN also exist; nn is a number. These trace files log records of tables in the tape
daemon before a device is assigned to a process.

The first 15 characters in a trace file contain the offset at which the tape daemon will start writing into the
trace file. The rest of the trace file consists of trace records. The format of a trace record is as follows:

1. Time the record is produced (in hh: mm: ss format)
2. Time (in seconds) of the record produced since the system was initialized

3. Process ID of the process producing the record, which is the process ID of the tape daemon or the
process ID of a child of the tape daemon

4. Name of the program producing the record
5. Name of the function producing the record
6. Trace information from the function

Thet ape_daenon_trace_file_size bytesinthe/etc/config/text_tapeconfig file
defines the size of the trace files. When the size of a trace file has reached this value, the tape daemon
wraps around to the beginning of the trace file and writes over it again.

/etc/config/text_tapeconfig Tape subsystem configuration file
/usr/include/tapedef.h Definitions for trace file size
[usr/ spool /tape/trace. daenon Trace file for tape daemon
[usr/ spool /tapel/trace. bmxxx Trace files for tape devices
SR-2014

TAPETRACE(5) TAPETRACE(5)
SEE ALSO

t pdaenon(8)
Tape Subsystem Administration, Cray Research publication SG—2307

SR-2014 487

TAR(5) TAR(5)

NAME

t ar — Tape archive file format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thet ar (tape archive) command dumps severa files into one archived file.

A tar tape or file is a series of blocks. Each block is of size TBLOCK bytes. A file on the tar tape or file is
represented by a header block that describes the file, followed by zero or more blocks that give the contents
of the file. At the end of the tape, as an EOF indicator, two blocks are filled with binary 0's.

The blocks are grouped for physical 1/0 operations. Each group of n blocks is written by using one system
cal. To set n, use the - b option on the t ar (1) command line. The default for n is 20 blocks for tapes and
128 blocks for disk files or pipes.

The - b option on the t pnmt (1) command determines the size of a tape record. The last group is always
written at the full size; therefore, blocks after the two O blocks contain random data. On reading, the
specified or default group size is used for the first read, but if that read returns less than a full tape block, the
reduced block size is used for further reads.

The default header block is as follows:

488 SR-2014

TAR(5) TAR(5)

#define TBLOCK 512
#define NAMSI Z 100
uni on hbl ock {
char dummy[TBLOCK] ;
struct header {
char name[NAMSI Z] ;
char node[8];
char uid[8];
char gid[8];
char size[12];
char ntime[12];
char chksunf 8] ;
char |inkfl ag;
char | i nknane[NAMSI Z] ;
char magic[6];
char version[2];
char uname[32] ;
char gname[32] ;
char devmaj or[8];
char devm nor|[8];
char prefix[155];
} dbuf;
b

The nane field is a null-terminated string. The node, ui d, gi d, si ze, nti ne, and chksumfields are
zero-filled octal numbersin ASCII. Each field (of width w) contains w-2 digits, an ASCII space, and a null
character, except si ze and nt i me, which do not contain the trailing null. nane is the name of the file, as
specified on the t ar command line. Files dumped because they were in a directory that was specified in the
command line have the directory name as the prefix and /filename as the suffix. node is the file mode with
the top bit masked off. ui d and gi d are the user and group numbers that own the file. si ze (in bytes) is
the size of the file. Links and symbolic links are dumped with this field specified as 0. nti e isthe
modification time of the file at the time it was dumped. chksumis a decimal ASCII value that represents
the sum of all of the bytes in the header block. When calculating the checksum, the chksumfield is treated
asif it were all blanks. | i nkfl ag is ASCII O if the fileis a regular or a special file, ASCII 1 if itisan
hard link, and ASCII 2 if it is a symbolic link. The name linked to, if any, isin | i nkname, with a trailing
null character. t ar may fill in the magi c, ver si on, unane, gnane, devnaj or, devm nor, and

pr ef i x fields when creating an archive; otherwise, t ar ignores these fields. They are defined solely for
compatibility with the pax ust ar format. Unused fields of the header are binary 0's (and are included in
the checksum).

If you invoket ar by using the - s option, the following secure header block appears before each default
header block:

SR-2014 489

TAR(5)

490

TAR(5)

struct sheader {

short h_smagi c;
short h_slevel;
| ong h_conpart;
| ong h_acl dsk;
short h_acl count;
| ong h_hdrvsn;
char h_dummy[1] ;

b

Each instance of h_smagi ¢ contains the constant 060606 (octal). The h_sl evel and h_conpart fields
contain the file's security level and compartments, respectively. The h_acl dsk field is a flag that indicates
whether an access control list (ACL) has been archived for this file, and h_acl count holds the number of
entries in that ACL.

If you invoket ar with the - sa options, the following secure header appears immediately after the
sheader header block:

struct nheader {

short h_nmagi c;

short h_intcls;

| ong h_intcat;

| ong h_secfl g;

short h mnlvl;

short h_max| vl ;

| ong h_val cnp;

| ong h_reserved[16];
char h_dummy[1] ;

b

Each instance of h_nmagi ¢ contains the constant 050505 (octal). The h_i ntcl s, h_i nt cat, and
h_secf | g fields contain the file's integrity class (obsolete), integrity categories (obsolete), and security
flags, respectively. The h_m nl vl , h_maxl vl , and h_val cnp fields contain the device's minimum
security level, maximum security level, and authorized compartments, respectively.

The first time a given inode number is dumped, it is dumped as a regular file. The second and subsequent
times, it is dumped as a link instead. On retrieval, if alink entry is retrieved, but not the file to which it was
linked, an error message is printed and you must manually rescan the tape to retrieve the linked-to file.

The encoding of the header is designed to be portable across machines.

SR-2014

TAR(5) TAR(5)

BUGS

Names or link names longer than NAMSI Z produce error reports and cannot be dumped.

SEE ALSO

t ar (1) to archive tape files
t prmt (1) to request a tape mount for a tape file
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

secst at (2) to get file security attributes
st at (2) to get file status
in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2014 491

TASKCOM(5) TASKCOM(5)

NAME

t askcom— Task common table format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Task common blocks are dynamically allocated when tasks are initiated, based on information in the
relocatable binary tables. The loader builds a common block, $TASKCOM which is located in common or
main memory, as a directory to the blocks in task common.

The $TASKCOMblock has a one-word header. It is followed by block entries, which are followed by task
common name entries. A $TASKCOMblock, created by the loader, always contains at least a header entry.

The following is the format of the $TASKCOM header word:

| version | unused | nblks | tlen |

I 1 9 | (16 | (32) |

version $TASKCOMversion ID (the value is 1)
nbl ks Number of task common blocks

tlen Total length of al task common blocks
The following is the format of a $TASKCOMblock entry:

| bl en | of f set |
I (32) I (32) |
| ival | unused | nlen | namept r |
(D | (23) | (8) | (32) |
| preset |
I (64) |
bl en Number of words in this block.
of f set For CRAY Y-MP systems, this is the common memory address associated with this task

common block. This offset is initialized at run time to contain the actual address of this task
common block’ s location within common memory. The loaders relocate all task common
block references to the first word of the corresponding block entry within $TASKCOM

492 SR-2014

TASKCOM(5)

i val

nl en

namept r

preset

TASKCOM(5)

Block initialization flag:

0 No initialization

1 Initialization

This flag is currently unused.

Number of characters in the task common block name.

Word index within $TASKCOM of the name entry for this block. This index is relative to the
base of $TASKCOM that base begins with word 0, which contains the header word.

Initialization value if i val is set (currently unused).

The following is the format of the $TASKCOM name entries:

nane

SEE ALSO

ASCII name of the block, left justified and zero filled if necessary. The number of words
used to contain a task common block name is (nl en+7)/8.

| d(1) to invoke the link editor with traditional UNIX invocation
segl dr (1) to invoke the Cray Research segment loader (SEGLDR)
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014

493

TERM(5) TERM(5)

NAME

t er m— Format of compiled t er mfile

SYNOPSIS

fusr/lib/term nfo/?/ 0O

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

494

Compiled t er mi nf o(5) descriptions are placed under the / usr /1 i b/ t er mi nf o directory. To avoid a
linear search of a huge UNIX system directory, a two-level scheme is used:

{usr/lib/term nfo/c/name; name is the name of the terminal, and c is the first character of name.
Thus, you can find sun3 inthe/ usr /i b/term nfo/s/sun3 file. Synonyms for the same terminal
are implemented by multiple links to the same compiled file.

Short integers are stored in eight 8-bit bytes. The —1 value is represented by the following:
0377 0377 0377 0377 0377 0377 0377 0377

The —2 value is represented by the following:
0377 0377 0377 0377 0377 0377 0377 0376

Other negative values are illegal. The - 1 generally means that a capability is missing from this terminal.
The - 2 means that the capability has been canceled in the t er mi nf o(5) source and also is to be considered
missing.

The compiled file is created from the source file descriptions of the terminals (see the - | option of

i nf ocnp(8)) by using the t er mi nf o(5) compiler, t i c(8), and read by the set upt er n() routine. (See
cur ses(3).) Thefileis divided into six parts. the header, terminal names, Boolean flags, numbers, strings,
and string table.

The header section begins the file. This section contains six short integers in the following format. These
integers are (1) the magic number (octal 0432); (2) the size, in bytes, of the names section; (3) the number
of bytes in the Boolean section; (4) the number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; and (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first line of the t er m nf o(5) description, listing
the various names for the terminal, separated by the Osymbol (seet er m(7)). The section is terminated with
an ASCII NUL character.

The Boolean flags have 1 byte for each flag. This byte is either 0 or 1 as the flag is present or absent. The
value 2 means that the flag has been canceled. The capabilities are in the same order asthe< term h >
file.

SR-2014

TERM(5) TERM(5)

Between the Boolean section and the number section, 1 to 7 null bytes are inserted, if necessary, to ensure
that the number section begins on an even short word boundary. All short integers are aligned on a short
word boundary.

The numbers section is similar to the Boolean flags section. Each capability is stored as a short integer. 1If
the value represented is —1 or —2, the capability is missing.

The strings section is also similar. Each capability is stored as a short integer, in the previous format. A
value of —1 or —2 means the capability is missing; otherwise, the value is taken as an offset from the
beginning of the string table. Special charactersin ~X or \ ¢ notation are stored in their interpreted form,
not the printing representation. Padding information ($<nn>) and parameter information (%) are stored
intact in uninterpreted form.

The final section is the string table. It contains all of the values of string capabilities referenced in the string
section. Each string is null terminated.

It is possible for set upt er m() to expect a different set of capabilities than are actualy present in the file.
Either the data base may have been updated since set upt er n{) has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recompiled more recently than the database
was updated (resulting in missing entries). The set upt er m() routine must be prepared for both
possibilities; this is why the numbers and sizes are included. You also must aways add new capabilities at
the end of the lists of Boolean, number, and string capabilities.

NOTES

Compiled term files from other computer systems do not have the same format as the compiled term files on
Cray Research systems. Before UNICOS 7.0, terminal entries created on systems by using t i ¢ have a
different format.

Total compiled entries cannot exceed 4096 bytes; all entries in the name field cannot exceed 128 bytes.

EXAMPLES

The following are examples of compiled t er mfiles:

SR-2014 495

TERM(5) TERM(5)

$ infocnp sun3
sun| sun2| sun3| sun microsystens inc workstation,

am km mr, nsgr,

col s#80, |ines#34,

bel =G, clear=\f, cr=\r, cubl=\b, cudl=\n, cufl=\FEC,

cup=\E[% %1%l; Y%p2%IH, cuul=\E[A, dchl=\E P, dl 1=\E[M

ed=\E[J, el=\E[K ht=\t, ichl=\E[@ il1=\E[L, ind=\n,

kcubl=\E[D, kcudl=\FE B, kcufl=\E C, kcuul=\F A,

kf 1=\ EOP, kf2=\EQQ kf3=\EOR kf4=\EGCS, khonme=\E H,

rmso=\E[m rs2=\E[s, snso=\E 7m
$ od -c /usr/lib/term nfo/s/sun3 +0.
0000000000000 \O \O0 \0O \0 \0 \0 001 032 \0 \0 \0O \0 \0 \0 \O /
0000000000016 \O0 \O0 \0O \0 \O0O \0O \0 032 \0 \0O \0O \0O \0 \0 \O 013
0000000000032 \0 \0 \0O \0 \0O \0 001 021 \0 \O \0O \0 \0O \O0 \O 237

0000000000048 s u n | S u n 2 | s u n 3 | S u
0000000000064 n m i c r 0 S y s t e m s i
0000000000080 n c w o0 r k S t a t i o] n \0 \O

0000000000096 001 \O \O \O0O \O \O \O OO1 \O \O \O \O 001 001 \O \O
0000000000112 \O0 \O \O VO \O VO \O \O VO \O VO \O \O VO \O q
0000000000128 \0 \O \O0O \0O \O \O0 \O P 377 377 377 377 377 377 377 377
0000000000144 \0 \O \O0O V0O \O \O0 \O " 377 377 377 377 377 377 377 377
0000000000160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000000224 \0 \O \O0O \0O \O \O0 \O /\0 \0O \O0O \O0O \O \O0 \O 3
0000000000240 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000000256 \0 \O \O0O \0O \O \O0 \O 1 \0 \0 \0 \0O \O0O \O \O
0000000000272 \0 \O \O0O \O0O \O \O0 \O Z 377 377 377 377 377 377 377 377
0000000000288 377 377 377 377 377 377 377 377 \0 \0O \0 \O0O \0 \O \O =

496 SR-2014

TERM(5) TERM(5)

0000000000304 \0 \0 \0 \0 \0 \0 \O 7 377 377 377 377 377 377 377 377
0000000000320 377 377 377 377 377 377 377 377 \0 \0 \0 \0 \0 \0 \oO 5
0000000000336 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000000352 \0 \0 \0 \0 \0 \0 \O 9 377 377 377 377 377 377 377 377
0000000000368 \0 \0 \0 \0 \0 \0 \O N 377 377 377 377 377 377 377 377
0000000000384 \0 \0 \0 \0 \0 \0 \O R \0 \0 \0 \0 \0 \0 \0 V
0000000000400 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000000496 \0 \0 \0 \0O \O \O \O 232 377 377 377 377 377 377 377 377
0000000000512 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000000560 \O0 \0 \0O \O \O \O \O 222 377 377 377 377 377 377 377 377
0000000000576 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000000624 377 377 377 377 377 377 377 377 \0 \0 \0 \0 \0 \0 \oO d
0000000000640 \0 \0 \0 \0 \0 \0 \O h 377 377 377 377 377 377 377 377
0000000000656 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000000704 \0 \O0 \0 \0 \0 \0 \O r 377 377 377 377 377 377 377 377
0000000000720 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000000736 377 377 377 377 377 377 377 377 \0 \0 \0 \0 \0 \0 \oO ~
0000000000752 377 377 377 377 377 377 377 377 \0 \0 \0 \0 \0 \0 \O0 202
0000000000768 \0 \0 \0 \0O \O0O \O0O \0 206 \0 \O \O0O \0 \0O \0 \O 212
0000000000784 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000000816 377 377 377 377 377 377 377 377 \0 \0 \0 \0 \0 \0 \O 216
0000000000832 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000000848 \0 \0 \0 \0 \0 \0 \O n 377 377 377 377 377 377 377 377
0000000000864 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000000880 \0 \0 \0O \O0O \O \O \O v 377 377 377 377 377 377 377 377
0000000000896 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000000912 \0 \0 \0 \0 \0 \O0 \O z 377 377 377 377 377 377 377 377
0000000000928 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000001200 \O0 \O0 \0O \O \O \O \O 226 377 377 377 377 377 377 377 377
0000000001216 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000001248 \0 \0 \0 \0 \0 \0 \O | 377 377 377 377 377 377 377 377
0000000001264 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000000001280 377 377 377 377 377 377 377 377 \0 \0 \0 \0 \0 \0 \oO b
0000000001296 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000000002400 s u n | s u n 2 | s u n 3 | S u
0000000002416 n m i c r 0 s y s t e m s i

SR-2014 497

TERM(5) TERM(5)

0000000002432 n c w o0 r k S t a t [o] n \0 007
0000000002448 \0 \f \0 \r \0 \b \0 \n \O0 033 [C \0 033 [%
0000000002464 i % p 1 % d ; % p 2 % d H \0 033 [
0000000002480 A \0 033 [P \0 033 [M \0 033 [J \0 033 [
0000000002496 K \0 \t \O0 033 [@ \0 033 [L \0 \n \O0 033 [
0000000002512 D \0 033 [B \0 033 [C \0 033 [A \0 033 o]
0000000002528 P \0 033 O Q \0 033 O R \0 033 O S \0 033 [
0000000002544 H \0 033 [m \0 033 [s \0 033 [7 m \0 \O
0000000002559
FILES
fusr/include/termh t er mi nf o(5) header file

fusr/lib/term nfo/?/ O Compiled terminal description database

SEE ALSO

498

t er mi nf o(5)
cur ses(3) (available only online)
t er m(7) (available only online)

i nf ocnp(8), ti c(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2014

TERMINFO(5) TERMINFO(5)

NAME
term nf o — Termina capability database

SYNOPSIS

fusr/lib/term nfo/?/ 0O

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thet er m nf o file format is a compiled database (see t i ¢(8)) that describes the capabilities of terminals.
Terminals are described in t er mi nf o source descriptions by giving a set of capabilities which they have,
by describing how operations are performed, by describing padding requirements, and by specifying
initialization sequences. This database is used by applications programs, such as vi (1) and cur ses(3), so
they can work with a variety of terminals without changes to the programs. To obtain the source description
for aterminal, use the - 1 option of i nf ocnp(8).

Entriesin t er mi nf o source files consist of several comma-separated fields. White space after each comma
isignored. Thefirst line of each terminal description in the t er m nf o database gives the name by which

t er mi nf o knows the terminal, separated by [symbols. The first name given is the most common
abbreviation for the terminal (this is the one to use to set the TERM environment variable in

$HOVE/ . profil e; see profi | e(5)), the last name given should be a long name that fully identifies the
terminal, and al others are understood as synonyms for the terminal name. All hames but the last should
contain no blanks and must be unique in the first 14 characters; the last name may contain blanks for
readability.

Y ou should select terminal names (except for the last, verbose entry) by using the following conventions.
The particular piece of hardware making up the terminal should have a root name chosen (for example, for
the AT&T 4425 terminal, at t 4425). To indicate modes in which the hardware can be, or user preferences,
append a hyphen and an indicator of the mode. For examples and more information on choosing names and
synonyms, see t er m(5).

Capabilities
In the following table, the Variable is the name by which the C programmer (at the t er mi nf o level)
accesses the capability. The Capname is the short name for this variable used in the text of the database. It
is used by a person updating the database and by the t put (1) command when asking what the value of the
capability is for a particular terminal. The Termcap Code is a two-letter code that corresponds to the old
t er ntap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been adopted to keep
them short. When possible, names are chosen to be the same as or similar to the ANSI X3.64-1979
standard. Semantics also are intended to match those of the specification.

SR-2014 499

TERMINFO(5)

500

TERMINFO(5)

All of the following string capabilities may have padding specified, except those used for input. Input
capabilities, listed under the Strings section in the following table, have names that begin with key . The
following indicators may appear at the end of the Description for a variable:

(G) Indicates that the string is passed through t par n() with parameters (parms) as given (#i)'
@ Indicates that padding may be based on the number of lines affected.
(#i) Indicates the ith parameter.

In the following table, the Name column lists the capname and the Code column lists the termcap code.

Variable Name Code Description
Booleans:
auto left _margin bw bw cubl wraps from column 0O to last column.
auto_right _margin am am Terminal has automatic margin.
no_esc ctlc xsh xb Beehive

(f1=< ESCAPE/ >, f2=< CONTROL-C/ >).
ceol _standout _glitch xhp XS Standout not erased by overwriting (hp).
eat_new ine_glitch xenl Xn New line ignored after 80 columns (Concept).
erase_overstrike eo eo Can erase overstrikes with a blank.
generic_type gn gn Generic line type (for example, dialup, switch).
hard_copy hc hc Hard-copy terminal.
hard_cursor chts HC Cursor is hard to see.
has_met a_key km km Has a meta key (shift, sets parity hit).
has_status_|ine hs hs Has extra "status line."
insert_null _glitch in in Insert mode distinguishes nulls.
menory_above da da Display may be retained above the screen.
nmenory_bel ow db db Display may be retained below the screen.
nove_i nsert_node mr m Safe to move while in insert mode.
nove_st andout _node nsgr ns Safe to move in standout modes.
needs_xon_xof f nxon nx Padding will not work, xon/xof f required.
non_rev_rncup nrrnc NR sncup does not reverse r ncup.
no_pad_char npc NP Pad character does not exist.
over_strike 0s 0s Terminal overstrikes on hard-copy terminal.
prtr_silent nc5i 5i Printer does not echo on screen.
status_|line_esc_ok esl ok es Escape can be used on the status line.
dest _tabs_mmgi c_snso xt xt Destructive tabs, magic snmso character (t1061).
tilde glitch hz hz Hazeltine; cannot print tildes(").
transparent _underline ul ul Underline character overstrikes.
xon_xof f xon X0 Terminal uses xon/xof f handshaking.
Numbers:
col ums cols co Number of columnsin aline.

