FEDISABLETRAP(3C) FEDISABLETRAP(3C)

NAME

f edi sabl etrap, f eenabl etrap, fegettrapfl ag, fesettrapfl ag, fetesttrap — Manages
trap flags

SYNOPSIS

#i ncl ude <fenv. h>

voi d fedisabletrap(int traps);

voi d feenabl etrap(int traps);

void fegettrapflag(fetrap_ t *flagp, int traps);

void fesettrapflag(const fetrap_t *flagp, int traps);
int fetesttrap(int traps);

IMPLEMENTATION

CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

Cray Research extensions to |IEEE Std 754-1985

DESCRIPTION

174

These functions provide access to the trap flags. Each trap flag indicates whether a trap will be taken if the
corresponding exception is raised. These traps are not exact traps, as specified in the IEEE standard. When
an exception causes a trap to be taken, the floating-point exception signa (SI GFPE, see si gnal . h(3C)) is
raised.

Thei nt input argument for the functions represents a subset of floating-point exception traps, and it can be
constructed by bitwise ORs of the trap macros (for example, FE_TRAP_OVERFLOW |

FE_TRAP_I NEXACT). The behavior of these functions is undefined for other argument values.

The f edi sabl et r ap function disables the traps represented by its argument. The argument traps
represents traps as a bitwise OR of trap macros.

The f eenabl et r ap function enables the traps represented by its argument. The parameter traps
represents traps as a bitwise OR of trap macros.

Thef eget t r apf | ag function stores the representation of the trap flags indicated by the parameter traps
through the pointer parameter flagp.

Thef esettrapfl ag function enables or disables the set of floating-point exception traps indicated by the
argument traps, according to the representation in the object pointed to by flagp. The value of * flagp must
have been set by a previous call to f eget t r apf | ag; if it has not been, the effect on the indicated traps is
undefined.

SR-2080 10.0

FEDISABLETRAP(3C) FEDISABLETRAP(3C)

Thef et est t rap function determines which of a specified subset of the floating-point exception traps are
currently enabled. The traps argument specifies as a bitwise OR the traps to be queried.

RETURN VALUES

Thef et est t rap function returns the bitwise OR of the trap macros corresponding to the currently enabled
traps included in the traps argument.

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 175

FEGETENV/(3C) FEGETENV/(3C)

NAME
f eget env, f ehol dexcept, f eset env, f eupdat eenv — Manages the entire floating-point
environment

SYNOPSIS
#i ncl ude <fenv.h>

void fegetenv(fenv_t *envp);

int fehol dexcept (fenv_t *envp);

void fesetenv(const fenv_t *envp);
voi d feupdateenv(const fenv_t *envp);

IMPLEMENTATION
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS
ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

These functions manage the floating-point environment (that is, the status flags and control modes) as one
entity.

The f eget env function stores the current floating-point environment in the object pointed to by envp.

The f ehol dexcept function saves the current environment in the object pointed to by envp, clears the
exception flags, and disables al floating-point exception traps. (f ehol dexcept does not disable all
floating-point exception traps on CRAY T3E systems.) It can be used in conjunction with the

f eupdat eenv function to write functions that hide spurious exceptions from their callers.

The f eset env function establishes the floating-point environment represented by the object pointed to by
envp. The argument envp must point to an object set by a cal to f eget env, or equal the macro
FE_DFL_ENV. Thef eset env function just installs the state of the exception flags represented by its
argument; it does not raise these exceptions.

The f eupdat eenv function saves the current exceptions in its automatic storage, installs the environment
represented by envp, and raises the saved exceptions.

RETURN VALUES

The f ehol dexcept function returns a nonzero value only if all traps were successfully disabled.

