INTRO(3C) INTRO(3C)

NAME
i ntro — Introduction to the UNICOS C library

IMPLEMENTATION
All Cray Research systems

INTRODUCTION

This manual describes the UNICOS C library functions used with the Cray Standard C compiler on all Cray
Research, Inc. (CRI) computer systems running the UNICOS operating system release 9.0 or higher. It also
describes two sets of Fortran library functions - the sort routines and multitasking routines. In addition, four
Network Queuing Environment (NQE) functions have been added to the Network Access section.

This manual describes arich selection of user-level functions. These libraries are supplemented by other
UNICOS libraries that may be useful to programmers. These include the following:

* The UNICOS Fortran library, documented in the Application Programmer’s Library Reference Manual,
Cray Research publication SR—2165

¢ The UNICOS math library, documented in the Intrinsic Procedures Reference Manual, Cray Research
publication SR—2138

* The UNICOS scientific library, documented in the Scientific Libraries Reference Manual, Cray Research
publication SR—2081

* The UNICOS specialized libraries, documented in the Compiler Information File (CIF) Reference
Manual, Cray Research publication SR—2401, and the Remote Procedure Call (RPC) Reference Manual,
Cray Research publication SR—2089

In addition, the UNICOS operating system performs many functions for the user through system calls that
are called in the same manner as library functions. (System calls are documented in the UNICOS System
Calls Reference Manual, Cray Research publication SR—2012.)

Some library functions are specific to certain groups of CRI mainframes. These are identified by one or
more of the mainframe designations under the heading IMPLEMENTATION on each man page.

STANDARDS

This manual describes functions that are defined by several important standards. The libraries also contain
additional functions ported (with permission) from other sources or written by CRI. The relevant standards
for each man page are listed under the STANDARDS heading. Do not infer, however, from the reference to
a standard that the entire library has necessarily been validated to conform to that standard. Validation of
conformance to these standards is an issue discussed in other Cray Research documents.

SR-2080 10.0 1

INTRO(3C) INTRO(3C)

In this manual, the reference to a standard provides you with information about the portability of code using
that function. For example, if the entry for the function states that the function is defined in the ISO/ANSI
standard, you can expect a given function to be found in any vendor’s system that conforms to the
ISO/ANSI standard. On the other hand, if the entry for the function states that it is a CRI extension, you
cannot expect it to be found in other vendor’s systems.

The specific meanings of the terms in the STANDARDS section are as follows:

Term Description

ISO/ANSI Defined in the 1ISO and ANSI standard. In this manual, the term the standard refers to
this combined standard.

POSIX Defined in the POSIX standards |EEE Std 1003.1-1990, or |EEE Std 1003.2-1992, but not

defined in the ISO/ANSI standard. The POSIX 1003.1 standard embraces the ISO/ANS
standard for C but includes more. For brevity, POSIX is not stated in the STANDARDS
section if ISO/ANSI has been specified.

PThreads Defined in the POSIX standards |IEEE Std 1003.1¢-1994, but not defined in the ISO/ANSI,
POSIX 1003.1, or POSIX 1003.2 standards.
XPG4 Defined as part of the X/Open Common Applications Environment Specification, 1ssue 4.

The XPG4 standard embraces the ISO/ANS| standard for C, as well as the POSIX 1003.1
and 1003.2 standards, but includes more. For brevity, XPG4 is not stated in the
STANDARDS section if either ISO/ANSI or POSIX has been specified.

AT&T extension Not defined in any of the previous standards; it originated from one or more of the
software releases from AT&T.

BSD extension Not defined in any of the previous standards; it originated from the Fourth Berkeley
Software Distribution under license from The Regents of the University of California.

CRI extension Not defined in any of the previous standards; added by CRI.

LOADING THE UNICOS LIBRARIES
UNICOS libraries are automatically available on all UNICOS systems when you compile your C program.

All library functions necessary to support a strictly conforming Standard C program are located in several
distinct libraries; the cc(1) command automatically issues the appropriate directives to load the program with
the appropriate functions. If your program strictly conforms to the standard, you do not need to know
library names and locations.

However, if your program requires other libraries or if you want direct control over the loading process,
more knowledge of loaders and libraries is necessary.

Thereis no library search order dependency. Default libraries on PVP systems are as follows:

libc.a libf.a
libfi.a libma
| i bsci.a i bu. a

2 SR-2080 10.0

INTRO(3C) INTRO(3C)

Default libraries on MPP systems are as follows:

libc.a libf.a
libfi.a libma
libpvnB. a libsci.a
li bsma. a libu. a

If you specify personal libraries by using the - | loader option, as in the following example, those libraries
are added to the top of the preceding list.

cc -h intrinsics target.c -1 mne

When the preceding command line is issued, the loader searches for a library named | i bm ne. a (following
the naming convention) and adds it to the search list. Whenever additional libraries are specified on the
command line, the loader first searches for the named library in directory / | i b, then in directory

fusr/1ib, unlessafull path name is specified. If the library name begins with a"”. " or a"/ ", the loader
assumes that a full path name is given, and looks there first.

HEADERS FOR THE UNICOS C LIBRARY
Associated with the UNICOS C library are a set of headers that are helpful as an interface to the library.

The headers contain function declarations in function prototype format for all the C library functions defined
by the standard. If you include these headers in your C program, the function prototype information is
automatically provided to the Standard C compiler. The compiler uses the information to ensure that the
functions are called with the proper number and type of arguments and that the function call has a proper
interface with the library function. Note, however, that nonstandard functions may not have declarations in
any header; in that case, refer to the individual function descriptions.

Headers can be included in any order. Each can be included more than once in a given scope; if so, the
effect is no different from that produced when the header is included only once. The only exception to this
rule is the header <assert . h>; the effect of including <asser t . h> depends on the definition of the
NDEBUG macro at the time of each inclusion.

If a header is used, include it outside of any external declaration or definition. Be sure to include it before
the first reference to any of the functions or objects it declares, or to any of the types or macros it defines. |If
an identifier is declared or defined in more than one header, however, the second and subsequent associated
headers can be included after the initial reference to the identifier. The program cannot contain any macros
with names lexically identical to keywords currently defined prior to the inclusion.

The UNICOS headers also provide the following:
* Types definitions that declare a name synonymous with a type.
* Macros that have no parameters and define useful values.

¢ Macros with parameters, some of which are macro versions of library functions; this places the function
code inline, which saves the overhead of the function calling sequence.

SR-2080 10.0 3

INTRO(3C) INTRO(3C)

The compiler automatically searches, by default, the following directory:

[usr/incl ude
However, if your program requires other headers, you may also specify other directories containing headers
by usingthecc -1 option.

The following headers, called the "standard headers," are associated with the UNICOS C library, as required
by the standard:

<assert. h> <l ocal e. h> <st ddef . h> <ctype. h>

<mat h. h> <stdi 0. h> <errno. h> <setj np. h>

<stdlib. h> <fl oat. h> <si gnal . h> <string. h>

<limts.h> <stdarg. h> <tine. h>
The following headers are CRI extensions to the UNICOS C library, in addition to those required by the
standard:

<conpl ex. h> <fortran. h>

The following headers are associated with the UNICOS C library, as required by the AT&T System V
Interface Definition (SVID):

<assert. h> <mal | oc. h> <si gnal . h> <ctype. h>
<nlist.h> <st di 0. h> <errno. h> <prof . h>
<string. h> <ftw h> <pwd. h> <time. h>
<grp. h> <r egexp. h> <ut np. h> <mat h. h>
<search. h> <varargs. h> <nmenory. h> <setj np. h>

Any header required by the SVID that is not a standard header is located in the / usr /i ncl ude directory.
Note that headers appearing in more than one of the preceding lists may behave differently in different
compilation modes; see cc(1).

The combination of those headers in the preceding lists are collectively caled the UNICOS C library
headers. There are other headers for other purposes in directory / usr /i ncl ude; most of these other
headers are not listed or described in this manual. (See the UNICOS File Formats and Special Files
Reference Manual, Cray Research publication SR—2014, for descriptions of these headers.)

RESERVED IDENTIFIERS IN STANDARD C

Each header declares or defines all identifiers listed in its associated section. The following identifiers are
reserved by the standard for use by the UNICOS C library and headers. Standard-conforming programs must
not declare or define the following identifiers:

¢ All identifiers that begin with an underscore and an uppercase letter or with two underscores are always
reserved for library use.

¢ All identifiers that begin with an underscore are always reserved for use as identifiers with file scope in
both the ordinary identifier and tag name spaces.

4 SR-2080 10.0

INTRO(3C) INTRO(3C)

¢ Each macro name listed in any of the following header description pages is reserved for any use if any of
its associated headers is included.

¢ All identifiers with external linkage in any of the following header description pages are always reserved
for use as identifiers with external linkage.

¢ Each identifier with file scope listed in any of the following header introduction pages is reserved for use
as an identifier with file scope in the same name space if any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier with the same name as an
identifier reserved in that context, the behavior is undefined.

USE OF LIBRARY FUNCTIONS

In this manual, the terms function and subroutine generally mean a block of code that performs a specific,
documented task. The function may exist in a header as the definition of a macro, in the C library as
compiled code, or in both. Unless there is a specific reason to state how a function is implemented, you
need not know how it is implemented (as a macro or as compiled code), just that the task will be performed
when the function is called.

If you desire access to a function, as opposed to a macro (for example, to take the address of a function to
pass to another function), you need to include an #undef function_name directive following the #i ncl ude
directive for the header. Note that the standard prohibits the use of #undef directives with some of the
standard functions. See the documentation for a particular function if you are not sure whether such a
restriction exists.

Any function declared in a header can also be implemented as a macro defined in the header, so alibrary
function should not be declared explicitly if its corresponding header is included. Any macro definition of a
function can be suppressed locally by enclosing the name of the function in parentheses, because the name is
then not followed by the left parenthesis that indicates expansion of a macro function name. For the same
syntactic reason, it is permitted to take the address of a library function even if it is also defined as a macro.

The use of an #undef directive to remove any macro definition also ensures that you refer to an actual
function, with exceptions identified in this manual (for example, put ¢ and get ¢). Unless otherwise noted,
any invocation of alibrary function that is implemented as a macro expands to code that evaluates each of
its arguments exactly once, fully protected by parentheses where necessary, o it is generally safe to use
arbitrary expressions as arguments. Likewise, those function-like macros described in the following pages
can be invoked in an expression anywhere a function with a compatible return type could be called.

All object-like macros listed as expanding to integral constant expressions are suitable for use in #i f
preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a header, you can
also declare the function, either explicitly or implicitly, and use it without including its associated header. If
a function that accepts a variable number of arguments is not declared, explicitly or by including its
associated header, the behavior is undefined.

SR-2080 10.0 5

INTRO(3C) INTRO(3C)

Each of the following statements applies in the detailed standard header descriptions that follow unless
explicitly stated otherwise:

¢ |f an argument to a function has an invalid value (such as a value outside the domain of the function, or a
pointer outside the address space of the program, or a null pointer), the behavior is undefined.

¢ |f afunction argument is described as being an array, the pointer actually passed to the function must
have a value which ensures that all address computations and accesses to objects that would be valid if
the pointer did point to the first element of such an array are in fact valid.

The following examples show how the at oi function can be used in any of several ways:
* By use of its associated header (possibly generating a macro expansion):

#i ncl ude <stdlib. h>
const char *str;
Y

i =atoi (str);

* By use of its associated header (generating a true function reference):

#i ncl ude <stdlib. h>
#undef atoi

const char *str;
Y

i =atoi (str);

or

#i ncl ude <stdlib. h>
const char *str;
Y
i=(atoi)(str);

* By explicit declaration:

extern int atoi (const char *);
const char *str;

T |

i =atoi (str);

6 SR-2080 10.0

INTRO(3C) INTRO(3C)

¢ By implicit declaration:

const char *str;
Y
i =atoi (str);

SR-2080 10.0 7

AB4L (3C) AB4L (3C)

NAME
a64l , | 64a — Converts between long integer and base-64 ASCII string

SYNOPSIS
#i ncl ude <stdlib. h>
| ong a64l (char *s);
char *164a (long I);

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

Use a64l and | 64a to maintain numbers stored in base-64 ASCII characters. This is a notation by which
long integers can be represented by up to 11 characters; each character represents a digit in a radix-64
notation.

The characters used to represent digits are as follows: . for O,/ for 1, O through 9 for 2 through 11, A
through Z for 12 through 37, and a through z for 38 through 63.

The a64| function takes a pointer to a null-terminated base-64 representation and returns a corresponding
| ong value. If the string pointed to by s contains more than 11 characters, a64l uses the first 10 plus the
right 4 bits of the value of the eleventh character; all characters beyond the eleventh are discarded.

The | 64a function takes al ong argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, | 64a returns a pointer to a null string.

CAUTIONS
The value returned by | 64a is a pointer into a static buffer, which is overwritten by each call.

Results are not portable because al ong value on Cray Research computer systems is 64 bits, while al ong
value on most other machines is 32 bits.

8 SR-2080 10.0

ABORT(3C) ABORT(3C)

NAME

abort — Generates an abnormal process termination

SYNOPSIS
#i ncl ude <stdlib. h>

voi d abort (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The abort function causes abnormal program termination to occur, unless the signal SI GABRT is being
caught and the signal handler does not return.

If the SI GABRT signal is being caught, the abor t function sends the signal before performing any other
actions.

The abort function calls al functions that are registered by the at abor t (3C) function in the reverse order
of their registration. Each function is called as many times as it was registered. The abort function
flushes al output streams and closes all open streams.

The SI GABRT signal is set to its default action (if it was formerly being caught or ignored), and the signal
is unblocked before sending it to the calling process by calling the r ai se(3C) function with the SIGABRT
signal.

RETURN VALUES

The abort function does not return to the caller.

MESSAGES
If the current directory is writable, the abor t function produces a core dump and the shell writes an
informational message.
SEE ALSO
at exi t (3C), rai se(3C)
adb(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

exit(2), ki l'l (2), si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

SR-2080 10.0 9

ABS(3C) ABS(3C)

NAME

abs, | abs, | | abs — Returns the integer or long integer absolute value

SYNOPSIS

#i ncl ude <stdlib. h>

int abs (int j);

long int labs (long int j);

long long int Ilabs (long long int j);
IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The abs function returns the absolute value of an integer j. If the result cannot be represented, the behavior
is undefined.

The | abs function is similar to the abs function, except that the argument and the returned value each have
typel ong int.

Thel | abs function is similar to the abs function, except that the argument and the returned value each
have typel ong | ong int.

NOTES

In twos complement representation, the absolute value of the negative integer with the largest magnitude
cannot be represented. The behavior in this case is undefined.

SEE ALSO
f1 oor (3C)

10 SR-2080 10.0

AIRLOG(3C) AIRLOG(3C)

NAME
ai rl og — Logs messages to system log using sysl og(3)

SYNOPSIS
#i ncl ude <airl og. h>

int airlog (int severity, i nt productid, char *subproductid, char *message);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The ai r| og function is a part of the automated incident reporting (AIR) system. The ai r | og function
formats messages and passes them to the sy sl og(3C) function, which then arranges to write the message
onto a UNICOS system log maintained by sysl| ogd(8).

The severity is selected from the following list:

SR-2080 10.0

Severity Description
Al R_START Normal daemon initiation
Al R_TERM Normal daemon termination
Al R PANI C Abnormal daemon termination
AIRCRIT A disaster has occurred
Al R WVARN Warning information; while not fatal, this information may be a precursor to disaster
Al R_ATTEN Information to be displayed for the operator
Al R_| NFO Useful information to be logged
Al R_PULSE Daemon heartbeat
Al R_ FORK Daemon has spawned a child process
Al R_USER User-entered message
Al R_CONF Configuration information
The productid is selected from the following list:
Product 1D Description
Al R_GUEST UNICOS under UNICOS (guest)
AR _UNI COS Kernd
Al R_NQS Network Queuing System
Al R_NEWQS New Network Queuing System
AlR TCP Internet Transmission Control Protocol
Al R_TAPE Tape subsystem

11

AIRLOG(3C) AIRLOG(3C)

Al R_DVF Data Migration Facility
Al R_NFS Network file system

Al R_ACCT Accounting

Al R_DI SK CRI disk farm

Al R_SUPERL OSl-based networking
Al R_SHARE UNICOS share scheduler
Al R_CRON cr on daemon

The subproductid is a comma-delimited string that further delineates the origin of the message. For
example, if the productid is NQS, a possible string for the subproductid field could be
"qf daenon, r eadq, end".

The message string denotes the actual textual information to be logged.

The ai r | og function creates the format of the log entry by ordering the given arguments and adding an
identifying key whose actual contents are defined based upon the severity argument, as follows:

Severity Description
Al R_START Process, job, parent process, user, group, and account IDs of the daemon
All others Process and job IDs of the daemon
NOTES
The/ et c/ sysl og. conf file must have the following entry:
| ocal 7. debug [usr/1ogs/airlog
FILES
fusr/1ogs/airlog AIR system log file.

RETURN VALUES
The ai r | og function returns —1 if it is unable to allocate memory for the message buffer; otherwise, it
returns O.
SEE ALSO
sysl 0g(3C)
ai rl ogger (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

sysl ogd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

12 SR-2080 10.0

INTRO_LIBARRAY (3x)

NAME

INTRO_LIBARRAY (3x)

i ntro_libarray — Introduces the Array Services library (I i bar r ay)

IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The Array Services library (1 i bar r ay) provides functions that allow you to interrogate the Array Services
configuration database and call on the services of the Array Services daemon, ar r ayd(8). The library is
used by several array software products for the IRIX and UNICOS operating systems. For more
information, see the array_sessi ons(7) and array_ser vi ces(7) man pages.

The programming interface to Array Services is declared in the ar r aysvcs. h header file. The IRIX
i barray. so and the UNICOS | i barr ay. a libraries contain the functions. You can load the library
by using the - | ar r ay option with cc(1) or | d(1).

The following subsections summarize the functions.

Error Messages
aserrorcode(3x)
asmakeer r or (3x)
asperror (3x)

asstrerror(3x)

Provides Array Services error information
Generates an Array Services error code
Prints an Array Services error message
Gets an Array Services error message string

Connections to the Array Services Daemon

ascl oseserver (3x)

asdf | t server opt (3x)

asget server opt (3x)

asopenserver (3x)

Destroys an array server token

Retrieves the standard default value for options when a new server token
is created using asopenser ver (3x)

Returns the local options currently used by an instance of ar r ayd(8)

Creates an array server token

asopenserver _from opti nf o(3x)

aspar seopt s(3x)

asset server opt (3x)

SR-2080 10.0

Creates and modifies an array server token using parameters taken from
an asopti nfo_t structure

Parses standard Array Services command line options

Returns the default options in effect at an instance of ar r ayd(8)

13

INTRO_LIBARRAY (3x)

14

Database Interrogation

asgetattr(3x)
asget dfl tarray(3x)
aslistarrays(3x)

asl i st machi nes(3x)

Array Session Handle Management

asal | ocash(3x)
asashi sgl obal (3x)
asashof pi d(3x)

aspi dsi nash(3x)

aspi dsi nash_array(3x)

aspi dsi nash_| ocal (3x)

aspi dsi nash_server

asl i st ashs(3x)

aslistashs_array(3x)

asl i stashs_| ocal (3x)

asl i stashs_server (3x)

Data Structure Release

asfreearray(3x)
asfreearrayli st (3x)
asfreearraypidlist (3x)
asfreeashli st (3x)
asfreecndrsltlist(3x)

asf reemachi nel i st (3x)

asf reemachi nepi dl i st (3x)

asfreeopti nf o(3x)

INTRO_LIBARRAY (3x)

Searches an attribute list for a particular name
Gets information about the default array
Enumerates known arrays

Enumerates machines in an array

and Interrogation

Allocates a global array session handle
Determines if an array session handle is global
Obtains the array session handle of a process

Returns a list of processes that belong to the specified array session
handle

Returns a list of processes in the specified array session for all of the
machines in the specified array

Returns only those processes in the array session that are running on the

local machine

Returns the list of processes in the specified array session that are
running on the specified server

Returns a list of array session handles

Returns a list of array session handles that are currently active on the
specified array

Returns a list of array session handles that are currently active on the
local machine

Returns a list of array session handles that are currently active on the
specified server

Releases array information structure

Releases array information structures

Releases array-wide process identification enumeration structures
Releases array session handle enumeration structures

Releases array command result structures

Releases machine information structures

Releases process identification enumeration structures

Releases command line options information structure

SR-2080 10.0

INTRO_LIBARRAY (3x)

asfreepidlist(3x)
Array Command Execution
asconmand(3x)
askil |l ash_array(3x)
askil Il ash_I ocal (3x)
askil | ash_server (3x)
aski | | pi d_server (3x)
asr cnd(3x)

asr cndv(3x)

SEE ALSO

INTRO_LIBARRAY (3x)

Releases process identification enumeration structures

Executes an array command

Sends a signal to an array session on the specified array
Sends a signal to an array session on the local machine
Sends a signal to an array session on the specified server
Sends a signal to a remote process

Executes a command on a remote machine using a single string that
contains the entire command line

Executes a command on a remote machine using pointers

asal | ocash(3x), asashi sgl obal (3x), asashof pi d(3x), asconmand(3x), aser r or code(3x),
asfreearray(3x), asfreearraylist(3x), asfreearraypi dl i st (3x), asfreeashl i st (3x),
asfreecndrsl tlist(3x), asfreenmachi nel i st (3x), asf r eemachi nepi dl i st (3x),
asfreeopti nf o(3x), asfreepi dl i st (3x), asget attr (3x), asget df | t ar r ay(3x),

askil l ash_array(3x), aski | | pi d_server (3x), asl i starrays(3x), asl i st ashs(3x),

asl i st machi nes(3x), asmakeer r or (3x), asopenser ver (3x),

asopenserver _from opti nf o(3x), aspar seopt s(3x), asper r or (3x), aspi dsi nash(3x),
asr cnd(3x), asset server opt (3x), asstrerror (3x)

array(1), cc(1),1d(D)

array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0

15

ASALLOCASH(3x) ASALLOCASH(3x)

NAME

asal | ocash — Allocates a global array session handle

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

ash_t asall ocash(asserver_t Server, const char *Array);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asal | ocash function allocates a global array session handle in the specified array. The resulting
array session handle is guaranteed to be unique across al of the machines in that array.

The formal parameters are as follows:

Server Specifies an optional array server token, which can be used to direct the request to a specific
Array Services daemon. If you specify a null pointer, the request is processed by the default
Array Services daemon. For information on how the default Array Services daemon is selected,
see the ar r ay(1) man page. For information on creating an array server token, see the
asopenser ver (3x) man page.

Array Specifies the name of the array as an ordinary character string. If you specify a null pointer, the
array session handle is allocated in the default array of the Array Services daemon.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, asal | ocash returns the newly allocated global array session handle. If unsuccessful,
asal | ocash returns avalue of —1 and sets aser r or code(3x) accordingly.

SEE ALSO

asashi sgl obal (3x), aserror code(3x), asopenser ver (3x) array(1), cc(d), | d(1)
set ash(2)
array_services(7),array_sessi ons(7)

arrayd(8)

16 SR-2080 10.0

ASASHISGLOBAL (3x) ASASHISGLOBAL (3x)

NAME

asashi sgl obal — Determinesif an array session handle is global

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

i nt asashi sgl obal (ash_t ASH)

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asashi sgl obal function determines if an array session handle is global. A globa array session
handle is guaranteed to be unique across all machines in an array.

The formal parameter is as follows:

AH Specifies an array session handle.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

The asashi sgl obal function returns a nonzero value if the specified array session handle is global. If it
is not global, asashi sgl obal returns a value of 0.

SEE ALSO

asal | ocash(3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

SR-2080 10.0 17

ASASHOFPID(3x) ASASHOFPID(3x)

NAME

asashof pi d — Obtains the array session handle of a process

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

ash_t *asashof pi d(pid_t PID);
IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asashof pi d function returns the array session handle of the process with the specified process
identification number. The process is assumed to run on the local machine.

The formal parameter is as follows:

PID Specifies the process identification number.

NOTES

The IRIX | i barray. so and the UNICOS | i barr ay. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, asashof pi d returns the array session handle of the specified process. If PID is a negative
number, asashof pi d returns the array session handle of the current process. If unsuccessful,
asashof pi d returns a value of —1 and sets aser r or code(3) accordingly.

SEE ALSO
asashi sgl obal (3x), aserror code(3x), aspi dsi nash(3x)
cc(d), 1 d(1)

get ash(2)
array_services(7),array_sessi ons(7)

18 SR-2080 10.0

ASCOMMAND (3x) ASCOMMAND (3x)

NAME

asconmmand — Executes an array command

SYNOPSIS
#i ncl ude <arraysvcs. h>

ascrmdrsltlist_t *ascommand(asserver_t Server, ascndreq_t *Command);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asconmand function executes an array command. The command request is processed by an Array
Services daemon. That Array Services daemon is responsible for translating the array command into an
actual IRIX or UNICOS command, running it on one or more machines in the requested array, and returning
the results.