SR-2014

TERMINFO(5)

TERMINFO(5)

Variable Name Code Description

init_tabs it it Tabs initialy every # spaces.

| abel _hei ght I h I h Number of rows in each label.

| abel _width | w | w Number of columns in each label.

lines lines i Number of lines on screen or page.

i nes_of nenory I m I m Lines of memory if > | i nes; 0 means varies.
magi c_cookie glitch Xnc sg Number blank characters left by snso or r nso0.
num | abel s nl ab NI Number of labels on screen (start at 1).
paddi ng_baud _rate pb pb Lowest baud rate where padding needed.
virtual _term nal vt vt Virtual terminal number (UNIX system).
wi dt h_status_|ine wsl ws Number of columns in status line.

Strings:

acs_chars acsc ac Graphic charset pairs aAbBcC — def=vt100+.
back tab cht bt Back tab.

bel | bel bl Audible signa (bell).
carriage_return cr cr Carriage return (D).

change_scrol | _region csr cs Change to lines #1 through #2 (vt100) (G).
char _paddi ng rnp rP Like i p but when in replace mode.
clear_all _tabs tbc ct Clear dl tab stops.

cl ear _mar gi ns ngyc MC Clear left and right soft margins.

cl ear _screen clear cl Clear screen and home cursor (0.
clr_bol el 1 cb Clear to beginning-of-line, inclusive.
clr_eol el ce Clear to end-of-line.

clr_eos ed cd Clear to end-of-display (0.

col um_addr ess hpa ch Horizontal position absolute (G).
conmand_char act er cmdch CC Term. settable cmd char in prototype.
cursor _address cup cm Cursor motion to row #1 col #2 (G).
cursor _down cudl do Down 1 line.

cursor _hone hone ho Home cursor (if no cup).

cursor _invisible civis i Make cursor invisible.

cursor _|left cubl Il e Move cursor left one space.

cur sor _nem addr ess ntcup CM Memory relative cursor addressing (G).
cur sor _nor nal chorm ve Make cursor appear normal (undo vs/ vi).
cursor_right cuf 1 nd Nondestructive space (cursor right).
cursor_to Il Il I Last ling, first column (if no cup).
cursor_up cuul up Upline (cursor up).

cursor_visible CVvis vs Make cursor very visible.

del ete_character dchl dc Delete character (D).

delete |ine dl 1 dl Delete line (D).

dis _status_line dsl ds Disable status line.

SR-2014

501

TERMINFO(5)

502

TERMINFO(5)

Variable Name Code Description

down_hal f _|ine hd hd Half-line down (forward 1/2 line feed).
ena_acs enacs eA Enable alternate character set.
enter_alt _charset_nobde smacs as Start alternate character set.

ent er _am node smam SA Turn on automatic margins.

enter _bl i nk_node blink nb Turn on blinking.

ent er _bol d_node bol d nmd Turn on bold (extra bright) mode.

enter _ca_node sncup ti String to begin programs that use cup.
ent er _del et e_node sndc dm Delete mode (enter).

ent er _di m node dim mh Turn on half-bright mode.

enter _insert_node smr im Insert mode (enter).

enter _protected node pr ot np Turn on protected mode.

enter _reverse_node rev nr Turn on reverse video mode.

ent er _secure_node invis nk Turn on blank mode (characters invisible).
ent er _st andout node sSNB0 o) Begin standout mode.

ent er _underl i ne_node smul us Start underscore mode.

ent er _xon_node snmxon SX Turn on xon/xof f handshaking.
erase_chars ech ec Erase #1 characters (G).
exit_alt_charset node rmacs ae End alternate character set.

exit_am node r mam RA Turn off automatic margins.
exit_attribute node sgr0 e Turn off al attributes.
exit_ca_node rncup te String to end programs that use cup.
exit_del ete_node r ndc ed End delete mode.
exit_insert_node rmr ei End insert mode.

exit_standout node rnso se End standout mode.
exit_underline_node r mul ue End underscore mode.
exit_xon_node rmkon RX Turn off xon/xof f handshaking.
flash_screen flash vb Visible bell (may not move cursor).
formfeed ff ff Hard-copy terminal page gject (D).
fromstatus_|ine f sl fs Return from status line.
init_1string isl il Terminal initialization string.

init _2string is2 is Terminal initialization string.

init _3string is3 i3 Terminal initialization string.

init file if if Name of initialization file that containsi s.
init_prog iprog iP Path name of program for init.

i nsert_character ichl ic Insert character.

insert _line ill al Add new blank line (O.

i nsert _paddi ng ip ip Insert pad after character inserted (0).
key al kal K1 KEY_A1, 0534, Upper left of keypad.
key a3 ka3 K3 KEY_A3, 0535, Upper right of keypad.
key b2 kb2 K2 KEY_B2, 0536, Center of keypad.

SR-2014

TERMINFO(5)

TERMINFO(5)

Variable Name Code Description

key backspace kbs kb KEY_BACKSPACE, 0407, Sent by backspace
key.

key beg kbeg a KEY_BEG, 0542, Sent by beg(inning) key.

key bt ab kcbt kB KEY_BTAB, 0541, Sent by back-tab key.

key cl kcl K4 KEY_C1, 0537, Lower left of keypad.

key c¢3 kc3 K5 KEY_C3, 0540, Lower right of keypad.

key cancel kcan @ KEY_CANCEL, 0543, Sent by cancel key.

key catab kt bc ka KEY_CATAB, 0526, Sent by clear-all-tabs key.

key cl ear kel r kC KEY_CLEAR, 0515, Sent by clear-screen or
erase key.

key cl ose kcl o @ KEY_CLOSE, 0544, Sent by close key.

key command kend @ KEY_COMMAND, 0545, Sent by cmd
(command) key.

key copy kcpy @ KEY_COPY, 0546, Sent by copy key.

key create kert @ KEY_CREATE, 0547, Sent by create key.

key ctab kctab kt KEY_CTAB, 0525, Sent by clear-tab key.

key dc kdchl kD KEY_DC, 0512, Sent by delete-character key.

key_dl kdl 1 kL KEY_DL, 0510, Sent by delete-line key.

key down kcudl kd KEY_DOWN, 0402, Sent by terminal down-
arrow key.

key eic krmr kM KEY_EIC, 0514, Sentby rmir orsmr in
insert mode.

key end kend @ KEY_END, 0550, Sent by end key.

key enter kent @ KEY_ENTER, 0527, Sent by enter/send key.

key_ eol kel kKE KEY_EOL, 0517, Sent by clear-to-end-of-line
key.

key eos ked kS KEY_EQOS, 0516, Sent by clear-to-end-of-screen
key.

key exit kext @ KEY_EXIT, 0551, Sent by exit key.

key fO kfO kO KEY_F(0), 0410, Sent by function key f0.

key f1 kf 1l k1l KEY_F(1), 0411, Sent by function key f1.

key f2 kf 2 k2 KEY_F(2), 0412, Sent by function key f2.

key f3 kf3 k3 KEY_F(3), 0413, Sent by function key 3.

key f4 kf 4 k4 KEY_F(4), 0414, Sent by function key f4.

key f5 kf5 k5 KEY_F(5), 0415, Sent by function key f5.

key f6 kf 6 k6 KEY_F(6), 0416, Sent by function key f6.

key f7 kf7 k7 KEY_F(7), 0417, Sent by function key 7.

key f8 kf 8 k8 KEY_F(8), 0420, Sent by function key f8.

key f9 kf9 k9 KEY_F(9), 0421, Sent by function key f9.

key_f 10 kf 10 k; KEY_F(10), 0422, Sent by function key f10.

SR-2014

503

TERMINFO(5)

504

TERMINFO(5)

Variable Name Code Description

key_ f11 kf11 F1 KEY_F(11), 0423, Sent by function key f11.
key f12 kf 12 F2 KEY_F(12), 0424, Sent by function key f12.
key_ f13 kf13 F3 KEY_F(13), 0425, Sent by function key f13.
key_f14 kf 14 F4 KEY_F(14), 0426, Sent by function key f14.
key_f 15 kf 15 F5 KEY_F(15), 0427, Sent by function key f15.
key_f16 kf 16 F6 KEY_F(16), 0430, Sent by function key f16.
key f17 kf17 F7 KEY_F(17), 0431, Sent by function key f17.
key f18 kf18 F8 KEY_F(18), 0432, Sent by function key f18.
key_f19 kf19 F9 KEY_F(19), 0433, Sent by function key f19.
key_f 20 kf 20 FA KEY_F(20), 0434, Sent by function key f20.
key_f21 kf21 FB KEY_F(21), 0435, Sent by function key f21.
key_f22 kf 22 FC KEY_F(22), 0436, Sent by function key f22.
key_f23 kf 23 FD KEY_F(23), 0437, Sent by function key f23.
key_f24 kf 24 FE KEY_F(24), 0440, Sent by function key f24.
key_f 25 kf 25 FF KEY_F(25), 0441, Sent by function key f25.
key_f 26 kf 26 FG KEY_F(26), 0442, Sent by function key f26.
key_f27 kf 27 FH KEY_F(27), 0443, Sent by function key f27.
key_f28 kf 28 FI KEY_F(28), 0444, Sent by function key f28.
key_f29 kf 29 FJ KEY_F(29), 0445, Sent by function key f29.
key_f 30 kf 30 FK KEY_F(30), 0446, Sent by function key f30.
key_f31 kf 31 FL KEY_F(31), 0447, Sent by function key f31.
key_f32 kf 32 FM KEY_F(32), 0450, Sent by function key f32.
key_f33 kf 33 FN KEY_F(13), 0451, Sent by function key f13.
key_f34 kf 34 FO KEY_F(34), 0452, Sent by function key f34.
key_f 35 kf 35 FP KEY_F(35), 0453, Sent by function key f35.
key_f 36 kf 36 FQ KEY_F(36), 0454, Sent by function key f36.
key_ f37 kf 37 FR KEY_F(37), 0455, Sent by function key f37.
key_f 38 kf 38 FS KEY_F(38), 0456, Sent by function key f38.
key_f 39 kf 39 FT KEY_F(39), 0457, Sent by function key f39.
key_f 40 kf 40 FU KEY_F(40), 0460, Sent by function key f40.
key_f41 kf41l FV KEY_F(41), 0461, Sent by function key f41.
key_f42 kf 42 FW KEY_F(42), 0462, Sent by function key f42.
key_f43 kf43 FX KEY_F(43), 0463, Sent by function key f43.
key f44 kf 44 FY KEY_F(44), 0464, Sent by function key f44.
key_f 45 kf 45 Fz KEY_F(45), 0465, Sent by function key f45.
key f46 kf 46 Fa KEY_F(46), 0466, Sent by function key f46.
key_f47 kf47 Fb KEY_F(47), 0467, Sent by function key f47.
key f48 kf 48 Fc KEY_F(48), 0470, Sent by function key f48.
key_f 49 kf49 Fd KEY_F(49), 0471, Sent by function key f49.
key f50 kf 50 Fe KEY_F(50), 0472, Sent by function key f50.

SR-2014

TERMINFO(5)

TERMINFO(5)

Variable Name Code Description

key_f51 kf51 Ff KEY_F(51), 0473, Sent by function key f51.

key f52 kf 52 Fg KEY_F(52), 0474, Sent by function key f52.

key_f53 kf 53 Fh KEY_F(53), 0475, Sent by function key f53.

key f54 kf 54 Fi KEY_F(54), 0476, Sent by function key f54.

key_f 55 kf 55 Fj KEY_F(55), 0477, Sent by function key f55.

key_f 56 kf 56 Fk KEY_F(56), 0500, Sent by function key f56.

key_f57 kf 57 Fl KEY_F(57), 0501, Sent by function key f57.

key_f58 kf 58 Fm KEY_F(58), 0502, Sent by function key f58.

key_f59 kf 59 Fn KEY_F(59), 0503, Sent by function key f59.

key f60 kf 60 Fo KEY_F(60), 0504, Sent by function key f60.

key_f61 kf 61 Fp KEY_F(61), 0505, Sent by function key f61.

key_f62 kf 62 Fq KEY_F(62), 0506, Sent by function key f62.

key_f63 kf 63 Fr KEY_F(63), 0507, Sent by function key f63.

key_find kf nd @ KEY_FIND, 0552, Sent by find key.

key hel p khl p %l KEY_HELP, 0553, Sent by help key.

key_ hone khome kh KEY_HOME, 0406, Sent by home key.

key ic kichl kI KEY_IC, 0513, Sent by ins-char/enter ins-mode
key.

key il kill kA KEY_IL, 0511, Sent by insert-line key.

key left kcubl kI KEY_LEFT, 0404, Sent by termina left-arrow
key.

key |1 Kkl | kH KEY_LL, 0533, Sent by home-down key.

key mark knr k %R KEY_MARK, 0554, Sent by mark key.

key message knmsg %3 KEY_MESSAGE, 0555, Sent by message key.

key nove knov % KEY_MOVE, 0556, Sent by move key.

key next knxt % KEY_NEXT, 0557, Sent by next-object key.

key npage knp kN KEY_NPAGE, 0522, Sent by next-page key.

key open kopn %6 KEY_OPEN, 0560, Sent by open key.

key options kopt %’ KEY_OPTIONS, 0561, Sent by options key.

key ppage kpp kP KEY_PPAGE, 0523, Sent by previous-page key.

key previous kprv %8 KEY_PREVIOUS, 0562, Sent by previous-object
key.

key print kprt %0 KEY_PRINT, 0532, Sent by print or copy key.

key redo krdo % KEY_REDO, 0563, Sent by redo key.

key reference kr ef &l KEY_REFERENCE, 0564, Sent by ref(erence)
key.

key refresh krfr &2 KEY_REFRESH, 0565, Sent by refresh key.

key repl ace kr pl &3 KEY_REPLACE, 0566, Sent by replace key.

key restart krst &4 KEY_RESTART, 0567, Sent by restart key.

key resune kres &5 KEY_RESUME, 0570, Sent by resume key.

SR-2014

505

TERMINFO(5)

506

TERMINFO(5)

Variable Name Code Description

key right kcufl kr KEY_RIGHT, 0405, Sent by terminal right-arrow
key.

key save ksav &6 KEY_SAVE, 0571, Sent by save key.

key sbeg kBEG &9 KEY_SBEG, 0572, Sent by shifted beginning
key.

key scancel k CAN &0 KEY_SCANCEL, 0573, Sent by shifted cancel
key.

key scommand kCVD 1 KEY_SCOMMAND, 0574, Sent by shifted
command key.

key scopy kCPY 2 KEY_SCOPY, 0575, Sent by shifted copy key.

key screate kCRT (B KEY_SCREATE, 0576, Sent by shifted create
key.

key sdc kDC 4 KEY_SDC, 0577, Sent by shifted delete-char key.

key sdl kDL (b KEY_SDL, 0600, Sent by shifted delete-line key.

key sel ect ksl t (b6 KEY_SELECT, 0601, Sent by select key.

key send kEND g KEY_SEND, 0602, Sent by shifted end key.

key seol kKEQOL (B KEY_SEOL, 0603, Sent by shifted clear-line key.

key sexit KEXT (® KEY_SEXIT, 0604, Sent by shifted exit key.

key_ sf ki nd kF KEY_SF, 0520, Sent by scroll-forward/down key.

key_sfind kFND N0) KEY_SFIND, 0605, Sent by shifted find key.

key shel p kHLP #1 KEY_SHELP, 0606, Sent by shifted help key.

key shone kHOM #2 KEY_SHOME, 0607, Sent by shifted home key.

key sic kl C #3 KEY_SIC, 0610, Sent by shifted input key.

key sl eft KLFT #4 KEY_SLEFT, 0611, Sent by shifted left-arrow
key.

key snessage kMSG % KEY_SMESSAGE, 0612, Sent by shifted
message key.

key snove k MOV % KEY_SMOVE, 0613, Sent by shifted move key.

key snext KNXT % KEY_SNEXT, 0614, Sent by shifted next key.

key soptions kOPT %l KEY_SOPTIONS, 0615, Sent by shifted options
key.

key sprevi ous kPRV % KEY_SPREVIOUS, 0616, Sent by shifted prev
key.

key sprint kPRT % KEY_SPRINT, 0617, Sent by shifted print key.

key sr Kri kR KEY_SR, 0521, Sent by scroll-backward/up key.

key sredo kRDO % KEY_SREDO, 0620, Sent by shifted redo key.

key srepl ace k RPL % KEY_SREPLACE, 0621, Sent by shifted replace
key.

key sri ght kKRIT % KEY_SRIGHT, 0622, Sent by shifted right-arrow

key.

SR-2014

TERMINFO(5) TERMINFO(5)

Variable Name Code Description

key srsune kRES % KEY_SRSUME, 0623, Sent by shifted resume
key.

key ssave k SAV 11 KEY_SSAVE, 0624, Sent by shifted save key.

key ssuspend kSPD 12 KEY_SSUSPEND, 0625, Sent by shifted suspend
key.

key stab khts KT KEY_STAB, 0524, Sent by set-tab key.

key sundo kUND 13 KEY_SUNDO, 0626, Sent by shifted undo key.

key suspend kspd &7 KEY_SUSPEND, 0627, Sent by suspend key.

key undo kund &8 KEY_UNDO, 0630, Sent by undo key.

key up kcuul Kku KEY_UP, 0403, Sent by terminal up-arrow key.

keypad_| ocal r mkx ke Out of ‘‘keypad-transmit’’ mode.

keypad xm t smkx ks Put termina in ‘‘keypad-transmit’’ mode.

lab fO IfO I 0 Labels on function key f0 if not fO.

lab f1 [f1 1 Labels on function key f1 if not f1.

lab f2 I f2 |2 Labels on function key f2 if not f2.

lab f3 I3 3 Labels on function key 3 if not f3.

lab f4 I f4 | 4 Labels on function key f4 if not f4.

lab f5 I f5 I 5 Labels on function key f5 if not 5.

lab f6 If6 | 6 Labels on function key f6 if not f6.

lab f7 I f7 |7 Labels on function key 7 if not f7.

lab 8 I8 | 8 Labels on function key f8 if not 8.

lab f9 If9 9 Labels on function key f9 if not f9.

lab_f10 [f10 I a Labels on function key f10 if not f10.

| abel off rmn LF Turn off soft labels.

| abel _on smn LO Turn on soft labels.

net a_of f rmm no Turn off "meta mode".

nmeta_on smm mm Turn on "meta mode" (8th hit).

new i ne nel nw New line (behaves like cr followed by | f).

pad_char pad pc Pad character (rather than null).

par m dch dch DC Delete #1 chars (GD).

parm del ete_line dl DL Delete #1 lines (GD).

par m down_cur sor cud DO Move cursor down #1 lines. (GO).

parm.i ch i ch IC Insert #1 blank chars (GO).

par m i ndex i ndn SF Scroll forward #1 lines. (G).

parm.insert _line il AL Add #1 new blank lines (GD).

parm | eft cursor cub LE Move cursor |eft #1 spaces (G).

parmri ght cursor cuf RI Move cursor right #1 spaces. (GD).

parm ri ndex rin SR Scroll backward #1 lines. (G).

par m up_cur sor cuu uP Move cursor up #1 lines. (GO).

pkey key pfkey pk Prog funct key #1 to type string #2.

SR-2014 507

TERMINFO(5) TERMINFO(5)

Variable Name Code Description

pkey | ocal pfloc pl Prog funct key #1 to execute string #2.
pkey xmt pf x pXx Prog funct key #1 to xmit string #2.

pl ab_norm pln pn Prog label #1 to show string #2.
print_screen nc0 ps Print contents of the screen.

prtr_non nc5p pO Turn on the printer for #1 bytes.
prtr_off nc4 pf Turn off the printer.

prtr_on nch po Turn on the printer.

repeat char rep rp Repeat char #1 #2 times (GD).
req_for_input rfi RF Send next input character (for ptys).
reset 1string rsi ril Reset terminal completely to sane modes.
reset 2string rs2 r2 Reset terminal completely to sane modes.
reset 3string rs3 r3 Reset terminal completely to sane modes.
reset file rf rf Name of file containing reset string.
restore_cursor rc rc Restore cursor to position of last sc
row_addr ess vpa cv Vertical position absolute (G).
save_cursor sc sc Save cursor position.

scroll _forward i nd sf Scroll text up.

scroll _reverse ri sr Scroll text down.

set_attributes sgr sa Define the video attributes #1-#9 (G).
set left _margin snyl M. Set soft left margin.

set _right_margin snyr VR Set soft right margin.

set _tab hts st Set atab in al rows, current column.
set _w ndow wi nd Wi Current window is lines #1—#2 cols #3-+#4 (G).
tab ht ta Tab to next 8 space hardware tab stop.
to_status_line tsl ts Go to status line, col #1 (G).

under | i ne_char uc uc Underscore 1 character and move past it.
up_half_line hu hu Half-line up (reverse 1/2 line-feed).

xof f _character xoffc XF X-off character.

xon_char act er xonc XN X-on character.