176 SR-2080 10.0

FEGETENV/(3C) FEGETENV/(3C)

EXAMPLES

The following example hides spurious underflow exceptions:

#i ncl ude <fenv. h>
doubl e f(doubl e x)
{
doubl e result;
fenv_t save env;
f ehol dexcept (&save_env);
/[*compute result*/
if (/*test spurious underflow*/) feclearexcept(FE_UNDERFLOW ;
f eupdat eenv(&save_env);
return result;

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 177

FEGETROUND(3C) FEGETROUND(3C)

NAME

f eget round, f eset r ound — Manage the rounding direction modes

SYNOPSIS
#i ncl ude <fenv.h>
int fegetround(void);
int fesetround(int round);

IMPLEMENTATION
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

The f eget r ound function gets the current rounding direction.

The f eset r ound function establishes the rounding direction represented by its argument round. If the
argument does not match a rounding direction macro, the rounding direction is not changed.

EXAMPLES

The following example saves, sets, and restores the rounding direction. If setting the rounding direction
fails, it reports an error and aborts.

#i ncl ude <fenv. h>

#i ncl ude <assert. h>

i nt save_round;

i nt setround_ok;

save_round = fegetround();
setround_ok = fesetround(FE_UPWARD) ;
assert (setround_ok);

[*..0*%]

fesetround(save_round);

RETURN VALUES

The f eget r ound function returns the value of the rounding direction macro that represents the current
rounding direction.

178 SR-2080 10.0

FEGETROUND(3C) FEGETROUND(3C)

The f eset r ound function returns a nonzero value if the argument matches a rounding direction macro
(that is, if the requested rounding direction can be established).

SEE ALSO

f env. h(3C) for the macros that can be used as arguments
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 179

FENV.H(3C) FENV.H(3C)

NAME

f env. h — Library header for the |EEE floating-point environment

IMPLEMENTATION

CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985

X3/TR-17:199x

Thefetrap_t typeand the trap macros and functions are Cray Research extensions to ANSI/IEEE Std
754-1985.

DESCRIPTION

TYPES

180

The header f env. h declares types, macros, and functions that provide access to the |EEE floating-point
environment. The |EEE floating-point environment refers collectively to any floating-point status flags and
control modes supported by an IEEE-compliant Cray Research system. A floating-point status flag is a
system variable signifying some occurrence in the floating-point arithmetic. A floating-point control mode is
a system variable that affects floating-point arithmetic.

The following conventions are followed by the Cray Research implementation:

¢ A function call does not alter its caller’s modes, clear its caller’s flags, or depend on the state of its
caller's flags unless the function is so documented.

¢ A function call has default modes, unless either its documentation promises otherwise or the function is
known not to use floating-point values.

¢ A function call has the potential for raising floating-point exceptions, unless either its documentation
promises otherwise or the function is known not to use floating-point values.

Because these conventions are followed, programmers can safely assume that default modes are in effect and
ignore them if they wish. Programmers must also accept any consequences, including a usually modest
performance overhead, associated with explicitly accessing the |EEE floating-point environment.

The f env. h header file defines the following types:

Type Description
fenv_t Represents the entire floating-point environment.
f except _t Represents the floating-point exception flags collectively, including any status

associated with the flags.
fetrap_t Represents the floating-point exception trap flags collectively.

SR-2080 10.0

FENV.H(3C) FENV.H(3C)

MACROS

Each of the following macros represents one of the floating-point exception flags. They expand to i nt
constant expressions whose values are distinct powers of 2. These macros are used as arguments to the
exception functions described in the f ecl ear except (3C) man page.

Macro Description

FE_| NEXACT Represents the inexact exception flag

FE_DI VBYZERO Represents the divide by zero exception flag
FE_UNDERFLOW Represents the underflow exception flag
FE_OVERFLOW Represents the overflow exception flag

FE_| NVALI D Represents the invalid operation exception flag

FE_EXCEPTI NPUT Represents the exceptional input exception flag (This macro is valid only on
CRAY T90 systems with |EEE arithmetic.)

The FE_ALL_EXCEPT macro is the bitwise OR of all exception macros.