The formal parameters are as follows:

Server Specifies an optional array server token that can be used to direct the request to a specific Array
Services daemon. If you set Server to a null pointer, the request is processed by the default

Array Services daemon. For information on how the default Array Services daemon is selected,
see the ar r ay (1) man page.

Command Points to an ascidr eq_t structure (defined in the ar r aysvcs. h file) that describes the
command request. For more information, see the Structure Members subsection of this man
page.

Structure Members
The ascndr eq_t structure that the Command formal parameter points to has the following format:
typedef struct ascrmdreq {

char * array;
ui nt 32_t flags;

i nt numargs;
char **args,

ui nt 32_t ioflags;
} ascndreq_t;

The members in the structure are as follows:

array Specifies the name of the array on which the command should be executed. If you set array to

a null pointer, the server’s default destination is used if one has been specified, otherwise the
command request is rejected.

SR-2080 10.0 19

ASCOMMAND (3x)

20

flags

numargs

args

ASCOMMAND (3x)

Specifies various control options for the command. It is constructed from the logical OR of zero
or more of the following flags. (If you do not specify a flag, set the value to 0 so that no
control options are set.) The flags are as follows:

ASCNVDREQ_LOCAL

ASCVDREQ_NEWBESS

ASCVDREQ_OUTPUT

ASCVDREQ_NOWAI T

ASCNVDREQ _| NTERACTI VE

Runs the command on the server machine only, rather than
broadcasting it to the machines in an array. If you specify this
flag, the array member of Command is ignored.

Runs the command in a new global array session. The Array
Services daemon allocates a new global array session handle
and ensures that each machine executes the array command in
an array session using this handle.

Collects output from the array command. If you specify this
flag, the standard output and standard error of the array
command is saved on each machine. If any output is generated
on a particular machine, the ascndr sl t _t structure for that
machine contains a pathname to a temporary file containing the
output.

Forces the Array Services daemon to return results immediately.
Ordinarily, the Array Services daemon waits for the array
command to complete before returning the results. The
ascndr sl t _t structure for each machine indicates that the
command has been initiated, but it does not have a valid exit
status for the command.

Specifies that socket connections should be made to one or
more of the command’s standard 1/O file descriptors:

e Standard input (st di n)
e Standard output (st dout)
e Standard error (st derr)

The exact connections to be made are specified in the ioflags
member of Command. |f successful, theascndrslt t
structure for each machine contains socket descriptors for each
of the requested connections. If this flag is specified, then the
ASCVDREQ OUTPUT flag is ignored and the

ASCVDREQ NOWAI T flag is implied (that is, an interactive
reguest never waits for the command to compl ete).

Specifies the number of arguments in the args array. This member behaves similarly to the
ar gc argument to a standard C program.

Specifies the array command itself and any arguments to it. This member behaves similarly to
the ar gv argument to a standard C program.

SR-2080 10.0

ASCOMMAND (3x)

ioflags

ASCOMMAND (3x)

Indicates which of the command’s standard 1/O descriptors should be routed back to the caller
through a socket connection. This member is examined only when the flags member has the
ASCVDREQ | NTERACTI VE flag set. The ioflags member is constructed from the logical OR
of one or more of the following flags:

ASCMDI O_STDI N

ASCMVDI O_STDOUT
ASCMDI O_STDERR
ASCMDI O_SI GNAL

Requests a socket attached to the command’s standard input.
Requests a socket attached to the command’s standard output.
Requests a socket attached to the command’s standard error.
Requests a socket that can be used to deliver signals to the

command.

Indicates that the command’ s standard error should be routed back
over the standard output channel. This flag is ignored if you do
not also specify ASCVDI O_STDERR.

A series of ascndrslt _t structures summarize the results from each machine. Anascndrsltlist _t
structure bundles the list of these structures together. The ascommand function returns a pointer to an
ascndrsltlist _t structure.

ASCMDI O_QUTERRSHR

The arraysvcs. h file definesthe ascrmdr sl t _t and theascrmdrsltli st _t structures. An
ascmdr sl t _t structure has the following format:

typedef struct ascmdrsit {

char * machine;
ash_t ash;
uint32_t flags
aserror_t error;

i nt status;
char * outfile;
/* These fields only valid if ASCVDRSLT_I NTERACTI VE set */
uint32_t ioflags;

i nt stdinfd,;

i nt stdoutfd;

i nt stderrfd,;

i nt signalfd;

} ascndrslt _t;

The members are as follows:

machine Contains the name of the machine that generated this particular response. This is typically the
network hostname of that machine, although the system administrator can override that value
with a LOCAL HOSTNAME entry in the Array Services configuration file.

ash Contains the array session handle.

SR-2080 10.0 21

ASCOMMAND(3x) ASCOMMAND (3x)

flags

error

status

outfile

ioflags

22

Contains flags that describe details about the command results. This member is constructed from
the logical OR of zero or more of the following flags. The flags are as follows:

ASCVDRSLT_OUTPUT Indicates that the command has generated output that has been
saved in atemporary file. The outfile member contains the name
of the temporary file.

ASCVDRSLT_MERGED Indicates that although the array command may have been run on
more than one machine, the results were merged together by a
MERGE command on the Array Services daemon. The
ascndrslt _t structure describes the results of the MERGE
command only.

ASCVDRSLT_ASH Indicates that the array command was run using a global array
session handle. The ash member of the ascndrslt _t structure
contains the array session handle.

ASCVDRSLT_I NTERACTI VE
Indicates that one or more connections have been established with
the standard 1/O file descriptors of the running command. The
i of | ags member of the ascrdr sl t _t structure describes the
specific connections.

Contains the results of the command on the particular machine. This member is a standard
| i barray error code. For detailson | i barray error codes, see the aser r or code(3x) man

page.

Contains the final exit status of the array command’s process on this machine, assuming that the
er r no subfield of err or is ASE_CK and the what member is ASOK_COVPLETED.

Contains the name of the temporary file.

Contains flags that describe which connections have been established with the running command.
It is only valid if the ASCMDRSLT | NTERACTI VE flag is set in the flags member. This
member is constructed from the logical OR of one or more of the following flags:

ASCMDI O STDI N Indicates that a socket connection has been established with the
command’s standard input. The stdinfd member of the
ascmdr sl t _t structure contains the socket descriptor. Data
written to this descriptor is presented to the command’s standard
input.

ASCNVDI O_STDOUT Indicates that a socket connection has been established with the
command’s standard output. The stdoutfd member of the
ascmdr sl t _t structure contains the socket descriptor. Data that
the command writes to its standard output can be read from this
descriptor.

SR-2080 10.0

ASCOMMAND (3x) ASCOMMAND (3x)

ASCMVDI O_STDERR Indicates that a socket connection has been established with the
command’s standard error. The stderrfd member of the
ascmdr sl t _t structure contains the socket descriptor. Data that
the command writes to its standard error can be read from this
descriptor.

ASCNVDI O_SI GNAL Indicates that a socket connection that can be used to deliver
signals to the command has been established. The signalfd
member of the ascndr sl t _t structure contains the socket
descriptor. Any signal can be delivered to the running command
by writing a single byte containing the desired signal number to
this descriptor.

In some implementations, the same socket may be used to handle both the standard input and
standard output connections or both the standard error and signal connections. Therefore,
caution should be exercised before trying to close only one socket in either of those pairs.

stdinfd Specifies the standard input socket descriptor.
stdoutfd ~ Specifies the standard output socket descriptor.
sterrfd Specifies the standard error socket descriptor.
signalfd Specifies the signal socket descriptor.
Thel i bar ray library uses the mal | oc(3C) function to allocate storage for the structures. To release the
storage space, use the asfreecndr sl t i st (3x) function.
NOTES
TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).
RETURN VALUES
If successful, ascomrand returns a pointer to an ascrdr sl tli st _t structure. If unsuccessful,
asconmmand returns a null pointer and sets aser r or code accordingly.
SEE ALSO
aserrorcode(3x), asfreecndrsl tli st (3x), asopenserver (3x) mal | oc(3C)
array(1), cc(1), 1d()
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 23

ASERRORCODE (3x) ASERRORCODE (3x)

NAME

aserrorcode — Provides Array Services error information

SYNOPSIS

#i ncl ude <arraysvcs. h>

extern aserror_t aserrorcode;

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

ne
ne
ne
ne

ne
ne
ne
ne

aser r noc(errorcode)
aser r what c(errorcode)
aser rwhyc(errorcode)
aserrext rac(errorcode)

aserrno
aser rwhat
aserrwhy
aserrextra

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

24

Upon completion, many Array Services library functions store status information in four fields of the
aserrorcode global variable. You can extract information from the aserrorcode fields by using the following
macros, which are defined in the ar r aysvcs. h file:

aserrno

aser r what

aserrwhy

Summarizes the results of the most recent Array Services function.

Describes the particular component that experienced trouble. This macro only applies to
certain values of aserr no.

Describes why the error occurred. This macro only applies to certain values of aser r no.

aserrextra Contains additional information supplied by certain combinations of aser r no,

aserrwhat and aserrwhy. The exact information depends on the particular
combination.

The ar raysvcs. h file describes the specific values that can be stored in these fields.

You can extract the same type of information from the fields of a value of type aserror _t that you
specify by using the the following macros:

* aserrnoc

e aserrwhatc
* aserrwhyc
* aserrextrac

SR-2080 10.0

ASERRORCODE (3x) ASERRORCODE (3x)

NOTES

TheIRIX | i barray. so and the UNICOS | i barr ay. a libraries contain this global variable. You can
load the | i barray. so or | i barray. a library by using the - | ar r ay option with cc(1) or | d(1).

RETURN VALUES

The aserrno, aserrwhat, aser rwhy, and aser r ext r a macros return the corresponding field from
the aserrorcode global variable.

The aserrnoc, aser rwhat c, aser rwhyc, and aser r ext r ac macros return the corresponding field
from the specified aserror _t vaue.

SEE ALSO

asmakeer r or (3x), asper r or (3x), asstrerror (3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

SR-2080 10.0 25

ASFREEARRAY (3x) ASFREEARRAY (3x)

NAME

asfreearray — Releases array information structure

SYNOPSIS
#i ncl ude <arraysvcs. h>

void asfreearray(asarray_t *Arraylnfo, uint32_t Flags);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asf r eear r ay function releases the resources used by the specified asarray_t structure. The
asget df I t ar r ay(3x) function typically generates this structure.

The formal parameters are as follows:
Arraylnfo Specifies a pointer to the asar ray_t structure whose resources are to be released.
Flags [Reserved for future enhancements.] Set this value to 0.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO

asgetdfl tarray(3x), aslistarrays(3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

26 SR-2080 10.0

ASFREEARRAYLIST(3x) ASFREEARRAYLIST(3x)

NAME

asfreearrayli st — Releases array information structures

SYNOPSIS
#i ncl ude <arraysvcs. h>

void asfreearraylist(asarraylist_t *ArraylnfoList, uint32_t Flags);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asfreearrayl i st function releases the resources used by the specified asarrayl i st _t structure.
The asl i st ar rays(3x) function typically generates these structures.

The formal parameters are as follows:

ArraylnfoList Specifies a pointer to the asarrayl i st _t structure whose resources are to be
released.
Flags Specifies the resources to be released. Flags can have one of the following values:

ASFLF_FREEDATA Releases the storage used by the individual asarray_t
structure elements.

0 Releases only the asarrayl i st _t structure.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO

aslistarrays(3x)
cc(d), 1d(D)

array_services(7),array_sessi ons(7)

SR-2080 10.0 27

ASFREEARRAYPIDLIST(3x) ASFREEARRAYPIDLIST(3x)

NAME

asfreearraypidli st — Releases array-wide process identification enumeration structures

SYNOPSIS
#i ncl ude <arraysvcs. h>

void asfreearraypidlist(asarraypidlist_t *PIDList, uint32_t Flags);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asfreearraypi dl i st function releases the resources used by the specified asar raypi dl i st _t
structure. The aspi dsi nash_ar r ay(3x) function typically generates these structures.

The formal parameters are as follows:

PIDList Specifies a pointer to the asar r aypi dl i st _t structure whose resources are to be
released.
Flags Specifies the resources to be released. Flags can have one of the following values:

ASFLF_FREEDATA Releases the storage used by the individual
asmachi nepi dl i st _t structure elements.

0 Releases only the storage used by the asarraypi dl i st _t
structure itself.

NOTES

TheIRIX | i barray. so and the UNICOS | i barr ay. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO
aspi dsi nash_ar ray(3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

28 SR-2080 10.0

ASFREEASHLIST(3x) ASFREEASHLIST(3x)

NAME

asfreeashl i st — Releases array session handle enumeration structures

SYNOPSIS
#i ncl ude <arraysvcs. h>
void asfreeashlist(asashlist_t *ASHlist, uint32_t Flags);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asfreeashl i st function releases the resources used by the specified asashl i st _t structure. The
asl i st ashs(3x) function typically generates these structures.

The formal parameters are as follows:
AHlist Specifies a pointer to the asashl i st _t structure whose resources are to be released.

Flags [Reserved for future expansion.] Set this value to 0.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO

asl i st ashs(3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

SR-2080 10.0 29

ASFREECMDRSLTLIST (3x) ASFREECMDRSLTLIST (3x)

NAME

asfreecndrsltli st — Releases array command result structures

SYNOPSIS
#i ncl ude <arraysvcs. h>
void asfreecmdrsltlist(ascndrsitlist_t *CmdRdtList, uint32_t Flags);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asfreecndrsl tlist function releases the resources used by the specified ascrdrsltli st _t
structure. The asconmmand(3x) function typically generates these structures.

The formal parameters are as follows:

CmdRdltList Specifies a pointer to the ascrdr sl t i st _t structure whose resources are to be
released.
Flags Specifies the resources to be released. The value of Flags is constructed from the

logical OR of zero or more of the following flags. (If you do not specify a flag, set the
value to 0.) The flags are as follows:

ASFLF_FREEDATA Releases the storage used by the individual ascndr sl t _t
structure elements.

ASFLF_UNLI NK Unlinks temporary files referenced by the ascrdrsit _t
structure elements.

ASFLF_CLGCSEI O Closes I/0 sockets associated with the ascndrslt _t
structure elements.

NOTES

The IRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO

asconmmand(3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

30 SR-2080 10.0

ASFREEMACHINELIST (3x) ASFREEMACHINELIST (3x)

NAME

asfreemachi nel i st — Releases machine information structures

SYNOPSIS
#i ncl ude <arraysvcs. h>

voi d asfreemachineli st (asmachinelist_t *MachineList, uint32_t Flags);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asfreenachi nel i st function releases the resources used by the specified asmachi nel i st _t
structure. The asl i st machi nes(3x) function typically generates these structures.

The formal parameters are as follows:

MachineList Specifies a pointer to the asmachi nel i st _t structure whose resources are to be
released.
Flags Specifies the resources to be released. The Flags value can be one of the following:

ASFLF_FREEDATA Releases the storage used by the individual asmachi ne_t
structure elements.

0 Releases only the storage used by the asmachi nel i st _t
structure.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO

asl i st machi nes(3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

SR-2080 10.0 31

ASFREEMACHINEPIDLIST (3x) ASFREEMACHINEPIDLIST (3x)

NAME

asf reemachi nepi dl i st — Releases process identification enumeration structures
SYNOPSIS

#i ncl ude <arraysvcs. h>

voi d asfreemachi nepi dlist(asmachi nepidlist_t *PIDList, uint32_t Flags);
IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The asf reenachi nepi dl i st function releases the resources used by the specified

asmachi nepi dl i st _t structure. The aspi dsi nash_ser ver (3x) function typicaly generates these
structures.

The formal parameters are as follows:

PIDList Specifies a pointer to the asmachi nepi dl i st _t structure whose resources are to be
released.
Flags [Reserved for future expansion.] Set this value to 0.
NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO

aspi dsi nash_ser ver (3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

32 SR-2080 10.0

ASFREEOPTINFO (3x) ASFREEOPTINFO (3x)

NAME
asfreeopti nf o — Releases command line options information structure
SYNOPSIS

#i ncl ude <arraysvcs. h>

voi d asfreeoptinfo(asoptinfo_t *Optinfo, uint32_t Flags);
IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asf r eeopt i nf o function releases the resources used by the specified asopt i nf o_t structure. The
aspar seopt s(3x) function typically generates these structures.

The formal parameters are as follows:

Optlnfo Specifies a pointer to the asopt i nf o_t structure whose resources are to be released.
Flags Specifies the resources to be released. The Flags value can be one of the following:
ASFLF_CLOSESRV Closes the server token in the token member if it is currently
valid.
0 Releases only the storage used by the asopt i nf o_t structure.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO
aspar seopt s(3x)
cc(d), 1 d(D)

array_services(7),array_sessi ons(7)

SR-2080 10.0 33

ASFREEPIDLIST (3x) ASFREEPIDLIST(3x)

NAME

asfreepi dl i st — Releases process identification enumeration structures

SYNOPSIS

#i ncl ude <arraysvcs. h>

void asfreepidlist(aspidlist_t *PIDList, uint32_t Flags);
IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The asfreepi dl i st function releases the resources used by the specified aspi dl i st _t structure. The
aspi dsi nash_| ocal (3x) and aspi dsi nash(3x) functions typically generate these structures.

The formal parameters are as follows:
PIDList Specifies a pointer to the aspi dl i st _t structure whose resources are to be released.
Flags [Reserved for future expansion.] Set this value to O.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO
aspi dsi nash(3x),
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

34 SR-2080 10.0

ASGETATTR(3x) ASGETATTR(3x)

NAME

asget attr — Searches an attribute list for a particular name

SYNOPSIS
#i ncl ude <arraysvcs. h>
const char *asgetattr(const char *attrname, const char **attrs,
i nt numattrs)
IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asget at t r function searches through a list of strings for a particular attribute name and returns a
corresponding value, similar to the way get env(3C) searches through the environment for a particular
variable.

The formal parameters are as follows:

attrname Specifies the attribute to be found. Attributes are assumed to be of the format
NAME=VALUE, so this amounts to searching the attributes for the first one that starts with
attrname followed either by a null or the character =. If NAME is not found,
asget attr returnsanull pointer. If VALUE is present, asget at t r returns a pointer

to VALUE.
attrs Specifies the list of strings. This value is typically returned by a function such as
asl i starrays(3x) or asli st machi nes(3x).
numattrs Specifies the number of strings in the list.
NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If no attribute with the specified NAME is found, asget at t r returns a null pointer. If NAME is found but
has no corresponding VALUE, then asget at t r returns a pointer to a null character. Otherwise,
asget attr returns a pointer to the VALUE associated with NAME.

SR-2080 10.0 35

ASGETATTR(3x) ASGETATTR(3x)

SEE ALSO

aslistarrays(3x), asl i st machi nes(3x), set env(3C)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

36 SR-2080 10.0

ASGETDFLTARRAY (3x) ASGETDFLTARRAY (3x)

NAME
asget df | t array — Gets information about the default array

SYNOPSIS
#i ncl ude <arraysvcs. h>

asarray_t* asgetdfltarray(asserver_t Server);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asget df | t ar r ay function returns a description of the default array that the Array Services daemon
uses for commands and other operations if no other array has been specified. The description is in the form
of an asarray_t structure, which is defined in the ar r aysvcs. h file. Thel i barray library uses the
mal | oc(3C) function to allocate storage for this structure. To release the storage space, use the

asf r eear r ay(3x) function.

The formal parameter is as follows:

Server Specifies an optional array server token, which can be used to direct the request to a specific
Array Services daemon. If you specify a null pointer, the default Array Services daemon
processes the request. For information on how the default Array Services daemon is selected,
see the ar r ay(1) man page. For more details on creating an array server token, see the
asopenser ver (3x) man page.

NOTES

TheIRIX | i barray. so and the UNICOS | i barr ay. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, asget df | t ar r ay returns a pointer to an asarray_t structure. If unsuccessful.
asget df | t ar r ay returns a null pointer and sets aser r or code(3x) accordingly.

SEE ALSO

aserrorcode(3x), asfreearray(3x), asl i st arrays(3x), asopenser ver (3x) mal | oc(3C)
array(1), cc(1),1d(D)

array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 37

ASIN(3C)

NAME

ASIN(3C)

asi n, asi nf, asi nl , acos, acosf, acosl , at an, at anf, at anl , at an2, at an2f, at an2| —

Determines arcsine, arccosine, or arctangent of a value

SYNOPSIS

#i ncl ude <mat h. h>

doubl e asin (double x);

float asinf (float X);

| ong doubl e asinl (Iong double X);
doubl e acos (double x);

fl oat acosf (float X);

| ong doubl e acosl (I ong double X);
doubl e atan (doubl e x);

float atanf (float X);

| ong doubl e atanl (I ong double X);
doubl e atan2 (doubl e x, double y);fR
float atan2f (float x, float y);

| ong doubl e atan2l (1 ong double x, |ong double vy);

IMPLEMENTATION

All Cray Research systems (asi n, acos, at an, at an2 only)
Cray PVP systems (asi nl , acosl , at anl , at an2l only)
Cray MPP systems (asi nf , acosf, at anf , at an2f only)

STANDARDS

ISO/ANSI (asi n, acos, at an, at an2 only)
CRI extension (all others)

DESCRIPTION

38

The asi n, asi nf, and asi nl functions return the arcsine of x in radians. A domain error occurs for

arguments not in the range [-1,+1].

The acos, acosf, and acos!| functions return the arccosine of x in radians. A domain error occurs for

arguments not in the range [-1,+1].

SR-2080 10.0

ASIN(3C) ASIN(3C)

The at an, at anf , and at anl functions return the arctangent of x in radians. A domain error occurs if
both arguments are 0.

The at an2, at an2f , and at an2l functions return the arctangent of x/y.

In strict conformance mode, vectorization is inhibited for loops containing calls to any of these functions.
Vectorization is not inhibited in extended mode.

When code containing calls to any of these functions is compiled by the Cray Standard C compiler in
extended mode, domain checking is not done, er r no is not set on error, and the functions do not return to
the caller on error. If an error occurs, the program aborts, giving a traceback and a core file. On

CRAY T90 systems with |EEE floating-point arithmetic only, in extended mode, er r no is not set, but the
functions do return to the caller on error. For more information, see the corresponding | i bmman page (for
example, ASI N(3M)).

RETURN VALUES

The return values for the acos, acosf, and acos! functions are in the range [O,m] radians. The return
values for the asi n, asi nf, asi nl , at an, at anf, and at anl functions are in the range [—-1V2,+p/2]
radians. The return values for the at an2, at an2f , and at an2| functions are in the range [T+
radians. The signs of both arguments are used to determine the quadrant of the return value.

When a program is compiled with - hst dc or - hrmat her r or =er r no on Cray MPP systems and

CRAY T90 systems with |EEE arithmetic, the following functions return NaN and set er r no to EDOM
when called with the specified parameters: acos(+/- infinity) , acosl| (+/- infinity) , asi n(+/- infinity) ,
asi nl (+/- infinity) , acos(NaN) , acosl (NaN) , asi n(NaN) , asi nl (NaN) , at an(NaN) ,

at anl (NaN), at an2(NaN, x), atan2(y, NaN), at an21(NaN, x), and at an21(y, NaN).

On Cray MPP systems and CRAY T90 systems with |EEE arithmetic, the value returned by these functions
when a domain error occurs can be selected by the environment variable CRI _| EEE_LI BM The second
column in the following table describes what is returned when CRI _| EEE LI BMis not set, or is set to a
value other than 1. The third column describes what is returned when CRI _| EEE LI Bissetto 1. For
both columns, er r no is set to EDOM

Error CRI _IEEE LIB=0 CRI _IEEE LIB=1
acos(x), where x is not in the range [-1,1] 0 NaN

acosl (x), where x is not in the range [-1,1] 0 NaN

acosf (xX), where x is not in the range [-1,1] 0 NaN

asi n(.0+0. 0*1. 0i), wherexisnotintherange O NaN

[-1.1]

asi nl (xX), where x is not in the range [-1,1] 0 NaN

asi nf (x), where x is not in the range [-1,1] 0 NaN

atan2(0.0, 0.0) 0 NaN

atan2f (0.0, 0.0) 0 NaN

SR-2080 10.0 39

ASIN(3C) ASIN(3C)

Error CRI_I|EEE LIB=0 CRI _| EEE LI B=1
atan2l (0.0, 0.0) 0 NaN
SEE ALSO

errno. h(3C)
ASI N(3M) in the Intrinsic Procedures Reference Manual, Cray Research publication SR—2138

40 SR-2080 10.0

ASKILLASH_ARRAY (3x) ASKILLASH_ARRAY (3x)

NAME

askill ash_array, askill ash_Il ocal , askil | ash_server — Sends asigna to an array session

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

int askillash_array(asserver_t Server, const char *ArrayName,
ash_ t ASH, int dg);

int askillash_local (ash_t ASH, int Sg);

int askillash_server(asserver_t Server, ash_t ASH, int 9g);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

Theaskil |l ash_array, askill ash_l ocal , and aski | | ash_ser ver functions al send a signa to
each of the processes that belong to the array session specified by the array session handle value ASH at the
moment the function is executed.