Sample Entry
The following entry, which describes the Concept 100 terminal, is among the more complex entries in the
t er m nf o file as of this writing.

508 SR-2014

TERMINFO(5) TERMINFO(5)

concept 100| c100| concept | c104| c100-4p| concept 100,
am db, eo, in, mr, ul, xenl,
col s#80, |ines#24, pb#9600, vt#8,
bel =~G, bl ank=\EH, blink=\EC, clear="L$<2[P,
cnormr\ Ew, cr="Mp<9>, cubl="H, cudl="J,
cuf 1=\ E=, cup=\Ea%1% °’ %% %2% ’ %%,
cuul=\E;, cvvis=\EW dchl=\E*"A$<16[>, di nF\EE,
dl 1=\ E*B$<3[>, ed=\E"C$<16[>, el =\Er"U$<16>,
flash=\ Ek$<20>\ EK, ht=\t$<8>, il 1=\ E*R$<3[>,
ind=7J, .ind="J$<9>, |p=%$<160>,
i s2=\ EW Ef \ E7\ E5\ E8\ El \ ENH\ EK\ E\ 0\ Eo&\ 0\ Eo\ 47\ E,
kbs="h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;,
kf 1=\E5, kf2=\E6, kf3=\E7, khone=\E?,
prot=\El, rep=\Er%l%%2% ' %%%$<.20>,
rev=\ED, rncup=\Ev\s\s\s\s$<6>\Ep\r\n,
rmr=\E\O, rnkx=\Ex, rnso=\Ed\Ee, rmnul=\Eg,
rmul =\ Eg, sgrO0=\EN 0, sncup=\EW Ev\ s\ s8p\Ep\r,
smr=\E*"P, snkx=\EX, snso=\EE\ ED, smul =\ EG

To continue entries onto multiple lines, place white space at the beginning of each line except the first.

Lines that begin with # are comment lines. Capabilitiesin t er mi nf o are of three types: Boolean
capabilities, which indicate that the terminal has some particular feature; numeric capabilities, which give the
size of the terminal or particular features; and string capabilities, which give a sequence that can perform
particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Concept has automatic margins (that is, an
automatic return and line feed when the end of aline is reached) is indicated by the capability am Hence,
the description of the Concept includes am Numeric capabilities are followed by the # symbol and then the
value. Thus, col s, which indicates the number of columns the terminal has, gives the value 80 for the
Concept. You may specify the value in decimal, octal, or hexadecimal using typical C conventions.

SR-2014 509

TERMINFO(5) TERMINFO(5)

Finally, string-valued capabilities, such as el (clear to end of line sequence) are given by the two- to
five-character capname, an =, and then a string ending at the next following comma. A delay in
milliseconds may appear anywhere in such a capability, enclosed in $<. . > angle brackets, as in

el =\ EK$<3>, and padding characters are supplied by t put s() [see cur ses(3)] to provide this delay.
The delay can be either a number, for example, 20, or a number followed by an O (that is, 30), a/ (that is,
5/'), or both (that is, 10007). An Osymbol indicates that the padding required is proportiona to the number
of lines affected by the operation, and the amount given is the per-affected-unit padding required. (In the
case of insert character, the factor is till the number of lines affected. This is always one unless the
terminal has i n and the software uses it.) When you specify a [J it is sometimes useful to give a delay of
the form 3. 5 to specify a delay per unit to tenths of milliseconds. (Only one decimal place is allowed.) An
/ symbol indicates that the padding is mandatory. Otherwise, if the terminal has xon defined, the padding
information is advisory and will be used only for cost estimates or when the terminal is in raw mode.
Mandatory padding will be transmitted regardless of the setting of xon.

Several escape sequences are provided in the string-valued capabilities for easy encoding of characters. Both
\ E and \ e map to an ESCAPE character, "x maps to a control-x for any appropriate x, and the sequences
\n,\I,\r,\t,\'b,\f, and\ s give anew line, line feed, return, tab, backspace, form feed, and space,
respectively. Other escapes include \ » for caret (°); \\ for backslash (\); \, for comma(,); \ : for colon
(:); and\ O for null. (\ O actualy produces\ 200, which does not terminate a string but it behaves as a null
character on most terminals.) Finally, you may specify characters as three octal digits after a backslash (for
example, \123).

Sometimes you must comment out individual capabilities by putting a period before the capability name, (for
example, see the second i nd in the previous example). Capabilities are defined in a left-to-right order;
therefore, a prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating the description of a similar terminal
internm nf o and to build up a description gradually, using partial descriptions with vi (1) to check that
they are correct. Be aware that a very unusua terminal may expose deficiencies in the ability of the
t er mi nf o file to describe it or the inability of vi (1) to work with that terminal. To test a new terminal
description, set the TERM NFO environment variable to a path name of a directory that contains the
compiled description on which you are working and programs will look there rather than in
fusr/lib/term nfo. To get the padding for insert-line correct (if the terminal manufacturer did not
document it), a severe test is to comment out xon, edit a large file at 9600 Bd with vi (1), delete 16 or so
lines from the middle of the screen, then hit the <u> key several times quickly. If the display is corrupted,
more padding usualy is needed. You can use a similar test for insert-character.

510 SR-2014

TERMINFO(5) TERMINFO(5)

Basic Capabilities
The number of columns on each line for the terminal is given by the col s numeric capability. If the
terminal has a screen, the number of lines on the screen is given by the | i nes capability. If the terminal
wraps around to the beginning of the next line when it reaches the right margin, it should have the am
capability. If the terminal can clear its screen, leaving the cursor in the home position, this is given by the
cl ear string capability. If the terminal overstrikes (rather than clearing a position when a character is
struck over), it should have the os capability. If the terminal is a printing terminal, with no soft copy unit,
give it both hc and os. (os applies to storage scope terminals, such as Tektronix 4010 series, as well as
hard-copy and APL terminals.) If code exists to move the cursor to the left edge of the current row, give
thisascr. (Usuadly, this will be carriage return, <CONTRCL- M>.) If code exists to produce an audible
signal (bell, beep, and so on), specify this as bel . If the terminal uses the xon-xof f flow-control protocol,
like most terminals, specify xon.

If code exists to move the cursor one position to the left (such as backspace), you should specify that
capability as cubl1. Similarly, you should give codes to move to the right, up, and down as cuf 1, cuul,
and cudl. These local cursor motions should not alter the text over which they pass; for example, you
would not normally use cuf 1=\s because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in t er m nf o are undefined at the left
and top edges of a screen terminal. Programs should never try to backspace around the left edge, unless bw
is given, and should never try to go up locally off the top. To scroll text up, a program will go to the
bottom left corner of the screen and send the i nd (index) string.

To scroll text down, a program goes to the top left corner of the screen and sendstheri (reverse index)
string. Theind and ri strings are undefined when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are i ndn and r i n, which have the same semantics as
i nd and ri except that they take one argument and scroll that many lines. They also are undefined except
at the appropriate edge of the screen.

The amcapability tells whether the cursor sticks at the right edge of the screen when text is output, but this
does not necessarily apply to a cuf 1 from the last column. The only local motion that is defined from the
left edge isif bwis given, a cubl from the left edge moves to the right edge of the previous row. If you
do not specify bw, the effect is undefined. For example, this is useful for drawing a box around the edge of
the screen. If the terminal has switch-selectable automatic margins, the t er m nf o file usually assumes that
thisis on (that is, an). If the terminal has a command that moves to the first column of the next line, that
command can be given as nel (new ling). It does not matter whether the command clears the remainder of
the current line; therefore, if the terminal has no cr and | f, you can still craft a working nel out of one or
both of them.

These capabilities suffice to describe hard-copy and screen terminals. Thus, the model 33 teletype is
described as follows:

33| tty33]| tty| nodel 33 tel etype,
bel =G, col s#72, cr="M cud1=*J, hc, ind="J, os,

SR-2014 511

TERMINFO(5) TERMINFO(5)

The Lear Siegler ADM-3 is described as follows:

adnB| I si adnB,
am bel =2G, clear="Z, col s#80, cr="M cubl="H, cudl="],
i nd="J, |ines#24,

Parameterized Strings

512

Cursor addressing and other strings that require parameters in the terminal are described by a parameterized
string capability, with pri nt f (3C)-like escapes (%) in it. For example, to address the cursor, the cup
capability is given, using two parameters: the row and column to which to address. (Rows and columns are
numbered from O and refer to the physical screen visible to the user, not to any unseen memory.) If the
terminal has memory-relative cursor addressing, you can indicate that by using nr cup.

The parameter mechanism uses a stack and special %codes to manipulate it in the manner of a Reverse
Polish Notation (postfix) calculator. Typicaly, a sequence pushes one of the parameters onto the stack and
then prints it in some format. Often, more complex operations are necessary. Binary operations are in
postfix form with the operands in the usual order; that is, to get x—5, you would use Ygx% 5} % .

The %encodings have the following meanings:
% encoding Meaning
%0 Outputs ‘%'

% [:] flags] [width[.precision]] [doxXs]
Asin printf, flags are [- +#] and space

% Prints pop() gives %c

%[1- 9] Pushes ith parameter

9wP[a- 7] Pets variable [a-Z] to pop()

%[a- z] Pets variable [a-Z] and pushes it

% C Pushes char constant ¢

% nn} Pushes decimal constant nn

% Push strlen(pop())

% % %1% %n Arithmetic (%om is mod): push(pop() op pop())
%R %N 9% Bit operations: push(pop() op pop())

% % I Logical operations: push(pop() op pop())

Y%A %O Logica operations: and, or

% % Unary operations: push(op pop())

% (for ANSI terminals) Add 1 to first parm, if one parm present, or first two

parms, if more than one parm present

SR-2014

TERMINFO(5) TERMINFO(5)

9% expr % thenpart % el separt %
If-then-else, %e elsepart is optional; else-if’s are possible as in the Algol 68
language:
%?c, %t b, %ec, %t b, %ec, %t b, %ec, %t b, %e b%;

c, are conditions, bi are bodies.

If you use the - flag with **% doxXs] '’, you must place a: between the %and the - to differentiate the
flag from the binary % operator (for example, % - 16. 16s).

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, must be sent \ E&a12c03Y
padded for 6 ms. The order of the rows and columns is inverted here, and that the row and column are
zero-padded as 2 digits. Thus, its cup capability is ‘‘cup=\ E&a%p29%2. 2dc%p192. 2dY$<6>"".

The Micro-Term ACT-1V needs the current row and column sent preceded by a~ T, with the row and
column simply encoded in binary, cup="T%p 1% %p2%. Terminalsthat use %€ must be able to backspace
the cursor (cubl), and to move the cursor up one line on the screen (cuul). This is necessary because it is
not always safe to transmit \ n, *D, and \ r , because the system may change or discard them. (The library
routines that deal with t er mi nf o set tty modes so that tabs are never expanded; therefore, \ t is safe to
send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LS| ADM-3a, which uses row and column offset by a blank character; thus,
cup=\ E=%1% \ s’ %% %Pp2% \ s’ %% ’’. After sending ‘‘\ E="", this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the sum on the stack in place of the two
previous values), and outputs that value as a character. Then the same is done for the second parameter.
You can do more complex arithmetic by using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of screen), you can specify this
as horre; similarly, a fast way of getting to the lower left corner can be given as | | ; this may involve going
up with cuul from the home position, but a program should never do this itself (unless| | does), because it
cannot make assumptions about the effect of moving up from the home position. The home position is the
same as addressing to (0,0): to the top left corner of the screen, not of memory. (Thus, you cannot use the
\ EH sequence on Hewlett-Packard terminals for home without losing some of the other features on the
terminal.)

If the terminal has row or column absolute-cursor addressing, you can specify these as single-parameter
capabilities hpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these are
shorter than the more general two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup. If parameterized local motions (for example, move n spaces to the right) exist, you can
specify these as cud, cub, cuf , and cuu with one parameter that indicates how many spaces to move.
These are primarily useful if the terminal does not have cup, such as the Tektronix 4025.

SR-2014 513

TERMINFO(5) TERMINFO(5)

Area Clears

514

If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, you
should specify thisas el . If the terminal can clear from the beginning of the line to the current position
inclusive, leaving the cursor where it is, you should specify thisas el 1. If the terminal can clear from the
current position to the end of the display, you should specify this as ed; ed is defined only from the first
column of aline. (Thus, if atrue ed is not available, it can be simulated by a request to delete a large
number of lines.)

Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is, you should give thisasi | 1;
this is done only from the first position of aline. The cursor must then appear on the newly blank line. If
the terminal can delete the line on which the cursor is located, you should specify this as dl 1; this is done
only from the first position on the line to be deleted. You can specify versions of i | 1 and dl 1 that take
one parameter and insert or delete that many linesasi | and dl .

If the terminal has a settable destructive scrolling region (such as the VT100), you can describe the
command to set this by using the csr capability, which takes two parameters: the top and bottom lines of
the scrolling region. The cursor position is undefined after using this command. You can get the effect of
insert or delete line by using this command; the sc and r ¢ (save and restore cursor) commands aso are
useful. You also can insert lines at the top or bottom of the screen by using ri or i nd on many terminals
without a true insert/delete line, and it is often faster even on terminals that have those features.

To determine whether a terminal has destructive scrolling regions or nondestructive scrolling regions, create
a scrolling region in the middle of the screen, place data on the bottom line of the scrolling region, move the
cursor to the top line of the scrolling region, and do a reverse index (ri), followed by a delete line (dI 1) or
index (i nd). If the data that was originally on the bottom line of the scrolling region was restored into the
scrolling region by the dl 1 or i nd, the terminal has nondestructive scrolling regions; otherwise, it has
destructive scrolling regions. If the terminal has nondestructive scrolling regions, do not specify csr unless
ind, ri,indn,rin,dl,anddl 1 al simulate destructive scrolling.

If the terminal can define a window as part of memory, which all commands affect, you should specify it as
the parameterized string wi nd. The four parameters are the starting and ending lines in memory and the
starting and ending columns in memory, in that order.

If the terminal can retain display memory above, you should specify da capability; if display memory can be
retained below, you should specify db. These indicate that deleting a line or scrolling a full screen may
bring nonblank lines up from below or that scrolling back with ri may bring down nonblank lines.

SR-2014

TERMINFO(5) TERMINFO(5)

Insert/Delete Character
You can describe two basic kinds of intelligent terminals with respect to insert/delete character operations by
using t er m nf o. The most common insert/del ete character operations affect only the characters on the
current line and shift characters off the end of the line rigidly. Other terminals, such as the Concept 100 and
the Perkin ElImer Owl, make a distinction between typed and untyped blanks on the screen, shifting on an
insert or delete only to an untyped blank on the screen, which is either eliminated or expanded to two
untyped blanks. To determine the kind of terminal you have, clear the screen and then type text separated
by cursor motions. Type ‘‘abc def ' by using local cursor motions (not spaces) between the abc and
the def . Then position the cursor before the abc, and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the end, your terminal does not distinguish
between blanks and untyped positions. If the abc shifts over to the def , which then move together around
the end of the current line and onto the next as you insert, you have the second type of terminal and should
give the capability i n, which stands for *‘insert null.”’ Although these are two logically-separate attributes
(one line versus multiline insert mode and special treatment of untyped spaces), we have seen no terminals
whose insert mode cannot be described with one attribute.

Thet er m nf o file can describe both terminals that have an insert mode and terminals that send a simple
seguence to open a blank position on the current line. To get into insert mode, give smi r as the sequence.
To leave insert mode, give r m r as the sequence. Now give asi chl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert mode will not givei chl;
terminals that send a sequence to open a screen position should give it here. (If your terminal has both,
insert mode usually is preferableto i ch1l. Do not specify both unless the terminal actualy requires both to
be used in combination.) If post-insert padding is needed, give this as a number of milliseconds padding in
i p (astring option). You also may specify any other sequence that may have to be sent after an insert of a
single character in i p. If your terminal must be placed both into an ‘insert mode’ and have a specia code
to precede each inserted character, you can specify both smi r/rmi r and i chl, and both will be used. The
i ch capability, with one parameter, n, repeats the effects of i ch1 n times.

If padding is necessary between characters typed while not in insert mode, specify this as a number of
milliseconds padding in r np.

Occasionaly, you may have to move around while in insert mode to delete characters on the same line (for
example, if atab is after the insertion position). If your terminal alows motion while in insert mode, you
can specify the i r capability to speed up inserting in this case. Omitting i r affects only speed. Some
terminals (notably Datamedia) must not have mi r because of the way their insert mode works.

Finally, to delete one character, specify dchl. To delete n characters, specify dch with one argument, n.
To enter and exit delete mode (any mode the terminal must be placed in for dchl to work), specify sndc
and r ndc.

To erase n characters (equivalent to outputting n blanks without moving the cursor), specify as ech with one
parameter.

SR-2014 515

TERMINFO(5) TERMINFO(5)

Highlighting, Underlining, and Visible Bells

516

If your terminal has one or more kinds of display attributes, these can be represented in several different
ways. You should choose one display form as standout mode (see cur ses(3)), representing a good, high
contrast, easy-on-the-eyes format for highlighting error messages and other attention-getters. (If you have a
choice, reverse-video plus haf-bright is good, or reverse-video alone; however, different users have different
preferences on different terminals.) To enter and exit standout mode, specify the sequences smso and

r mso, respectively. If the code to change into or out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray1061 do, you should specify xnt to tell how many spaces are |eft.

To begin underlining and end underlining, specify snul and r mul , respectively. If the termina has a code
to underline the current character and to move the cursor one space to the right, such as the Micro-Term
MIME, you can specify thisas uc.

Other capabilities to enter various highlighting modes include bl i nk (blinking), bol d (bold or
extra-bright), di m(dim or half-bright), i nvi s (blanking or invisible text), pr ot (protected), r ev
(reverse-video), sgr O (turn off all attribute modes), snmacs (enter alternate-character-set mode), and r macs
(exit alternate-character-set mode). If you turn on any of these modes singly, other modes may or may not
turn off. If a command is necessary before alternate character set mode is entered, specify the sequence in
enacs (enable alternate-character-set mode).

If a sequence exists to set arbitrary combinations of modes, you should specify this as sgr (set attributes),
taking nine parameters. Each parameter is either O or nonzero, because the corresponding attribute is on or
off. The nine parameters are, in order, standout, underline, reverse, blink, dim, bold, blank, protect, and
alternate character set. Not all modes must be supported by sgr ; only those for which corresponding
separate attribute commands exist. (See the example at the end of this section.)

Terminals that have the **magic cookie'’ glitch (xt) deposit specia ‘‘ cookies’ when they receive
mode-setting sequences, which affect the display agorithm rather than having extra bits for each character.
Some terminals, such as the Hewlett-Packard 2621, automatically leave standout mode when they move to a
newline or the cursor is addressed. Programs that use standout mode should exit standout mode before
moving the cursor or sending a newline character, unless the nsgr capability, asserting that it is safe to
move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement), this can be
given asf | ash; it must not move the cursor. You can get a good flash by changing the screen into reverse
video, pad for 200 ms, then return the screen to normal video.

If the cursor must be made more visible than normal when it is not on the bottom line (for example, to make
a nonblinking underline into an easier-to-find block or blinking underline), give this sequence as cvvi s.
You also should specify the Boolean cht s. If you can make the cursor completely invisible, specify that as
ci vi s. You should specify the cnor mcapability, which undoes the effects of either of these modes.

SR-2014

TERMINFO(5) TERMINFO(5)

If the terminal must be in a special mode when running a program that uses these capabilities, you can
specify the codes to enter and exit this mode as sncup and r rcup. For example, this arises from terminals
such as the Concept that has more than one page of memory. If the terminal has only memory-relative
cursor addressing and not screen-relative cursor addressing, you must fix a one screen-sized window into the
terminal for cursor addressing to work properly. This is used also for the Tektronix 4025, where sntup
sets the command character to be the one used by t er mi nf 0. If the sncup sequence will not restore the
screen after an r ncup sequence is output (to the state prior to outputting r ncup), specify nrr nt.

If your terminal generates underlined characters by using the underline character (with no special codes
needed) even though it does not otherwise overstrike characters, you should specify the ul capability. For
terminals in which a character overstriking another leaves both characters on the screen, specify the os
capability. If overstrikes are erasable with a blank, you should indicate this by specifying eo.

Example of highlighting: assume that the terminal under question needs the following escape sequences to
turn on various modes.

tparm
parameter Attribute Escape segquence
none \ E[Om

pl st andout \E[0; 4; 7Tm
p2 underl i ne \ E[0; 3m
p3 reverse \ E[0; 4m
p4 bl i nk \ E[0; 5m
p5 dim \E[0; 7m
p6 bol d \E[O; 3;4m
p7 i nvis \ E[0; 8m
p8 pr ot ect Not available
p9 al t char set NO (of f) ~N(on)

Each escape sequence requires a 0 to turn off other modes before turning on its own mode. As previously
suggested, st andout also is set up to be the combination of r ever se and di m Because this terminal
has no bol d mode, bol d is set up as the combination of r ever se and under | i ne. In addition, to
allow combinations, such as under | i ne+bl i nk, you would use the \ E[0; 3; 5msequence. The terminal
does not have pr ot ect mode either, but that cannot be simulated in any way; therefore, p8 is ignored.
The al t char set mode is different in that it is either *O or N, depending on whether it is off or on. If
all modes were to be turned on, the sequence would be\ E[0; 3; 4; 5; 7; 8n*N.

Now look at when different sequences are output (for example, ; 3 is output when either p2 or p6 is true;
that is, if either under | i ne or bol d modes are turned on). Writing out the previous sequences, along
with their dependencies, gives the following:

SR-2014 517

TERMINFO(5) TERMINFO(5)

Sequence When to output t er m nf o trandation

\E[O Always \E[O

;3 If p2 or p6 %Yp2%p6% % ; 3%

4 If plorp3orp6 %%l1%p3% Y%p6% % ; 4%
;5 If p4 % %p4% ; 5%

0 7 If p1 or p5 % Y%p1%p5% % ; 7%

; 8 If p7 %Yp7% ; 8%

m Always m

AN or ~O If pP9 N, else O % %p9% ~NYe"O%

Putting this all together into the sgr sequence gives the following:

sgr =\ E[09%2%p2%p6% % ; 3% Y%@%p1%p3% %p6% % ; 4% Y@%p5% ; 5% Y% 1%
p5% % ; 7% YRYP 7% ; 8% ndRYp9% " Nve 0%

Keypad

518

If the terminal has a keypad that transmits codes when the keys are pressed, this information can be given.
Y ou cannot handle terminals in which the keypad works only in local (this applies, for example, to the
unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit, specify these
codes as snkx and r mkx; otherwise, the keypad is assumed to always transmit.

Y ou can specify the codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys as
kcubl, kcuf 1, kcuul, kcudl, and khone, respectively. If there are function keyssuch as f 0, f1,
., 63, you can specify the codes they send as kf 0, kfl, ..., kf63. If thefirst 11 keys have
labels other than the default f O through f 10, you can specify the labelsas | fO, 1f1, ..., [f10.
Y ou can specify the codes transmitted by certain other specia keys as kl | (home down), kbs (backspace),
kt bc (clear al tabs), kct ab (clear the tab stop in this column), kcl r (clear screen or erase key), kdchl
(delete character), kdl 1 (delete line), kr mi r (exit insert mode), kel (clear to end of line), ked (clear to
end of screen), ki chl (insert character or enter insert mode), ki | 1 (insert line), knp (next page), kpp
(previous page), ki nd (scroll forward/down), kri (scroll backward/up), and kht s (set a tab stop in this
column). If the keypad also has a 3-by-3 array of keys, including the four arrow keys, you can specify the
other five keys as kal, ka3, kb2, kc1, and kc3. These keys are useful when the effects of a 3-by-3
directional pad are needed. Further keys are defined in the previous capabilities list.

Y ou can specify strings to program function keys as pf key, pf | oc, and pf X. You can specify a string to
program their soft-screen labels as pl n. Each of these strings takes two parameters: the function key
number to program (from 0 to 10) and the string with which to program it. Function key numbers out of
this range may program undefined keys in a terminal-dependent manner. The difference between the
capabilities is that pf key causes pressing the given key to be the same as the user typing the given string;
pf | oc causes the string to be executed by the terminal in local mode; and pf x causes the string to be
transmitted to the computer. The nl ab, | w, and | h capabilities define how many soft |abels there are and
their width and height. If commands exist to turn the labels on and off, specify theminsm nand rnl n.
Usually, sm n is output after one or more pl n sequences to make sure that the change becomes visible.

SR-2014

TERMINFO(5) TERMINFO(5)

Tabs and Initialization
If the terminal has hardware tabs, you can specify the command to advance to the next tab stop as ht
(usually control 1). You can specify a ‘‘backtab’” command that moves leftward to the next tab stop as cbt .
By convention, if the teletype modes indicate that tabs are being expanded by the computer rather than being
sent to the terminal, programs should not use ht or cbt even if they are present, because the user may not
have set the tab stops properly. If the terminal has hardware tabs that are initially set every n spaces when
the terminal is powered up, the numeric parameter i t is given, showing the number of spaces to which the
tabs are set. Usually, t put i nit (seet put (1)) uses this to determine whether to set the mode for
hardware tab expansion and whether to set the tab stops. If the terminal has tab stops that can be saved in
nonvolatile memory, the t er mi nf o description can assume that they are set properly. If there are
commands to set and clear tab stops, you can specify them ast bc (clear all tab stops) and ht s (set atab
stop in the current column of every row).

Other capabilitiesincludei s1, i s2, and i s3 initiaization strings for the terminal; i pr og, the path name
of a program to be run to initialize the terminal; and i f , the name of afile that contains long initialization
strings. These strings are expected to set the terminal into modes consistent with the rest of thet er mi nf o
description. They must be sent to the terminal each time the user logs in and be output in the following
order: run the program i pr og; output i s1; output i s2; set the margins by using ngc, sngl , and snyr ;
set the tabs by using t bc and ht s; print the filei f ; and finally output i s3. Usually, you can do this by
using thei ni t option of t put (1); see profi |l e(5).

Most initialization is done with i s2. You can set up special terminal modes without duplicating strings by
putting the common sequences in i s2 and special casesini s1 and i s3. You can specify sequences that
do a harder reset from atotally unknown state asrs1, rs2,rf, and rs3, anaogoustoi s1,is2,is3,
andi f. (The method using files, i f and rf, isused for a few terminals, from/ usr/li b/ tabset/ O
however, the recommended method is to use the initialization and reset strings.) These strings are output by
t put reset, which is used when the terminal gets into a wedged state. Usually, commands are placed in
rsl,rs2,rs3,andrf only if they produce annoying effects on the screen and are not necessary when
logging in. For example, the command to set a terminal into 80-column mode normally would be part of

i s2, but on some terminals, it causes an annoying glitch on the screen and is not usually needed, because
the terminal is usually aready in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using t bc and ht s, you can
place the sequenceini s2 ori f.

If there are commands to set and clear margins, you can specify them as ngc (clear all margins), sngl (set
left margin), and sngr (set right margin).

Delays
Certain capabilities control padding in the t t y(4) driver. These are primarily needed by hard-copy
terminals, and they are used by t put i nit to set tty modes appropriately. You can use delays embedded
inthecr, i nd, cubl, ff, andt ab capabilities to set the appropriate delay bits to be set in the tty driver.
If you specify pb (padding baud rate), these values can be ignored at baud rates below the value of pb.

SR-2014 519

TERMINFO(5) TERMINFO(5)

Status Lines
If the terminal has an extra *‘status line'’ that the software usually does not use, you can indicate this fact.
If the status line is viewed as an extra line below the bottom line, into which one can cursor address
normally (such as the Heathkit h19's 25th line, or the 24th line of a VT100, which is set to a 23-line
scrolling region), you should specify the hs capability. You can specify specia strings that go to a given
column of the status line and return from the status line ast sl and f sl . (f s| must leave the cursor
position in the same place it was in beforet sl . If necessary, you can include the sc and r ¢ strings in
tsl and f sl to get this effect.) Thet sl capability takes one parameter, which is the column number of
the status line to which the cursor will be moved.

If escape sequences and other special commands (such as tab) work while in the status line, you can specify
the esl ok flag. You should specify a string that turns off the status line (or otherwise erases its contents)
asdsl . If the terminal has commands to save and restore the position of the cursor, specify them as sc and
rc. The status line is assumed to be the same width as the rest of the screen (for example, col s). If the
status line is a different width (possibly because the terminal does not allow an entire line to be loaded), you
can indicate the width (in columns) by using the numeric parameter wsl .

Line Graphics
If the terminal has a line-drawing, alternate character set, you would specify the mapping of glyph to
character in acsc. The definition of this string is based on the aternate character set used in the DEC
VT100 terminal, extended dlightly with some characters from the AT& T 4410v1 terminal.

vt100+ vt100+

Glyph name character Glyph name character
Arrow pointing right + Upper left corner I
Arrow pointing left , Lower left corner m
Arrow pointing down . Plus n
Solid sguare block 0 Scan line 1 0
Lantern symbol I Horizonta line q
Arrow pointing up - Scan line 9 S
Diamond) Left tee (B) t
Checker board (stipple) a Right tee (-0)J u
Degree symbol f Bottom tee () %
Plus/minus g Toptee (D w
Board of squares h Vertical line X
Lower right corner Bullet ~

J
Upper right corner k

The best way to describe a new terminal’s line graphics set is to add a third column to the preceding table
with the characters for the new terminal that produce the appropriate glyph when the terminal is in the
aternate character set mode.

520 SR-2014

TERMINFO(5) TERMINFO(5)

Horizonta line
Vertica line

Example:
Glyph name vt100+ char New tty char
Upper left corner I R
Lower left corner m F
Upper right corner k T
Lower right corner i G

q

X

Now write down the characters left to right, asin ‘‘acsc=l RFkTj Gg\ , x. .

Miscellaneous
If the terminal requires other than a null (0) character as a pad, you can specify this as pad. Only the first
character of the pad string is used. [f the terminal does not have a pad character, specify npc.

If the terminal can move up or down half aline, you can indicate this with hu (half-line up) and hd
(half-line down). Thisis primarily useful for superscripts and subscripts on hard-copy terminals. If a
hard-copy terminal can gject to the next page (form feed), specify thisasf f (usually <CONTROL- L>).

If a command to repeat a given character a particular number of times exists (to save time transmitting a
large number of identical characters), you can indicate this by using the parameterized string r ep. The first
parameter is the character to be repeated, and the second is the number of times to repeat it. Thus,
tparn(repeat _char, ’'x’, 10) isthe same asXXXXXXXXXX.

If the terminal has a settable command character, such as the Tektronix 4025, you can indicate this with
cndch. A prototype command character is chosen, which is used in all capabilities. This character is given
in the cndch capability to identify it. The following convention is supported on some UNIX systems: |f
the CC environment variable exists, all occurrences of the prototype character are replaced with the character
in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such as swi t ch, di al up,
pat ch, and net wor k, should include the gn (generic) capability so that programs can complain that they
do not know how to talk to the terminal. (This capability does not apply to vi rt ual terminal descriptions
for which the escape sequences are known.) If the terminal is one of those supported by the UNIX system
virtual terminal protocol, you can specify the terminal number as vt . You should specify a line-turn-around
seguence to be transmitted before doing readsinrfi .

If the terminal uses xon/xof f handshaking for flow control, specify xon. You still should include padding
information so that routines can make better decisions about costs, but actual pad characters will not be
transmitted. You may specify sequences to turn on and off xon/xof f handshaking in snmxon and r nxon.
If the characters used for handshaking are not S and " Q, you may specify them by using xonc and

xof fc.

SR-2014 521

TERMINFO(5) TERMINFO(5)

If the terminal has a ‘‘meta key’’ that acts as a shift key, setting the 8th bit of any character transmitted, you
can indicate this fact by using kny otherwise, software assumes that the 8th bit is parity, and it usualy is
cleared. If strings exist to turn this ‘*meta mode’’ on and off, you can specify them as smmand r mm

If the terminal has more lines of memory than will fit on the screen at one time, you can indicate the number
of lines of memory by using | m A value of | n#0 indicates that the number of lines is not fixed, but that
still more memory exists than fits on the screen.

Y ou can specify media copy strings that control an auxiliary printer connected to the terminal as nt0: print
the contents of the screen, nc4: turn off the printer, and nt5: turn on the printer. When the printer is on,
all text sent to the terminal will be sent to the printer. A variation, nc5p, takes one parameter and leaves
the printer on for as many characters as the value of the parameter, then turns the printer off. The parameter
should not exceed 255. If the text is not displayed on the terminal screen when the printer is on, specify
nc5i (silent printer). All text, including nc4, is passed transparently to the printer while an nc5p isin
effect.

Special Cases

The working model used by t er m nf o fits most terminals reasonably well; however, some terminals do not
completely match that model, requiring special support by t er mi nf 0. These are not meant to be construed
as deficiencies in the terminals; they are just differences between the working model and the actual hardware.
They may be unusual devices or, for some reason, do not have all of the features of the t er m nf o model
implemented.

Terminals that cannot display tilde (7) characters, such as certain Hazeltine terminals, should indicate hz.

Terminals that ignore a line feed immediately after an amwrap, such as the Concept 100, should indicate
xenl . Those terminals whose cursor remains on the rightmost column until another character has been
received, rather than wrapping immediately on receiving the rightmost character, such as the VT100, also
should indicate xenl .

If el isrequired to remove standout (instead of writing normal text on top of it), you should specify xhp.

Those Teleray terminals whose tabs turn all characters moved over to blanks, should indicate xt (destructive
tabs). This capability also is taken to mean that it is not possible to position the cursor on top of a‘‘magic
cookie'’; therefore, to erase standout mode, use delete and insert line.

Those Beehive Superbee terminals that do not transmit the escape or <CONTROL- C> characters, should
specify xsb, indicating that the <f 1> key will be used for escape and the <f 2> key for <CONTROL- C>.

Similar Terminals

522

If two very similar terminals exist, one can be defined as being just like the other with certain exceptions.
You can specify the string capability use with the name of the similar terminal. The capabilities given
before use override those in the terminal type invoked by use. To cancel a capability, place xx@to the left
of the capability definition; xx is the capability. For example, the following entry defines an AT& T 4424
terminal that does not have the r ev, sgr, and siul capabilities, and hence, it cannot do highlighting. This
is useful for different modes for a terminal, or for different user preferences. You may specify more than
one use capability.

SR-2014

TERMINFO(5) TERMINFO(5)

att 4424-2| Tel et ype 4424 in display function group ii,
rev@ sgr@ smul @ use=att4424,

FILES
fusr/lib/tabset/* Files that contain tab stop settings for some terminals, in a format
appropriate to be output to the terminal (escape sequences that set
margins and tab stops)
fusr/lib/termnfol ?/* Files that contain terminal descriptions
SEE ALSO
t er m5)

t set (1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

cur ses(3) (available only online)

print f (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080
ti c(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 523

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

NAME
t ext _tapeconfi g — Tape subsystem configuration file

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The system uses a tape configuration file named t ext _t apeconfi g in the/ et ¢/ confi g directory. If
the t pi ni t (8) command does not find this file, it terminates and returns an error message.

Thet ext _tapeconfi g file defines al of the tape devices that the system uses. For detailed information
on configuring your devices, see the documentation from the tape device vendors.

The diagnostic devices are implicitly defined when the 1/0 processors (I0OPs) and the channels are defined.
You may not redefine them.

The tape configuration file consists of comments (optional) and statements. A comment begins with the #
symbol and continues to the end of line. A statement consists of a name followed by alist of keyword
parameters. There are four statements; two of these statements also consist of substatements. Statements
must be in the order shown:

1. LOADER statements (one per |oader)
2. DEVI CE_GROUP statements (one per device group)
3. | OP statements (one per IOP) or | ONODE statements (one per node)

The | OP or | ONODE statement consists of the following two statements that define the IOP or node
configuration:

a. CHANNEL statements (one per channel in the IOP or node)
b. BANK statements (one per bank)

The BANK statement consists of two of the following three statements that define the bank
configuration:

i. SLAVE statements (one per lave device) (I0S-E only)
or
CONTROL_UNI T statements (one per control unit)

ii. DEVI CE statements (one per device)
4. OPTI ONS statement

Statement Syntax Rules
The following syntax rules apply to t ext _t apeconfi g statements:

* The statement name and its parameters are separated by one or more white spaces (blank, tab, or newline
characters).

524 SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

Adjacent parameters are separated by a comma.
The end of the parameter list is indicated by the absence of a comma.

Adjacent statements are separated by one or more white spaces.

The following is alist of keyword parameter syntax rules:

The keyword is separated from its value by the = symbol.

The value of a keyword may consist of keywords, numbers, character strings, and lists of keywords,
numbers, and character strings.

If the value of a keyword is alist, the list is enclosed within left and right parentheses. Adjacent
elements of alist are separated by a comma. If the list consists of one element, you do not have to
enclose it in parentheses. The elements of a list may be lists.

Numbers may be specified in decimal, octal, and hexadecimal formats. These formats are the same as
those used in the C programming language:

Decimal First digit is not 0 (1372)
Octa First digit is 0 (0563)
Hexadecimal First 2 characters are either Ox or 0X (0xf2)

Character strings are series of characters. If any one of the special characters (white space, ", #, =, {, },
(,),’,\)isneeded in the string, you must enclose the string in a pair of double quotation marks (").
Within a pair of double quotation marks, the sequence of characters will be replaced by x; x is any
character. Thisis the only way you can specify a" and a\ in a quoted string.

Comments may appear between any symbols described previously.

You can code the names of statements and keywords in a mixture of uppercase and lowercase letters. The
values specified by the user is case sensitive. The following specify the same thing:

Name
nane

A
A

The following are different:

name

A
name a

The following are descriptions of the tape configuration statements. Y ou must specify a value for each
parameter unless a default is specified or the parameter is described as optional.

LOADER Statement
The LOADER statement identifies the loadersin the t ext _t apeconf i g file and has the following format:

SR-2014

LOADER parameter_list

525

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

A description of the parameters follows:

Par ameter Description
name Specifies the loader name, which is the object of severa t pconf i g(8) requests.
type Specifies the loader type. Currently supported types are as follows:

EMASS EMASS autoloader is used.

| BMTLD IBM 3494 Tape Library Dataserver is used.

OPERATOR Operator loads the drive.

STKACS A StorageTek autoloader that is supported by Cray Research is used.
st at us Specifies the status (UP or DOWN) of the loader when the tape daemon starts.

nmessage_pat h_t o_| oader
Specifies the message path to the servicing loader.

MSGDAEMON Uses message daemon to send message to loader.
NETWORK Uses TCP/IP protocol to send message to loader.
server Specifies the server name.

scrat ch_vol une_| abel _type
Specifies the types of scratch requests that the loader may process. If you specify
OPERATOR for the t ype parameter on the LOADER statement, the following types of
scratch requests are available. |f you specify any other loader type for thet ype
parameter only NONE is valid.

AL ANSI labeled scratch tape requests.
NL Nonlabeled scratch tape requests.
NONE Scratch labels cannot be used.

SL IBM standard labeled scratch requests.

queue_time Each volume has a designated "best" loader type for the tape mount. If the best loader is
not available, this time is used to queue the tape mount request and to wait for the best
loader to become available. If the best loader does not become available during this time,
the mount request will be issued to the next best loader. A value of O indicates to wait up
to 24 hours; a honzero value specifies the number of seconds to wait.

verify_non_I| abel _vsn
Specifies whether the nonlabel VSN should be verified. This parameter may be either YES
or NO.

nmessage_r out e_masks
Routes mount request messages. Y ou can route the mount request message to multiple
locations. The list may consist of the following:

526 SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

FRONTEND Issues the mount message to the front end that may be reached through
the connection to TPCNET.
SERVER I ssues the mount message to the server station.
UNI COS I ssues the mount message to the message daemon. For more
information, see msgdaenon(8).
node Specifies attended mode:

ATTENDED Prompts for operator intervention.
UNATTENDED Assumes negative response for operator intervention.

return_host Specifies the name of the Cray Research host that serves as the return address for the
server.

chi | d_program name character string
Specifies the name of the tape daemon loader child program. When the loader is
configured UP, the child program is activated. This program must be in the directory from
which the tape daemon is activated. The directory is typically / usr/ i b/t p.

If chi | d_program nane is omitted, the following values are used:

L oader Child Program Name
EMASS esi net
IBMTLD i brmet
STKACS st knet

| oader _ring_status
Specifies whether the loader is alerted to ring status.

ALERT Alerts loader to the ring status when a tape is mounted, and checks that
the ring status matches the ring status requested by the tape user.

| GNORE Ignores the ring status when a tape is mounted. A logical ring out
status is used for a tape that has been requested with a ring out status,
but its actual ring status is ring in. The default is ALERT.

network_retry_tries number
Specifies the number of times the tape daemon loader child program attempts to send a
reguest over the network to the server after an initial attempt fails. The default for each
child program is 5.

net wor k_send_ti neout number
Specifies the time in seconds during which the tape daemon loader child program tries to
send a request over the network to the server. The default for each child program is 3
seconds.