The formal parameters are as follows:

Server Specifies an optional array server token for the aski | | ash_array and
aski |l | ash_server functions. This token can be used to direct the request to a specific
Array Services daemon. If you specify a null pointer, the request is processed by the default
Array Services daemon. For information on selecting the default Array Services daemon, see
the ar r ay (1) man page. For information on creating an array server token, see the
asopenser ver (3x) man page.

ArrayName Specifies the array name.

AH Specifies the array session handle.
Sg Specifies the signal to be sent. The signal is either one from the list given in si gnal (2) or

0. If Si g is O (the null signal), error checking is performed but no signals are actually sent.
This can be used to check the validity of ASH.

The real or effective user 1D of the sending process must match the real, saved, or effective user 1D of the
receiving processes, unless the effective user 1D of the sending process is that of the superuser.

The aski | | ash_array function sends a signal to the members of the specified array session on each of
the machines in the array specified by ArrayName, or the default array if ArrayName is a null pointer. The
Array Services daemon specified by the server token Server coordinates the operation.

SR-2080 10.0 41

ASKILLASH_ARRAY (3x) ASKILLASH_ARRAY (3x)

The aski | | ash_| ocal function only sends a signal to the members of the specified array session that are
running on the same machine as the one that executes aski | | ash_I ocal . Unlike aski | | ash_array
and aski | I ash_ser ver, this function does not require the Array Services daemon.

The aski | | ash_server function only sends a signal to the members of the specified array session that
are running on the machine specified with the server token Ser ver .

All three functions will fail if one or more of the following are true:
e Sgisnot avalid signal number.
* Sgis Sl &I LL and the specified array session contains process 1.

* The user ID of the sending process is not that of the superuser, and its real or effective user ID does not
match the real, saved, or effective user ID of the receiving processes.

* The Array Services daemon is not currently active (not applicable for aski | | ash_I ocal).

If one or more of these conditions apply only to a subset of the processes in an array session, it is undefined
whether or not these functions will complete for some or al of processes that are not affected.

These functions are not atomic with respect to process creation. As aresult, it is possible that a new process
could join the array session after the signaling operation has started but before it has completed.
Consequently, the process would never receive the signal itself.

NOTES

The IRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES
If successful, the aski | | ash_array, askill ash_I ocal , and aski | | ash_ser ver functions return
avalue of 0. If unsuccessful, they return a value of —1 and set aser r or code(3x) accordingly.
SEE ALSO
aserrorcode(3x), aski | | pi d_server (3x), asopenser ver (3x)
array(1), cc(1),1d()
kill (2
array_services(7),array_sessi ons(7)

arrayd(8)

42 SR-2080 10.0

ASKILLPID_SERVER(3x) ASKILLPID_SERVER(3x)

NAME

aski |l | pi d_server — Sends a signal to a remote process

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

int askillpid_ server(asserver_t Sever, pid_t PID, int Sg);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The aski I | pi d_server function sends a signal to the process specified by the value PID. Depending
on the server token Server, the process specified by PID does not necessarily have to reside on the same
machine as the one executing aski | | pi d_server.

The real or effective user 1D of the sending process must match the real, saved, or effective user 1D of the
receiving process, unless the effective user 1D of the sending process is that of the superuser.

The formal parameters are as follows:

Server Specifies an optional array server token, which can be used to direct the request to a specific
machine. If you specify a null pointer, the default Array Services daemon processes the request.
For information on selecting the default Array Services daemon, see the ar r ay (1) man page.
For information on creating an array server token, see the asopenser ver (3x) man page.

PID Specifies the process identification number.

Sg Specifies the signal to be sent. Sg is either one from the list given in si gnal (2) or 0. If Sgis
0 (the null signal), error checking is performed but no signal is actually sent. This can be used
to check the validity of PID.

The aski I | pi d_server function will fail if one or more of the following are true:
e Sgisnot avalid signal number.
¢ SgisSI &Kl LL and PID is process 1.

* The user ID of the sending process is not that of the superuser, and its real or effective user ID does not
match the real, saved, or effective user ID of the receiving process.

* The Array Services daemon (ar r ayd) is not currently active on the machine specified by Server.

SR-2080 10.0 43

ASKILLPID_SERVER(3x) ASKILLPID_SERVER(3x)

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, aski | | pi d_server returns avalue of 0. If unsuccessful, aski | | pi d_server returns a
value of —1 and sets aserr or code(3x) accordingly.

SEE ALSO
aserrorcode(3x), aski | | ash_server (3x), asopenser ver (3x)
array(1), cc(1),1d(D)
kill (2
array_services(7),array_sessi ons(7)

arrayd(8)

44 SR-2080 10.0

ASLISTARRAYS(3x) ASLISTARRAYS(3x)

NAME

asl i st arrays — Enumerates known arrays

SYNOPSIS
#i ncl ude <arraysvcs. h>

asarraylist_t *aslistarrays(asserver_t Server);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asl i st arrays function returns a list of all arrays that are known to the specified Array Services
daemon. The machine invoking this function may or may not be a member of one or more of those arrays.

The formal parameter is as follows:

Server Specifies an optional array server token, which can be used to direct the request to a specific
Array Services daemon. If you specify a null pointer, the default Array Services daemon
processes the request. For information on how the default Array Services daemon is selected,
see the ar r ay(1) man page. For information on creating an array server token, see the
asopenser ver (3x) man page.

Each array is described by an asarray_t structure, and the entire list is contained in an

asarrayl i st_t structure. Both of these are defined in the arr aysvcs. h file. Thel i barray library
uses the mal | oc(3C) function to allocate storage for these structures. To release the storage space, use the
asfreearrayli st (3x) function.

NOTES

TheIRIX | i barray. so and the UNICOS | i barr ay. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, asl i st arrays returns a pointer to an asarrayl i st _t structure. If unsuccessful,
asl i starrays returns a null pointer and sets aser r or code(3x) accordingly.

SR-2080 10.0 45

ASLISTARRAYS(3x) ASLISTARRAYS(3x)

SEE ALSO

aserrorcode(3x), asfreearrayli st (3x), asl i st machi nes(3x), asopenser ver (3x),
mal | oc(3C)

array(1), cc(1),1d(D)
array_services(7),array_sessi ons(7)

arrayd(8)

46 SR-2080 10.0

ASLISTASHS (3x) ASLISTASHS(3x)

NAME

aslistashs, aslistashs_array, asli stashs_| ocal , asl i stashs_server — Enumerates
array session handles
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

asashlist_t *aslistashs(asserver_t Server, const char *ArrayName,
i nt Destination, uint32_t Flags);

asashlist_t *aslistashs_array(asserver_t Server, const char *ArrayName) ;
asashlist_t *aslistashs_|local (void);

asashlist_t *aslistashs_server(asserver_t Server);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asl i st ashs function returns a list of array session handles that are currently active on the local
machine, some other machine, or some array.

The formal parameters are as follows:

Server Specifies an optional array server token, which can be used to direct the request to a
specific Array Services daemon. If you specify a null pointer, the default Array Services
daemon processes the request if necessary. For information on how the default Array
Services daemon is selected, see the ar r ay (1) man page For information on creating an
array server token, see the asopenser ver (3x) man page.

ArrayName Specifies the array name.
Destination Specifies the target of asl i st ashs. Destination may have one of the following values:
ASDST_ARRAY Retrieves the active array session handles on all machines in the

array specified by ArrayName, or the default array if ArrayName
isanull pointer.

ASDST_LOCAL Retrieves the active array session handles on the local machine
only.

ASDST_SERVER Retrieves the active array session handles on the machine specified
by Server only.

SR-2080 10.0 47

ASLISTASHS (3x) ASLISTASHS(3x)

If Destination is not ASDST_ARRAY, the ArrayName value should be a null pointer.

Flags Controls some of the details about the array session handles that are returned. The Flags
value is constructed from alogical OR of zero or more of the following flags. (If you do
not specify a flag, set the value to 0.) The flags are as follows:

ASLAF_NOLOCAL Does not include local array session handles.

ASLAF_NODUPS Causes duplicate array session handles to be removed from the
list, with some additional cost in execution time. Ordinarily, an
array session handle may appear more than once in the returned
list.

The list of array session handles is returned in an asashl i st _t structure, which is defined in the
arraysvcs. h file. Thel i barray library uses the mal | oc(3C) function to alocate storage for this
structure. To release the storage space, use the asf r eeashl i st (3x) function.

Theasli stashs_array, asli stashs_| ocal and asl i st ashs_server functions are convenience
functions that are equivalent to variations of asl i st ash:

* aslistashs_array(Server, ArrayName) is equivalent to:
asl i st ashs(Server, ArrayName, ASDST_ARRAY,
(ASLAF_NOLOCAL | ASLAF_NODUPS))
e aslistashs_| ocal () isequivaent to:
asl i stashs(NULL, NULL, ASDST_LOCAL, ASLAF_NODUPS)

* aslistashs_server (Server) isequivalent to:

asl i stashs(Server, NULL, ASDST_SERVER,
(ASLAF_NOLOCAL | ASLAF_NODUPS))

Because array sessions are transient, this information cannot be completely accurate; it may omit some new
array sessions and/or include array sessions that have aready terminated.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, the asl i st ashs, asl i stashs_array, asl i stashs_I ocal , and
asl i stashs_server functions return a pointer to an asashl i st _t structure. If unsuccessful, they
return a null pointer and set aser r or code(3x) accordingly.

48 SR-2080 10.0

ASLISTASHS (3x) ASLISTASHS(3x)

SEE ALSO

asashi sgl obal (3x), aserror code(3x), asf reeashl i st (3x), asopenser ver (3x) mal | oc(3C)
array(1), cc(1), 1d(D)
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 49

ASLISTMACHINES (3x) ASLISTMACHINES(3x)

NAME

asl i st machi nes — Enumerates machines in an array

SYNOPSIS
#i ncl ude <arraysvcs. h>

asmachi nelist _t *aslistmachi nes(asserver_t Server, const char *Name);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asl i st machi nes function returns a list of the machines that are members of the array specified by
Name. If Name is a null pointer, alist of the machines that are members of the default array is returned.

The formal parameters are as follows:

Server Specifies an optional array server token, which can be used to direct the request to a specific
Array Services daemon. If you specify a null pointer, the request is processed by the default
Array Services daemon. For information on selecting the default Array Services daemon, see the
arr ay (1) man page. For information on creating an array server token, see the
asopenser ver (3x) man page.

Name Specifies the name of the array for which a list of member machines is returned.

An asmachi ne_t structure describes each machine, and an asnachi nel i st _t structure contains the
entire list. The ar raysvcs. h file defines these structures. The | i bar r ay library uses the mal | oc(3C)
function to allocate storage for these structures. To release the storage space, use the

asf reemachi nel i st (3x) function.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, asl i st machi nes returns a pointer to an asnmachi nel i st _t structure. If unsuccessful,
asl i st machi nes returns a null pointer and sets aser r or code(3x) accordingly.

50 SR-2080 10.0

ASLISTMACHINES (3x) ASLISTMACHINES(3x)

SEE ALSO

aserrorcode(3x), asf reemachi nel i st (3x), asl i st arrays(3x), asopenser ver (3x),
mal | oc(3C)

array(1), cc(1), 1d(D)
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 51

ASMAKEERROR (3x) ASMAKEERROR (3x)

NAME

asmakeer r or — Generates an Array Services error code

SYNOPSIS
#i ncl ude <arraysvcs. h>

aserror_t asmakeerror(int Errno, int What, int Why, int extra);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asmakeer r or function combines the various fields of an Array Services error code into a single value.
The global variable aserrorcode contains these values.

The formal parameters are as follows:

Errno Specifies the error number.
What Specifies the type of error.
Why Specifies why this is an error.
Extra Specifies other information.

The ar raysvcs. h file describes the specific values that are typically stored in these fields. No validation
is done on the values of the individual fields or of the resulting error code.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

The asmakeer r or function always returns a value of type aser r or _t that is composed of the specified
fields.

SEE ALSO
aserrorcode(3x)
cc(d), 1 d()
array_services(7),array_sessi ons(7)

arrayd(8)

52 SR-2080 10.0

ASOPENSERVER (3x) ASOPENSERVER (3x)

NAME

asopenserver, ascl oseserver — Creates or deﬂroys an array server token

SYNOPSIS
#i ncl ude <arraysvcs. h>
asserver _t asopenserver(const char *ServerName, int PortNumber) ;
voi d ascl oseserver(asserver_t Server);
IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asopenser ver function creates an array server token. You can use this token with other | i bar r ay
functions to direct Array Services requests to a specific Array Services daemon.

The formal parameters are as follows:

ServerName Specifies the host name of the machine to which Array Services requests made with this
token should be directed. If you specify a null pointer, the default Array Services host
processes the request.

PortNumber Specifies the network port number of the Array Services daemon on the specified machine.
If you specify - 1, the default port humber is used.

For information on determining the default Array Services host and port number, see the ar r ay (1) man
page.

You should use the ascl oseser ver function to destroy the array server token specified by Server when it
is no longer needed. This releases the resources that it is using.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

If successful, asopenser ver returns a nonzero array server token. If unsuccessful, asopenser ver
returns a null pointer and sets aser r or code(3x) accordingly.

SR-2080 10.0 53

ASOPENSERVER (3x)

SEE ALSO

aserrorcode(3x), asset server opt (3x)
cc(1), 1 d(1)
array_services(7),array_sessi ons(7)

arrayd(8)

54

ASOPENSERVER (3x)

SR-2080 10.0

ASOPENSERVER_FROM_OPTINFO(3x) ASOPENSERVER_FROM_OPTINFO(3x)

NAME

asopenserver _from opti nf o — Creates an array server token

SYNOPSIS
#i ncl ude <arraysvcs. h>

asserver _t asopenserver_fromoptinfo(const asoptinfo_t *Info);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asopenser ver _from opti nf o function creates and modifies an array server token using
parameters taken from an asopt i nf o_t structure. You can use the resulting array server token with other
I i barray functions to direct Array Services requests to a specific Array Services daemon. For further
details, see asopenser ver (3x) and asset ser ver opt (3x).

The formal parameter is as follows:

Info Points to an asopt i nf o_t structure that contains all of the relevant information needed to
create the server token and optionally set various options pertaining to it. Typically, you will
generate asopt i nf o_t structures from a list of command line arguments by using the
aspar seopt s(3x) function; however, you can also generate asopt i nf o_t structures
manually. asopenserver _from opti nf o uses only members that have been marked as
val i d intheasopti nfo_t structure. For more information about asopti nfo_t
structures, see the aspar seopt s(3x) man page.

NOTES
TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES
If successful, asopenser ver _from opti nf o returns a nonzero array server token. If unsuccessful,
asopenserver _from opti nf o returns a null pointer and sets aser r or code(3x) accordingly.

SEE ALSO

aserrorcode(3x), asopenser ver (3x), aspar seopt s(3x), asset ser ver opt (3x)

cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 55

ASPARSEOPTS(3x) ASPARSEOPTS(3x)

NAME

aspar seopt s — Parses standard Array Services command line options

SYNOPSIS

#i ncl ude <arraysvcs. h>

asoptinfo_t *asparseopts(int Argce, char **Argv, int Sdect, int Control);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The aspar seopt s function parses standard Array Services command line options from a list of strings,
typically the list of arguments to an Array Services client program. The results are returned in the form of
an asopti nfo_t structure, which contains parsed, validated values for the options specified in the
argument list, and a list of the arguments that were not recognized as one of the selected Array Services
options. Thel i barr ay library uses the mal | oc(3C) function to allocate storage for this structure. To
release the storage space, use the asf r eeopt i nf 0(3x) function.

The formal parameters are as follows:

Argc Specifies an argument count in the form typically provided to the function mai n of an ordinary
C program.

Argv Specifies an argument list in the form typically provided to the function mai n of an ordinary C
program.

Slect Specifies which of the standard array service command line options are to be included in this

operation. It is constructed from the logical OR of one or more of the following flags, which are
defined in the ar r aysvcs. h file:

ASO V_ARRAY Parses the - ar r ay option, which takes the name of an array as a
subargument. - a is a synonym for the - ar r ay option.

ASO V_ASH Parses the - ash option, which takes an array session handle as a
subargument. The array session handle may be specified in decimal,
octal (if preceded by 0) or hexadecimal (if preceded by 0x). - h and -
ar sess are both synonyms for the - ash option.

ASO V_CONNECTTO Parses the - connect t o option, which takes a connection timeout
value as a subargument. The value must be specified in decimal only.
- Cisasynonym for the - connect t o option.

ASO V_FORWARD Parses the - f orwar d and - di r ect options, which specify the Array
Services forwarding mode:

56 SR-2080 10.0

ASPARSEOPTS(3x)

ASQO V_LCLKEY

ASO V_LOCAL

ASO V_PI D

ASO V_PCORTNUM

ASO V_REMKEY

ASQO V_SERVER

ASO V_TI MEQUT

ASO V_TCKEN

SR-2080 10.0

ASPARSEOPTS(3x)

* The-f orward option indicates that Array Services commands
should be forwarded to their ultimate destination through the server
on the local machine.

* The-direct option indicates that Array Services commands should
be sent directly to the remote server.

- F isasynonym for the - f or war d option and - D is a synonym for
the - di r ect option.

Parses the - | ocal key option, which takes the authentication key for
the local machine as a subargument. - Kl is a synonym for the -
| ocal key option.

Parses the - | ocal option, which indicates that an Array Services
function should take place only on the local server, as opposed to being
broadcast to all of the serversin an array (for example). -1 isa
synonym for the - | ocal option.

Parses the - pi d option, which takes a process identification number
(PID) as a subargument. The PID should be specified in decimal only
and must be positive. -i and - pr ocess are both synonyms for the -
pi d option.

Parses the - por t numoption, which takes a port number as a
subargument. The port number should be specified in decimal only and
must be in the range 1 through 65535. - p is a synonym for the

- por t numoption.

Parses the - r enot ekey option, which takes the authentication key for
a remote machine as a subargument. - Kr is a synonym for the
- r enot ekey option.

Parses the - ser ver option, which takes the hostname of an array
daemon as a subargument. - s is a synonym for the - ser ver option.

Parses the - t i meout option, which takes a timeout value as a
subargument. The value must be specified in decimal only. -t isa
synonym for the - t i meout option.

Creates a server token using the parsed options, by using
asopenserver _from opti nf 0(3x), assuming that no invalid
arguments were encountered (in other words, the i nval i d member of
the returned asopt i nf o_t structure is 0).

57

ASPARSEOPTS(3x)

Contr ol

ASQO V_VERBGCSE

ASPARSEOPTS(3x)

Parse the - v option, which is used to set a verbosity level. The default
verbose level is 0, and each occurrence of - v increases the level by 1.
If an option begins with v and is followed by any number of other
non-whitespace characters (for example, - vvv), then the verbose level
is increased by the number of characters following the hyphen (three in
the case of - vvv).

Specifies flags that modify the parsing behavior. This value is constructed from the logical OR
of zero or more of the following flags, which are defined in the ar r aysvcs. h file. (If you do
not specify a flag, set the value to 0 so that no modification takes place.) The flags are as

follows:
ASO C_LOGERRS

ASO C_NODUPS

ASO C_OPTSONLY

ASO C_SELONLY

Specifies that syntax errors and other abnormal conditions should be
reported to the normal Array Services error logging destination, which is
typically standard error. You must specify this flag to generate error
messages. However, if you do not specify this flag, thei nval i d
member of the returned asopt i nf o_t structure can still be checked to
determine if any errors were detected.

Calls out duplicate occurrences of an option as errors and marks the
option as invalid in the returned asopt i nf o_t . Ordinarily, if an
option is specified more than once, the last occurrence of the option in
the argument list quietly overrides previous occurrences of the option.

Stops parsing as soon as an argument that does not begin with a -
character is encountered (not including subarguments to valid options).
The non- opt i on argument and all arguments following it are returned
as unrecognized arguments, even if some of the subsequent arguments
would otherwise have been valid Array Services options.

Stops parsing as soon as an argument that is not a selected option or the
subargument of a selected option is encountered.

If the argument list is successfully parsed, a pointer to an asopt i nf o_t structure (also defined in the
arraysvcs. h file) isreturned. Anasopti nfo_t structure has the following format:

58

SR-2080 10.0

ASPARSEOPTS(3x) ASPARSEOPTS(3x)

typedef struct asoptinfo {

i nt argc;
char **argv,

i nt valid;

i nt invalid;

i nt options;
asserver _t token;
char * server;
char * array;
askey_t localkey;
askey_t remotekey;
ash_t ash;
pid_t pid;

i nt portnum;
i nt timeout;

i nt connectto;
i nt verbose;

} asoptinfo_t;

The members are as follows:

argc

argv

valid

invalid

options

SR-2080 10.0

Specifies the count of arguments that were not recognized as selected Array Services options or
their corresponding subarguments.

Specifies the list of arguments that were not recognized as selected Array Services options or
their corresponding subarguments.

Specifies a bitmap used to specify which options were successfully parsed and are present in the
asopti nfo_t structure. The same flags used to specify the Select argument to
aspar seopt s are used to indicate which options are present.

Specifies a bitmap of options that were selected and specified in the argument list, but had
values that were invalid in some way. If the ASO C_LOGERRS control flag was specified, then
an error message explaining the nature of the problem should aready have been generated. This
member also uses the same flags as valid and Select.

Specifies a bitmap of flags indicating the state of the various binary options.

A flag in opt i ons should only be examined if it is also marked as valid in valid. For
example, the state of the ASO O FORWARD flag in opt i ons is only meaningful if the

ASO V_FORWARD flag is set in valid. If the appropriate flag in valid is not set, then the option
should be considered unspecified and a default setting should be used instead. The flags that
may be set are as follows:

ASO O_FORWARD Sets command forwarding. If not set, a direct connection is desired.

ASO O LOCAL Restricts the command to the local server. If not set, the command is
considered eligible for broadcast to al serversin an array.

59

ASPARSEOPTS(3x) ASPARSEOPTS(3x)

NOTES

token Specifies a server token. This member is not a value directly parsed from the argument list, but
instead a server token created using the values that were successfully parsed from the argument
list. Itisonly created if the ASO V_TOKEN flag was set in Select. If it is successfully created,
the ASO V_TOKEN flag is set in the valid member of the asopt i nf o_t structure. Otherwise,
ASO V_TOKEN is set in the invalid member and aser r or code(3x) is set accordingly.

The remaining members of the asopt i nf o_t structure contain the values of the selected Array Services
options. If a selected option was specified in the argument list, then its flag in valid is set and the
corresponding member of asopt i nf o_t structure contains the parsed value of that option. If a selected
option was not specified in the argument list, then its flag in valid is not set and the corresponding member
of asopti nfo_t structure contains a default value (generally a null pointer, O or —1, as appropriate). If a
selected option had an invalid value, its flag is set in invalid and the contents of the corresponding member
of asopti nfo_t structure are unpredictable. The remaining members are as follows:

server Specifies the server name.

array Specifies the array name.

localkey Specifies the local key.

remotekey Specifies the remote key.

ash Specifies the array session handle.

pid Specifies the process identification number.
portnum Specifies the port number.

timeout Specifies the timeout value.

connectto Specifies the connection timeout value.
verbose Specifies the verbose level.

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

60

If successful, aspar seopt s returns a pointer to an asopt i nf o_t structure.

If aspar seopt s is successful and the ASO V_TOKEN flag of Select was specified but a server token could
not be created, aspar seopt s returns the pointer to the asopt i nf o_t structure as usual, but sets the
ASO V_TOKEN flag of the invalid member and sets aser r or code so that it contains the error returned by
asopenserver _from opti nf o(3x).

If a severe error occurs, aspar seopt s returns a null pointer and sets aser r or code accordingly.

SR-2080 10.0

ASPARSEOPTS(3x) ASPARSEOPTS(3x)

SEE ALSO

aserrorcode(3x), asf reeopti nf 0(3x), asopenser ver _from opti nf o(3x), mal | oc(3C)
cc(d), 1 d(1)
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 61

ASPERROR(3x) ASPERROR(3x)

NAME

asperror — Prints an Array Services error message

SYNOPSIS

#i ncl ude <arraysvcs. h>

void asperror(const char *Format, .../* args */);
IMPLEMENTATION

IRIX and UNICOS systems

DESCRIPTION

The asper r or produces a message on the standard error output (file descriptor 2) that describes the last
error encountered during a call to certain Array Services functions.

The error is determined from the external variable aser r or code, which is set by many Array Services
functions when errors occur.

The formal parameter is as follows:

Format Specifies a format string that is treated as a format string similar to an IRIX pri nt f (3S) or
UNICOS pri nt f (3C) string and is printed first, followed by a colon and a blank, then the
message and a newline. (However, if Format is a null pointer or points to a null string, the
colon is not printed.) Arguments needed to satisfy any conversion specifications in Format
should follow Format in the function invocation.

NOTES

TheIRIX | i barray. so and the UNICOS | i barr ay. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

SEE ALSO
aserrorcode(3x), asstrerror (3x), IRIX printf (3S), UNICOS pri nt f (3C)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

62 SR-2080 10.0

ASPIDSINASH (3x) ASPIDSINASH(3x)

NAME

aspi dsi nash, aspi dsi nash_array, aspi dsi nash_| ocal , aspi dsi nash_server —
Enumerates processes in an array session

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <arraysvcs. h>

aspidlist_t *aspidsinash(ash_t ASH);

asarraypidlist_t *aspidsinash_array(asserver_t Server,
const char *ArrayName, ash_t ASH);

aspidlist_t *aspidsinash_|local (ash_t ASH);

asmachi nepidli st _t *aspidsinash_server(asserver_t Server, ash_t ASH);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The aspi dsi nash, aspi dsi nash_arr ay, aspi dsi nash_I| ocal , and aspi dsi nash_server
functions return lists of process identification (PID) numbers that belong to the array session specified by the
array session handle ASH. Each function returns its list in a data structure that is defined in the
arraysvcs. h file. Thel i barray library uses the mal | oc(3C) function to alocate storage for these
structures. When the space is no longer needed, release it with the appropriate function noted below.

The formal parameters are as follows:
AH Specifies the array session handle.

Server Specifies an optional array server token, which can be used to direct the request to a
specific Array Services daemon. If you specify a null pointer, the request is processed by
the default Array Services daemon if necessary. For information on how the default Array
Services daemon is selected, see the ar r ay (1) man page. For information on creating an
array server token, see the asopenser ver (3x) man page.

ArrayName Specifies the array name.

SR-2080 10.0 63

ASPIDSINASH (3x)

NOTES

ASPIDSINASH (3x)

The functions return the following information:

aspi dsi nash_|I ocal

aspi dsi nash_server

aspi dsi nash_array

Returns only those processes in the array session that are running on the local
machine. aspi dsi nash_| ocal returnsthe list of PIDs in an

aspi dli st _t structure, which you can free by using

asfreepi dli st (3x). aspi dsi nash is the same as

aspi dsi nash_I ocal , and is retained mainly for backward compatibility.
Unlike the remaining functions, aspi dsi nash_| ocal and aspi dsi nash
do not require the Array Services daemon to be running in order to complete
successfully.

Returns the list of processes in the specified array session that are running on
the machine specified by Server. aspi dsi nash_ser ver returnsthe list in
aasmachi nepi dl i st _t structure, which you can free by using
asfreemachi nepi dl i st (3x).

Returns a list of processes in the specified array session for all of the
machines in the array specified by Arr ayNane. aspi dsi nash_array
returns the data in the form of an asarraypi dl i st _t structure, which you
can free by using asf reear raypi dl i st (3x). Theasarraypi dlist _t
structure in turn contains pointers to one or more asmachi nepi dl i st _t
structures, one for each machine in the array. Each asmachi nepi dl i st _t
structure contains the name of the particular machine and a list of the
processes that (in the specified array session) that are running on the machine.

Because processes and array sessions are transient, this information cannot be completely accurate; it may
omit some new processes and/or include processes that have already terminated.

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain these functions. You can load
thel i barray. so orlibarray. a library by using the - | ar r ay option with cc(1) or | d(2).

The Array Services daemon, ar r ayd(8), must be running on all affected machines for the functions
aspi dsi nash_array and aspi dsi nash_ser ver to work properly.

RETURN VALUES

64

If successful, aspi dsi nash returns a pointer to an aspi dl i st _t structure. If unsuccessful,
aspi dsi nash returns a null pointer and sets aser r or code(3x) accordingly.

SR-2080 10.0

ASPIDSINASH (3x) ASPIDSINASH(3x)

SEE ALSO

asashi sgl obal (3x), aserror code(3x), asfreearraypi dl i st (3x),
asf reemachi nepi dl i st (3x), asfreepi dl i st (3x), asl i stashs_server (3x), mal | oc(3C)

cc(d), 1 d(1)
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 65

ASRCMD(3x) ASRCMD(3x)

NAME

asr cnd, asr cndv — Executes a command on a remote machine

SYNOPSIS
#i ncl ude <arraysvcs. h>

int asrcnd(asserver_t Server, char *User, char *CmdLine, int *fd2p);
int asrcndv(asserver_t Server, char *User, char **CmdV, int *fd2p);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asr cnd and asr cndv functions execute a command on a remote machine. They are similar in some
respects to IRIX r crrd(3N) and UNICOS r cnd(3C) except that the connection and user authentication is
provided by Array Services, so the user does not need root privileges. Both asr cnd and asr cndv pass
the command to the remote user’s default shell for execution using the standard shell command line option

- c. For example, if the requested command is| s -1 and the remote user’s shell is/ bi n/ t csh, then the
following command would be invoked on the remote machine:

/binftcsh -¢c "Is -|"

The only difference between asr cd and asr cndv is in the way that the remote command is specified.
The formal parameters are as follows:

Server Specifies an array server token created with asopenser ver (3x) that specifies the remote
machine that is to execute the command. If you specify a value of a null pointer, the command
is executed on the same machine as the one running the default Array Services daemon,
although this is not generally very useful. For information on how the default Array Services
daemon is selected, see the ar r ay(1) man page.

User Specifies the login name of the user on the remote machine that should execute the command.
Specifying a null pointer executes the command using the same user login name as the one
executing asr cimd or asr cndv. Authorization for the local user to execute commands as the
user specified by the User value on the remote machine is determined with IRIX r user ok (3N),
the same mechanism used by r sh(1) and IRIX r cnd(3N) and UNICOS r cnd(3C) that involves
checking for the user in / et ¢/ host s. equi v and/or ~/ . r host s.

CmdLine Specifies a single string containing the entire command to be executed, such as it might be typed
on the command line.

66 SR-2080 10.0

ASRCMD(3x) ASRCMD(3x)

CmdvVv Specifies an array of string pointers (similar to that used with ar gv) that contains the list of
arguments that make up the command to be executed. The array should be terminated with a
null pointer. The list of arguments is concatenated into a single string (with a single space
between each) before it is passed to the remote user’s default shell for execution. 1t may
therefore be necessary to include appropriate shell quote characters if individual arguments
contain embedded space or tab characters.

If the remote command is successfully initiated, a socket in the internet domain of type SOCK_STREAMis
returned to the caller and given to the remote command as st di n and st dout . If f d2p is nonzero, then
an auxiliary channel to a control process is set up, and a descriptor for it is placed in *f d2p. The control
process returns output from the command’ s standard error, and also accepts bytes on this channel as being
IRIX or UNICOS signal numbers. These signal numbers are to be forwarded to the process group of the
command. If f d2p is 0, then the standard error of the remote command is made the same as the standard
output and no provision is made for sending arbitrary signals to the remote process.

NOTES
TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain these functions. You can load
thel i barray.so orlibarray. a library by using the - | ar r ay option with cc(1) or | d(2).

RETURN VALUES

If successful, asr cimd and asr crdv return a socket descriptor attached to the remote command’ s standard
input and standard output. If the remote command cannot be started, asr cnd and asr cndv return a value
of —1 and set aser r or code accordingly.

SEE ALSO

asconmmand(3x), aser r or code(3x), asopenser ver (3x), IRIX r cnd(3N), UNICOS r cnd(3C), IRIX
ruser ok(3N)

array(1), cc(1), 1 d(1) rsh()
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 67

ASSERT(3C) ASSERT(3C)

NAME

assert — Verifies program assertion

SYNOPSIS

#i ncl ude <assert. h>

voi d assert (int expression);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

68

The assert macro is useful in debugging programs. If you want to check if a certain condition is true at a
certain point in the program, you can do so by stating that condition as the argument (expression) to the
assert macro at that point. When the macro is executed, if that condition is false (0), assert prints the
following on the standard error file and aborts:

Assertion failed: expression, file xyzz line nnn

In the error message, xyz is the name of the source file and nnn is the source line number of the assert
Statement.

When the first false assertion is encountered in the executing program, the program aborts after the printed
message. With this facility, it is not possible to get more than one failed assertion message in one run of the
program.

The assert macro can be disabled by defining the macro NDEBUG prior to the #i ncl ude

<assert. h>. Inthiscase the assert macro expandsto ((voi d) 0)) and the argument passed to
assert will not be evaluated. On the other hand, if the assert facility is enabled by the absence of
NDEBUG, the assert macro expands to code to evaluate the argument and test the assertion. Therefore,
whether the argument is evaluated depends on whether NDEBUG is defined; when using asser t , statements
following the call to assert should not depend on side effects of evaluation of the argument.

By default, NDEBUG is not defined, so all assert macros in the compiled program are enabled. To
globally disable the assert macro, you can include option - DNDEBUG on the cc command line.
Alternatively, you can include a #def i ne NDEBUG in your source code prior to the #i ncl ude
<assert. h>.

If you want to selectively enable and disable the assert facility in parts of the program, include two lines
in your source code each time you want to toggle the facility:

SR-2080 10.0

ASSERT(3C) ASSERT(3C)

To disable:

#def i ne NDEBUG
#i ncl ude <assert. h>

To enable:

#undef NDEBUG
#i ncl ude <assert. h>

assert isimplemented only as a macro. If #undef is used to remove the macro definition from assert
and obtain access to the underlying function, the behavior is undefined.

RETURN VALUES

The assert macro does not return a value.

SEE ALSO
abort (3C)

SR-2080 10.0 69

assert.h(3C) assert.h (3C)

NAME

assert. h — Library header for diagnostic functions

IMPLEMENTATION

All Cray Research systems

STANDARDS

TYPES

ISO/ANS

None

MACROS

The header asser t . h defines the assert macro and refers to the NDEBUG macro, which is not defined
by assert. h.

If NDEBUG is defined as a macro name at the point in the C source file where assert . h isincluded, the
assert macro is defined as follows (that is, expands to avoi d expression that does nothing):

#define assert(ignore) ((void) 0)

The assert header is one case where multiple inclusions of a header can, by design, give different results
than a single inclusion. See the description of the assert function.

If #undef is used to remove the macro definition from the assert macro and obtain access to the
underlying function, the behavior is undefined.

FUNCTION DECLARATIONS

70

None

SR-2080 10.0

ASSETSERVEROPT (3x) ASSETSERVEROPT (3x)

NAME

asset serveropt, asget serveropt, asdfl t server opt — Sets or retrieves server options

SYNOPSIS
#i ncl ude <arraysvcs. h>
int assetserveropt(asserver_t Server, int OptName,
const void *OptVal, int OptLen);
i nt asgetserveropt(asserver_t Server, int OptName,

void *OptVal, int OptLen);
int asdfltserveropt(int OptName, void *OptVal, int OptLen) ;

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asget server opt and asset server opt functions manipulate options associated with the server
token Server. The asdf | t server opt function retrieves the standard default value for those options when
a new server token is created using asopenser ver (3x).

The formal parameters are as follows:
Server Specifies the server name.

OptName Specifies the option to be manipulated. The OptName value may be one of the following
(defined in the ar r aysvcs. h file):

AS_SO _TI MEQUT Sets or retrieves the timeout value (in seconds) for a response to a
request made to the Array Services daemon associated with the
server token. The timeout value is of typei nt .

AS_SO_CTI MEQUT Sets or retrieves the timeout value (in seconds) for establishing an
initial connection with the Array Services daemon associated with
the server token. The timeout value is of typei nt .

AS SO FORWARD Sets or retrieves the state of the forwarding flag associated with
the server token. If the flag is nonzero, then any requests made
with the token are forwarded to the server associated with the
token via the Array Services daemon at the default port on the
local machine. If the flag is 0, requests are sent directly to the
server associated with the token. The default setting of this flag is
0 unless the environment variable ARRAYD FORWARD has a value
beginning with the letter Y (asin "yes', in either uppercase or
lowercase) at the time the token was created. The value of the
flag is of typei nt .

SR-2080 10.0 71

ASSETSERVEROPT(3x) ASSETSERVEROPT (3x)

AS_SO _LOCALKEY Sets or retrieves the authentication key that is used for any
messages sent to the Array Services daemon associated with the
server token. The default value of this key is obtained from the
environment variable ARRAYD LOCALKEY, if it exists, or
otherwise is set to 0. The key is of type askey_t.

AS_ SO REMOTEKEY Sets or retrieves the authentication key that is used for any
messages received from the Array Services daemon associated
with the server token. The default value of this key is obtained
from the environment variable ARRAYD REMOTEKEY, if it exists,
or otherwise is set to 0. The key is of type askey_t.

AS_SO_PORTNUM Retrieves the port number of the default Array Services daemon.
This value is obtained from the environment variable
ARRAYD_ PORT, if it exists, otherwise the port number associated
with the service sgi - arrayd isused. Thisvalue is only valid
with asdf | t server opt .

AS_ SO HOSTNAME Retrieves the hosthame of the default Array Services daemon.
This value is obtained from the environment variable ARRAYD, if
it exists, otherwise | ocal host isused. Thisvalueisonly valid
with asdf | t server opt .

OptVal Specifies an option value for asset server opt . For asget server opt and
asdf | t server opt, identifies the buffer in which the value for the requested option is to be
returned.

OptLen Specifies the length of an option for asset server opt. For asget server opt and
asdf | t server opt, identifies the length of the buffer in which the value for the requested
option is to be returned. For those functions, OptLen is a value-result parameter, initially
containing the size in bytes of the buffer pointed to by OptVal, and modified on return to
indicate the actual size of the value returned.

RETURN VALUES

If successful, the asset server opt, asget serveropt, and asdf | t ser ver opt functions return a
value of 0. If unsuccessful, these functions return a value of —1 and set aser r or code(3x) accordingly.

NOTES

TheIRIX | i barray. so and the UNICOS | i barray. a libraries contain these functions. You can load
thel i barray. so orli barray. a library by using the - | ar r ay option with cc(1) or | d(2).

72 SR-2080 10.0

ASSETSERVEROPT(3x) ASSETSERVEROPT (3x)

SEE ALSO

ascl oseserver (3x), aser r or code(3x), asopenser ver (3x)
cc(d), 1d(1)
array_services(7),array_sessi ons(7)

arrayd(8)

SR-2080 10.0 73

ASSTRERROR(3x) ASSTRERROR(3x)

NAME

asstrerror — Gets an Array Services error message string

SYNOPSIS
#i ncl ude <arraysvcs. h>

const char *asstrerror(aserror_t Errorcode);

IMPLEMENTATION
IRIX and UNICOS systems

DESCRIPTION

The asstrerror function returns a pointer to a character string that describes the Array Services error
codein error code. The string is contained in a static buffer and should be copied elsewhere before a
subsequent call to either asstrerror or asperror.

The formal parameter is as follows:

Errorcode Specifies the error code to be described.

NOTES

The IRIX | i barray. so and the UNICOS | i barray. a libraries contain this function. You can load the
libarray.soorlibarray. a library by using the - | arr ay option with cc(1) or | d(1).

RETURN VALUES

The asstrerror function always returns a valid character string, even if er r or code is an invalid error
code.

SEE ALSO

aserror code(3x), asperror (3x)
cc(d), 1 d(1)

array_services(7),array_sessi ons(7)

74 SR-2080 10.0

ATEXIT(3C) ATEXIT(3C)

NAME

atexit, at abort — Calls specified function on normal/abnormal termination

SYNOPSIS
#i ncl ude <stdlib. h>
int atexit (void (*func)(void));
int atabort (void (*func)(void));
IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (at exi t only)
CRI extension (at abort only)

DESCRIPTION

The at exi t function registers the function pointed to by func, to be called without arguments at normal
program termination (for example, when the exi t function is called). The at abort function registers the
function pointed to by func, to be called without arguments at abnormal program termination (for example,
when the abor t function is called).

The standard requires that at least 32 functions can be registered by at exi t. These functions are called in
the reverse order of registration; no called function can call exi t .

RETURN VALUES

Both at exi t and at abort return O if the registration succeeds, a nonzero value if it fails.

SEE ALSO
exi t (3C) abort (3C)

SR-2080 10.0 75

BARASGN(3F) BARASGN (3F)

NAME
BARASGN — Identifies an integer variable to use as a barrier

SYNOPSIS
CALL BARASG\(name, value)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION
Before an integer variable can be used as an argument to any of the other barrier routines, it must first be
identified as a barrier variable by BARASGN.
The following is alist of valid arguments for this routine.

Argument Description

name Integer variable to be used as a barrier. The library stores an identifier into this variable.
Do not modify the variable after the call to BARASGN, unless a call to BARREL (3F) first
releases the variable.

value The integer number of tasks, between 1 and 31 inclusive, that must call BARSYNC(3F)
with name before the barrier is opened and the waiting tasks are allowed to proceed.

The initial state of the barrier is closed. A barrier remains closed until its count is met (that is, until the
BARSYNC(3F) routine has been called with this variable by the appropriate number of tasks). At this point,
all waiting tasks are allowed to execute, and the barrier is once again closed.

SEE ALSO
BARREL (3F), BARSYNC(3F)

76 SR-2080 10.0

BARREL (3F) BARREL (3F)

NAME
BARREL — Releases the identifier assigned to a barrier

SYNOPSIS
CALL BARREL (name)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

BARREL releases the identifier assigned to a barrier. If atask is waiting for passage through the barrier, an
error results. This subroutine is useful primarily in detecting erroneous uses of a barrier outside the region
the program has planned for it. The barrier variable can be reused following another call to

BARASGN(3F).

Argument Description

name Integer variable used as a barrier.
SEE ALSO

BARASGN\(3F)

SR-2080 10.0 77

BARSYNC(3F) BARSYNC(3F)

NAME

BARSYNC — Registers the arrival of atask at a barrier and suspends task execution until all other tasks
arrive at the barrier

SYNOPSIS
CALL BARSYNC(name)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

BARSYNC registers the arrival of atask at a barrier. This causes the barrier’s count to be decremented by 1.
If the current count is greater than O, the task waits. |If the current count is O, the task is permitted to
proceed through the barrier, all tasks waiting at the barrier are permitted to resume execution, and the barrier
is closed, with the current count reset to the initial value set with the BARASGN(3F) call.

Argument Description

name Integer variable used at a barrier.
SEE ALSO

BARASGN\(3F)

78 SR-2080 10.0

BESSEL (3C) BESSEL (3C)

NAME
j0,j1,jn,y0,y1l, yn — Returns Bessel functions

SYNOPSIS
#i ncl ude <mat h. h>
doubl e jO (doubl e Xx);
doubl e j1 (double Xx);
double jn (int n, double X);
doubl e yO (doubl e Xx);
doubl e y1 (doubl e Xx);

doubl e yn (int n, double X);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION
Thej 0,j 1, and j n functions return Bessel functions of x of the first kind of orders 0, 1, and n respectively.

TheyO0, y1, and yn functions return Bessel functions of x of the second kind of orders 0, 1, and n
respectively. The value of x must be positive.

Vectorization is inhibited for loops containing calls to any of these functions.

RETURN VALUES

Upon successful completion, these functions return the relevant Bessel value of x of the first or second kind.
Nonpositive arguments cause y0, y1, and yn to return the value - HUGE_VAL and to set er r no to EDOM

Arguments too large in magnitude cause j 0, j 1, y0, and y1 to return O and to set er r no to ERANGE.

On Cray MPP systems and CRAY T90 systems with |EEE arithmetic, j O(NaN) , j 1(NaN) , j n(NaN) ,
yO(NaN), y1(NaN), and yn(NaN) return NaN and er r no is set to EDOM

SEE ALSO
errno. h(3C), st di 0. h(3C)

SR-2080 10.0 79

BINDRESVPORT(3C) BINDRESVPORT(3C)

NAME
bi ndr esvport — Binds a socket to a privileged IP port

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in. h>

i nt bindresvport (int sd, struct sockaddr_in *sin);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The bi ndr esvport library routine binds a socket descriptor to a privileged IP port, that is, a port humber
in the range 512 through 1023. This routine returns O if it is successful; otherwise, it returns —1, and
errno is set to reflect the cause of the error. This routine differs from the r r esvport routine (see
r cnd(3C)) in that bi ndr esvport works for any IP socket, and r r esvport works for TCP only.

err no can take the following values:

EADDRI NUSE All reserved ports between 512 and 1023 are already in use, or the address sin is
aready in use.

EPFNOSUPPORT The socket address sin address family is not AF_1 NET.

EACCES Socket address sin is protected, and the current user has inadequate permission to
access it.

EADDRNOTAVAI L Socket address sin is unavailable from the local machine.

EBADF Descriptor sd is invalid.

EFAULT The address specified by sin is not a valid part of the user address space.

El NVAL Descriptor sd is aready bound to an address.

ENOTSOCK Descriptor sd is not a socket.

ENOVEM Unable to mal | oc enough memory for an internal table.

Only r oot or a process with PRI V. SOCKET on a least-privilege system can bind to a privileged port; this
call fails for any other users.

80 SR-2080 10.0

BINDRESVPORT(3C) BINDRESVPORT(3C)

The privileged ports present in the / et ¢/ ser vi ces file are not used by bi ndr esvport. Programs
using this routine do not conflict with servers that have privileged ports assigned in / et ¢/ ser vi ces.

SEE ALSO
r cnd(3C)

SR-2080 10.0 81

BSEARCH(3C) BSEARCH(3C)

NAME

bsear ch — Performs a binary search of an ordered array

SYNOPSIS

#i ncl ude <stdlib. h>

voi d *bsearch (const void (*key, const void (*base, size t nmemb, size t size, int
(*compar) (const void *, const void *));

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

NOTES

The bsear ch function searches an ordered array of nmemb objects, the initial element of which is pointed
to by base, for an element that matches the object pointed to by key. The size of each element of the array
is specified by size. The elements of the array must be ordered so that the following is true:

keyl < key2 <. . . < keyn
The comparison function pointed to by compar is called with two arguments that point to the key object and
to an array object, in that order. The function returns an integer less than, equal to, or greater than O if the
key object is considered, respectively, to be less than, to match, or to be greater than the array object. The

array consists of all the elements that compare less than, all the elements that compare equal to, and all the
elements that compare greater than the key object, in that order.

The pointers to the key and the element at the base of the table may be pointers to any type.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements in
addition to the values being compared.

The value required should be cast into type poi nt er -t o- el enent .

RETURN VALUES

The bsear ch function returns a pointer to a matching element of the array, or a null pointer if no match is
found. If two elements compare as equal, which element is matched is unspecified.

SEE ALSO

82

| sear ch(3C) gsort (3C),

SR-2080 10.0

BSTRING(3C) BSTRING(3C)

NAME
bcnp, bcopy, bzer o, f f s — Operates on bits and byte strings

SYNOPSIS
#i ncl ude <string. h>
int bcmp (const void *bl, const void *b2, size_t length);
voi d bcopy (const void *bl, void *b2, size_t length);
voi d bzero (void *b, size_t length);
int ffs (int i);
IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The bcnp, becopy, and bzer o functions operate on variable-length byte arrays. They do not check for null
bytes as the functions described in st ri ng(3C) do.

The benp function compares byte array bl against byte array b2, returning O if they are identical; otherwise,
it returns a nonzero value. Both byte arrays are assumed to be length bytes long.

The bcopy function copies length bytes from byte array bl to byte array b2.
The bzer o function places length bytes of 0’s in byte array b.

The f f s function finds the first bit set in the argument, passes it, and returns the index of that bit. Bits are
numbered starting at 1. A return value of 0 indicates that the value passed is 0.

NOTES

The bcopy function takes parameters backwards in relation to the mentpy function described in
menor y(3C).

SEE ALSO
menor y(3C), stri ng(3C)

SR-2080 10.0 83

BUFDUMP(3F) BUFDUMP(3F)

NAME
BUFDUMP — Writes an unformatted dump of the multitasking history trace buffer

SYNOPSIS
CALL BUFDUMP(empty, file)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

BUFDUMP writes an unformatted dump of the contents of the multitasking history trace buffer to a specified
file. The nt dunp(1) command can later use this file to provide formatted reports of its contents or to let
you examine the file. Actions are reported in chronological order. A special entry is added if the buffer has
overflowed and entries are lost.

The following is alist of valid arguments for this routine:

Argument Description

empty On entry, an integer flag that is O if the buffer pointers are to be left unchanged; the flag is
nonzero if the buffer is to be emptied after its contents are dumped.

file Integer variable, expression, or constant containing the name of the file to which an

unformatted dump of the multitasking history trace buffer is to be written. The name is
case-sensitive, and it must be in ASCII, left-justified, and terminated by a zero byte. If
you specify file as 0, the file passed to BUFTUNE(3F) is used; if no file was specified
through BUFTUNE(3F), the request is ignored.

CAUTIONS

This routine is available on SPARC systems, so that user codes do not need to be rewritten, but it has no
effect.