SR-2014 527

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

server_reply_wait_tinme number
Specifies the time in seconds during which a request that is being processed by the server
is kept in a queue by the tape daemon loader child program. If a reply has not been
received within this time, the child program queries the state of the outstanding request.

The default value for each child program is 180 seconds. For a StorageTek loader, this
value is multplied by the number of Library Storage Modules in the Automated Cartridge
System.

You must specify at least one OPERATOR type loader in the tape configuration file. If the file does not
contain such an entity, the tape daemon in its initialization process creates one assuming the following
values:

LCOADER

name = Cperator ,

type = OPERATOR ,

status = UP ,
message_PATH TO LOADER = MSGDAEMON
nmessage_cl ass = NONE ,

server = "" |

scratch_vol une_| abel _type = NONE ,
queue_time = 1 ,

verify_non_Il abel _vsn = YES ,
nmessage_rout e_masks = UNI COS ,
node = ATTENDED ,

return_host = ""

The entry created by the tape daemon shows in the output of the t pm s(8) command.

DEVI CE_GROUP Statement

528

The tape daemon enforces a resource limit for each user based on the entry for that user in the user database
(UDB). The UDB limit applies to resource group numbers, rather than resource or device names. This
necessitates a way of mapping the devices configured in the system to the appropriate resource numbers.

The default set of resources (device groups) is determined from the list of devices specified in the
DEVI CE_GROUP statement. The first device group encountered in the list represents resource group humber
0. The second device group in the list represents resource group number 1, and so on.

To change this order, specify the DEVI CE_GROUP statements in the desired order. The first device group
name corresponds to resource limit 0. You can list a maximum of eight different device group names.

The mapping specified in this way allows the flexibility of changing the configuration while maintaining a
consistent naming convention for device groups that are mapped to the limits set for each user in the UDB.

The DEVI CE_GROUP statement has the following format:
DEVI CE_GROUP parameter_list

SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

A description of the parameters follows:

Par ameter Description
nanme Specifies the device group name.
m nl vl Specifies the minimum mandatory access control (MAC) level for this device group. The

default is the system minimum level 0.

max| vl Specifies the maximum MAC level for this device group. The default is the system
maximum level.

maxcnp Specifies the maximum MAC compartments for this device group. The default is the
system maximum compartments.

avr Specifies the status (YES or NO) of automatic volume recognition (AVR) for this group.
The default isthe avr _at _st art up option in the OPTI ONS statement.

overcommit Specifies whether (YES or NO) the number of current mount requests can exceed the
number of available tape drives. This option overrides the value specified by the
overconmit _at _startup parameter in the OPTI ONS statement.

If you omit this parameter, the default is the value specified by the
overconmit _at _start up parameter in the OPTI ONS statement. For more
information about overcommitted mount requests, see thet pset (8) and t pst at (1) man

| OP Statement
The | OP statement (I0S-E only) specifies the characteristics of an 10P and has the following format:

| OP parameter_list { iop_configuration }

iop_configuration consists of a series of CHANNEL statements and BANK statements following the keyword
parameters. Descriptions of the CHANNEL and BANK statements follow the | OP parameters:

Par ameter Description

nunber Specifies the IOP number. For the CRAY J90 series, this parameter is not used and can
be set to 0.

cl uster Specifies the cluster number. For the CRAY J90 series, cl ust er is the IOS number.

type Specifies the IOP type (I OP_BMX, | OP_ESCON, or | OP_1 PI'). The CRAY J90 series do

not support this parameter.

| ONODE Statement
The | ONODE statement (GigaRing based systems) specifies the characteristics of a node and has the
following format:

| ONODE parameter_list { ionode_configuration }

SR-2014 529

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

ionode_configuration consists of a series of CHANNEL statements and BANK statements following the
keyword parameters. Descriptions of the CHANNEL and BANK statements follow the | ONODE parameters:

Par ameter Description

node Specifies the node number.

ring Specifies the ring number.

type Specifies the node type (I OP_BMX, | OP_ESCON, or | OP_NMPN).

CHANNEL Statement (I OP or | ONODE Statement)

The CHANNEL statement specifies channel characteristics of an IOP or node and has the following format:
CHANNEL parameter_list

A description of the parameters follows:

Par ameter Description

addr ess Specifies the channel address. The following values are valid:
IOSE 30, 32, 34, 36
ELS 22-27, 30-37

BMN 0-1
ESN 0-3
MPN 0O-7

m cr ocode_pat hnane
(IOS-E only) Specifies the path name of the file that contains the channel microcode and
must be specified on the first CHANNEL statement of an 10P.

st at us Specifies the status (UP or DOAN) of the channel when the tape daemon is started.
adapt or (IOS-E only) Specifies the channel adapter type (DCA2, FCA2, or TCA2).
ti meout (IOS-E only) Specifies the ER90 time-out value in seconds. If zero is specified, the IOS-E

is set to atime-out period of 10 seconds.

BANK Statement (I OP or | ONODE Statement)

530

The BANK statement specifies the bank characteristics of an 1OP or node and has the following format:
BANK parameter_list { bank_configuration }
bank_configuration specifies a series of SLAVE or CONTROL_UNI T statements followed by a series of

DEVI CE statements. Descriptions of the SLAVE and CONTROL_UNI T statements follow the optional BANK
parameter:

Parameter Description

nunber Specifies a bank number that identifies a bank. Valid values are 0 to 63. Default: a bank
number will be assigned to a bank.

SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

SLAVE Statement (BANK Statement)
A SLAVE statement (I0S-E only) specifies the characteristics of a slave device and has the following format:

SLAVE parameter_list

A description of the parameters follows:

Par ameter Description
st at us Specifies the status (UP or DOAN) of the slave when the tape daemon is started.
pat h Specifies a list of channel address and slave address pairs encoded in parentheses. The

parentheses are part of the syntax and must be coded. The channel number is the channel
that is connected to the port address in the slave.

reset tinmeout
Specifies the reset time-out (in seconds).

CONTROL_UNI T Statement (BANK Statement)
The CONTRCOL_UNI T statement specifies the characteristics of a control unit and has the following format:

CONTROL_UNI T parameter_list

A description of the parameters follows:

Par ameter Description
st at us Specifies the status (UP or DOWN) of the control unit when the tape daemon is started.
pr ot ocol Specifies the protocol for the control unit, as follows:
SCsl Specifies the SCSI protocol.
ESCON Specifies the ESCON protocol. This is the only valid protocol for a
control unit attached to an ESCON channel.
I NTERLOCK Specifies interlock protocol.
STREAM NG Specifies data streaming at 3.0 Mbyte/s.
STREAM NA5 Specifies data streaming at 4.5 Mbyte/s.
pat h Specifies a list of channel address and control unit port address pairs. For the CRAY J90

series, this channel number is the address specified in the CHANNEL statement. Specifies a
list of channel address and control unit port address pairs.

For SCSI (MPN) tape devices, pat h specifies a channel and SCSIbus pair. The SCSIbus
is determined by looking at the appropriate / opt / CYRI i on/ adm mi c_code file on the
system workstation (SWS). For example, if the file contains the following information,
pat h is 3.

SR-2014 531

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

sn9132-npn2, SCSlbus 3 Target 1 Lun [t310], Type = STKSD- 3 (VTAPE)
Vendor = STK

Product ID = SD-3

M crocode Rev Level = 0223
Device Mn Block Len =1
Device Max Bl ock Len = 262144
Fi xed Bl ock Len = O(Vari abl e)
Max Bl ock Size = 262144

Def aul t Conpression = ON

Ansi Version = 2

Response Format = 2
Attributes = 0x38

The channel is restricted to values in the range of 0 through 7 and, by convention, the
channel value is the same as the SCSlbus value.

i nk_address
Specifies the link address of the control unit when it is attached by using an ESCON
director. It is set to O for directly attached (no director) control units.

DEVI CE Statement (BANK Statement)
The DEVI CE statement specifies the characteristics of a device and has the following format:

DEVI CE parameter_list

A description of the parameters follows:
Par ameter Description
name Specifies the device name.

devi ce_group_nane
Specifies the name of the device group defined by a DEVI CE_CGROUP statement.

st at us Specifies the initial status (UP or DOAN) of the device.
id Specifies the hardware device identifier.

For SCSI (MPN) tape devices, i d specifies a 3-digit octal number, xyz. The following
values are valid:

X Is aways 0.
y Specifies the SCSI target; that is, the SCSI ID.
z Specifies the tape logical unit (lun).

This information is in the appropriate SWS/ opt / CYRI i on/ adm mi c_code file.
Although fast and wide devices are supported, SCSI 1Ds are currently limited to valuesin
the range of 0 through 7.

type Specifies the device type.

532 SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

For SCSI (MPN) tape devices, the value for t ype is in parenthesis following Type
= type in the appropriate SWS/ opt / CYRI i on/ adm mi c¢_code file. For example, the
t ype value for STKSD-3 is VTAPE.

| oader Specifies the loader name defined in a LOADER statement.

vendor _addr ess
Specifies the vendor address of the drive in an autoloader.

The format for a StorageTek drive is as follows:
acst,|smi, panel#,drivet

The format for an EMASS drive is as follows:
drivet

facility_address
Specifies only the ER90 facility address.

short tineout
Specifies the ER90 short time-out (in seconds).

| ong_t i neout
Specifies the ER90 long time-out (in seconds).

ti meout Specifies the time-out value in seconds that the ESCON 10P waits for a response from the
channel. An integer from 1 to 65535 specifies the number of seconds. A value of O
directs the tape subsystem to use the time-out value that is hard-coded in the ESCON |0OP
software. This value is currently set to 900 seconds (15 minutes).

OPTI ONS Statement
The options in force when the tape daemon is built are specified in the / usr /i ncl ude/ t apedef . h file.
You can specify most of these options in the OPTI ONS section of thet ext _t apeconfi g file.

To override the value with which the tape daemon was built, specify the following options and their
corresponding values. Descriptions of the options in the / usr/ i ncl ude/ t apedef . h file are given in
the Tape Subsystem Administration, Cray Research publication SG—2307. The options that you can specify
inthet ext _t apeconfi g file with the OPTI ONS statement are similar to the options in t apedef . h, but
not identical. Values are often given in a different form in the two files (for example, the value for the
ask_bl p keyword is expressed as 0 or 1 int apedef . h, but it is expressed as YES or NOin

t ext _t apeconfi g).

SR-2014 533

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

534

The format of the OPTI ONS statement follows:
OPTI ONS parameter_list

The following parameter list includes valid values or brief definitions of the options.
Par ameter Description

al I ow_unpr ot ect ed
Allows access (YES or NO) to tapes that do not contain a MAC label in the header.

Default: YES

ask_| abel _swi t ch Seeks permission (YES or NO) from the operator to switch label type. Default:
YES

ask_vsn Seeks permission (YES or NO) from the operator to specify a VSN when a nonlabel

tape is mounted. Default: YES
avr_at_startup Starts (YES or NO) AVR when the tape daemon is started. Default: YES

bl ocksi ze Specifies the block size to use when the user does not specify a block size by using
the t ppmt (1) command - b option. Default: 32768

bl p_ring_status Specifies the user status for the use of the - r option of the t prmt (1) command
when the user requests bypass label processing. UNRESTRI CTED specifies the user
canuseboth-r inand-r out. QUT specifiesthe user can use only -r out .
Default: UNRESTRI CTED.

check_expiration_date
Specifies whether the operator should check and confirm (YES or NO) the expiration
date on the header label of alabeled tape. Default: YES

check file_id Specifies whether the file ID on a labeled tape should be checked (YES or NO) when
the file is opened. Default: YES

check_prot ecti on Specifies whether the protection flag on the header should be checked (YES or NO).
Default: YES

check_vsn Specifies whether the VSN on labeled tapes should be checked (YES or NO).
Default: YES

cray_reel librarian
Specifies whether the Cray/REEL librarian system is enabled (YES or NO). Default:
NO

cray_reel _|ibrarian_nandatory
Specifies whether the Cray/REEL librarian system is mandatory (YES or NO).
Default: NO

cray_reel |ibrarian_operator_sel ect_scratch
Indicates whether the operator should verify (YES or NO) the scratch mounts by the
Cray/REEL librarian system before continuing. Default: NO

SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

cray_reel librarian_scratch_vsn
Specifies the scratch VSN that the Cray/REEL librarian system will use to tell the
operator that a scratch volume is needed. Default: ?CRL??

devi ce_group_nane
Specifies the default device group name if it is not specified on the - g option of the
t prmt (1) command. Default: CART

file_status Specifies the file status (NEWor OLD) if it is not specified on the t pmrmt (1)
command. Default: OLD
| abel _type Specifies the label type (AL, SL, or NL) if it is not specified on thet prmt (1)

command. Default: AL

| oader _devi ce_assi gnnment _or der
Specifies the method (DEVI CE_LI ST or ROUND_ROBI N) with which the loader
assigns devices. Default: ROUND_ROBI N

mai nfranme_j ob_origin
Specifies the mainframe ID of the job if it is not specified. Default: C1

max_bl ocksi ze Sets the upper limit of the block size of the - b parameter on the t prmt (1)
command. If you specify a larger value, the command terminates abnormally.
Default: 4194303

max_numnber _of _devi ce_groups
Specifies the maximum number of device groups. Default: 8

max_numnber _of _tape_users
Specifies the maximum number of tape users. Default: 64

nmessage_daenon_pi penane
Specifies the message daemon pipe name. Default:
[usr/ spool / neg/ msg. r equest s

nunber of autol oader _retries
Specifies the number of times to try to send a request to the autoloader before
informing the operator of an error. The CRAY J90 series do not support this
parameter. Default: 10

oper at or _nessage_desti nati on
Specifies where operator messages are sent; UNI COS, SERVER, and FRONTEND.
Default: (UNI COS)

operator _nessage_frontend_i d
Specifies the front-end ID for operator messages. Default:

overcomrit _at_startup
Specifies whether overcommitted mount requests should be enabled as part of start-
up when the tape daemon is started (YES or NO). This option applies only if you
omit the over commi t parameter on the DEVI CE_CGROUP statement. Default: NO

SR-2014 535

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

536

overcomm t _max Specifies the maximum number of overcommitted mount requests that the tape
subsystem can issue. When the number of tape mount requests exceeds this number,
the system stops processing requests until one or more of the already overcommitted
mount requests are satisfied. You may change this setting by using the t pset (8)
command. Default: 20

resel ect _cart Specifies whether another device will be selected (YES or NO) at end-of-volume for
cartridge type devices, which include 3480, 3490, and 3490E devices. Default: NO

retenti on_period_days
Specifies the retention period (in days). Default: 0

ri ng_status Specifies the ring status when the ring option (- r) is not specified on the t pmrmt (1)
command (I N, OUT, or (I N, QUT)). Default: (1 N, QUT)

scratch_vol une_action
Specifies the action (FREE or KEEP) to perform for scratch tapes when they are
released. Default: FREE

scratch_volune_retries
Specifies the number of retries to get a scratch volume out of the autoloader scratch
pool. Default: 3

scratch_vol une_vsn

secure_frontend Specifies whether security on the front end is enabled (YES or NO). The CRAY J90
series do not support front-end servicing. Default: " "
servicing_frontend_at _start up Specifies whether front-end servicing
should start (YES or NO) when the tape daemon is started. The CRAY J90 series do
not support any front-end servicing. Default: NO

servicing_frontend_id
Specifies the servicing front-end 1D to use when the - moption is missing on the
t prmt (1) command. The CRAY J90 series do not support front-end servicing.
Default: " "

servi ci ng_front end_nandat ory
Specifies whether the front-end ID specified by the servi ci ng_frontend_i d
parameter is used (YES or NO) regardless of the - moption on the t prmt (1)
command. The CRAY J90 series do not support front-end servicing. Default: NO

servi cing_frontend_protocol
Specifies the protocol (TCP) to talk to front ends. The CRAY J90 series do not
support front-end servicing. Default: TCP

system code Specifies the system code to put on tape labels. Default: CRI / UNI COS

SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

t cp_daenon_chi | dname
Specifies the child name of the TCP daemon. The CRAY J90 series do not support
this parameter. Default: t cpnet

tcp_daemon_frontend_i d
Specifies the front-end ID of the TCP daemon. Default: " "

t ape_daenon_trace_file_group_id
Specifies the group ID of the tape daemon trace files. Default: 9

t ape_daenon_trace_fil e_node
Specifies the file mode of the tape daemon trace files. Default: 0640

t ape_daenon_trace_fil e_owner
Specifies the owner ID of the tape daemon trace files. Default: 0

t ape_daenmon_trace_file_prefix
Specifies the tape daemon trace file prefix. Default: / usr/ spool /t ape/trace

t ape_daenon_trace_fil e_size
Specifies the size (in bytes) of the tape daemon trace files. Default: 409600

t ape_daenon_trace_flg
Specifies whether tape tracing is enabled (YES or NO). Default: YES

t ape_daenon_trace_savefile_prefix
Specifies the prefix to the tape daemon save files. Default:
[usr/spool /tapel/trace

t cp_daenon_pi penane
Specifies the pipe name of the TCP daemon. The CRAY J90 series do not support
this parameter. Default: / usr/ spool / t ape/ t cpnet . pi pe

t cp_daenmon_socket port_nunber
Specifies the socket port number of the TCP daemon. Default: 1167

user_exit_mask Enablesthe use of the listed user exits. If no user exits are required, this entry is
not needed. For alist of user exits, see the Tape Subsystem Administration, Cray
Research publication SG—2307. Default: UEX_NONE

verify_scratch_vsn
Indicates (YES or NO) that you may need to send the operator a message that
reguests verification that a scratch tape is being used to satisfy a tape mount request.
You must consult the operator if front-end servicing is not in use. Default: YES

EXAMPLES

The following two examples show t ext _t apeconfi g files used on I0OS-E systems and GigaRing based
systems.

SR-2014 537

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

For more detail, check the documentation from your tape device vendors; configuration possibilities vary
depending up the vendors and the specific devices that you are configuring. For example, an IBM 3490E
controller supports multiple devices while a StorageTek Redwood only supports a single device.

GigaRing based systems
The following t ext _t apeconf i g file illustrates some typical configurations for GigaRing based systems.