SEE ALSO

BUFTUNE(3F)
nt dunp(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

84 SR-2080 10.0

BUFPRINT(3F) BUFPRINT(3F)

NAME
BUFPRI NT — Writes formatted dump of multitasking history trace buffer to a specified file

SYNOPSIS
CALL BUFPRI NT(empty [, file])

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

BUFPRI NT writes a formatted dump of the contents of the multitasking history trace buffer to a specified
file. Actions are reported in chronological order.

The following is alist of valid arguments for this routine:

Argument Description

empty On entry, an integer flag that is O if the buffer pointers are to be left unchanged or nonzero
if the buffer is to be emptied after its contents are printed.

file Integer variable, expression, or constant containing the name of the file to which a

formatted dump is to be written. The name is case-sensitive, and it must be in ASCII,
left-justified, and terminated by a zero byte. If no name is specified, st dout is used.
CAUTIONS
This routine is available on SPARC systems, so that user codes do not need to be rewritten, but it has no
effect.
EXAMPLES
Example 1: The following example of BUFPRI NT leaves the buffer unchanged after its output to st dout :

| EMPTY = 0
CALL BUFPRI NT(| EMPTY)

Example 2: The following example of BUFPRI NT zeroes out the buffer after its contents are written to
st dout :

| EMPTY = 1
CALL BUFPRI NT(| EMPTY)

SEE ALSO
BUFDUMP(3F)

SR-2080 10.0 85

BUFTUNE(3F)

NAME

BUFTUNE(3F)

BUFTUNE — Tunes parameters controlling multitasking history trace buffer

SYNOPSIS

CALL BUFTUNE(keyword, value [, string])

IMPLEMENTATION

Cray PVP systems

SPARC systems

DESCRIPTION

BUFTUNE tunes paramaters that control the multitasking history trace buffer. The following is alist of valid
arguments for this routine:

Argument

keyword
value

string

Description
An integer variable containing an ASCII string, left-justified, blank-filled.
Either an integer or an ASCII string (left-justified, blank-filled), depending on the

keyword.
A 24-character string (left-justified, blank-filled) used only with the keyword | NFO.

You must specify a keyword, which must be in uppercase. Valid keywords, and their associated functions
and meanings, are as follows:

Keyword
DN

FLUSH

ACTI ONS

86

Description

The value of the DN keyword is the file that you specify to receive a dump of the
multitasking history trace buffer. DN itself directs this dump of the buffer to the file. If
BUFTUNE is called without the DN keyword, the multitasking history trace buffer is not
dumped to any file. The file name should be zero-filled (for example, * ABC L). Caseis
also important; * ABC L and’ abc’ L are two distinct files.

Minimum integer number of unused entries in the multitasking history trace buffer. When
the number of unused entries falls below this level, the buffer is flushed automatically; that
is, it is written to the file specified by the DN option. If DN is specified, the default
FLUSH value is 40.

The value of ACTI ONS is a 128-element integer array with a flag for each action that can
be recorded in the multitasking history trace buffer. If the array element corresponding to
a particular action is nonzero, that action is recorded; if the array element is O, the action
isignored. The array indexes (action codes) corresponding to each action follow.

Code Action

Starts task.

Completes task.

TSKWAI T, no wait.

Begins wait for task.

Runs after wait for task.

A WNPFO

SR-2080 10.0

BUFTUNE(3F)

I NFO

SR-2080 10.0

BUFTUNE(3F)
5 Tests task.
6 Assigns lock.
7 Releases lock.
8 Sets lock.
9 Begins wait to set lock.
10 Runs after wait for lock.
11 Clears lock.
12 Tests lock.
13 Assigns event.
14 Releases event.
15 Posts event.
16 Clears event.
17 EVWAI T, no wait.
18 Begins wait for event.
19 Runs after wait for event.
20 Tests event.
21 Attaches to logical CPU.
22 Detaches from logical CPU.

23, 24 Requests alogical CPU. (These actions require two action codes, the second
containing internal information.)

25 Acquires a logical CPU.

26, 27 Deletes alogical CPU. (These actions require two action codes, the second
containing internal information. (Cray PVP systems))

28, 29 Suspends alogical CPU. (These actions require two action codes, the second
containing internal information. (Cray PVP systems))

30, 31 Activates alogica CPU. (These actions require two codes, the second
containing internal information. (Cray PVP systems))

32 Begins spin-wait for a logical CPU.
33 Assigns barrier.

34 Releases barrier.

35 Calls BARSYNC(3F), no wait.

36 Begins wait at barrier.

37 Runs after wait for barrier.

38- 63 Reserved for future use.

64- 127

Reserved for user access (see BUFUSER(3F)).

The value for this keyword is the integer user action code (64 through 127).
The string argument is a 24-character information string, unique to each action, which you
enter; it is printed for each user action code that is dumped.

87

BUFTUNE(3F) BUFTUNE(3F)

BUFUSER(3F) lets you add entries to the multitasking history trace buffer. When the
multitasking history trace buffer is dumped using BUFPRI NT(3F) or mt dunp(1) on Cray
PVP systems, this 24-character information string is dumped along with each action. This
information must be available early in the program so that the strings can be written to the
dump file for processing by nt dunp(1).

The | NFO keyword does not turn these actions on to be recorded. They are normally on
by default, but if you have previously turned them off, you may reactivate them by using
the ACTI ONS or USERS keyword in a BUFTUNE call.

TASKS If value=" ON' H, actions numbered 1 through 6 are recorded; if value=" OFF' H, those
actions are ignored.

LOCKS If value=" ON' H, actions numbered 7 through 13 are recorded; if value=" OFF' H, those
actions are ignored.

EVENTS If value=" ON' H, actions numbered 14 through 21 are recorded; if value=" OFF' H, those
actions are ignored.

CPUS If value=" ON' H, actions numbered 22 through 33 are recorded; if value=" OFF' H, those
actions are ignored.

BARRI ERS If value=" ON' H, actions 34 through 38 are recorded; if value=" OFF' H, those actions are
ignored.

USERS If value=" ON' H, actions numbered 65 through 128 are recorded; if value=" OFF' H, those
actions are ignored.

FI OLK On Cray PVP systems, if value=" ON' H, actions affecting the Fortran 1/0 lock are

recorded; if value=" OFF’ H they are ignored. Library routines that handle Fortran reads
and writes use this lock.

BUFTUNE can be called any number of times. If it is not called, or before it is called for the first time,
default parameter values are used.

Before BUFTUNE is called, all actions involving tasks, locks, events, logical CPUs, barriers, and users are
recorded, except for actions involving the Fortran 1/O lock, which are ignored. A call to BUFTUNE with the
TASKS, LOCKS, EVENTS, CPUS, BARRI ERS, or USERS keyword affects only the actions associated with
that keyword. The ACTI ONS keyword overrides what has been requested through TASKS, LOCKS,
EVENTS, CPUS, BARRI ERS, or USERS.

CAUTIONS

This routine is available on SPARC systems, so that user codes do not need to be rewritten, but it has no
effect.

88 SR-2080 10.0

BUFTUNE(3F) BUFTUNE(3F)

EXAMPLES
The following BUFTUNE examples show two different ways to dump only task actions to file
nt dunpfil e:
* Turn on task actions, turn everything else off

| NTEGER ACTI ON(128)

DATA ACTI ON/ 6* 1, 122* 0/

CALL BUFTUNE(’ DN' L, ' ntdunpfile’ L)
CALL BUFTUNE(’ ACTI ONS' L, ACTI ON)

or

* Turn on task actions, turn everything else off
CALL BUFTUNE(' DN L, ’'ntdunmpfile’l)
CALL BUFTUNE(' TASKS' L, "ON' L)
CALL BUFTUNE(' LOCKS' L, 'OFF' L)
CALL BUFTUNE(' EVENTS' L, ' OFF' L)
CALL BUFTUNE(' CPUS' L, 'OFF' L)
CALL BUFTUNE(' BARRIERS' L, ' OFF' L)
CALL BUFTUNE(' USERS' L, ' OFF' L)

SR-2080 10.0 89

BUFUSER(3F)

NAME

BUFUSER(3F)

BUFUSER — Adds entries to the multitasking history trace buffer

SYNOPSIS
CALL BUFUSER(action, data)

IMPLEMENTATION

Cray PVP systems

SPARC systems

DESCRIPTION

BUFUSER lets you add entries to the multitasking history trace buffer. The following is alist of valid
arguments for this routine.

90

Argument
action

data

Description

On entry, code for the type of action (see action codes in nt dunp(1)). This vaueis
compared against the bit of the same number in the mask in global variable GABUFNMSBK,
set up by BUFTUNE(3F). If the mask bit is set, an entry is added to the buffer. This
value becomes the third word of the buffer entry.

A numerical code determines the action to be recorded in the buffer. Action codes 65
through 128 are reserved for this. The codes and their associated actions follow:

Code Action

0 — 63 You cannot add entries with these action codes; if you attempt to do so, a
warning is printed to st dout .

64 — 127
This action code is compared to the action codes specified in BUFTUNE(3F),
either explicitly by the user or by default. If the action code appears in the
BUFTUNE call, or if it is on by default, the corresponding entry is added to
the multitasking history trace buffer. If the action code does not appear in the
BUFTUNE call, this action/entry is ignored.

If astring is provided (see BUFTUNE), it is dumped into the action field of the output for
this entry. If no string is provided, the (decimal) action code is dumped into the action
field. In either case, data is written in octal (and ASCII, if it is alega character) to the
action-dependent data field of the outpuit.

Values added to the multitasking history trace buffer in addition to the internal task
identifier and the current time. These actions-dependent data codes can be user-defined
task values, alogical CPU number, alock or event address, or the task identifier of the
waited-upon task. The only restriction on these values is that they should be a single
word. If an entry is added to the buffer, this value becomes the fourth word of the entry.

SR-2080 10.0

BUFUSER(3F) BUFUSER(3F)

These entries are added unconditionally.

CAUTIONS

This routine is available on SPARC systems, so that user codes do not need to be rewritten, but it has no
effect.

SEE ALSO

BUFTUNE(3F)
nt dunp(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2080 10.0 91

BYTEORDER(3C) BYTEORDER(3C)

NAME

ht onl , ht ons, nt ohl , nt ohs — Converts values between host and network byte order

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in. h>

unsi gned | ong htonl (unsigned | ong hostlong) ;
unsi gned short htons (unsigned short hostshort) ;
unsi gned | ong ntohl (unsigned short netlong) ;

unsi gned short ntohs (unsigned short netshort);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

These macros resolve differences between hosts that read the bytes in a word in an order other than network
byte order (bytes ordered from left to right). Deviations from network byte order are referred to as host byte
order because the ordering is host-dependent. The Cray Research system reads words in network byte order,
so it does not need to resolve byte-order differences; however, in order to maximize the transportability of
source code, these macros are till defined (as no-ops).

The macros that convert values between network byte order and host byte order are defined as null macros in
the include file / usr /i ncl ude/ neti net/i n. h. These macros are most often used in conjunction with
Internet addresses and ports, as returned by get host ent (see get host (3C)) and get servent (see

get ser v(3QC)).

NOTES

There is no function definition for these names on Cray systems. ht onl , ht ons, t ohl , and nt ohs are
macros. |If the macro definition is suppressed in order to access an actual function, the behavior is undefined.

SEE ALSO
get host (3C), get ser v(3C)

i net (4P) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

92 SR-2080 10.0

CATGETMSG(3C) CATGETMSG(3C)

NAME
cat get msg — Reads a message from a message catalog

SYNOPSIS
#i ncl ude <nl _types. h>

char *catgetnsg (nl _catd catd, int set num, int msg_num, char (**buf, int buflen);

IMPLEMENTATION
UNICOS systems
IRIX systems

STANDARDS

CRI extension

DESCRIPTION

The cat get nsg function returns the requested message string. The message string is placed in the
user-supplied buffer (pointed to by buf) and terminated with a null byte. 1f the message is longer than buflen
bytes, it is truncated with a null byte.

The catd argument is a catalog descriptor returned from an earlier call to cat open(3C); it identifies the
message catalog that contains the message identified by the message set (set_num) and the message number
(msg_num).

The set_num and msg_num arguments are defined as integer values for maximum portability. However, it is
recommended that programmers use symbolic names for message and set numbers wherever possible, rather
than having integer values hard-coded into their source programs. The NL_MSGSET macro in the

nl _types. h file must be passed as the set_num argument.

NOTES

You can use the cat get nsg and cat get s(3C) functions to retrieve messages from a message catalog.
On Cray Research systems, cat get nsg is optimized for programs that retrieve only a few messages.
cat get s(3C) is optimized for programs that retrieve many messages.

Specifically, cat get nsg minimizes memory usage at the expense of more frequent disk accesses. The
cat get s(3C) function minimizes disk accesses at the expense of more memory usage. If it isimportant to
your application to minimize usage of one of these resources, use the corresponding function.

SR-2080 10.0 93

CATGETMSG(3C) CATGETMSG(3C)

RETURN VALUES
If successful, cat get msg returns a pointer to the message string in buf.
If cat get msg is unsuccessful because the message catalog identified by catd is not currently available, or
the regquested message is not in the message catalog, a pointer to a null (") string is returned.
SEE ALSO
cat get s(3C), cat nsgf nt (3C), cat open(3C) describe message system library functions

cat err (1), cat xt (1), expl ai n(1), gencat (1), whi chcat (1) describe message system user commands
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

nl _t ypes(5) describes the file that defines message system variables for use in programs in the UNICOS
File Formats and Special Files Reference Manual, Cray Research publication SR—2014

Cray Message System Programmer’s Guide, Cray Research publication SG—2121, contains details about all
aspects of the message system

94 SR-2080 10.0

CATGETS(3C) CATGETS(3C)

NAME
cat get s — Gets message from a message catalog

SYNOPSIS
#i ncl ude <nl _types. h>

char *catgets (nl_catd catd, i nt set hum, int msg num, const char *s);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The cat get s function returns a pointer to the requested message string. The string is terminated by a null
byte. The message text is contained in an internal buffer and should not be altered or freed (by using
free(3C)). It should be used or copied before any subsequent calls to cat get s, cat get msg(3C), or
cat cl ose(3C).

The catd argument is a catalog descriptor returned from an earlier call to cat open(3C); it identifies the
message catalog containing the message identified by the message set (set_num) and the message humber
(msg_num).

The set_num and msg_num arguments are defined as integer values for maximum portability. However, it is
recommended that programmers use symbolic names for message and set numbers wherever possible, rather
than having integer values hard-coded into their source programs. The NL_MSGSET macro in the

nl _types. h file must be passed as the set_num argument.

The s argument points to a default message string that will be returned by cat get s if the identified
message catalog is not currently available or if any other error is encountered during message retrieval.

NOTES

You can use the cat get s and cat get nsg(3C) functions to retrieve messages from a message catalog.
On Cray Research systems, cat get msg(3C) is optimized for programs that retrieve only a few messages.
cat get s is optimized for programs that retrieve many messages.

Specifically, cat get nsg(3C) minimizes memory usage at the expense of more frequent disk accesses. The
cat get s function minimizes disk accesses at the expense of more memory usage. If it is important to your
application to minimize usage of one of these resources, use the corresponding function.

SR-2080 10.0 95

CATGETS(3C) CATGETS(3C)

RETURN VALUES

If successful, cat get s returns a pointer to the null-terminated message string in an internal buffer.
If cat get s is unsuccessful, a pointer to sis returned.

SEE ALSO

96

cat cl ose(3C), cat get msg(3C), cat msgf nt (3C), cat open(3C) describe message system library
functions

cat err (1), cat xt (1), expl ai n(1), gencat (1), whi chcat (1) describe message system user commands
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

nl _t ypes(5) describes the file that defines message system variables for use in programs in the UNICOS
File Formats and Special Files Reference Manual, Cray Research publication SR—2014

Cray Message System Programmer’s Guide, Cray Research publication SG—2121, contains details about all
aspects of the message system

SR-2080 10.0

CATMSGFMT(3C) CATMSGFMT(3C)

NAME

cat megf nt — Formats an error message

SYNOPSIS
#i ncl ude <nl _types. h>

char *catmsgfnt (const char *cmdname, const char *groupcode, i nt msgnhum, const
char *severity, const char *msgtext, char *buf, int buflen [, const char *position [,
const char *debug]]);

IMPLEMENTATION

UNICOS systems
IRIX systems

STANDARDS

CRI extension

DESCRIPTION

The cat msgf nt function produces a formatted message that consists of the command name (cmdname),
group code (groupcode), message number (msgnum), severity level (severity), message text (msgtext), and
optional position (position) and debugging (debug) information. The formatted message is placed in the
user-supplied buffer, which is pointed to by buf, and terminated with a null byte. If the formatted message
is longer than buflen bytes, it is truncated to buflen bytes with a null byte.

The cmdname, groupcode, severity, msgtext, and optional position and debug arguments are null-terminated
strings. The command name identifies the command or function issuing the error message. Typically, the
group code is the same value as that specified as the name parameter on the cat open(3C) function.
Typically, the message number is the same value as that specified on the cat get msg(3C) or cat get s(3C)
function.

The position and debug arguments are optional. Their contents are inserted in the error message only if
provided and only if included in the M5G_FORMAT environment variable. Specifying a null value for either
(or both) parameters is equivalent to not specifying either (or both) parameters.

NOTES

The M5G_FORMAT environment variable controls the formatting of the message. If the M5G_FORMAT
environment variable is not defined, a default format is used. See the expl ai n(1) man page for a
description of message formats and the MSG_FORMAT environment variable.

SR-2080 10.0 97

CATMSGFMT(3C) CATMSGFMT(3C)

MBG_FORMAT can include an optional time stamp for the message. The format of this time stamp is
equivalent to that produced by the cf t i me(3C) function and can be overridden by the CFTI ME
environment variable. For a description of time-stamp formats, see the st r f t i ne(3C) man page.
RETURN VALUES
If successful, cat msgf nt returns a pointer to the user-supplied buffer. If unsuccessful, it returns a null
pointer.
SEE ALSO

cat get msg(3C), cat get s(3C), cat open(3C) describe message system library functions
strfti me(3C) describes time-stamp formatting

cat err (1), cat xt (1), expl ai n(1), gencat (1), whi chcat (1) describe message system user commands
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

nl _t ypes(5) describes the file that defines message system variables for use in programs in the UNICOS
File Formats and Special Files Reference Manual, Cray Research publication SR—2014

Cray Message System Programmer’s Guide, Cray Research publication SG—2121, contains details about all
aspects of the message system

98 SR-2080 10.0

CATOPEN(3C) CATOPEN(3C)

NAME

cat open, cat cl ose — Opens or closes a message catalog

SYNOPSIS

#i ncl ude <nl _types. h>
nl _catd catopen (const char *name, int oflag);

int catclose (nl _catd catd);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The cat open function opens a message catalog and returns a catalog descriptor. name specifies the group
name of the message catalog to be opened; it is a pointer to a null-terminated string. 1f hame contains a
dash (/), it specifies a path name for the message catalog; otherwise, the NLSPATH environment variable is
used, with name substituted for %0N. NLSPATH is described in the following paragraphs. The message
catalog is opened with the FD_CLOEXEC flag set.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the catalog without
regard to the LC_MESSAGES category. If the oflag argument is NL_CAT_LOCALE, the LC_MESSAGES
category is used to locate the message catalog. (The LC_MESSAGES category is part of the locale
environment. Seethel ocal e(1) and set | ocal e(3C) man pages for information about reading and
setting the locale environment.)

The cat cl ose function closes the message catalog identified by catd and releases all memory allocated for
use by that catalog file.

The cat open function uses the NLSPATH environment variable and either the LANG environment variable
or the LC_MESSAGES category to locate the correct message catalog. The LANG environment variable or
LC_MESSAGES category identifies the user’s requirements for native language, local customs, and coded
character set. These components are specified by a string of the following form:

language] _territory[. codeset] |

The string En is the designation for the English language. Other language designations (if any) are defined
and supported locally.

SR-2080 10.0 99

CATOPEN(3C) CATOPEN(3C)

The value of the LANG environment variable or the LC_MESSAGES category is part of the message system
default value of NLSPATH, the message system search path environment variable. Message system functions
substitute fields denoted by %characters in the definition of NLSPATH to determine the catalog search path.

The following are the valid fields defined for NLSPATH:
%N The value of the name argument passed to cat open.
% The value of the LANG environment variable or the LC_MESSAGES category.

% The language component of the LANG environment variable or the LC_MESSAGES category.
This element determines the language in which the message is displayed.

% The territory component of the LANG environment variable or the LC_MESSAGES category.
% The codeset component of the LANG environment variable or the LC_MESSAGES category.

Path name templates defined in NLSPATH are separated by colons (:). A leading colon or two adjacent
colons (: :) is equivalent to specifying %N.

If NLSPATH is not defined by the user, it is assumed to be defined as follows:

fusr/lib/nls/%/%\.cat:/lib/nls/%/%N. cat:/usr/lib/nls/En/%\.cat:
/11 bl nls/En/ %\ cat

NOTES

Using cat open could cause another file descriptor to be alocated by the calling process. Applications
should take care not to close this file descriptor by mistake.

RETURN VALUES

If successful, cat open returns a message catalog descriptor for use on subsequent calls to
cat get msg(3C), cat get s(3C), and cat cl ose. If unsuccessful, cat open returns —1.

If successful, cat cl ose returns 0. If unsuccessful, cat cl ose returns —1.

100 SR-2080 10.0

CATOPEN(3C) CATOPEN(3C)

SEE ALSO
cat get msg(3C), cat get s(3C), cat nsgf nt (3C) describe message system library functions
set | ocal e(3C) describes setting the locale environment from a program

cat err (1), cat xt (1), expl ai n(1), gencat (1), whi chcat (1) describe message system user commands
in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

| ocal e(1) describes reading the locale environment in the UNICOS User Commands Reference Manual,
Cray Research publication SR—2011

nl _t ypes(5) describes the file that defines message system variables for use in programs in the UNICOS
File Formats and Special Files Reference Manual, Cray Research publication SR—2014

Cray Message System Programmer’s Guide, Cray Research publication SG—2121, contains details about all
aspects of the message system

SR-2080 10.0 101

CFGETOSPEED(3C)

NAME

CFGETOSPEED(3C)

cf get ospeed, cf set ospeed, cf geti speed, cf seti speed — Gets or sets terminal input or output

baud rates

SYNOPSIS

#i ncl ude <term os. h>

speed_t cfgetospeed (const struct term os *termios p);
int cfsetospeed (struct term os *termios p, speed_t speed);
speed_t cfgetispeed (const struct term os *termios p);

int cfsetispeed (struct term os *termios p, speed_t speed);

IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

The following interfaces get and set the values of the input and output baud rates in the t er mi os structure.
The effects on the terminal device do not become effective until functiont cset att r is successfully called.

The input and output baud rates are stored in the t er m os structure. The values shown in the following

list are supported. The name symbols in this list are defined in header <t er mi o0s. h>.

Name Description
BO Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud

102

SR-2080 10.0

CFGETOSPEED(3C) CFGETOSPEED(3C)

Name Description
B19200 19,200 baud
B38400 38,400 baud

The type speed _t isdefined in header <t er m 0s. h> and is an unsigned integral type.
Theterm os_p argument is a pointer to at er m os structure.

Function cf get ospeed returns the output baud rate stored in the t er mi os structure pointed to by
term os_p.

Function cf set ospeed sets the output baud rate stored in the t er m os structure pointed to by
term os_p to speed. The zero baud rate, BO, is used to terminate the connection. If BO is specified, the
modem control lines are no longer asserted. Normally, this disconnects the line.

Function cf get i speed returns the input baud rate stored in the t er m os structure.

Function cf set i speed sets the input baud rate stored in thet er m os structure to speed. If the input
baud rate is set to 0, the input baud rate will be specified by the value of the output baud rate.

RETURN VALUES

Functions cf set i speed and cf set ospeed both return a value of 0 if successful; otherwise, they return
—1 to indicate an error.

Attempts to set unsupported baud rates are ignored, and no errors are returned by cf set i speed,
cfset ospeed, ortcsetattr inthese cases. Such attempts include both changes to baud rates not
supported by the hardware, and changes setting the input and output baud rates to different values, if the
hardware does not support this.

SEE ALSO

term nal (3C), tcgetattr (3C)

t er mi 0o(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 103

CHARACTER(3C) CHARACTER(3C)

NAME

char act er — Introduction to character-handling functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The character-handling functions provide various means for testing characters for specific attributes or for
tranglating one character to another.

Unless otherwise noted, all of these functions have an argument of typei nt , the value of which must be
representable as an unsi gned char (that is, less than or equal to UCHAR _MAX, defined inl i mits. h to
be 255 for Cray Research systems) or equal to EOF. If the argument has any other value, the behavior of
the function is undefined.

All of these functions are implemented as both inline macros and library functions. (If #undef isused to
remove the macro definition and obtain access to the underlying function, however, the behavior is
undefined.) These functions are implemented as macros for speed and as functions so that the address of the
function can be taken. Under normal circumstances (#undef not used), the results returned are the same
for either the macro version or the function version.