538

LOADER

name = Cperator ,

type = OPERATOR ,

status = UP ,

nmessage_path_to_| oader = MSGDAEMON |,
message_cl ass = NONE ,

server = UNI CCS ,

scratch_vol ume_Il abel _type = (NL, AL, SL) ,
gqueue_time = 0 ,

verify_non_Il abel _vsn = NO ,

nmessage_rout e_masks = (UNI COS) ,

| oader _ring_status = ALERT,

LOADER

node = ATTENDED

name = stksun ,

type = STKACS ,

status = DOMN ,

nmessage_path_to_| oader = NETWORK ,
nmessage_class = TYPE 340 ,

server = robot ,

scratch_vol une_| abel _type = NONE ,
gueue_time = 180 ,

verify_non_Il abel _vsn = NO ,

message_rout e_masks = (UNI COS, FRONTEND) |,

| oader _ring_status = | GNORE,

LOADER

node = ATTENDED

nanme wol fy ,

type STKACS ,

status = DOMN ,

node = ATTENDED ,

nmessage_class = TYPE 340 ,
nmessage_path_to_| oader = NETWORK ,
server = 9490l dr ,

scratch_vol unme_| abel _type = NONE ,
gqueue_time = 0 ,

verify_non_Il abel _vsn = NO ,

SR-2014

TEXT_TAPECONFIG(5)

SR-2014

| oader _ring_status = | GNORE,

LOADER

nmessage_rout e_masks = (FRONTEND, UNI COS)

node = ATTENDED ,

nmessage_cl ass = TYPE 340 ,
nmessage_path_to_| oader = NETWORK |,
server = stk9710 ,

scratch_vol une_I| abel _type = NONE ,
queue_time = 0 ,

verify_non_Il abel _vsn = NO ,

| oader _ring_status = | GNORE,

LOADER

nmessage_rout e_masks = (FRONTEND, UNI COS)

nane = i bm,
type = | BMILD ,
status = DOMN ,

nmessage_path_to_| oader = NETWORK |,
nmessage_cl ass = TYPE 340 ,

server = ibmld ,

scratch_vol une_I| abel _type = NONE ,
gqueue_tinme = 15 |

verify_non_Il abel _vsn = NO ,
nmessage_rout e_masks = UNI COS ,

| oader _ring_status = | GNORE,

node = ATTENDED

DEVI CE_GROUP

name = DEFAULT ,

DEVI CE_GROUP

avr = YES,
overcommt = NO
name = DAT ,

avr = YES ,
overcommt = NO

DEVI CE_GROUP

name = | BM3590 ,
avr = YES,

overcommt = NO

DEVI CE_GROUP

TEXT_TAPECONFIG(5)

539

TEXT_TAPECONFIG(5)

nane = | BM3490E
avr = YES ,
overcommt = NO
DEVI CE_CGROUP
nanme = STK4890
avr = YES,
overcommt = NO
DEVI CE_CGROUP
name = DLT4000
avr = YES,
overcommt = NO
DEVI CE_CGROUP
name = STK9490 ,
avr = YES,
overcommt = NO
DEVI CE_CGROUP
name = STKSD3
avr = YES,
overcomm t
| ONODE
node
ring
type
{

NO

1)
0)
| OP_MPN

CHANNEL

addr ess

st at us
CHANNEL

addr ess

st at us
CHANNEL

addr ess

st at us
CHANNEL

addr ess

st at us
CHANNEL

addr ess

st at us
CHANNEL

addr ess

st at us
CHANNEL

addr ess

540

TEXT_TAPECONFIG(5)

SR-2014

TEXT_TAPECONFIG(5)

SR-2014

status = up
CHANNEL
address = 7
status = up
BANK
number
{
}

=1

CONTROL_UNI'T

TEXT_TAPECONFIG(5)

status = UP ,
path = (1,1) ,

protoco
DEVI CE

= SCsl

name = s4890s0,

devi ce_group_nane

= STK4890

id = 000 |,

type = 3490E

status = DOMN ,
vendor _address = (0,0,2,0) ,

| oader = panther

DEVI CE

name = s4890s1,
devi ce_group_nanme = STK4890,
id = 010 ,
type = 3490E
status = DOMN

vendor _address = (0,0,2,1) ,

| oader
DEVI CE
name =

= pant her

d4000s0,

devi ce_group_nane = DLT4000

id = 02
type =
status
vendor _address =
| oader
DEVI CE

0,

VTAPE ,

= DOWN ,
(0,0,2,2) ,
= pant her

name = d4000s1,
devi ce_group_nane = DLT4000

id = 030 ,

type = VTAPE ,

status
vendor address =
| oader

= DOMN ,
(05 01213) L]
= pant her

541

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

BANK
nunber = 6
{
CONTROL_UNI'T
status = UP
path = (6, 6),
protocol = SCS
DEVI CE
nanme = 3490s0,
devi ce_group_nane = | BM3490E ,
id = 060,
type = 3490E,
status = DOMN ,
| oader = i bm
DEVI CE
nane = 3490sl
devi ce_group_nane = | BM3490E ,
id = 061,
type = 3490E,
status = DOMN ,
| oader = i bm
}
}
| ONODE
node =1,
ring =1
type = | OP_MPN
{
CHANNEL
address = 0 ,
status = up
CHANNEL
address = 1 ,
status = up
CHANNEL
address = 2 ,
status = up
CHANNEL
address = 3 ,
status = up
CHANNEL
address = 4 |
status = up
CHANNEL

542 SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

address = 5 ,
status = up
CHANNEL
address = 6 ,
status = up
CHANNEL
address = 7 ,
status = up
BANK
nunmber = 17
{
CONTROL_UNI' T
status = up ,
pat h =(7,7) ,
protocol = SCS
DEVI CE
name = d5649JX
devi ce_group_nane = DAT ,
id = 040 ,
type = VTAPE,
status = DOMN ,
| oader = Operat or
}
BANK
nunmber = 16
{
CONTROL_UNI' T
status = up ,
pat h = (6,6) ,
protocol = SCS
DEVI CE
name = s9490s0
devi ce_group_nane = STK9490 ,
id = 000 |,
type = 3490E,
status = down
vendor _address = (0,0,1,0) ,
| oader = wol fy
DEVI CE

name = s9490s1,

devi ce_group_nane = STK9490 ,
id = 010 ,

type = 3490E,

status = DOMN |,

SR-2014 543

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

vendor _address = (0,0,1,1) ,
| oader = wol fy

DEVI CE
name = s9490s2,
devi ce_group_nane = STK9490 ,
id = 020 ,
type = 3490E,
status = DOMN ,
vendor _address = (0,0,1,2) ,
| oader = wol fy

DEVI CE
name = s9490s3,
devi ce_group_nane = STK9490 ,
id = 030 ,
type = 3490E,
status = DOMN ,
vendor _address = (0,0,1,3) ,
| oader = wol fy

BANK
nunber = 10
{
CONTROL_UNI' T
status = UP ,
path = (0, 0),
protocol = SCSI
DEVI CE
name = 3590s0,
devi ce_group_nane = | BM3590 ,
id = 000,
type = VTAPE,
status = DOMN |,
| oader = ibm

BANK
nunber = 12
{
CONTROL_UNI' T
status = UP ,
path = (2, 2),
protocol = SCSI
DEVI CE
name = 3590s1,
devi ce_group_nane = | BM3590 ,

544 SR-2014

TEXT_TAPECONFIG(5)

SR-2014

BANK

BANK

OPTI ONS

al I ow_unprot ect ed
ask | abel _switch
ask_vsn

avr_at _startup

CONTROL_UNI'T

CONTROL_UNI'T

id = 010,
type = VTAPE,
status =
| oader =
=11
status = up ,
pat h =(1,1) ,
protocol = SCSI
DEVI CE
name = ssd3_s0,
devi ce_gr oup_nane
id = 010
type = VTAPE,
status
vendor _address = (0,0, 3,1)
| oader = wol fy
= 13
status = up ,
pat h =(3,3) ,
protocol = SCSI
DEVI CE
name = ssd3_sl,
devi ce_gr oup_nane
id = 030
type = VTAPE,
status = DOMN ,
vendor _address = (0,0, 3, 3)
| oader =
= YES ,
= YES ,
= NO ,
= YES

TEXT_TAPECONFIG(5)

545

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

bl p_ring_status = UNRESTRI CTED ,

546

bl ocksi ze = 65536 ,
check_expiration_date = YES ,

check file_id = YES ,
check_protection = NO ,

check _vsn = YES ,

cray_reel _librarian = NO ,

cray_reel _librarian_mandatory = NO ,

cray_reel _librarian_operator_sel ect_scratch = NO ,
cray_reel _librarian_scratch_vsn = ?CRL?? ,
devi ce_group_nane = DEFAULT ,

file status = O.D ,

| abel _type = AL ,

| oader _devi ce_assi gnnent _or der = ROUND_ROBI N
mai nframe_j ob_origin =C ,
max_nunber _of _devi ce_groups =8,

max_bl ocksi ze = 4194303 ,
max_nunber _of tape_users = 100 ,
message_daenon_pi penamne = /usr/spool / msg/ nmsg. requests ,
nurmber _of autol oader _retries = 10 ,

oper at or _nessage_destination = UNI CCs
operat or _nessage_frontend_i d =""

oper at or _nmessage_t ype = USCP_TYPE_1 ,
overcommt_at_startup = NO

overcomm t _max = 20,

resel ect _cart = NO ,
retention_period_days =0,
ring_status = (IN,QUT) ,
scratch_vol une_action = FREE ,
scratch_volune_retries =3,
scratch_vol une_vsn = ???7?7? ,
secure_frontend = NO ,
servicing_frontend_at_startup = NO ,
servicing_frontend_id =""

servi cing_frontend_nandat ory = NO ,

servi cing_frontend_protocol = TCP ,

stop_hi ppi _ei op = YES ,

system code = CRI/UNI COs ,
tape_daenon_trace_file_group_id =9,
tape_daenon_trace_fil e_node = 0640 |,
tape_daenon_trace_fil e_owner =0,
tape_daenon_trace_file_prefix = /usr/spool /tapel/trace ,
tape_daenon_trace_fil e_size = 409600 ,
tape_daenon_trace_flg = YES ,

SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

tape_daenon_trace_savefile_prefix [usr/spool /t ape/ save/trace ,

tcp_daenon_chi |l dname = tcpnet |,
tcp_daenon_frontend_id = "ms"

t cp_daenon_pi penane = /usr/spool /tape/tcpnet. pipe ,
tcp_daenon_socket _port_nunber = 1167 ,

user_exit_mask = (UEX_NONE) |,
verify_scratch_vsn = YES

IOS-E support
The following t ext _t apeconfi g file illustrates some typical configurations for systems with IOS-E

support.
LOADER
name = Cperator ,
type = OPERATOR ,

status = UP ,

node = ATTENDED ,

nmessage_pat h_to_| oader = MSGDAEMON ,
server = UN CCS ,

scratch_vol ume_| abel _type = (NL, AL, SL) ,
queue_time = 0 ,

verify_non_| abel _vsn = YES ,

nmessage_r out e_masks = (UNI COS, FRONTEND)

LCOADER
nane = stksun ,
type = STKACS ,
status = DOMN |,
node = ATTENDED ,
message_path_to_| oader = NETWORK
server = robot ,
scratch_vol unme_| abel _type = NONE ,
queue_tinme = 15
verify_non_| abel _vsn = NO,
nmessage_r out e_masks = (UNI COS)

LCOADER
nane = esisun ,
type = EMASS ,
status = DOMN |,
node = ATTENDED ,
message_path_to_| oader = NETWORK
server = er90-sun ,
scratch_vol unme_| abel _type = NONE ,
queue_tinme = 15

SR-2014 547

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)
verify_non_Il abel _vsn = NO ,
nmessage_rout e_masks = (UNI COS)

DEVI CE_CGROUP
name = CART

DEVI CE_CGROUP
name = TAPE

DEVI CE_CGROUP
name = SILO

DEVI CE_CGROUP
name = 3490

DEVI CE_GROUP

name = 3490E ,

avr = YES
DEVI CE_CGROUP

name = TEST
DEVI CE_CGROUP

name = EROO

DEVI CE_CGROUP
name = ESCON

| OP
number =3,
cluster =0,
type = 10OP_IPI
{
CHANNEL
address = 036 ,
status = UP ,
m crocode_pat hnane = /etc/mcro/l Pl 3. ucode ,
timeout = 10000 |,
adapt or = DCA2
CHANNEL
address = 034 ,
status = UP ,

m cr ocode_pat hnane /etc/mcro/lPl3.ucode ,

ti meout = 10000 ,

548 SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

adapt or = DCA2

BANK
nunber = 1
{
SLAVE
path = (034,0) ,
status = UP ,
reset timeout = 1000
DEVI CE
name = er92 ,
devi ce_group_nane = ER9O ,
id =0,
type = ER9O ,
status = DOMN ,
| oader = esisun ,
vendor address = 2 ,
facility_address = OxFF ,
short timeout = 600 ,
long_timeout = 400
}
BANK
nunber = 2
{
SLAVE
path = (036,0) ,
status = UP ,
reset timeout = 1000
DEVI CE
name = er93 ,
devi ce_group_nane = ER9O ,
id =0,
type = ER9O ,
status = DOMN ,
| oader = esisun ,
vendor address = 3 ,
facility_address = OxFF ,
short timeout = 600 ,
long_timeout = 400
}
}
| OP
nunber =1,
cluster =0,
type = | OP_BMX

SR-2014 549

TEXT_TAPECONFIG(5)

550

CHANNEL
address = 030 ,
status = UP ,
m crocode_pat hnane =
CHANNEL
address = 036 ,
status = UP ,
m crocode_pat hnane =
CHANNEL
address = 034 ,
status = UP ,
m crocode_pat hnane =
CHANNEL
address = 032 ,
status = UP ,
m crocode_pat hnane =
BANK
nunber = 3
{
CONTROL_UNI'T
status
pat h
protoco
DEVI CE
nanme
devi ce_
id
type
status
| oader
DEVI CE
nanme
devi ce_
id
type
status
| oader
}
BANK
nunber = 4
{

CONTROL_UNI' T

TEXT_TAPECONFIG(5)

/etc/ mcro/ TCAL. ucode

/etc/ mcrol/ TCAL. ucode

/etc/ mcro/ TCAL. ucode

/etc/ mcrol/ TCAL. ucode

= WP,

= ((036, 0)) ,
| = INTERLOCK
= 220 ,

gr oup_name
00 ,
3420 ,
DOMN
Oper at or

= 221 ,

gr oup_name
01 ,
3420 ,
DOMN
Oper at or

TAPE

TAPE

SR-2014

TEXT_TAPECONFIG(5)

SR-2014

number
cluster
type

{

DEVI CE
DEVI CE
DEVI CE
DEVI CE
}
:3,
:1,
= | OP_ESCON
CHANNEL
address = 036
status = UP

nm crocode_pat hnane = /etc/ m cro/ FCA2

status
pat h
prot oco

name
devi ce_
id

type

st at us

| oader

name
devi ce_
id

type
status

| oader
vendor _

name
devi ce_
id

type
status

| oader
vendor _

name
devi ce_
id

type

st at us
| oader

gr oup_nane

gr oup_nane

address = (0,0,10,0)

gr oup_nane

address = (0,0,10,1)

gr oup_nane

uP ,

120 ,

00 ,
3480 ,
DOMN
Oper at or

300 ,

00 ,
3480 |,
DOVN
stksun ,

301 ,

01 ,
3480 |,
DOWN
stksun ,

170 ,

04 ,
3490E ,
DOMN
Oper at or

TEXT_TAPECONFIG(5)

CART ,

CART ,

CART ,

3490E ,

. ucode

((034, 11), (030, 11), (032, 0))
STREAM NG45

551

TEXT_TAPECONFIG(5)

CHANNEL

BANK

BANK

552

FCA2

adapt or

address = 034,
status = UP ,

TEXT_TAPECONFIG(5)

m crocode_pat hnane = /et c/ m cro/ FCA2. ucode,

adapt or = FCA2

nunber = 5

CONTROL_UNI' T

DEVI CE

nunber = 6

status = UP ,
pat h = ((036,
protocol = ESCON

link address = 0

name = 170e ,
devi ce_gr oup_nane
id = 00 ,
type = 3490E ,
status = DOMN ,

| oader = operat or

CONTROL_UNI' T

DEVI CE

DEVI CE

status = UP ,
pat h = ((034,
protocol = ESCON

link _address = C3

name = 34C300 ,
devi ce_gr oup_nane
id = 00 ,
type = 3490E ,
status = DOMN ,

| oader = operat or
name = 34C301 ,

devi ce_gr oup_nane

00)) ,

ESCON ,

00)) ,

ESCON ,

ESCON ,

SR-2014

TEXT_TAPECONFIG(5)

}

BANK
{
}

BANK
{

SR-2014

7

DEVI CE

8

DEVI CE

TEXT_TAPECONFIG(5)

CONTROL_UNI' T

id = 01 ,
type = 3490E ,
status = DOMN ,

| oader = operat or
status = UP ,

path = ((034, 00)),
protocol = ESCON ,
link _address = C8

CONTROL_UNI' T

name = 34C800 ,

devi ce_group_nane = ESCON ,
id = 00 ,

type = 3490E ,

status = DOMN ,

| oader = operat or

status = UP ,

pat h = ((030, 00)),
protocol = ESCON ,

link _address = C3

CONTROL_UNI' T

pat h = ((032, 00)) ,
st at us = UP ,

protocol = ESCON ,

link _address = C3

nanme = devicel ,

devi ce_group_nane = ESCON ,
id = 00 ,

type = 3490E ,

status = DOMN ,

| oader = operat or

553

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

}
OPTI ONS
al I ow_unpr ot ect ed = YES,
ask | abel _switch = YES ,
ask_vsn = YES
avr _at _startup = YES ,
bl p_ring_status = UNRESTRI CTED
bl ocksi ze = 32768
check_expiration_date = YES
check file_id = YES
check_protection = YES
check_vsn = YES ,
cray_reel librarian = NO ,
cray_reel |ibrarian_nmandatory = NO ,
cray_reel librarian_operator_select_scratch = NO ,
cray_reel librarian_scratch_vsn = ?CRL??
devi ce_gr oup_nane = CART ,
file status = QLD ,
| abel _type = AL ,
| oader _devi ce_assi gnnment _or der = ROUND_ROBI N
mai nframe_j ob_origin =Cl ,
max_nunber _of _devi ce_groups =8
max_bl ocksi ze = 4194303 ,
max_nunber _of tape_users = 64 ,
nmessage_daenon_pi penamne = /usr/spool / msg/ nsg. requests
nunber _of autol oader _retries = 10
oper at or _nmessage_destination = (UNI COS) ,
operat or _nessage_frontend_i d =""
overcomm t _at_startup = NO ,
overcomm t _max = 20 ,
resel ect _cart = NO ,
retention_period_days =0,
ri ng_status = (IN QUT) ,
scratch_vol unme_action = FREE ,
scratch_volune_retries =3,

scratch_vol une_vsn ???7??7?

secure_frontend = NO ,
servicing_frontend_at _startup = NO ,
servicing_frontend_ id =""

servi cing_frontend_nmandatory = NO ,

servi cing_frontend_protocol = TCP

system code = CRI/UNI COS ,
tape_daenon_trace_file_group_id =9
tape_daenon_trace_fil e_node = 0640 ,

554 SR-2014

TEXT_TAPECONFIG(5) TEXT_TAPECONFIG(5)

t ape_daenon_trace_fil e_owner o,

tape_daenmon_trace file_prefix [usr/spool /tape/trace ,
tape_daenmon_trace fil e_size 409600 ,
tape_daenmon_trace_flg YES ,

t ape_daenon_trace_savefile_prefix [usr/spool /t ape/ save/trace ,
t cp_daenon_chi |l dname tcpnet

tcp_daenon_frontend_id

t cp_daenon_pi pename /usr/spool /t ape/tcpnet. pi pe ,

t cp_daenon_socket _port _nunber 1167
user _exit_mask UEX_NONE ,
verify_scratch_vsn YES ,

FILES

/etc/config/text_tapeconfig Tape subsystem configuration file

/usr/include/tapedef.h Definitions for trace file size
/usr/include/tapereqg.h Tape daemon interface definition file
SEE ALSO

nmsgdaenon(8), t pconf (8), t pconfi g(8), t pi ni t (8),t pm s(8) in the UNICOS Administrator
Commands Reference Manual, Cray Research publication SR—2022

Tape Subsystem Administration, Cray Research publication SG—2307

SR-2014

555

TMPDIR.USERS(5) TMPDIR.USERS (5)

NAME

tmpdi r. users — List of authorized users for t npdi r (1)

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

The/ et c/tnpdir. users file contains alist of users and their authorizations for the t npdi r (1)
command.

Thet npdi r. users fileis an ASCII file that contains one entry for each authorized user. Entries have the
following format:

user_name : path_name[: path_name]
The first field in each line is the user name (login name). The remaining fields specify the path names of

directories in which the user may create temporary directories. The fields are separated by colons; each
entry is separated from the next by a new-line character.

[etc/tnpdir.users List of authorized users for t npdi r (1)

SEE ALSO

556

t mpdi r (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014

TYPES(5)

NAME

t ypes — Definition of primitive system data types
SYNOPSIS

#i ncl ude <sys/types. h>
IMPLEMENTATION

Cray PVP systems

DESCRIPTION

TYPES(5)

The data types used in UNICOS system code are defined in the sys/ t ypes. h include file. Some data of

these types is accessible to user code.

typedef |ong wor d;
typedef unsigned |ong ulong;
typedef unsigned int ui nt;
typedef unsigned short ushort;
typedef |ong bl kno_t;
typedef |ong daddr _t;
typedef struct inode i node_t;
typedef word | abel _t[128]; /* save area for Bs, Ts */
typedef word * waddr _t;
typedef unsigned char uchar;
typedef short cnt _t;
typedef |ong paddr _t;
typedef |ong key t;

The daddr _t format is used for disk addresses except in an inode on disk; see f s(5). Times are encoded
in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a device code specify the
kind and unit number of a device and are installation-dependent. Offsets are measured in bytes from the
beginning of afile. Thel abel _t array of variablesis used to save the processor state while another
process is running.

FILES

/usr/include/sys/types.h

SEE ALSO
fs(5)

SR-2014

Data types definition file

557

UDB (5)

NAME

UDB (5)

udb — Format of the user database (UDB) file

IMPLEMENTATION

DESCR

All Cray Research systems

IPTION

The user database (UDB) files contain control information for users of the UNICOS operating system and for
the fair-share scheduler’s resource groups. The UDB files replace the / et ¢/ passwd file as the primary
source for user validation and control information. The UDB consists of the following files:

e /etc/udb

e /etc/udb. public

e /etc/udb_2/udb.index
e /etc/udb_2/udb. priva
e /etc/udb_2/udb. pubva

Thefilesin the/ et ¢/ udb_2 directory extend the capability of the UDB beyond what was available in
previous releases.

To alow users access to nonsensitive UDB information, the / et ¢/ udb. publ i c, /et c/ udb_2/i ndex,
and / et ¢/ udb_2/ udb. pubva files are publicly readable. The other files contain privileged information,
such as encrypted passwords and security information, and only privileged calers can read them. Write
access to al files is restricted to privileged users.