In all locales, the value of each character after the O digit character in the set of decimal digits is one greater
than the value of the previous character; and the value of each character after "a" in the set of a through f is
one greater than the value of the previous character; and the value of each character after A in the set of A
through F is one greater than the value of the previous character. Thisis so agorithms that convert octal,
decimal, and hexadecimal characters to numeric values can work efficiently. For all other characters, the
collating sequence and the attributes can be changed when changing to a different locale.

The behavior of most ct ype functions is dependent upon the current locale. The behaviors described here
are for the standard ASCII character set and the C locale. Other locales are possible; if any other locale is
selected by using the set | ocal e function, refer to documentation for that locale for description of any
changes.

ASSOCIATED HEADERS

<ctype. h> File defining character classification and conversion functions and macros
<wchar . h> File defining wide character functions

ASSOCIATED FUNCTIONS

104 SR-2080 10.0

CHARACTER(3C)

Testing Functions

Function
i sal num

i sal pha

i sasci i
iscntrl

i sdigit

i senglish

i sgraph

i si deogr am

i sl oner
i snunmber

i sphonogr am

sprint
spunct
sspace
sspeci al

supper
swal num

swal pha

swentrl

swct ype

swdi gi t

swgr aph

sw ower

swpri nt

swpunct

SR-2080 10.0

CHARACTER(3C)

Description

Tests for aphanumeric characters (see ct ype(3C)).

Tests for apha characters (see ct ype(3C)).

Tests for ASCII character (see ct ype(3C)).

Tests for control characters (see ct ype(3C)).

Tests for decimal-digit character (see ct ype(3C)).

Tests whether wc is a wide character representing a character of classengl i sh in
the program’s current locale (see wet ype(3C)).

Tests for any printing character but space (see ct ype(3C)).

Tests whether wc is a wide character representing a character of classi deogr amin
the program’s current locale (see wet ype(3C)).

Tests for lowercase alpha character (see ct ype(3C)).

Tests whether we is a wide character representing a character of class nunber in
the program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class phonogr am
in the program’s current locale (see wet ype(3C)).

Tests for printing character (see ct ype(3C)).

Tests for punctuation character (see ct ype(3C)).

Tests for white-space character (see ct ype(3C)).

Tests whether wc is a wide character representing a character of class speci al in
the program’s current locale (see wet ype(3C)).

Tests for uppercase alpha character (see ct ype(3C)).

Tests whether we is a wide character representing a character of class al pha or

di gi t inthe program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class al pha in the
program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of classcntr| in the
program’s current locale (see wet ype(3C)).

Determines whether the wide character wc has the character class charclass,
returning true or false (see wet ype(3C)).

Tests whether wc is a wide character representing a character of classdi git in the
program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class gr aph in the
program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class| ower in the
program'’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class pri nt in the
program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class punct in the
program’s current locale (see wet ype(3C)).

105

CHARACTER(3C)

i swspace
i swupper
i swxdi git

i sxdigit
wet ype

Translating Functions

Function
t oasci i
t ol ower
_tol ower
t oupper
_t oupper
t owupper
t o owner

Other Functions
Function
wewi dt h

SEE ALSO

CHARACTER(3C)

Tests whether wc is a wide character representing a character of class space in the
program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class upper in the
program’s current locale (see wet ype(3C)).

Tests whether wc is a wide character representing a character of class xdi gi t in
the program’s current locale (see wet ype(3C)).

Tests for hexadecimal-digit character (see ct ype(3C)).

Converts character class names to an argument suitable for i swet ype(3C) (see
wet ype(3C)).

Description

Trandates characters (see conv (3C)).

Trandates characters to lowercase (see conv(3C)).
Trandates characters to lowercase (see conv(3C)).
Trandates characters to uppercase (see conv(3C)).
Trandates characters to uppercase (see conv(3C)).
Trandates wide characters to upper case (see wconv (3C).
Trandates wide characters to lower case (see wconv (3C).

Description
Returns number of column positions of a wide—character code.

conv(3C), ctype(3C), I i m ts. h(3C), | ocal e(3C) (the introduction to locale information functions),
weonv(3C), wet ype(3C)

106

SR-2080 10.0

CIMAG(3C) CIMAG(3C)

NAME

ci mag, creal , conj — Manipulates parts of complex values

SYNOPSIS
#i ncl ude <conpl ex. h>
doubl e ci mag (doubl e conpl ex X);
doubl e creal (double conplex X);

doubl e conpl ex conj (doubl e conpl ex X);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION
The ci mag function computes the imaginary part of the doubl e conpl ex number x.
The cr eal function computes the real part of the doubl e conpl ex number x.

The conj function computes the conjugate of the doubl e conpl ex number x by negating the imaginary
part of x.

In strict conformance mode, vectorization is inhibited for loops containing calls to any of these functions.
Vectorization is not inhibited in extended mode.

RETURN VALUES

The ci mag function returns the imaginary part of x.
The cr eal function returns the real part of x.

The conj function returns the conjugate of x.

SR-2080 10.0 107

CLOCK (3C) CLOCK (3C)

NAME
cl ock — Reports CPU time used

SYNOPSIS
#i ncl ude <tine. h>

clock_t clock (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The cl ock function returns the implementation’s best approximation of the amount of processor time (in
microseconds) used since the first call to cl ock. Under UNICOS, the time reported is the sum of the user
and system times of the calling process and its terminated child processes for which it has executed a

wai t (2), pcl ose(3C), or syst en(3C) call.

To determine the time in seconds, the value returned by the cl ock function should be divided by the value
of the macro CLOCKS_PER_SEC, defined in <t i me. h>. If the processor time used is not available, or its
value cannot be represented, the function returns the value (cl ock_t)- 1.

NOTES

The value returned by the cl ock function is not consistent. This is because it includes system time, which,
in a multiprogramming environment, is not consistent. Even in a monoprogramming situation, disk 1/0 can
cause inconsistency.

EXAMPLES

108 SR-2080 10.0

CLOCK (3C) CLOCK (3C)

#i ncl ude <stdio. h>

#i ncl ude <ti nme. h>

#defi ne SI ZE 4096

mai n()

{
float a[SlZE], b[SIZE], c[SIZE];
clock t timel, tine2;
int i;

for (i = 0; i < SIZE; i++)
a[i]=b[SIZE-1-i]=i;

ti mel=cl ock();

for (i = 0; i < SIZE; i++)
c[i]l=a[i]+b[i];

ti me2=cl ock();

printf("This |oop takes %/ % seconds\n",tinme2-tinmel, CLOCKS PER SEC);

SEE ALSO
pcl ose (see popen(3C)), syst em3C)
ti me(2), wai t (2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012
SECOND(3F) in the

SR-2080 10.0 109

COMMON_DEF(3C) COMMON_DEF(3C)

NAME

comon_def — Introduction to common definition headers

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The common definition headers provide type definitions (t ypedef s) and macros that are used often by
many programs and expand to implementation-specific values.

When the t ypedef or macro is directly associated with a set of functions that have a common purpose, it
is usually defined in the header associated with that set of functions. For example, the definition

typedef long int clock_t;
is found in header <t i ne. h>.

There are, however, some definitions that are used with more than one set of functions; for that reason, the
common definition headers are provided.

ASSOCIATED HEADERS

<st ddef. h>
<sys/types. h> (described on man page sys_t ypes. h.)
<uni st d. h>

ASSOCIATED FUNCTIONS

None

110 SR-2080 10.0

complex.h(3C) complex.h(3C)

NAME

conpl ex. h — Library header for complex math functions

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

TYPES

None

MACROS

The macros defined in header conpl ex. h are as follows:

Macro Standards Description

conpl ex CRI extension Defines the complex type keyword.
CVPLXF CRI extension Composes af | oat conpl ex vaue from two f | oat arguments.

CVPLX CRI extension ~ Composes a doubl e conpl ex vaue from two doubl e arguments.
CVPLXL CRI extension ~ Composes al ong doubl e conpl ex vaue from two | ong doubl e
arguments.
FUNCTIONS
Functions declared in header conpl ex. h are as follows:
csi n(3C) ccos(3C) cexp(3C) cl 0g(3C) cpow(3C)
csqrt (3C) cabs(3C) ci mag(3C) conj (3C) creal (3C)

NOTES

The conpl ex. h header must be included in every source file where the conpl ex data type is used. The
conpl ex macro must be used to specify conpl ex type.

EXAMPLES
When executed, the following example prints z1 = <1. 50, 0. 20>:

SR-2080 10.0 111

complex.h(3C) complex.h(3C)

#i ncl ude <stdio. h>
#i ncl ude <conpl ex. h>
mai n()

{

doubl e compl ex z1;

z1 = CWPLX(1.5,.2);
printf("z1 = <% 2f, % 2f >0, creal (z1), cimag(zl));

SEE ALSO

cabs(3C), ccos(3C), cexp(3C), ci mag(3C), cl og(3C), conj (3C), cpow3C), cr eal (3C), csi n(3C),
csqrt (3C), mat h. h(3C)

112 SR-2080 10.0

CONFSTR(3C) CONFSTR(3C)

NAME

conf str — Gets configurable string values

SYNOPSIS
#i ncl ude <uni std. h>

size_t confstr(int name, char *buf, size_t len);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

The conf st r function gets configuration-defined string values.

The system variable to be queried is the name argument. This argument can be _CS_PATH, which returns a
value for the PATH environment variable that finds all standard utilities. _CS_PATH is defined in the header
file uni std. h.

If len is greater than zero and name has a configuration-defined value, const r copies that value into the
len-byte buffer pointed to by buf. If the string to be returned exceeds len bytes, including the final null,
conf st r truncates the string to len— 1 bytes and null-terminates the result. The application can detect that
the string was truncated by comparing the returned value with len.

If len is zero, conf st r returns the integer value defined below, but no string. (This is true whether or not
buf is null.)

RETURN VALUES

If name has no configuration-defined value, conf st r returns zero and leaves er r no unchanged.

If name has a configuration-defined value, conf st r returns the buffer size of the entire
configuration-defined value. If this return value exceeds lens, the buf return string has been truncated.

SR-2080 10.0 113

CONV/(3C) CONV(3C)

NAME

t oupper, t ol ower, _toupper, _tol ower,toascii — Trandates characters

SYNOPSIS

#i ncl ude <ctype. h>

i nt toupper (int c);
int tolower (int c);
int _toupper (int ¢;
int _tolower (int c);

int toascii (int c);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANSI (t oupper andt ol ower only)
XPG4 (_t oupper, _tol ower,toascii only)

DESCRIPTION

114

Thet oupper andt ol ower functions have as domains a type i nt , the range of which is representable as
an unsi gned char (that is, < UCHAR_MAX, defined inl i m ts. h to be 255 for Cray Research systems)
or equa to EOF. If the argument of t oupper represents a lowercase letter, and there exists a
corresponding uppercase letter in the program’s locale, the result is the corresponding uppercase letter. If the
argument of t ol ower represents an uppercase letter, and there exists a corresponding lowercase letter in the
program’s locale, the result is the corresponding lowercase letter. All other arguments in the domain are
returned unchanged.

The _t oupper and _t ol ower functions accomplish the same thing ast oupper andt ol ower , but have
arestricted domain and are faster. The _t oupper function requires a lowercase letter as its argument; its
result is the corresponding uppercase letter. The _t ol ower function requires an uppercase letter as its
argument; its result is the corresponding lowercase letter. Arguments outside the domain cause undefined
results.

Thet oascii function yields its argument with all bits turned off that are not part of a standard 7-bit
ASCII character.

SR-2080 10.0

CONV/(3C) CONV(3C)

NOTES
The behavior of functionst oupper and t ol ower may be affected by the current locale.

The behavior of functions _t oupper, _t ol ower, andt oasci i are not affected by the current locale.

SEE ALSO
get ¢(3C), | ocal e. h(3C)

SR-2080 10.0 115

COPYSIGN(3C) COPYSIGN(3C)

NAME
copysi gn, copysi gnf, copysi gnl — Assigns the sign of its second argument to the value of its first
argument
SYNOPSIS
CRAY T90 systems with IEEE floating-point hardware:
#i ncl ude <fp. h>

doubl e copysi gn (doubl e *x, double vy);
fl oat copysignf (float *x, float y);
| ong doubl e copysignl (long double *x |ong double vy);

Cray MPP systems:
#i ncl ude <fp. h>
doubl e copysi gn (doubl e *x, double vy);

IMPLEMENTATION

Cray MPP systems (implemented as a macro)
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

The copysi gn function and macro and the copysi gnf and copysi gnl functions produce values with
the magnitude of x and the sign of y. If x is a NaN, they produce a NaN with the sign of y.

RETURN VALUES
Returns the value of x with the sign of .

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

116 SR-2080 10.0

_CPTOFCD(3C) _CPTOFCD(3C)

NAME

_cptofcd, _fcdtocp, _fcdlen, btol, |tob — Passes character strings and logical values between
Standard C and Fortran
SYNOPSIS
#include <fortran. h>
_fcd _cptofcd (char *ccp, unsigned len);
char *_fcdtocp (_fcd fed);
unsi gned _fcdlen (_fcd fcd);
long _Itob (long *log);
l ong _btol (1ong bool);
int _isfcd (void *ptr);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

All of these functions communicate between functions written in Standard C and functions written in Fortran
that pass character strings and logical values as arguments.

Type _f cd is defined in the header file f or t r an. h and matches the format of a Fortran character
descriptor. An object with type f cd can be passed to a Fortran subprogram whose corresponding formal
parameter has type CHARACTER.

Function _cpt of cd creates a Fortran character descriptor from the C character pointer ccp and byte length
len. The resulting descriptor points to the same string as ccp and is compatible with Fortran type
CHARACTER

Function _f cdt ocp extracts a C character pointer from the Fortran character descriptor fcd.
Function _f cdl en extracts the byte length from the Fortran character descriptor fcd.

Function _bt ol converts a0 to a Fortran logical . FALSE. Function _bt ol converts a nonzero | ong
i nt to aFortran logical . TRUE.

Function _| t ob converts a Fortran logical . FALSE. to a0. Function _| t ob converts a Fortran logical
. TRUE. toal.

SR-2080 10.0 117

_CPTOFCD(3C) _CPTOFCD(3C)

Function _i sf cd determines whether a generic pointer is a Fortran character descriptor. If the pointer is
not a Fortran character descriptor, it returns O; otherwise it returns nonzero.
NOTES

At present, type _f cd matches the format of a Fortran character descriptor. This format might change in
the future, however, which would cause the underlying C type _f cd to change also.

The use of _f cd in acast is not guaranteed to work; the underlying type might be a structure type.

RETURN VALUES

Function _cpt of cd returns a Fortran character descriptor from the C character pointer ccp and byte length
len.

Function _f cdt ocp returns a C character pointer that points to the same character string as the Fortran
character descriptor fcd.

Function _f cdl en returns the byte length of the character string to which the Fortran character descriptor
fcd points.

Function _bt ol returnsthe C | ong i nt Boolean value of a Fortran LOG CAL argument.
Function _| t ob returns the Fortran LOG CAL value of aC | ong i nt Boolean argument.

Function _i sf cd returns the C i nt Boolean value if the generic pointer is a Fortran character descriptor.

EXAMPLES

The following example shows a C function calling a Fortran subprogram, and the associated Fortran
subprogram:

118 SR-2080 10.0

_CPTOFCD(3C) _CPTOFCD(3C)

/* C program (main. c): */
#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i nclude <fortran. h>

fortran double CFTFCTN (_fcd, int *);

doubl e REAL1 = 1.6;
double REAL2; /* Initialized in CFTFCTN */

mai n()

{
int clogical, cftlogical, cstringlen;
doubl e rtnval ;
char *cstring = "C character string";
_fcd cftstring;

/* Convert cstring and clogical to their Fortran equivalents */

cftstring = _cptofcd(cstring, strlen(cstring));
clogical = 1;
cftlogical = _btol(clogical);

/* Print values of variables before call to Fortran function */
printf(" In main: REAL1 = %g; REAL2 = %g\n",
REAL1, REAL2);
printf(" Calling CFTFCTN wi th argunments:\n");
printf(" string =\"%\"; logical = %\ n\n", cstring, clogical);

rtnval = CFTFCTN(cftstring, &cftlogical);

/* Convert cftstring and cftlogical to their C equivalents */
cstring = _fcdtocp(cftstring);
cstringlen = _fcdlen(cftstring);
clogical = _Itob(&cftlogical);

/* Print values of variables after call to Fortran function */
printf(" Back in main: CFTFCTN returned %g\n", rtnval);
printf(" and changed the two argunments:\n");
printf(" string = \"%*s\"; logical = %l\n",
cstringlen, cstring, clogical);

SR-2080 10.0 119

_CPTOFCD(3C) _CPTOFCD(3C)

The following Fortran subprogram is associated with the preceding C function:

C Fortran subprogram (cftfctn.f):
FUNCTI ON CFTFCTN(STR, LQOG)

REAL CFTFCTN
CHARACTER* (*) STR
LOGI CAL LOG

COVMON / REAL1/ REAL1

COVMON / REAL2/ REAL?2

REAL REAL1, REAL2

DATA REAL2/ 2.4/ ! REALL initialized in MAIN

C Print current state of variables

PR' NT*’ ’ | N CFTFCTN REAL]_ - , REAL]_,
L ' REAL2 = ', REAL2
PRI NT*, ARGUVENTS: STR="", STR '": LOG = '. LOG

C Change the values for STR(ing) and LOX cal)
STR = "New Fortran String’
LOG = . FALSE.

CFTFCTN = 123.4

PRI NT*, Returning from CFTFCTN with ', CFTFCTN
PRI NT*

RETURN

END

120 SR-2080 10.0

_CPTOFCD(3C)

_CPTOFCD(3C)

The following example shows a Fortran subprogram calling a C function and the associated C function:

C

Fortran program (main.f):

I'n

C Pri

1

PROGRAM MAI N

REAL CFCTN

COMMON / REAL1/ REAL1

COMMON / REAL2/ REAL2

REAL REAL1, REAL2

DATA REAL1/ 1.6/ ! REAL2 initialized in cfctn

LOGI CAL LOG
CHARACTER* 24 STR
REAL RTNVAL

tialize variables STR(ing) and LOE i cal)
STR = ’'Fortran Character String’
LOG . TRUE.

nt val ues of variables before call to C function

PRINT*, " IN MAIN. REAL1 = ', REAL1,

REAL2 = ', REAL2
PRI NT*, * CALLI NG CFCTN W TH ARGUMENTS:
PRINT*, * STR ="', STR, '";, LOG =", LOG
PRI NT*

RTNVAL = CFCTN(STR, LOG)

C Print values of variables after call to C function

SR-2080 10.0

PRINT*, ' Back in MAIN:. CFCTN returned ', RTNVAL
PRI NT*, ' and changed the two argunents: '’

PRINT*, ' STR ="', STR, '"; LOG =", LOG

END

121

_CPTOFCD(3C) _CPTOFCD(3C)

The following is the associated C function:

/* C function (cfctn.c): */
#i ncl ude <fortran. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

fl oat REALI; /[* Initialized in MAIN */
float REAL2 = 2. 4;

float CFCTN(_fcd str, int *log)

{

int slen;

int clog;

float returnval;
char *cstring;
char newstr[25];

/* Convert str and | og passed from Fortran MAIN into C equival ents */
slen = fcdlen(str);
cstring = malloc(sl en+l);
strncpy(cstring, _fcdtocp(str), slen);

cstring[slen] = '\0";
clog = _Itob(log);
/* Print the current state of the variables */
printf(" In CFCTN. REAL1 = % 1f; REAL2 = % 1f\n",
REAL1, REAL2);
printf(" Argurments: str =\"%\"; log = %\ n",

cstring, clog);

/* Change the values for str and log */

strncpy(_fcdtocp(str), "C Character String ", 24);

*log = O;

returnval = 123.4;

printf(" Returning from CFCTN with % 1f\n\n", returnval);

return(returnval);

122 SR-2080 10.0

_CPTOFCD(3C) _CPTOFCD(3C)

SEE ALSO

Cray Sandard C Reference Manual, Cray Research publication SR—2074, for complete examples of
interlanguage communication

SR-2080 10.0 123

CPUSED(3C)

NAME
cpused — Gets task CPU time in RTC ticks

SYNOPSIS
#i ncl ude <tine. h>

| ong cpused (void);
IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

CPUSED(3C)

On Cray PVP systems, the cpused function returns the user CPU time used by the calling task in real-time
clock (RTC) ticks. On Cray MPP systems, the cpused function returns the user CPU time used by the
calling process in real-time clock (RTC) ticks.

The accuracy of cpused is not affected by system interrupts.

This function is equivalent to the TSECND(3F) function (except it returns the time in RTC ticks rather than
seconds); it returns the elapsed CPU time of the calling task or process.

See SECOND(3F) for information about gathering CPU time for all tasks or processes.

For the CRAY T90 and CRAY C90 series, CPU times returned by cpused include wait-semaphore time.
For all other systems, CPU times returned by cpused do not include wait-semaphore time.

On Cray PVP systems, use of cpused while running Flowtrace can cause incorrect Flowtrace statistics to
be generated.

EXAMPLES

In the following example, cpused collects data before and after a section of code. Subtracting the first
value from the second yields the CPU time spent within the code.

SR-2080 10.0

CPUSED(3C)

#i ncl ude <stdi o. h>
#i ncl ude <sys/types. h>
#i ncl ude <ti nme. h>

mai n()

{

time_t before, after, utine;

bef ore = cpused();

/* Section of code here is where user execution time is to be neasured.

after = cpused();
utinme = after - before;

printf("\nCPU time used in user space = %d clock ticks\n", utine);

The output appears as follows:
CPU tinme used in user space = 211 clock ticks

FORTRAN EXTENSIONS

The | CPUSED entry point is the Fortran-callable equivalent of cpused.

SEE ALSO

rtcl ock(3C)
nt i mes(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SECOND(3F), TSECND(3F) in the Application Programmer’s Library Reference Manual, Cray Research

publication SR—2165

SR-2080 10.0

CPUSED(3C)

*/

125

CRYPT(3C) CRYPT(3C)

NAME

crypt, encrypt, set key — Generates DES encryption

SYNOPSIS

#i ncl ude <crypt. h>

char *crypt (const char *key, const char *salt);
voi d encrypt (char block] 64], int edflag);

voi d setkey (const char *key);

IMPLEMENTATION

All Cray Research systems

STANDARDS

XPG4

DESCRIPTION

NOTES

126

The password encryption function, cr ypt , is based on the NBS Data Encryption Standard (DES), with
variations intended to frustrate use of hardware implementations of the DES for key search.

The key argument is a user’s typed password. The salt argument is a 2-character string chosen from the set
[a- zA- Z0- 9. /]; this string perturbs the DES algorithm in one of 4096 different ways, after which the
password is used as the key to repeatedly encrypt a constant string. The returned value points to the
encrypted password. The first 2 characters are the salt itself.

The set key and encr ypt entries provide rather primitive access to the actual DES algorithm. The
argument to set key is a character array of length 64, containing only the characters with numerical values
0 and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored; this gives a
56-bit key that is set into the machine. This is the key that is used with the previously mentioned algorithm
to encrypt or decrypt string block with the encr ypt function.

The block argument to the encr ypt entry is a character array of length 64, containing only the characters
with numerical values 0 and 1. The argument array is modified in place to a similar array representing the
bits of the argument after having been subjected to the DES algorithm using the key set by set key. If
edflag is 0, the argument is encrypted; if edflag is nonzero, the argument is decrypted, or, if the
implementation does not support this functionality, er r no is set to ENOSYS.

Inclusion of the Data Encryption Standard (DES) encryption code requires a specia license for sites outside
the United States and Canada. If these encryption functions are not available on your system, check with
your system administrator or site analyst.

SR-2080 10.0

CRYPT(3C) CRYPT(3C)

The return value points to static data that is overwritten by each call.

SEE ALSO
get pass(3C), | i budb(3C)

I ogi n(1), passwd(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

passwd(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 127

CTERMID(3C)

NAME

ct er m d — Generates file name for terminal

SYNOPSIS
#i ncl ude <stdi 0. h>

char *cternmid (char *s);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

CTERMID(3C)

The ct er mi d function generates the path name of the controlling terminal for the current process and stores

it in a string.

If sisanull pointer, the string is stored in an internal static area, the contents of which are overwritten at
the next call to ct er m d, and the address of which is returned. Otherwise, s is assumed to point to a
character array of at least L_ct er mi d elements; the path name is placed in this array, and the value of s is

returned. The constant L_ct er m d is defined in the header file st di 0. h.

NOTES

The difference between ct er mi d and t t ynane(3C) isthat t t ynanme(3C) must be handed a file descriptor
and returns the actual name of the terminal associated with that file descriptor, while ct er m d returns a
string (/ dev/ tt y) that refers to the terminal, if the terminal name is used as a file name. Thus,

tt ynanme(3C) is useful only if the process already has at least one file open to a terminal.

SEE ALSO
tt ynane(3C)

128

SR-2080 10.0

CTIME(3C) CTIME(3C)

NAME
ctime,ctime_r,localtine,localtime_r,gmtinme,gntinme_r,asctine,asctime_r,
ti mezone, dayl i ght,tzname, t zset — Converts from and to various forms of time

SYNOPSIS
#i ncl ude <time.h>
char *ctime (const time_t *timer);
char *ctime_r (const tine_t *timer, char *buf);
struct tm*localtime (const tine_t *timer);
struct tm*localtime_r (const time_t *timer, struct tm*result);
struct tm*gntime (const tinme_t *timer);
struct tm*gntime_r (const time_t *timer, struct tm*result);
char *asctime (const struct tm *timeptr);
char *asctime_r (const struct tm*timeptr, char *buf);
extern | ong ti mezone;
extern int daylight;
extern char *tznane[2];

void tzset (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (ctine, | ocaltinme,gntine,andascti me only)
POSIX (t zname andt zset only)

XPG4 (ti mezone and dayl i ght only)

PThreads (ctime_r,localtime_r,gntine_r, andascti me only)

DESCRIPTION

The ct i me function converts the calendar time pointed to by timer to local time in the form of a string. It
is equivalent to the following:

asctime(localtime(tiner))

SR-2080 10.0 129

CTIME(3C) CTIME(3C)

Thel ocal ti me function converts the calendar time pointed to by timer into a broken-down time,
expressed as local time. This meansthat | ocal t i me adds or subtracts seconds from the calendar time if
the locale has defined adjustments for time zone or daylight saving time.

The gnt i me function converts the calendar time pointed to by timer into a broken-down time, expressed as
Coordinated Universal Time (CTU).

The functions whose names end with _r provide equivalent functionality but with an interface that is safe
for multitasked applications. Instead of using internal static buffers, they require the caller to pass in either a
buffer of at least 26 bytes (cti me_r and ascti me_r) or a pointer to a structure of type st ruct tm

(l ocal time_r and gnti ne_r) into which the result will be placed.

If you are compiling in extended mode (the default), the objectst i nezone, dayl i ght, and t znane, and
functiont zset are defined in header t i me. h. If you want to useti mezone, dayl i ght, t znane, or

t zset in aprogram compiled in strict conformance mode, you must explicitly declare them in your
program.

The asct i me function converts the broken-down time in the structure pointed to by timeptr into a string in
the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following agorithm:

char *asctinme(const struct tm *timeptr)

{
static const char wday_nane[7][3] = {
"Sun", "Mn", "Tue", "Wed", "Thu", "Fri", "Sat"
b
static const char mon_nane[12][3] = {
"Jan", "Feb", "Mar", "Apr", "My", "Jun",
“Jul", "Aug", "Sep", "Cct", "Nov", "Dec"
b
static char result[26];
sprintf(result, "% 3s % 3s%3d % 2d: % 2d: % 2d %\ n",
wday_nanme[ti neptr->tm wday],
nmon_namne[ti meptr->tm non],
timeptr->tm nday, timeptr->tm hour,
timeptr->tmmn, tinmeptr->tm sec,
1900 + timeptr->tmyear);
return result;
}

SR-2080 10.0

CTIME(3C) CTIME(3C)

The TZ environment variable specifies time zone information. The value of TZ has the following form:
std offset dst offset, rule

The expanded form is as follows:
stdoffset[dst[offset] [, start[/ time] , end[/ time]]]

std, dst Time zone, standard (std) or summer (dst). std is required; omission of dst indicates summer time
is not used in this locale. Three or more characters, upper or lowercase, except a leading colon
(:), comma, minus (-), plus (+) or ASCIl NUL.

offset Difference in hours between local time and Greenich mean time (GMT), in the form
hh[: mm[: ss]]. Required following std. Following dst, defaults to 1 hour. A number preceded
by minus (-) indicates a zone east of the prime meridian. The hour (ff) should be in the range 0
through 24 and, if specified, the minutes and seconds should be in the range 0 through 59.

rule Indicates when to change to and from summer time, in the following form:
date/ time, date/ time

In the above format for rule, the first date specifies when to change from standard to summer time; the
second specifies when to change back. Each time specifies what time on that date the change occurs. The
date specification, with a J prefix, indicates the day of the year with a value of 1 through 365; February 29
cannot be specified. A number with no letter prefix is a similar number with range O through 365, allowing
specification of February 29. Alternatively, date can be in the form Mm. n. d, indicating the dth day of week
n of month m, withrangesO < d < 6,0 < n < 5,and0 < m < 12. For n=5, the last d day of
month mis used. The time value has the same format as offset; no leading + or — sign is alowed for time.

Setting TZ changes the value of the external variablest i nezone and dayl i ght . In addition, the
time-zone names contained in the external variable

char *tzname[2] = { "CST", "CDT" };

are set by the function t zset from the environment variable TZ. Functiont zset is called by
| ocal tine; you may also call t zset explicitly.

The TZ environment variable may also affect functions ct i ne, ascti ne, and nkti ne. If you want these
functions to behave in a strictly ANSI conforming way, that is, not to have any effect onti nezone,

dayl i ght, and t znane, or be affected by their values, you must not have the TZ environment variable
present in your environment.

RETURN VALUES

The ct i me function returns the pointer returned by the asct i me(3C) function, with that broken-down time
as argument.

SR-2080 10.0 131

CTIME(3C) CTIME(3C)

Thel ocal ti me function returns a pointer to that object.
The gnt i me function returns a pointer to that object, or a null pointer if UTC is not available.

The asct i me function returns a pointer to the string.

NOTES

CTU is the number of seconds since 00:00:00 GMT Jan 01, 1970. This has been the traditional starting
point in UNIX systems and is maintained in this implementation for compatibility, though it is not required
by the ANSI Standard. A negative value of calendar time represents time prior to 1970. Any value of
calendar time that can be represented by al ong i nt islegal, but some values may not have historical
significance or may not be convertible to meaningful ASCII representation.

Although the gnt i me function is defined in terms of calendar time and UTC, it usesany ti me_t value
and converts it to a proper t mstructure. gt i me makes no adjustments in its calculations for locale
specific variations such as time zone or daylight saving time.

The asct i me function checks each member of the structure for valid range. If any member is out of range,
ascti me puts asterisks in that part of the output string. Although this is not required by the ANSI
standard, it lets you see explicitly where bad values are being passed.

Theasctinme, ctime, gntine, and| ocal ti me functions return values are one of two static objects, a
broken-down time structure and an array of char . Execution of any of these functions may overwrite the
information returned in either of these objects by any of the other functions.

SEE ALSO

get env(3C), | ocal e(3C)

csh(1), dat e(1) ksh(1), sh(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

ti me(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

i ni ttab(5), profil e(5)inthe UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

i nit(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

132 SR-2080 10.0

CTYPE(3C)

NAME

CTYPE(3C)

i sal num i sal pha,isascii,iscntrl,isdigit,isgraph,islower,isprint,ispunct,

i sspace, i supper,isxdi git — Classifies character

SYNOPSIS

#i ncl ude <ctype. h>

int isalnum(int c);

i sal pha (int c);

sxdigit (int ¢);

i nt

int isascii (i
int iscntrl (i
int isdigit (i
int isgraph (i
int islower (i
int isprint (i
int ispunct (i
int isspace (i
int isupper (i
int i

IMPLEMENTATION

nt
nt
nt
nt
nt
nt
nt
nt

nt

o;
o;
o;
o;
o;
o;
o;
o;

o;

All Cray Research systems

STANDARDS

ISO/ANSI (excepti sascii)
XPG4 (i sasci i only)

DESCRIPTION

All functions except i sasci i are defined only for values that are representable as an unsi gned char
(that is, less than or equal to UCHAR MAX, defined inl i mi t s. h to be 255 for Cray Research systems) or

equal to EOF. isascii isdefined for al integer values.

Thei sal numfunction tests for any character for which i sal pha ori sdi git istrue.

Thei sal pha function tests for any character for which i supper or i sl ower istrue, or any character
that is one of alocally defined set of characters for which none of i scntrl ,isdigit,ispunct, or

i sspace istrue. Inthe Clocae, i sal pha returns true only for the characters for which i supper or
i sl ower istrue.

SR-2080 10.0

133

CTYPE(3C) CTYPE(3C)

Thei sascii function tests for any ASCII character code less than 0200. Thei sasci i macro is defined
on al integer values.

Thei scntrl function tests for any control character. In the C locale, control characters are characters
whose values are from 0 (NUL) through Ox 1F, and the character Ox7F (DEL).

Thei sdi gi t function tests for any decimal-digit character, O through 9, inclusive.
Thei sgraph function tests for any printing character except space (*).

Thei sl ower function tests for any character that is a lowercase letter or is one of alocally defined set of
characters for which none of i scntrl,isdigit,ispunct, orisspace istrue.

Thei spri nt function tests for any printing character including space (* ’). In the C locale, printing
characters are characters whose values are from 0x20 (space) through Ox 7E (tilde).

Thei spunct function tests for any printing character that is neither space (* ’) nor a character for which
i sal numis true.

The i sspace function tests for any character that is a standard white-space character or is one of alocally
defined set of characters for which i sal numis false.

In the C locale, the white-space characters are the following:

Space (* ')

Form feed (\ f)
New-line (\ n)
Carriage return (\ r)
Horizontal tab (\ t)
Vertical tab (\ v)

Thei supper function tests for any character that is an uppercase letter or is one of alocally defined set of
characters for which none of i scntrl,isdigit,ispunct, orisspace istrue.

Thei sxdi gi t function tests for any hexadecimal-digit character, as follows:
0 1.2 3 45 6 7 8 9
a b c d e f
A B C D E F
NOTES
If the argument to these functions is not in the domain of the function, the result is undefined.

The behavior of functionsi sal num i sal pha, i sascii,iscntrl,isgraph,islower,isprint,
i spunct, i sspace, andi supper may be affected by the current locale; functionsi sdi gi t and
i sxdi gi t are not affected by the current locale.

134 SR-2080 10.0

CTYPE(3C) CTYPE(3C)

RETURN VALUES

All of these functions return nonzero if, and only if, the value of the argument conforms to that in the
description of the function.

SEE ALSO
| ocal e. h(3C)

SR-2080 10.0 135

ctype.h(3C)

NAME

ctype. h — Library header for character-handling functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANSI (excepti sascii,toascii,_tol ower, toupper)
XPG4 (i sascii,toascii,_tol ower, toupper only)

TYPES
None

MACROS
Macros declared in header <ct ype. h> are as follows:
i sal num i sal pha i sasci i iscntrl
i sgraph i sl ower i sprint i spunct
i supper i sxdigit t oasci i t ol ower
t oupper _t oupper

FUNCTION DECLARATIONS

Functions declared in header <ct ype. h> are as follows:

i sal num i sal pha i sasci i iscntrl
i sgraph i sl ower i sprint i spunct
i supper i sxdigit t oasci i t ol ower
t oupper _toupper

SEE ALSO
| ocal e. h(3C)

136

ctype.h(3C)

isdigit
i sspace
_tol owner

isdigit
i sspace
_tol owner

SR-2080 10.0

CUSERID(3C)

NAME

cuseri d — Gets character login name of the user

SYNOPSIS

#i ncl ude <stdi 0. h>

char *cuserid (char *s);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

CUSERID(3C)

The cuseri d function generates a character-string representation of the login name of the owner of the
current process. If sisanull pointer, this representation is generated in an internal static area, the address of
which is returned. Otherwise, s is assumed to point to an array of at least L_cuseri d characters; the
representation is left in this array. The constant L_cuseri d is defined in the header file st di 0. h.

NOTES

Under certain circumstances, cuser i d() may call get udbui d(). Mixing cuseri d and get udbxxx calls

may have unexpected side effects.

RETURN VALUES

If the specified login name or user identification cannot be found, cuseri d returns a null pointer; if s is not

a null pointer, a null character (\ 0) is placed at s[0] .

SEE ALSO
get | ogi n(3C), get pwent (3C)

SR-2080 10.0

137

DAEMON(3C) DAEMON(3C)

NAME

daenon — Run an application in the background

SYNOPSIS

daenon(int nochdir, int noclose);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The daenon function is for programs wishing to detach themselves from the controlling terminal and run in
the background as system daemons.

Unless the argument nochdir is non-zero, daenon(3C) will change the current working directory to the root
directory / .

Unless the argument noclose is non-zero, daenon(3C) will redirect standard input, standard output, and
standard error to / dev/ nul | .

ERRORS

The function daenon(3C) may fail and set errno for any of the errors specified for the library functions
fork(2) and set si d(2).

SEE ALSO
set si d(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

HISTORY
The daenon(3C) function first appeared in 4.4BSD.

138 SR-2080 10.0

DATE_TIME(3C) DATE_TIME(3C)

NAME

dat e_ti ne — Introduction to date and time functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The date and time functions provide various means for manipulating date and time and for converting date
and time to various forms.

The two basic forms for the date and time are calendar time and broken-down time. Calendar time is a
single value representing a date and time. In the Cray Research, Inc. implementation, it is a signed long
integer with the number of seconds since January 1, 1970, Coordinated Universal Time (CTU). The value of
the calendar time may be zero or negative for time on this date.

Broken-down time is a structure of values representing a date and time. It is equivalent to the calendar time
except that the values of the members of the structure separately specify the year, month, day, and so on.
The structure is described under the header ti ne. h.

A variation of broken-down time is local time, which is the date and time adjusted for the difference
between the time under local customs and the universal coordinated time. These local customs include the
time zone and daylight saving time.

The agorithms used for converting times from one form to the other follow the rules for the Gregorian
calendar, even though this is not historically correct for times before the Gregorian calendar was adopted or
for locales that do not follow the Gregorian calendar.

ASSOCIATED HEADERS

time.h
ASSOCIATED FUNCTIONS

Time Manipulation Functions

Function Description

cl ock(3C) Reports CPU time used

cpused(3C) Gets CPU time in rea-time clock (RTC) ticks
di fftime(3C) Finds difference between two calendar times
nkti me(3C) Converts local time to calendar time

rtcl ock(3C) Gets current RTC reading

ti me(3C) Determines the local calendar time

SR-2080 10.0 139

DATE_TIME(3C)

DATE_TIME(3C)

Time Conversion Functions

Function
ascftinme
asctime
asctine_r
cftinme

cti me(3C)
ctime_r(3C)
gminme
gntine_r

[ocal tine
localtine_r
strftinme(3C)
strptinme(3C)

SEE ALSO

140

| ocal e. h(3C)

Description

Formats time information in a character string (see strfti me(3C))
Converts broken-down time to string (see ct i ne(3C))

Converts broken-down time to string (see ct i ne(3C))

Formats time information in a character string (see strfti me(3C))
Converts calendar time to local time

Converts calendar time to local time

Converts calendar time to broken-down time (see ct i ne(3C))
Converts calendar time to broken-down time (see ct i ne(3C))
Converts calendar time to broken-down time (see ct i ne(3C))
Converts calendar time to broken-down time (see ct i ne(3C))
Formats time information from broken-down time to a character string
Formats time information from a character string to broken-down time

ti me(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0

DBM(3C) DBM(3C)

NAME

dbntl ose, dbnminit,fetch, store, del ete, firstkey, nextkey — Provides database
subfunctions
SYNOPSIS
#i ncl ude <rpcsvc/dbm h>
int dbmnit (char *file);
dat umfetch (datum key) ;
int store (datumkey, datum content) ;
i nt del ete (datum key);
datumfirstkey (void);
dat um next key (dat um key) ;

i nt dbncl ose (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Functions dbmi ni t, fetch, store, del ete, firstkey, and next key maintain key/content pairsin a
database. These functions handle very large databases, up to a billion blocks, and access a keyed item in
one or two file system accesses.

The key and content arguments are described by the following dat umtype definition:

typedef struct {
char *dptr;
i nt dsize
} datum

A dat umspecifies a string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCII strings, are allowed.

The database is stored in two files. One file is a directory containing a bit map and has . di r as its suffix.
The second file contains all data and has . pag asits suffix. Before a database can be accessed, it must be
opened by dbmi ni t. At the time of this call, the files file. di r and file. pag must exist. (You can create
an empty database by making zero-length . di r and . pag files.)

SR-2080 10.0 141

DBM(3C) DBM(3C)

Once the database is open, the f et ch function accesses data stored under a key, and the st or e function
places data under a key. The del et e function removes a key and its associated contents. Y ou can make a
linear pass through all keys in a database, in an (apparently) random order, by using fi r st key and

next key. Thefir st key function returns the first key in the database. Beginning with any key,

next key returns the next key in the database. The following code traverses the database:

for (key = firstkey(); keydptr !'= NULL; key = nextkey(key))
You must close a database before opening a new one. To close a database, call dbntl ose.

NOTES

The . pag file contains holes; therefore its apparent size is about four times its actual content. Older UNIX
systems might create real file blocks for these holes when t ouch(2) is executed. The . pag files cannot be
copied by normal means (cp(1), cat (1), t ar (1), ar (1)) without filling in the holes.

The dptr pointers returned by these subfunctions point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
Moreover, al key/content pairs that hash together must fit on a single block. The st or e function returns an
error if adisk block fills with inseparable data.

The del et e function does not physically reclaim file space, although it does make it available for reuse.
The order of keys presented by fi r st key and next key depends on a hashing function.

There are no interlocks and no reliable cache flushing; thus, concurrent updating and reading is risky.

RETURN VALUES

A zero return indicates that there are no errors. An integer with a negative value (such as —1) indicates an
error. A type dat umreturn indicates an error with a null (O) dptr.

SEE ALSO

ar (1), cat (1), cp(1), tar (1), t ouch() in the UNICOS User Commands Reference Manual, Cray
Research publication SR—2011

142 SR-2080 10.0

DIFFTIME (3C) DIFFTIME (3C)

NAME

di ffti me — Finds difference between two calendar times

SYNOPSIS
#i ncl ude <tine. h>
double difftime (time_t timel, time_t time0);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

Thedi ffti nme function computes the difference between two calendar times, timel and time0.

RETURN VALUES

The di f ft i nme function returns the difference expressed in seconds as a value of type doubl e.

SR-2080 10.0 143

DIRECTORY (3C) DIRECTORY (3C)

NAME

opendir,readdir,readdir_r,telldir, seekdir,rew nddir, cl osedi r — Performs directory
operations

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

DI R *opendir (const char *file);

struct dirent *readdir (DR *dirp);

int readdir_r (DI R *dirp, struct dirent *entry, struct dirent **result);
long telldir (DI R *dirp);

voi d seekdir (DI R *dirp, | ong loc);

void rewi nddir (DI R *dirp);

int closedir (DI R *dirp);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX (excepttel | di r and seekdi r)
XPG4 (tel 1 di r and seekdi r only)
PThreads (r eaddi r _r only)

DESCRIPTION

144

The opendi r function opens the directory named by file and associates a directory stream, dirp, with it.
The opendi r function returns a pointer to be used to identify the directory stream dirp in subsequent
operations. A null pointer is returned if file cannot be accessed or is not a directory, or if it cannot obtain
enough memory (using mal | oc(3C)) or a buffer for the directory entries. A successful cal to any of the
exec(2) functions will close any directory streams that are open in the calling process.

The r eaddi r function returns a pointer to the next active directory entry dirp. No inactive entries are

returned. It returns null upon reaching the end of the directory or upon detecting an invalid location in the
directory.

Ther eaddi r _r function provides functionality equivalent to the r eaddi r function but with an interface
that is safe for multitasked applications. Storage for the directory entry, dirent, is provided by the caller
using the entry argument, which must be of at least the following value:

si zeof (struct dirent) + fhamemax

SR-2080 10.0

DIRECTORY (3C) DIRECTORY (3C)

In this expression, fnamemax is the maximum size of a file name, which can be determined using the
pat hconf or f pat hconf interface.

Ther eaddi r _r function initializes the structure referenced by ent r y to the correct values, and stores a
pointer to this structure at the location referenced by result. On successful return, *result should point to
ent ry. At end-of-directory, this pointer is NULL. Ther eaddi r _r function returns zero on success, or
nonzero if an error occurs.

Thetel | di r function returns the current location associated with the directory stream dirp.

The seekdi r function sets the position of the next r eaddi r operation on the directory stream dirp. The
new position reverts to the one associated with dirp when the t el | di r operation from which loc was
obtained is performed. Vauesreturned by t el | di r are good only if the directory has not changed due to
compaction or expansion.

Ther ewi nddi r function resets the position of the named directory stream, dirp, to the beginning of the
directory.

The cl osedi r function closes the directory stream dirp and frees the DI R structure.

On error, opendi r puts one of the following values into er r no, defined in header er r no. h:
Error Code Description

ENOTDI R A component of file is not a directory.

EACCES A component of file denies search permission.

EMFI LE The maximum number of file descriptors are currently open.

EFAULT Argument file points outside the allocated address space.

On error, readdi r and readdi r _r put one of the following values into er r no, defined in header
errno. h:

Error Code Description
ENOENT The current file pointer for the directory is not located at a valid entry.
EBADF The file descriptor determined by the DI R stream is no longer valid. This results if the DIR
stream has been closed.
EXAMPLES

The following example shows source code that searches a directory for the entry nane:

SR-2080 10.0 145

DIRECTORY (3C) DIRECTORY (3C)

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>
#i ncl ude <string. h>

#defi ne FOUND 1
#define NOT_FOUND 0O

fi ndnanme(char *nane)

{
DR *dirp;
struct dirent *dp
dirp = opendir(".");
while ((dp = readdir(dirp)) !'= NULL) {
if (strcnp(dp->d_nanme, nanme) == 0) {
(void) closedir(dirp);
return FOUND;
}
}
(void) closedir(dirp);
return NOT_FOUND
}

SEE ALSO
errno. h(3C), mal | oc(3C)
get dent s(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

di r ent (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

146 SR-2080 10.0

DIV(3C) DIV(3C)

NAME

di v, div,Ildiv - Computesinteger or long integer quotient and remainder

SYNOPSIS
#i ncl ude <stdlib. h>
div_t div (int numer, int denom);
Idiv_t Idiv (long int numer, | ong int denom);

I[1div_t Ildiv (long long int numer, long |ong int denom);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

Thedi v, | di v, and || di v function computes the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the integer of lesser
magnitude that is the nearest to the algebraic quotient. If the result cannot be represented, the behavior is
undefined; otherwise, quot * denom + r emequals numer.

RETURN VALUES

The di v function returns a structure of type di v_t , which is defined in the header file st dl i b. h,
comprising both the quotient and the remainder.

The |l di v function is similar to the di v function, except that the argument and the members of the returned
structure (which hastype | di v_t) al havetypel ong i nt.

Thel | di v function is similar to the di v function, except that the argument and the members of the
returned structure (which hastype | | di v_t) al havetypel ong | ong int.

SR-2080 10.0 147

DMF_OFFLINE(3C) DMF_OFFLINE(3C)

NAME

dnf _of fline, dnf _hashandl e, dnf _vendor — Determines migrated status

SYNOPSIS
i nt
i nt
i nt

dnf_offline(struct stat *st);
dnf _hashandl e(struct stat *);
dnf _vendor (i nt portno) ;

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

Thednf _of fli ne, dnf _hashandl e, and dnf _vendor functions provide information about migrated
files on UNICOS file systems. They apply to the different migration systems supported by UNICOS. The
migration systems supported are the Cray Data Migration Facility (DMF) and FILESERV.

The functions are as follows:

e dnf_of fli ne determines whether a migrated file is offline or not. A file is considered to be offline if
it has a valid copy offline and no copy of the data online.

¢ dnf_hashandl e determines whether a file has a migration handle or not.

e dnf_vendor determines which data migration vendor, if any, owns the port specified in portno.

RETURN VALUES

Thednf _of f1i ne function returns 1 if the file is offline, O if it is not.

The dnf _hashandl e function returns 1 if the file has a handle and the vendor is DMF, 2 if the file has a
handle and the vendor is FILESERV, O if it does not have a handle, and —1 if the type of handle or vendor
cannot be determined.

The dnf _vendor function returns 1 if the vendor is DMF, 2 if the vendor is FILESERV, and 0O if the
vendor cannot be determined.

SEE ALSO

Cray Data Migration Facility (DMF) Administrator’s Guide, Cray Research publication SG—2135

148

SR-2080 10.0

DRANDA48(3C) DRANDA48(3C)

NAME
drand48, er and48, | rand48, nrand48, nr and48, j r and48, srand48, seed48, | cong48 —

Generates uniformly distributed pseudo-random numbers
SYNOPSIS

#i ncl ude <stdlib. h>

doubl e drand48 (voi d);

doubl e erand48 (unsi gned short xsubi[3]);

l ong | rand48 (void);

| ong nrand48 (unsigned short xsubi[3]);

| ong nrand48 (void);

l ong j rand48 (unsigned short xsubi[3]);

voi d srand48 (| ong seedval) ;

unsi gned short (**seed48 (unsigned short seedl6v| 3]);

voi d | cong48 (unsi gned short param 7]);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

This family of functions generates pseudo-random numbers using the linear congruential algorithm and
48-hit integer arithmetic.