Y ou should write these files only through the supplied library routines described in | i budb(3C). Because
of the reliance on file locking to maintain the integrity of the files, other access methods may corrupt the
database and require regeneration of the files.

Organization of /etc/udb

558

The/ et ¢/ udb file is organized in blocks of 4096 characters (one sector) to provide the ability to ensure
atomic updates of information. The file is organized in blocks, as follows:

Block Description

0 File header for validation, version control, and default information
1-4 User ID (UID) hash blocks

5-8 Name hash blocks

9-n User information blocks

The user information blocks contain a bidirectional chain that links records in numeric order by UID. This
provides the mechanism that implements the next Ul D and pr evi ous Ul D access functions.

SR-2014

UDB (5) UDB (5)

When new records are added to the file, the first empty record dlot is alocated and the new record is written
to that position. Then the linkage is adjusted to place the new record in the correct logical place in the user
ID space. If no empty slot exists, the file will be extended by one block and the new record added at the
end of the file. The released library configuration specifies three user records per block.

Organization of extension files
The extension UDB files exist in the / et ¢/ udb_2 directory. The three extension files are udb. i ndex,
udb. pri va, and udb. pubva. The format of these files is described in this subsection, following a
description of the common file header. You can find the formal declarations of these files in the file
['i bc/ udb/ i budb. h.

Common file header

Each file has a 4096-byte header that contains control information used by the access method. Important
information in the header data includes the magic number, which identifies the file, and the version identifier,
which identifies the structure of the file. The header contains space for the default UDB table (st r uct
udbdef aul t) and the tape name table (st ruct udbt map), but this space is used only in udb. pubva.

Index file udb. i ndex

The udb. i ndex index file consists of a common file header, an index header, and two index arrays. The
first index array is the name array, and the second is the UID array. The size of the index file depends on
the number of records in the database.

The index arrays are packed together following the index header; the entire file occupies one or more 4096-
byte blocks with possible free space at the end. The | engt h field in the index header reflects this length.
Theentri es field in the index header specifies the number of entries actually in use in both arrays. (Each
array contains the same number of entries.)

The name array is sorted in ascending order on the nane field, as determined by st r cnp(3C); duplicate
entries are not allowed. The UID array is sorted on ascending value of UID; duplicates are allowed but the
order is arbitrary.

In each index entry, the pub_pos field specifies the disk offset of the target record in the public file; the
pri v_pos field is the offset of the start of the record in the private file.

Data files udb. pri va and udb. pubva

The udb. pri va and udb. pubva data files have the same format. The udb. pubva file contains public
information, and udb. pri va contains private information. A data file begins with a common file header,
followed by an arbitrary number of free records and data records.

Free records are chained together and linked to the free-chain pointer in the common data header. Free
records are used, if possible, when new records are created or when a record expands and must be moved to
find sufficient contiguous space.

A data record begins with a header that contains the following information:
* Name and UID of the record
¢ Length and compression information

¢ Time the record was last changed

SR-2014 559

UDB (5) UDB (5)

¢ Other control information
¢ Compressed data fields

The header is designed to provide sufficient information to reconstruct a damaged database without having to
decompress the data.

The compressed data is a variable-sized extension to the record header that has been compressed into a bit
stream to reduce its size and to remove unnecessary fields. All zero-length fields are deleted, because the
decompression process restores their 0 value in the udb structure without needing any recorded information
to do so. Each nonzero data field consists of an identifying token, a length, and a value. Compressed data
can be copied but cannot be decompressed without the decompression algorithm in the access method
library.

Format of User Entry
The format of a user entry as defined in the / usr /i ncl ude/ udb. h file is a property of | i budb, and the
interface is described in | i budb(3C).

NOTES

You can find the external representation of a record in the user database in the | i budb. 3c file. To save
space in the file, much of the information is packed as densely as is practical, using the structure defined in
the library source file (I i bc/ gen/ uent r ydb. c¢). Transformation functions within the library convert
between external and internal representation for the caller.

FILES
/et c/udb User information
[etc/udb. public Public user information
/et c/udb_2/udb. i ndex Public extension index file
[etc/udb_2/udb. priva Private field extension file
[et c/udb_2/udb. pubva Public field extension file
/usr/include/ sharedefs. h File of reasons for eviction by the fair-share scheduler

/usr/include/sys/secparm h File of user permissions

/usr/include/udb. h Structure definition of user database files

SEE ALSO
aci d(5), gr oup(5), passwd(5)
udbsee(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
[i budb(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

560 SR-2014

UPDATERS(5) UPDATERS(5)

NAME

updat er s — Configuration file for NIS updating

SYNOPSIS

[etc/yp/updaters

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

FILES

The/ et c/ yp/ updat er s file is a makefile (see make(1)) that updates network information services (NIS)
databases. You can update databases only in a secure network; that is, a network that has a publ i ckey(5)
database. Each entry in the file is a make target for a particular NIS database. For example, if an NIS
database named passwd. bynamne can be updated, a make target named passwd. bynane should be in
the updat er s file with the appropriate command to update the file.

The requesting client passes the information necessary to make the update to the ypupdat ed(8) program,
which passes the information to the updat e(3X) command through standard input. This information is
described in the following list:

* Network name of client wanting to make the update (a string)

* Type of update (an integer)

* Number of bytes in key (an integer)

¢ Actual bytes of key

* Number of bytes in data (an integer)

¢ Actual bytes of data

Each of the items is followed by a newline character, except for actual bytes of key and actual bytes of data.

After getting this information through standard input, the command to update the particular database decides
whether the user is allowed to make the change. If not, the command exits with the status of

NI SERR_ACCESS. If the user is allowed to make the change, the command makes the change and exits
with a status of 0. If any errors exist that can prevent the updater from making the change, updat er s exits
with the status that matches a valid NIS error code described in the r pcsvce/ ypcl nt . h file.

[etc/yp/updaters File that updates NIS databases

SR-2014 561

UPDATERS(5) UPDATERS(5)

SEE ALSO
publ i ckey(5)
make(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011,

ypupdat ed(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

562 SR-2014

UTMP(5)

NAME
ut np, wt mp — ut np and wt np file formats

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <utnp. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

UTMP(5)

The ut np and wt np files hold user information for such commands as | ogi n(1), who(1), and wri t e(1).

Accounting programs such as csal i ne(8) and acct con1(8) aso process the ut mp and wt np files.

These files have the following structure, as defined by the ut np. h include file:

#define UTMP_FILE "/etc/utnp"
#define WIMP_FILE "/etc/w np"
#define ut_nane ut _user

struct utnp {

char ut _user[8]; /*
char ut _id[4]; /*
char ut _line[12]; /*
char ut _host [24]; /*
short ut _pid; /*
short ut _type; /*

struct exit_status {
short e_term nation;
short e _exit;

} ut_exit;

time_t ut_tine;

char ut _t pat h[TPATHSI Z] ;
short ut _jid;

SR-2014

User |ogin nane

*/

/etc/lines ID (usually line #)*/

devi ce nane (console, |nxx)
Nanme of renote machine
process |ID

type of entry

/* Process termination status
/* Process exit status

/* Exit status of process

/* mar ked as DEAD_PROCESS

/* time entry was nade

/* path of tenporary file

/* job I D of pgrp |eader

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

563

UTMP(5)
/* Definitions for ut_type */
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TI ME 3
#define NEWTIME 4
#define |IN T_PROCESS 5 /* Process spawned by "init"
#define LOGI N_PROCESS 6 /* A process waiting for login
#define USER PROCESS 7 /* A user process
#define DEAD PROCESS 8
#define ACCOUNTI NG 9
#define UTMAXTYPE ACCOUNTING /* Largest |egal value of ut_type
/* Special strings or formats used in the "ut_line" field */
/* when accounting for sonmething other than a process */
/* No string for the ut_line field can be nore than */
/* 11 chars + a NULL in length */
#define RUNLVL_MSG "run-I|evel %"
#define BOOT_MSG "system boot"
#define OTIME MSG "old tinme"
#define NTIME MSG "new tine"
FILES
[etc/utnp File of user information
[etc/wtnp File of user information

/usr/include/sys/types.h
[usr/include/utnp.h

SEE ALSO
| ast (1B), | ogi n(1), who(1), wri t e(1) in the UNICOS User Commands Reference Manual, Cray

564

Research publication SR-2011

Data type definition file
Format definition for the ut np and wt np files

*/
*/

*/

UTMP(5)

get ut (3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080

acct conl(8), csal i ne(8), f wt np(8), wt npf i x(8) in the UNICOS Administrator Commands Reference
Manual, Cray Research publication SR—2022

SR-2014

UUENCODE(5) UUENCODE(5)

NAME

uuencode — Encoded uuencode file format

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Files output by uuencode(1) consist of a header line, followed by a number of body lines, and a trailer
line. The uudecode(1) command ignores any lines that precede the header or following the trailer. Lines
preceding a header must not look like a header.

The header line is distinguished by having begi n the first six characters. The word begi n is followed by
a mode (in octal) and a string that names the remote file. A space separates the three items in the header
line.

The body consists of a number of lines, each consisting of at most 62 characters (including the trailing
newline character). These consist of a character count, followed by encoded characters, followed by a
newline character. The character count is one printing character, and it represents an integer, the number of
bytes the rest of the line represents. Such integers are always in the range from 0 to 63 and can be
determined by subtracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to make the
characters printing. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of 3,
this fact can be determined by the value of the count on the last line. Extra characters will be included to
make the character count a multiple of 4. The body is terminated by a line with a count of 0. This line
consists of one ASCII space.

The trailer line consists of end on a line by itself.

SEE ALSO

mai | (1) for electronic message system information
uudecode(l) to decode a binary file
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2014 565

VALUES(5) VALUES(5)

NAME

val ues — Machine-dependent values definition file

SYNOPSIS

#i ncl ude <val ues. h>

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The val ues. h include file contains a set of manifest constants defined for Cray Research processor
architectures. The model assumed for integers is binary representation (twos complement), where the sign is
represented by the value of the high-order hit.

The most important constants are defined as follows:

DSI GNI F Number of significant bits in the mantissa of a double-precision, floating-point humber

FSIGNI F Number of significant bits in the mantissa of a single-precision, floating-point number

H BI TI Value of aregular integer with only the high-order bit set (usually the same as HI BI TS or
HI BI TL)

H Bl TL Value of along integer with only the high-order bit set

H BI TS Value of a short integer with only the high-order bit set

MAXDOUBLE, LN_MAXDOUBLE
Maximum value of a double-precision, floating-point humber and its natural logarithm

MAXFLQOAT, LN_MAXFLCAT
Maximum value of a single-precision, floating-point number and its natural logarithm

MAXI NT Maximum value of a signed regular integer (usualy the same as MAXSHORT or
MAXLONG)

MAXLONG Maximum value of a signed long integer

MAXSHORT Maximum value of a signed short integer

M NDOUBLE, LN_M NDOUBLE
Minimum positive value of a double-precision, floating-point number and its natural
logarithm

M NFLQAT, LN_M NFLCAT
Minimum positive value of a single-precision, floating-point number and its natural
logarithm

566 SR-2014

VALUES(5) VALUES(5)

FILES
[usr/include/val ues. h Machine-dependent values definitions

SEE ALSO

fl oat. h(3C), nuneric_I i m@3C), val ues. h(3C) in the UNICOS System Libraries Reference Manual,
Cray Research publication SR—2080

SR-2014 567

YPFILES(5) YPFILES(5)

NAME

ypfil es — Network information service (NIS) database and directory structure

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

568

The network information service (N1S) function provides a simple network look-up service that consists of
databases and processes. The NIS network look-up service uses a database of dbmfilesinthe/etc/yp
directory.

A dbmdatabase consists of two files created by calls to the dbm(3C) library package. One has the file name
extension . pag and the other has the file name extension . di r. For instance, the database named

host s. bynane is implemented by the pair of files names host s. bynane. pag and

host s. bynane. di r.

A dbmdatabase served by the NIS is called an NIS map. An NIS domain is a named set of NIS maps.
Each NIS domain is implemented as a subdirectory of / et ¢/ yp. Any number of NIS domains can exist;
each may contain any number of maps.

The NIS look-up service itself requires no maps, although they may be required for the normal operation of
other parts of the system. There is no list of maps that NIS serves; if the map exists in a given domain and
a client asks about it, the NIS servesit. For a map to be accessible consistently, it must exist on al NIS
servers for the domain. To provide data consistency between the replicated maps, make an entry to transfer
the NIS map periodically from each NIS server (with the ypxf r (8) command) / usr/ | i b/ cront ab on
each server.

NIS maps should contain key-value pairs that consist of the YP_LAST_MODI FI ED key and the
YP_MASTER _NAME key. YP_LAST_MODI FI ED is the order number or time (in seconds) when the map
was built; its value is a 10-character ASCIlI number. YP_MASTER NAME is the name of the NIS master
server. The makedbm(8) command generates the key-value pairs automatically. NIS can serve a map that
does not contain key-value pairs, but the ypser v(8) process cannot return values for a

Get _order_nunber or Get _nast er _name request. When ypxf r (8) transfers a map from a master
NIS server to a dave, ypxf r (8) also uses the values of these two keys.

You must generate and modify NIS maps only at the master server. To copy them to the slaves, use
ypxf r (8). This prevents potential byte-ordering problems among NIS servers running on machines that
have different architectures and reduces the amount of disk space required for the dbmfiles. To set up the
NIS database initially for both masters and slaves, use ypi ni t (8).

SR-2014

YPFILES(5) YPFILES(5)

After the server databases are set up, the contents of some maps probably will change. Generally, an ASCII
source version of the database exists on the master. To change this version, use a text editor. The edited
copy is incorporated into the NIS map and is propagated from the master to the slaves by running the

[etclyp/yp. mk makefile. All standard maps have entriesin / et ¢/ yp/ yp. nk; if you add an NIS map,
edit this file to support the new map. The makefile uses makedbn(8) to generate the NIS map on the
master and yppush(8) to propagate the changed map to the daves. The yppush(8) command is a client of
the map ypser ver s, which lists all the NIS servers.

NOTES

The NIS was formerly known as yellow pages, which explains the y p-prefix on command and directory
names.

SEE ALSO

makedbm(8), r pci nf 0(8), ypi ni t (8), yppol I (8), yppush(8), ypser v(8), ypxf r (8) in the UNICOS
Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2014 569

INTRO(7D) INTRO(7D)

NAME

i nt r o — Miscellaneous information pages

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Section 7D contains miscellaneous documentation, mostly concerning DWB. DWB, which is based on
AT&T’s Documenter’ s Workbench, runs under UNICOS and provides a variety of macro packages.

In addition to DWB man pages, this section includes a man page for msg(7D), the text formatting macros
for UNICOS messages.

570 SR-2014

EQNCHAR(7D) EQNCHAR(7D)

NAME
eqnchar — Specia character definitions for eqn(1)

SYNOPSIS
eqn /usr/pub/eqnchar [filename] Otrof f [options]
neqn /usr/ pub/eqnchar [filename] O nrof f [options]
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The eqnchar command containst r of f (1) and nr of f (1) character definitions for constructing characters
that are not available on the Graphic Systems typesetter. These definitions are primarily intended for use
with eqn(1) and neqn(1). It contains definitions for the following characters:

ciplus ® 0o Il square O
citimes ® langle { circle @)
wig O rangle) blot]
-wig) hbar n bullet .
>wig 2 ppd 1 prop O
<wig 8 <-> - empty O
=wig <=> member O
star * < ¢ nomem 7
bigstar * > * cup O
=dot = ang L cap N
orsign 14 rang L incl =
andsign A 3dot : subset 0
=del A thf supset O
OppA ¥ quarter Ya Isubset O
oppE —m 3quarter Y Isupset O
angstrom A degree °

FILES

[usr/ pub/ eqgnchar

SEE ALSO

eqn(l), nrof f (1), t r of f (1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

SR-2014 571

MAN(7D)

NAME

MAN(7D)

man — Macros to format AT&T reference manual pages

SYNOPSIS
nroff -man filename ...

troff -man filename ...

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

These macros are used to lay out the reference pages in this manual. If filename contains format input for a
preprocessor, the preceding commands must be piped through the appropriate preprocessor. man(1) handles
this automatically. See the Conventions subsection.

Any text argument t may be 0 to 6 words. You may use quotation marks to include SPACE charactersin a
word. If text is empty, the special treatment is applied to the next input line with text to be printed. In this
way, you may use . | toitalicize a whole line, or use . SB to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and it is reset to default
value on reaching a nonindented paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing font and size

setting macros.

These strings are predefined by - man:

*R ‘00, “(Reg) innroff

*S Change to default type size.

Requests
n.t.l. Next text line

p.i. Prevailing indent

Cause If no
Request break argument Explanation
.Bt No t=n.t.l. Text isin bold font.
. Bl t No t=n.t.l. Join words, aternating bold and italic.
. BRt No t=n.t.l. Join words, aternating bold and roman.
. DT No Si ... Restore default tabs.

572

SR-2014

MAN(7D)

MAN(7D)

Cause If no

Request break argument Explanation

.HPi Yes i=p.i. Begin paragraph with hanging indent. Set prevailing indent to
i.

ot No t=n.t.l. Text isitalic.

.1Bt No t=n.t.l. Join words, aternating italic and bold.

AP Xi Yes ="" Same as . TP with tag x.

IRt No t=n.t.l. Join words, alternating italic and roman.

Xt No - Index macro, for Sun internal use.

.LP Yes - Begin left-aligned paragraph. Set prevailing indent to 0.5i.

.PDd No d=.4v Set vertical distance between paragraphs.

. PP Yes - Same as. LP.

. RE Yes - End of relative indent. Restore prevailing indent.

.RBt No t=n.t.l Join words, alternating roman and bold.

Rt No t=n.t.l Join words, alternating roman and italic.

.RSi Yes i=p.i. Start relative indent, increase indent by i. Set prevailing
indent to 0.5i for nested indents.

. SBt No - Reduce size of text by 1 point and make text bold.

. SHt Yes - Section heading.

. SMt No t=n.t.l Reduce size of text by 1 point.

.SSt Yes t=n.t.l Section subheading.

.THnsdfm Yes - Begin reference page n, of section s; d is the date of the most
recent change. If present, f is the left page footer; mis the
main page (center) header. Set prevailing indent and tabs to
0.5i.

TP Yes i=p.i. Begin indented paragraph, with the tag given on the next text
line. Set prevailing indent to i.

.TXtp No - Resolve the title abbreviation t; join to punctuation mark (or

text) p.

Conventions
When formatting a man page, man(1) examines the first line to determine whether it requires special
processing. For example, afirst line consisting of the following code indicates that the man page must be
run through the t bl (1) preprocessor:

SR-2014

At

573

MAN(7D) MAN(7D)

A typical manual page for a command or function is laid out as follows:

. THtitle [1-8]
The name of the command or function, which serves as the title of the manual page. Thisis
followed by the number of the section in which it appears.

. SH NAME
The name, or list of names, by which the command is called, followed by a dash and then a

one-line summary of the action performed. All in roman font, this section contains no t r of f (1)
commands or escapes, and no macro requests. It is used to generate the what i s(1) database.

. SH SYNCPSI S

Commands The syntax of the command and its arguments, as typed on the command line.
When in bold, you must type a word exactly as printed. When in italics, you can
replace a word with an argument. References to bold or italicized items are not
capitalized in other sections, even when they begin a sentence.

Syntactic symbols appear in roman face:
[1 Anargument, when surrounded by brackets, is optional.

| Arguments separated by a vertical bar are exclusive. You can supply only
one item from such a list.

Arguments followed by an ellipsis can be repeated. When an ellipsis follows
a bracketed set, you can repeat the expression within the brackets.

Functions If required, the data declaration, or #i ncl ude directive, is shown first, followed by
the function declaration. Otherwise, the function declaration is shown.
. SHDESCRI PTI ON
A narrative overview of the command or function’s external behavior. This includes how it
interacts with files or data, and how it handles the standard input, standard output, and standard

error. Internals and implementation details are usually omitted. This section tries to provide a
succinct overview.

Literal text from the synopsis appears in constant width, as do literal file names and references to
items that appear elsewhere in the reference manuals.

Arguments are italicized. If a command interprets either subcommands or an input grammar, its
command interface or input grammar is usually described in a USAGE section, which follows the
OPTIONS section. The DESCRIPTION section describes only the behavior of the command itself,
not that of subcommands.

. SH OPTI ONS
The list of options, along with a description of how each affects the command’ s operation.

. SHFI LES
A list of files associated with the command or function.

574 SR-2014

MAN(7D) MAN(7D)

. SH SEE ALSO
A comma-separated list of related man pages, followed by references to other published materials.

. SH DI AGNCSTI CS
A list of diagnostic messages and an explanation of each.

. SHBUGS
A description of limitations, known defects, and possible problems associated with the command or
function.

FILES

fusr/lib/tmac/tmac. an

SEE ALSO

man(1), nrof f (1), t bl (1), trof f (1), whati s(1) in the UNICOS User Commands Reference Manual,
Cray Research publication SR—2011

SR-2014 575

ME(7D)

NAME

me — Macros for formatting papers

SYNOPSIS

nroff -ne [optiong] filename ...

troff -me [options] filename ...

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

ME(7D)

The me package of nr of f (1) and t r of f (1) macro definitions provides a canned formatting facility for
technical papersin various formats. When producing two-column output on a terminal, filter the output

through col (1).

A definition of the macro requests follow. Many nr of f (1) and t r of f (1) requests are unsafe in

conjunction with this package; however, you may use these requests with impunity after the first . pp:

. bp Begins new page.

. br Breaks output line here.

.spn Inserts n spacing lines.

.I'sn (line spacing) n=1 single; n=2 double-space.
. ha Does not align right margin.

.cen Centers next n lines.

.uln Underlines next n lines.

.8z +n Adds n to point size.

Output of the eqn(1), neqn(l), and t bl (1) preprocessors for equations and tables is acceptable as input.

Requests
In the following list, initialization refers to the first . pp, . I p, . i p, . np, . sh, or . uh macro. Thislist is
incomplete.
Initial Cause
Request value break Explanation
.(c - Yes Begins centered block.
. (d - No Begins delayed text.
(f - No Begins footnote.

576

SR-2014

ME(7D)

ME(7D)

Initial Cause

Request value break Explanation

(1 - Yes Begins list.

.(q - Yes Begins major quote.

. (xx - No Begins indexed item in index x.

(z - No Begins floating keep.

)c - Yes Ends centered block.

.)d - Yes Ends delayed text.

I f - Yes Ends footnote.

D - Yes Ends list.

.)q - Yes Ends major quote.

) X - Yes Ends index item.

)z - Yes Ends floating keep.

.++mH - No Defines paper section. m defines the part of the paper, and it
can be C (chapter), A (appendix), P (preliminary, for instance,
abstract, table of contents, and so on), B (bibliography), RC
(chapters renumbered from page one each chapter), or RA
(appendix renumbered from page 1).

.+C T - Yes Begins chapter (or appendix, and so on, as set by . ++). Tis
the chapter title.

. 1lc 1 Yes One-column format on a new page.

. 2C 1 Yes Two-column format.

. EN - Yes Space after equation produced by eqn(1) or meqgn.

. EQxy - Yes Precedes equation; break out and add space. Equation number
isy. The optional argument x may be | to indent equation
(default), L to left-adjust the equation, or C to center the
equation.

. GE - Yes Ends gremlin picture.

. GS - Yes Begins gremlin picture.

. PE - Yes Ends pi ¢(1) picture.

. PS - Yes Begins pi c(1) picture.

. TE - Yes Ends table.

SR-2014

577

ME(7D)

578

ME(7D)

Initial Cause

Request value break Explanation

. TH - Yes Ends heading section of table.

. TSX - Yes Begins table; if x is H, table has repeated heading.

.ac AN - No Sets up for ACM style output. A is the Author’s name(s), and
N is the total number of pages. Must be given before the first
initialization.

. b x No No Prints x in bold face; if no argument, switches to bold face.

. ba +n 0 Yes Augments the base indent by n. Use this indent to set the
indent on regular text (such as paragraphs).

. bc No Yes Begins new column.

. bi x No No Prints x in bold italics (no-fill only).

. bu - Yes Begins bulleted paragraph.

. bx x No No Prints x in a box (no-fill only).

.ef 'xXyz No Sets even footer to xy z

.eh’'xXyz " No Sets even header to xy z

fo'xyz No Sets footer to X y z

. hx - No Suppresses headers and footers on next page.

.he'xyz ' No Sets header to Xy z

. hl - Yes Draws a horizonta line.

J0oX No No Italicizes x; if x missing, italic text follows.

ipXxy No Yes Starts indented paragraph, with hanging tag x. Indentation isy
ens (default 5).

dp Yes Yes Starts left-blocked paragraph.

.lo - No Reads in afile of local macros of the form . *x. Must be given
before initialization.

. np 1 Yes Starts numbered paragraph.

of 'xXyz No Sets odd footer to xy z

.oh’'xXyz """ No Sets odd header to xy z

. pd - Yes Prints delayed text.

. pp No Yes Begins paragraph. First line is indented.

SR-2014

ME(7D)

ME(7D)
Initial Cause

Request value break Explanation

T Yes No Roman text follows.

.re - No Resets tabs to default values.

. SC No No Reads in afile of special characters and diacritical marks. Must
be given before initialization.

.shnx - Yes Section head follows, font automaticaly bold. nis level of
section, and x is title of section.

. sk No No Leaves the next page blank. Only one page is remembered
ahead.

. smx - No Sets x in a smaller point size.

.SZ +n 10p No Augments the point size by n points.

.th No No Produces the paper in thesis format. Must be given before
initialization.

.tp No Yes Begins title page.

.uX - No Underlines argument (even in t r of f (1)). (No-fill only).

. uh - Yes Like . sh, but unnumbered.

. Xp X - No Prints index x.

FILES

fusr/lib/tmac/*. me

/fusr/lib/tmac/e

SEE ALSO

col (1), egn(2), nrof f (1), pi c(2), t bl (1), t rof f (1) in the UNICOS User Commands Reference Manual,

Cray Research publication SR—2011

SR-2014

579

MS(7D)

NAME

nms — Text formatting macros

SYNOPSIS

nroff -ns [optiong] filename ...

troff -ms [options] filename ...

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

MS(7D)

The s package of nr of f (1) and t r of f (1) macro definitions provides a formatting facility for various
styles of articles, theses, and books. When producing two-column output on a terminal or line printer, or
when reverse-line motions are needed, filter the output through col (1). Definitions of all external - s

macros follow.

NOTE: This - ms macro package is an extended version written at Berkeley and is a superset of the
standard - s macro packages as supplied by Bell Labs. Some of the Bell Labs macros have been removed;
for instance, it is assumed that the user has little interest in producing headers stating that the memo was

generated at Whippany Labs.

Many nr of f (1) and t r of f (1) requests are unsafe in conjunction with this package. However, you may
use the first four requests that follow with impunity after initialization, and you may use the last two even

before initialization:

. bp Begins new page.

. br Breaks output line.

.spn Inserts n spacing lines.

.cen Centers next n lines.

.I'sn Line spacing: n=1 single; n=2 double-space.
. ha Does not align right margin.

Font and point size changes with\ f and \ s aso are alowed (for example, \ f | word\ f R italicizes word).

Output of the t bl (1) and egn(1) preprocessors for equations and tables is acceptable as input.

Requests

580

SR-2014

MS(7D) MS(7D)
Macro Initial Break?
name value Reset? Explanation
.ABx - y Begins abstract; if x = no, do not label abstract.
. AE - y Ends abstract.
Al - y Author’s institution.
. AM - n Better accent mark definitions.
. AU - y Author’s name.
.Bx - n Emboldens x; if no x, switches to bold face.
. B1 - y Begins text to be enclosed in a box.
. B2 - y Ends boxed text and prints it.
. BT date n Bottom title, printed at foot of page.
.BXx - n Prints word x in a box.
. CM if t n Cuts mark between pages.
.CT - A% Chapter title: page number moved to CF (TM only).
.DAXx ifn n Forces date x at bottom of page; today if no x.
. DE - y Ends display (unfilled text) of any kind.
.DSY | y Begins display with keep; x = 1,L,C, B; y = indent.
.1 Dz 8n,.5i y Indented display with no keep; y = indent.
. LD - y Left display with no keep.
.CD - y Centered display with no keep.
. BD - y Block display; centers entire block.
.EFx - n Even page footer x (three part as for . t).
.EHx - n Even page header x (three part asfor . t |).
. EN - y Ends displayed equation produced by eqn(1).
.EQY - y Breaks out equation; x = L,I,C; y = equation number.
. FE - n Ends footnote to be placed at bottom of page.
. FP - n Numbered footnote paragraph; may be redefined.
.FSx - n Starts footnote; x is optional footnote label.
. HD undef n Optional page header below header margin.
X - n Italicizes x; if no x, switches to italics.
JAPY - A% Indented paragraph, with hanging tag x; y = indent.
XY - y Indexes words X y and so on (up to five levels).
. KE - n Ends keep of any kind.
. KF - n Begins floating keep; text fills remainder of page.
. KS - y Begins keep; unit kept together on a single page.
SR-2014 581

MS(7D) MS(7D)

Macro Initia Break?
name value Reset? Explanation

. LG - n Larger; increases point size by 2.
. LP - A% Left (block) paragraph.
.MCx - A% Multiple columns; x = column width.
.NDx ift n No date in page footer; x is date on covers.
.NHY - A% Numbered header; x = level, x = 0 resets, x = S setsto .
. NL 10p n Sets point size back to normal.
.OFx - n Odd page footer x (three part asfor . t |).
.OHx - n Odd page header x (three part asfor . t1).
. P1 if TM n Prints header on first page.
. PP - A% Paragraph with first line indented.
. PT -% - n Page title, printed at head of page.
PXx o - y Prints index (table of contents); X = no suppresses title.
.QP - A% Quotes paragraph (indented and shorter).
R on n Returns to roman font.
. RE 5n A% Retreats. ends level of relative indentation.
.RPx - n Released paper format; x = no stops title on first page.
. RS 5n A% Right shifts: starts level of relative indentation.
. SH - A% Section header, in bold face.
. SM - n Smaller; decreases point size by 2.
. TA 8n,5n n Sets TAB charactersto 8n 16n ... (nr of f (1)) 5n 10n ... (t r of f (1)).
.TCx - y Prints table of contents at end; X = no suppresses title.
. TE - y Ends table processed by t bl (1).
. TH - y Ends multipage header of table.
. TL - y Title in bold face and two points larger.
. T™M off n UC Berkeley thesis mode.
.TSx - A% Begins table; if x = H, table has multipage header.
.ULx - n Underlines x, even in t r of f (2).
UXx - n UNIX; trademark message first time; x appended
. XAY - y Another index entry; x = page or no for none; y = indent.
. XE - y Ends index entry (or series of . | X entries).
. XP - A% Paragraph with first line exdented, others indented.
.XSY - y Begins index entry; x = page or no for none; y = indent.
.1C on A% One-column format, on a new page.

582 SR-2014

MS(7D)

MS(7D)

Macro
name

Initia Break?
value Reset?

Explanation

.2C
-
10

[N

Begins two-column format.

Beginning of r ef er reference.

Ends unclassifiable type of reference.

N = 1:journal-article, 2:book, 3:book-article, 4:report.

Registers

To control formatting distances in - s, use built-in number registers. For example, the following command
line sets the line length to 6.5 inches:

. nr

LL 6.5i

A table of number registers and their default values follows:

Name

Register controls

Takes effect Default

PS
VS
LL
LT
FL
PD

DD
Pl
Q
FI
PO
HM
FM
FF

Point size
Vertical spacing
Line length
Title length
Footnote length
Paragraph
distance

Display distance
Paragraph indent
Quote indent
Footnote indent
Page offset
Header margin
Footer margin
Footnote format

Paragraph 10

Paragraph 12
Paragraph 6i

Next page SameasLL
Next . FS 5.5i

Paragraph 1v (if n), 0.3v (if t)

Displays 1v (if n), 0.5v (if t)
Paragraph 5n
Next . QP 5n
Next . FS 2n

Next page 0 (if n), i (if t)
Next page i

Next page i

Next . FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line length to 7, for
example, results in output with one character per line; setting FF to 1 suppresses footnote superscripting;
setting it to 2 also suppresses indentation of the first line; and setting it to 3 produces an . | P-like footnote
paragraph.

SR-2014

583

MS(7D) MS(7D)

A list of string registers available in - s follows; you may use them anywhere in the text:
Name String's Function

*Q Quote (" innroff (1), ** introff (1))

*U Unquote (" innroff (1), '’ introff (1))

\ *— Dash (- - innrof f (1), —introf f (1)

*(MO Month (month of the year)

*(DY Day (current date)

\ ** Automatically numbered footnote
*7 Acute accent (before letter)

*° Grave accent (before |etter)

* A Circumflex (before letter)

*, Cedilla (before letter)

*: Umlaut (before letter)

* Tilde (before letter)

When using the extended accent mark definitions available with . AM these strings should come after, rather
than before, the letter to be accented.

BUGS

Floating keeps and regular keeps are diverted to the same space; therefore, you cannot mix them together
with predictable results.

FILES

fusr/libl/tmac/ ms. ?2??

fusr/libl/tmac/s

SEE ALSO

col (1), egn(1), nrof f (1), t bl (2), t r of f (1) in the UNICOS User Commands Reference Manual, Cray
Research publication SR—2011

584 SR-2014

MSG(7D)

NAME

MSG(7D)

nmsg — Text formatting macros for UNICOS messages

SYNOPSIS

nroff -nsg files
trof f -nsg files

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The msg macros are a package of nr of f and t r of f macro definitions that provides a formatting facility
for the printed documents of the UNICOS message system. The Requests subsection defines all available

macros.

Virtually all nrof f andt r of f directives should be unnecessary in conjunction with this macro package.
However, they are available if desired and should work as documented. You aso can create tables and
equations by using t bl (1) and eqn(1) directives, respectively; these processors work with the msg macros.

For a description of how to format and print a file that uses the msg macros, see the Cray Message System
Programmer’s Guide, Cray Research publication SG-2121.

Requests

Unless otherwise noted, all msg requests (macros) must start at the beginning of aline. No other text lines
or words can start with a. symbol.

. 2S

. 2E
. BL [X]

. CF "gtring"

Starts two-column mode. This macro automatically makes point size equal to 9 and vertical
spacing (leading) equal to 11.

Ends two-column mode.

(Bulleted list) Makes an entry in a bulleted list. The x is either d for double-spaced list or s
for single-spaced list (the default).

(Center footer string) Defines string as the center string for footers. In Cray Research style,
the center footer contains the security level of the manual (public, private, or proprietary).

. CHx "stringl" "string2"

SR-2014

(Column headings) Makes underlined column heads for two-column lists; x is indent (as in
_TL); stringl and string2 are column heads. x cannot be less than 1.28 or greater than 47. If
x is less than the width of stringl, the width of stringl is used as the first column width. If
the first column width would leave the second column less than 5-ens wide, x is adjusted to
keep the second column 5-ens wide.

585

MSG(7D)

586

- CR[X [y]

. DL [X]

. EQ
. EN

. GC " group"

KT Xi]

. MN "string"
. M5 msg# [b]

. ME
. MI "string”
-NL [x[y[z[d]]]]

MSG(7D)

(Counter reset) Resets the counter that is output by the\ * n string. The x argument is the
number at which the next count will start (default is 1). They argument is the type of the
counter character (default is Arabic numerals). For alist of the values that you may use for y,
see the description of the x argument of the . NL macro).

(Code start) Begins a block of code in Courier font. In two-column mode (point size 9), lines
between . CS and . CE macros cannot consist of more than 44 characters.

(Code end) Ends a code block started with . CS.

(Dashed list) Makes an entry in a dashed list. The x is either d for double-spaced list or s for
single-spaced list (the default).

Starts equation (with eqn); ends equation with . EN.
Ends equation (with eqgn).

(Group code) Defines the group code to be used for a set of messages. You must define the
group code because it is printed as part of the message identifier for each message.

(Keep together) Keeps the next x output lines or the next x inches from breaking over a page.
x is interpreted as a line count unless you specify the i suffix. In that casg, it is interpreted as
a number of inches (3. 9i , for example). If x is more than 53, the _ KT macro is ignored.

(Manual number) Defines the manual (publication) number for page footers as string.

This macro is substituted automatically for $nexp tags by the cat xt (1) command.

(Message start) Starts a message block that, by default, will not break over columns or pages,
unless it is longer than one column (page). To force a message to break over a column or
page, use the b option. The msg-# is the message number used in the online message system.
If the text will be used in the UNICOS message system, this argument is required.

(Message end) Ends a message block.
(Manual title) Defines the manual title for use in page headers as string.

(Numbered list) Makes an entry in a numbered list. The x is either the type of numerals you
want (default is Arabic), or ad to specify a double-spaced, Arabic-numbered list. They is the
indent between the numerals and the paragraph. The z is the number at which to (re)start the
count if you want something other than the first character in the series (1 or i or A, and so
on). If you want a double-spaced list that uses something other than Arabic numerals (so that
you cannot specify d for x), specify the d as a fourth argument to . NL. The x argument can
have one of the following values:

SR-2014

MSG(7D)

. NN
. PP [X]

MSG(7D)

Default
Vaue indent Result

1 33 Arabic numerals (the default)

a 3.3 Lowercase letters

A 4 Uppercase letters

i 45 Lowercase roman numerals

| 5 Uppercase roman humerals

d 3.3 Arabic numerals, with full blank lines between list entries

Y ou should end numbered lists with the . NN macro.
(Numbered-list end) Ends numbered list (resets numbers to 1 at that level of indent).

(Paragraph (resets indent)) x is the number of (printed) lines to keep together on the same
page; the default is 4. Use this argument only if you use the b option to . MS or if your
message is longer than one column.

. RN [fig-no [pg-no [tbl-no [sec-no [sec-style]]]]

. SN

. SP [X]

- SQ[X]

. ST "gtring"
CTL [x[y]]

. TS

. TE

SR-2014

(Renumber) Placed at the head of a section you want to print by itself (without preceding
sections), this macro starts figure, page, table, and section numbers at the values specified.
The last argument is either 0 for numeric section numbers (the default) or A for alphabetic
section numbers (used in appendixes).

(Sequential numbering) Ensures that pages, figures, and tables are numbered sequentially
across multiple files; specify as the last line of each file. Also, allows multiple sections in the
same file; put just before any . ST macros other than the very first one in afile.

Adds vertical space (leading) without resetting indentation. Use SP instead of PP in
indented lists and examples). The X is the number of following lines to keep in one block
(not break over pages).

Space half aline (use instead of _PP in indented lists and examples). The x is the number of
following lines to keep in one block (not break over pages).

(Section title) string is the section title.

(Tagged list) Makes a tagged-paragraph list. The following line is the tag, and, on only the
first entry, X is the indent; it cannot be less than 1.28 or greater than 47, and if you do not
specify it, it defaultsto 5 ens. They is either d for double-spaced list or s for single-spaced
list (the defaullt).

(Table start) Begins a table to be processed with t bl . Be sure that tables are 3.3 1. or
narrower in width.

(Table end) Ends a table to be processed by t bl .

587

MSG(7D) MSG(7D)

Font Changes

\fB Change to New Century bold font (can start anywhere on a line).
\fl or*V Change to New Century italic font (can start anywhere on a line).
\fR Change to New Century roman font (can start anywhere on a line).
*C Change to Courier font (can start anywhere on aline).

*(Cbor\f(CB Changeto Courier bold font (can start anywhere on aline).
*(Coor\f(CO Changeto Courier italic font (can start anywhere on a line).
\fP Change to previous font (use to undo font change).
Nonprinting Comments
" Comment line; entire line is ignored when formatted (this version is preferred).

Predefined Strings
Hardware Names

*y \ %CRAY\ Y- MP; the resulting text, "CRAY Y-MP", will not break over lines.

*(ys \ %CRAY\ Y- MP\ EL; the resulting text, "CRAY Y-MP EL", will not break over
lines.

*(EL \ %L\ seri es; the resulting text, "EL series’, will not break over lines.

*(EO \ %L\ | CS; the resulting text, "EL 10S", will not break over lines.

*(c9 \ CRAY\ C90; the resulting text, "CRAY C90", will not break over lines.

*(le \ % CS- E; the resulting text, "IOS-E", will not break over lines.

*(1E \ % OS nodel \ E; the resulting text, "IOS model E", will not break over lines.

*m \ UCRAY\ T3D; the resulting text, "CRAY T3D", will not break over lines.

* (WP \ %Cray\ MPP\ syst ens; the resulting text, "Cray MPP systems', will not break
over lines

Miscellaneous:

*(Ca CRI

*(Cr Cray Research, Inc.

*(UM \ NI COS\ MAX; the resulting text, "UNICOS MAX", will not break over lines
*u UNICOS

588 SR-2014

MSG(7D) MSG(7D)

FILES
fusr/lib/tmac/tmac. sg Message macro package

SEE ALSO

cat xt (1), expl ai n(1) describe UNICOS message system user commands
eqn(l), nrof f (1), t bl (1), t r of f (1) describe text formatting utilities
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

Cray Message System Programmer’s Guide, Cray Research publication SG—2121, contains details about all
aspects of the message system

SR-2014 589