Functions dr and48 and er and48 return nonnegative, floating-point values uniformly distributed over the
interval (0.0,1.0).

Functions | r and48 and nr and48 return nonnegative long integers uniformly distributed over the interval
(0, 2%Y.

Functions nr and48 and j r and48 return signed long integers uniformly distributed over the interval

(_231’ 231).

Functions sr and48, seed48, and | cong48 are initialization entry points, one of which should be
invoked before either dr and48, | r and48, or nr and48 is called. (However, although it is not
recommended practice, constant default initializer values are supplied automatically if dr and48, | r and48,
or nr and48 is called without a prior call to an initiaization entry point.) Functions er and48, nr and48,
and j r and48 do not require that an initialization entry point be called first.

SR-2080 10.0 149

DRANDA48(3C) DRANDA48(3C)

150

All the functions work by generating a sequence of 48-bit integer values, X;, according to the linear
congruential formula:

Xn+1 = (@%n +C)mod m n=0

Parameter m = 2%; therefore, 48-hit integer arithmetic is performed.
Unless | cong48 has been invoked, the multiplier value a and the addend value ¢ are given by the
following:

a = 5DEECE66D 15 = 273673163155
c=B 16 — 13 8.

The value returned by any of the functions dr and48, er and48, | r and48, nr and48, nr and48, or

j rand48 is computed by first generating the next 48-bit X; in the sequence. Then the appropriate number
of bits, according to the type of data item to be returned, is copied from the high-order (leftmost) bits of X;
and transformed into the returned value.

Functions dr and48, | r and48, and nt and48 store the last 48-bit X; generated in an internal buffer; that
is why they must be initialized before being invoked. Functions er and48, nrand48, and j r and48
require the calling program to provide storage for the successive X; values in the array specified as an
argument when the functions are invoked. That is why these functions do not have to be initialized; the
calling program merely has to place the desired initial value of X; into the array and pass it as an argument.
By using different arguments, functions er and48, nr and48, and j r and48 alow separate modules of a
large program to generate several independent streams of pseudo-random numbers; that is, the sequence of
numbers in each stream does not depend upon how many times the functions have been called to generate
numbers for the other streams.

The initialization function sr and48 sets the high-order 32 bits of X; to the 32 bits contained in its
argument. The low-order 16 bits of X; are set to the arbitrary value 330E;¢(31416g).

The initialization function seed48 sets the value of X; to the 48-bit value specified in the argument array.
In addition, the previous value of X; is copied into a 48-bit internal buffer, used only by seed48, and a
pointer to this buffer is the value returned by seed48. This returned pointer, which can be ignored if not
needed, is useful if a program is to be restarted from a given point at some future time; you can use the
pointer to get at and store the last X; value, and then use this value to reinitialize using seed48 when the
program is restarted.

The initialization function | cong48 lets you specify the initial X;, the multiplier value a, and the addend
value c. Argument array elements par ani 0- 2] specify X;, elements par anf 3- 5] specify the multiplier
a, and element par ani 6] specifies the 16-bit addend c. After | cong48 has been called, a subsequent call
to either sr and48 or seed48 restores the "standard” multiplier and addend values, a and c, specified
previoudly.

SR-2080 10.0

DRANDA48(3C) DRANDA48(3C)

SEE ALSO
r and(3C)

SR-2080 10.0 151

DUP2(3C)

NAME

dup?2 — Duplicates an open file descriptor

SYNOPSIS

#i ncl ude <unistd. h>
int dup2 (int oldfd, int newfd);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX

DESCRIPTION

Function dup?2 duplicates an open file descriptor, oldfd, onto a new file descriptor, newfd, using the
fentl (2) system call. Argument newfd must be a nonnegative integer less than NOFI LE. The dup2
function causes newfd to refer to the same file as oldfd. If newfd already refers to an open file, that file is
first closed, as if the cl ose(2) system call had been performed.

The dup?2 function is roughly equivalent to the following (checking is performed that is not shown here):

#i ncl ude <uni std. h>
#i ncl ude <fcntl . h>

dup2(ol df d, newfd)
int oldfd, newfd;

{
if (oldfd !'= newfd)
(void) close(newfd);
return(fcntl (ol dfd, F_DUPFD, newfd));
}

RETURN VALUES

152

On successful completion, dup?2 returns the file descriptor, a nonnegative integer. If dup2 does not
complete successfully, it returns —1 and sets er r no to indicate the error, as follows:

Error Description
EBADF The oldfd argument is not a valid open file descriptor.
EMFI LE NOFI LE number of files are currently open.

SR-2080 10.0

DUP2(3C)

DUP2(3C) DUP2(3C)

SEE ALSO

errno. h(3C)

cl ose(2), creat (2), dup2(3C), exec(2), f cnt | (2), open(2), pi pe(2) in the UNICOS System Calls
Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 153

ECVT(3C) ECVT(3C)

NAME

ecvt, fcvt, gecvt — Converts a floating-point number to a string

SYNOPSIS
#i ncl ude <stdlib. h>
char *ecvt (doubl e value, int ndigit, i nt *decpt, int *sign);
char *fcvt (doubl e value, int ndigit, i nt *decpt, int *sign);

char *gcvt (doubl e value, int ndigit, char *buf);

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

The ecvt function converts value to a null-terminated string of ndigit digits and returns a pointer to the
string. The high-order digit is nonzero, unless value is 0. The low-order digit is rounded. The position of
the decimal point relative to the beginning of the string is stored indirectly through decpt (negative means to
the left of the returned digits). The decimal point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is nonzero; otherwise, it is 0.

The f cvt function is identical to ecvt , except that the correct digit has been rounded for pri ntf 9%
(Fortran F-format) output of the number of digits specified by ndigit.

The gcvt function converts value to a null-terminated string in the array pointed to by buf and returns buf.
It attempts to produce ndigit significant digits in Fortran F-format if possible (otherwise in E-format), ready
for printing. A minus sign (if there is one) or a decimal point is included as part of the returned string.
Trailing 0's are suppressed.

For machines with IEEE arithmetic, all of these functions return NaN for "not-a-number" and | nf for
"infinity."

NOTES

The values returned by ecvt and f cvt point to a single static data array that is overwritten by each call.

SEE ALSO
printf (3C)

154 SR-2080 10.0

ERF(3C) ERF(3C)

NAME

erf, erfc — Returns error function and complementary error function

SYNOPSIS
#i ncl ude <mat h. h>
doubl e erf (double x);

doubl e erfc (double x);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4
DESCRIPTION

X
The er f function returns the error function of x, defined as \/L—J' edt. Theerf function returns the error
L)

function of x, defined as 2 divided by the square root of pi times the integral from O to x of e raised to the
power of (-t) squared times dt.

The er f ¢ function, which returns 1.0 - er f (X), is provided because of the extreme loss of relative accuracy
if erf (x) iscaled for alarge x and the result is subtracted from 1.0 (for example, when x = 5, 12 places are
lost).

Vectorization is inhibited for loops containing calls to either of these functions.

RETURN VALUES

On Cray MPP systems and CRAY T90 systems with |EEE arithmetic, er f (NaN) and er f ¢c(NaN) returns
NaN and er r no is set to EDOM

SEE ALSO
exp(3C)

SR-2080 10.0 155

errno.h(3C)

NAME

errno.h(3C)

errno. h — Library header for reporting error conditions

IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANS

MACROS

The following macros are defined in er r no. h:

Macro

errno

Description

An identifier that expands to a modifiable | val ue that has typei nt , the value of which
is set to a positive error number by several library functions and UNICOS system calls.
ISO/ANS!.

The following macros, which are defined in sys/ er r no. h, expand into integral constant expressions with
distinct nonzero values suitable for use in #i f preprocessing directives. These are the standard defined
macros; there are many other macros defined in sys/ errno. h. Seei ntro(2) for alist of the UNICOS
errors. Unless noted, all macros conform with the POSIX standard.

Macro
E2BI G
EACCES
EAGAI N
EBADF
EBUSY
ECHI LD
EDEADLK
EDOM
EEXI ST
EFAULT
EFBI G
El DRM
El LSEQ
El NTR

156

Description

Argument list too big

Permission denied

Resource unavailable, try again

Bad file number

Device or resource busy

No child processes

Resource deadlock would occur
Argument out of domain of function. ISO/ANSI standard.
File exists

Bad address

File too large

Identifier removed. X/Open standard.
Illegal byte sequence. X/Open standard.

Interrupted function

SR-2080 10.0

errno.h(3C)

El NVAL
El O

El SDI R
EMFI LE
EMLI NK

ENAMETOOLONG

ENFI LE
ENOCDEV
ENOENT
ENOCEXEC
ENOLCK
ENOVEM
ENOVSG
ENCSPC
ENOSYS
ENOTDI R
ENOTEMPTY
ENOTTY
ENXI O
EPERM
EPI PE
ERANGE
ERCFS
ESPI PE
ESRCH
ETXTBSY
EXDEV

SR-2080 10.0

Invalid argument

1/O error

Is a directory

Too many open files

Too many links

Filename too long

File table overflow

No such device

No such file or directory

Executable file format error

No locks available

Not enough space

No message of desired type. X/Open standard.
No space left on device

Functionality not supported

Not a directory

Directory not empty
Inappropriate I/O control operation
No such device or address

Operation not permitted

Broken pipe

Result not representable in return type. 1SO/ANSI standard.
Read-only file system

Invalid seek

No such process
Text file busy. X/Open standard.

Cross-device link

errno.h(3C)

157

errno.h(3C) errno.h(3C)

FUNCTION DECLARATIONS

NOTES

None

For multitasking, er r no must be defined as a per-task variable. This is done by making er r no a macro
that dereferences a per-task pointer returned by the Err no function. This is shown in an excerpt from
errno. h:

#define errno (*_Errno())
extern int errno;

To be ISO/ANSI conformant, you must include er r no. h to use er r no. However, the POSIX 1003.1
standard allows users to simply declare ext ern i nt errno in their program without including
errno. h; while this is allowed, its usage is discouraged, and programs doing this will not work with
multitasking.

Actua errors are defined in header sys/ er r no. h, which is included automatically by er r no. h. See
i ntro(2) for alist of the UNICOS errors.

SEE ALSO

158

prog_di ag(3C)
i ntro(2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0

EVASGN(3F) EVASGN (3F)

NAME
EVASCGN — ldentifies an integer variable to be used as an event

SYNOPSIS
CALL EVASGN(name [, value])

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

EVASGN identifies an integer variable that the program will use as an event. You must call this routine for
an event variable before that variable is used with any of the other event routines. The multitasking library
sets the initial state of the event to be cleared. A data statement can initialize the event to the value in the
optional argument so that the event can be assigned in aroutine. The first call assigns the event, and further
cals are ignored.

The following is alist of valid arguments for this routine:

Argument Description

name Name of an integer variable to be used as an event. The library stores an identifier into
this variable; you should not modify this variable after the call to EVASGN.

value The initial integer value of the event variable. EVASGN stores an identifier into the

variable only if that variable still contains the value. If you do not specify value, an
identifier is stored unconditionally into the variable.

NOTES

For SPARC systems, the value parameter is optional, and EVASGN is not predeclared (not intrinsic).
Therefore, if a call is made to it with only the name parameter, EVASGN must be declared with an
| NTERFACE block in the calling module.

SR-2080 10.0 159

EVASGN(3F) EVASGN (3F)

EXAMPLES

PROGRAM MULTI
| NTEGER EVSTART, EVDONE
COVMMON / EVENTS/ EVSTART, EVDONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)
END

SUBROUTI NE SUB1

| NTEGER EVENT1

COVMON / EVENT1/ EVENT1
DATA EVENT1 /-1/

CALL EVASGN (EVENTL, - 1)

END

160 SR-2080 10.0

EVCLEAR(3F) EVCLEAR(3F)

NAME
EVCLEAR — Clears an event and returns control to the calling task

SYNOPSIS
CALL EVCLEAR(event)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

EVCLEAR clears an event and returns control to the calling task. When the task is clear, al tasks
subsequently performing EVWAI T(3F) calls must wait.

The following is a valid argument for this routine:

Argument Description

event Name of an integer variable used as an event. After an event is posted by a call to
EVPOST(3F), the posted condition remains until EVCLEAR is called. The typical use of
EVCLEAR s to call it immediately after the call to EVWAI T to indicate that the posting of
the event was detected.

EXAMPLES
PROGRAM MULTI

| NTEGER EVSTART, EVDONE
COMMON / EVENTS/ EVSTART, EVDONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)

CALL EVPOST (EVSTART)
END

SUBROUTI NE MULTI 2
| NTEGER EVSTART, EVDONE
COMMON / EVENTS/ EVSTART, EVDONE

CALL EWAI T (EVSTART)
CALL EVCLEAR (EVSTART)

END

SR-2080 10.0 161

EVCLEAR(3F) EVCLEAR(3F)

SEE ALSO
EVPOST(3F), EVWWAI T(3F), mul t i f (3F)

162 SR-2080 10.0

EVPOST(3F) EVPOST(3F)

NAME
EVPOST — Posts an event and returns control to the calling task

SYNOPSIS
CALL EVPOST(event)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

EVPOST posts an event and returns control to the calling task. Posting the event allows any other tasks
waiting on that event to resume execution, but this is transparent to the task calling EVPOST. Posting a
posted event has no effect (posts are not queued) and should be avoided.

The following is a valid argument for this routine:

Argument Description
event Name of an integer variable used as an event.
EXAMPLES

PROGRAM MULTI
| NTEGER EVSTART, EVDONE
COMMON / EVENTS/ EVSTART, EVDONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)

CALL EVPOST (EVSTART)
END

SEE ALSO
EVCLEAR(3F), EVWAI T(3F), MULTI F(3F)

SR-2080 10.0

163

EVREL (3F)

NAME

EVREL — Releases the identifier assigned to an event

SYNOPSIS
CALL EVREL(name)

IMPLEMENTATION

Cray PVP systems
SPARC systems

DESCRIPTION

EVREL releases the identifier assigned to an event.

The following is a valid argument for this routine:

Argument
name

Description
Name of an integer variable used as an event.

EVREL (3F)

If tasks are currently waiting for this event to be posted, an error results. This routine is useful primarily in
detecting erroneous uses of an event outside the region the program has planned for it. The event variable
can be reused following another call to EVASGN(3F).

EXAMPLES

SEE ALSO

164

EVASGN\(3F)

PROGRAM MULTI
| NTEGER EVSTART, EVDONE
COVMON / EVENTS/ EVSTART, EVDONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)

CALL EVPOST (EVSTART)

EVSTART W LL NOT BE USED FROM NOW ON
CALL EVREL (EVSTART)

END

SR-2080 10.0

EVTEST(3F) EVTEST(3F)

NAME
EVTEST — Returns the state of an event

SYNOPSIS

LOG CAL EVTEST
return=EVTEST(event)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

EVTEST returns the logical state of an event.

The following is alist of valid arguments for this routine:

Argument Description

return A logical . TRUE. if the event is posted. A logical . FALSE. if the event is not posted.
The event variable's state is unaffected by a call to EVTEST.

event Name of an integer variable used as an event.

NOTES
EVTEST and return must be declared as type LOG CAL in the calling module.

SEE ALSO
EVCLEAR(3F), EVPOST(3F), EVAI T(3F), nul ti f (3F)

SR-2080 10.0 165

EVWAIT(3F) EVWAIT(3F)

NAME
EVWAI T — Delays the calling task until the specified event is posted

SYNOPSIS
CALL EVWAI T(event)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

EVWAI T delays the calling task until the specified event is posted by a call to EVPOST(3F). If the event is
already posted, the task resumes execution without waiting. EVMAI T does not change the state of the event.

The following is a valid argument for this routine:

Argument Description
event Name of an integer variable used as an event
EXAMPLES

SUBROUTI NE MULTI 2
| NTEGER EVSTART, EVDONE
COMMON / EVENTS/ EVSTART, EVDONE
CALL EWMAI T (EVSTART)
END
SEE ALSO
EVCLEAR(3F), EVPOST(3F), nul ti f (3F)

166 SR-2080 10.0

EXIT(3C)

NAME

exi t — Terminates a program

SYNOPSIS
#i ncl ude <stdlib. h>

void exit (int satus);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

EXIT(3C)

The exi t function causes normal program termination to occur. If more than one call to the exi t function

is executed by a program, the behavior is undefined.

First, al functions registered by the at exi t function are caled, in the reverse order of their registration.

Each function is called as many times as it was registered.

Next, al open output streams are flushed, all open streams are closed, and al files created by thet mpfil e

function are removed.

Finally, control is returned to the host environment by using the _exi t (2) system call.

RETURN VALUES

The exi t function does not return to its caler.

SEE ALSO
at exi t (3C)

exi t (2), wai t (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0

167

EXP(3C) EXP(3C)

NAME

exp, expf, expl, cexp, | og, l ogf, | ogl, cl og, | 0g10, 1 0g10f, | 0gl0l — Determines exponential
and logarithm values

SYNOPSIS

#i ncl ude <math. h>
#i ncl ude <conpl ex. h> (functions cexp and cl og only)

doubl e exp (double x);

float expf (float X ;

| ong double expl (long double X);

doubl e conplex cexp (double conplex x);
double |l og (double x);

float logf (float X ;

l ong double logl (long double X);

doubl e conplex clog (double conplex x);
doubl e 10g10 (double x);

float 1o0gl0f (float x);

| ong double [o0gl0l (long double X);

IMPLEMENTATION

All Cray Research systems (exp, cexp, | og, cl og, | og10 only)
Cray MPP systems (expf, | ogf, | og10f only)
Cray PVP systems (expl , | ogl , | 0og10l only)

STANDARDS

ISO/ANSI (exp, | og, | 0g10 only)
CRI extension (all others)

DESCRIPTION

168

The exp, expf, expl , and cexp functions return the exponential of x (e raised to the power of x). A
range error occurs if the magnitude of x is too large.

Thel og, | ogf, | ogl , and cl og functions return the natural logarithm of x. A domain error occurs if the
value of x is negative. A range error occurs if the value of x is O.

SR-2080 10.0

EXP(3C) EXP(3C)

Thel 0g10, | 0g10f, and | 0g10l functions return the base 10 logarithm of x. A domain error occurs if
the value of x is negative. A range error occurs if the value of x is 0.

Specifying the cc(1) command-line option - h st dc (signifying strict conformance mode) or
-h mat herr=er r no causes the functions to perform domain and range checking, set er r no on error, and
return to the caller on error.

In strict conformance mode, vectorization is inhibited for loops containing calls to any of these functions.
Vectorization is not inhibited in extended mode.

When code containing calls to any of these functions is compiled by the Cray Standard C compiler in
extended mode, domain checking is not done, er r no is not set on error, and the functions do not return to
the caller on error. If an error occurs, the program aborts, producing a traceback and a core file. On
CRAY T90 systems with |EEE floating-point arithmetic only, in extended mode, er r no is not set, but the
functions do return to the caller on error. For more information, see the corresponding | i bmman page (for
example, EXP(3M)).

RETURN VALUES

The following describes the action taken for certain error conditions when a program is compiled with -
hst dc or - hmat her r or =er r no on Cray MPP systems and CRAY T90 systems with |EEE arithmetic:

* The functions exp(NaN) , expl (NaN), cexp(NaN), | og(NaN), | ogl (NaN), | og10(NaN) ,
| 0g101(NaN), and cl og(NaN) return NaN and er r no is set to EDOM

¢ The value returned by the functions in the following table when a domain error occurs can be selected by
the environment variable CRI _| EEE LI BM The second column describes what is returned when
CRI | EEE LI BMis not set, or is set to a value other than 1. The third column describes what is
returned when CRI _| EEE LI Bis set to 1. For both columns, er r no is set to EDOM

Error CRI _IEEE LIB=0 CRI _|EEE LIB=1
I og(x), where x is less than zero - HUGE_VAL NaN

I ogl (X), where x is less than zero - HUGE_VALL NaN

| ogf (X), where x is less than zero - HUGE_VALF NaN

cl og(. 0+0. 0*1. 0i) (0. 0+0. 0*1. 0i) (NaN+NaN* 1. 0i)
| 0g10(X), where x is less than zero - HUGE_VAL NaN

| 0g101(x), where x is less than zero - HUGE_VALL NaN

| 0g10f (X), where x is less than zero - HUGE_VALF NaN

SEE ALSO

errno. h(3C)
cc(2) in the Cray Sandard C Reference Manual, Cray Research publication SR—2074

SR-2080 10.0 169

FCLOSE(3C) FCLOSE(3C)

NAME

fclose, ffl ush — Closes or flushes a stream

SYNOPSIS

#i ncl ude <stdio. h>
int fclose (FILE *stream);
int fflush (FILE *stream);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The f cl ose function causes any buffered data for the specified stream to be written out and the stream to
be closed. If the associated buffer was allocated automatically, it is deallocated. Anf cl ose cal is
performed automatically for al open files when exi t (2) is called.

If stream is an output stream or update stream in which the most recent operation was not input, the
f f1 ush function causes any buffered data for the specified stream to be written to the associated file;
otherwise, the behavior is undefined. The stream remains open. If stream is a null pointer, the f f | ush
function performs this flushing action on all streams for which the behavior is defined above.

RETURN VALUES

If an error is detected or if the file was already closed, these functions return EOF; otherwise, they return O.

FORTRAN EXTENSIONS

You can aso cal the f cl ose function from Fortran programs, as follows:
| NTEGER*8 FCLOSE, stream, |
| = FCLOSE(stream)

You can aso cal the f f | ush function from Fortran programs, as follows:

| NTEGER*8 FFLUSH, stream, |
| = FFLUSH(stream)

170 SR-2080 10.0

FCLOSE(3C) FCLOSE(3C)
SEE ALSO

f open(3C), set buf (3C), unget c(3C)
cl ose(2), exi t (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 171

FECLEAREXCEPT(3C) FECLEAREXCEPT(3C)

NAME

f ecl ear except, f eget except fl ag, f erai seexcept, f eset exceptfl ag, f et est except —
Manages floating-point exception flags

SYNOPSIS

#i ncl ude <fenv. h>

voi d feclearexcept(int excepts);

voi d feraiseexcept(int excepts);

void fegetexceptflag(fexcept_t *flagp, int excepts);

void fesetexceptflag(const fexcept_t *flagp, int excepts;
int fetestexcept(int excepts);

IMPLEMENTATION
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

These functions provide access to the exception flags. Thei nt input argument for the functions represents
a subset of floating-point exceptions and can be constructed by bitwise ORs of the exception macros, such as
FE_OVERFLOW | FE_I NEXACT. For argument values other than the exception macros, the behavior of
these functions is undefined.

Thef ecl ear except function clears the exceptions represented by its argument. The argument excepts
represents exceptions as a bitwise OR of exception macros.

The f eget except f | ag function stores the representation of the exception flags indicated by the argument
excepts through the pointer argument flagp.

Thef er ai seexcept function raises the exceptions represented by its argument. The effect is similar to
that of exceptions raised by arithmetic operations. Hence, enabled traps are taken for exceptions raised by
this function. The argument excepts represents exceptions as a bitwise OR of exception macros. The
function is not restricted to accepting only |IEEE-valid coincident expressions for atomic operations, which
means the function can be used to raise exceptions accrued over several operations. If excepts represents
valid coincident exceptions for atomic operations (namely, FE_ OVERFLOWand FE_| NEXACT or
FE_UNDERFLOWand FE_| NEXACT), FE_OVERFLOWand FE_UNDERFLOWare raised before

FE_1 NEXACT; otherwise, the order in which these exceptions are raised is unspecified. On CRAY T90 and
CRAY T3E systems with |EEE floating-point hardware, raising the overflow or underflow exception also
causes the inexact exception to be raised.

172 SR-2080 10.0

FECLEAREXCEPT(3C) FECLEAREXCEPT(3C)

The f eset except f | ag function sets the complete status for those exception flags indicated by the
argument excepts, according to the representation in the object pointed to by flagp. The value of * flagp
must have been set by a previous call to f eget except f | ag, or the effect on the indicated exception flags
is undefined. This function does not raise exceptions; it only sets the state of the flags.

Thef et est except function determines which of a specified subset of the exception flags are currently
set. The excepts argument specifies (as a bitwise OR of the exception macros) the exception flags to be
gueried. This mechanism allows testing several exceptions with just one function call.

RETURN VALUES

Thef et est except function returns the bitwise OR of the exception macros corresponding to the
currently set exceptions included in the excepts argument.

EXAMPLES

The following example callsf if FE_| NVALI Dis set and g if FE_OVERFLOWis set:

#i ncl ude <fenv. h>

i nt set_excepts;

[*...0*%]

set _excepts = fetestexcept (FE_INVALID | FE_OVERFLOW ;
if (set_excepts & FE_INVALID) f();

if (set_excepts & FE_OVERFLOW g();

SEE ALSO
f env. h(3C) for valid macros to serve as arguments
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 173