Each of the following macros represent one of the trap flags. The defined macros expand to i nt constant
expressions, the values of which are distinct powers of 2. These macros are used as arguments to the trap
flag functions described in the f edi sabl et r ap(3C) man page.

Macro Description

FE_TRAP_I NVALI D Represents the invalid operation trap flag
FE_TRAP_DI VBYZERO Represents the divide-by-zero trap flag
FE_TRAP_OVERFLOW Represents the overflow trap flag
FE_TRAP_UNDERFLOW Represents the underflow trap flag
FE_TRAP_I NEXACT Represents the inexact trap flag
FE_ALL_TRAPS Represents al of the trap flags

Each of the following macros represents a rounding direction. They expand to i nt constant expressions, the
values of which are distinct nonnegative values. These macros are used as arguments to the rounding
functions described in the f eget r ound(3C) man page.

Macro Description

FE TONEAREST Round toward nearest
FE_UPWARD Round toward positive infinity
FE_DONNWARD Round toward negative infinity

FE_TOWARDZERO Round toward zero

SR-2080 10.0 181

FENV.H(3C) FENV.H(3C)

The following macro represents the default floating-point environment, the one installed at program startup,
and has type pointer to f env_t . It can be used as an argument to f env. h functions that manage the
floating-point environment.

Macro Description
FE_DFL_ENV Represents the default floating-point environment

On the CRAY T90 series with IEEE floating-point hardware, the default rounding mode and trap modes can
be specified at program startup by using the cpu(8) command.

FUNCTIONS

The following functions are described on separate man pages:

f ecl ear except (3C)

f eget except , seef ecl ear except (3C)

f erai seexcept, seef ecl ear except (3C)
f eset except, seef ecl ear except (3C)

f et est except, seef ecl ear except (3C)
f eget r ound(3C)

f esetround, seef eget r ound(3C)

f eget env(3C)

f ehol dexcept, seef eget env(3C)

f eset env, see f eget env(3C)

f eupdat eenv, see f eget env(3C)

f edi sabl et rap(3C)

f eenabl et r ap, seef edi sabl et r ap(3C)
fegettrapfl ag, seef edi sabl et rap(3C)
fesettrapfl ag, seef edi sabl et rap(3C)
fetesttrap, seef edi sabl et rap(3C)

SEE ALSO

182

f ecl ear except (3C), f eget r ound(3C), f eget env(3C), f edi sabl et r ap(3C)
cpu(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0

FERROR(3C) FERROR(3C)

NAME

ferror, feof, cl earerr — Returns indication of stream status

SYNOPSIS
#i ncl ude <stdio. h>
int ferror (FILE *stream);
int feof (FILE *stream);

void clearerr (FILE *stream);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION
The f er r or function tests the error indicator for stream.
The f eof function tests the end-of-file (EOF) indicator for stream.

The cl ear err function clears the error indicator and EOF indicator on the specified stream.

NOTES

In extended mode, these functions are implemented as macros; they cannot be declared or redeclared. The
macro versions of these functions are not multitask protected. To obtain versions that are multitask
protected, compile your code by using - D_ MULTI P_ and link by using /1'i b/ 1i bcm a.

RETURN VALUES

Thef error function returns nonzero when an 1/O error has previously occurred reading from or writing to
the specified stream; otherwise, it returns 0.

The f eof function returns nonzero when EOF has previously been detected while reading the named input
stream; otherwise, it returns O.

SEE ALSO
f open(3C)
open(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 183

FGETPOS(3C) FGETPOS(3C)

NAME

f get pos, f set pos — Stores or sets the value of the file position indicator

SYNOPSIS

#i ncl ude <stdio. h>

int fgetpos (FILE *stream, fpos_t *pos);

int fsetpos (FILE *stream, const fpos_t *pos);
IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The f get pos function stores the current value of the file position indicator for the stream to which stream
points in the object to which pos points. The value stored contains unspecified information that the
f set pos function uses for repositioning the stream to its position at the time of the call to f get pos.

The f set pos function sets the file position indicator for the stream to which stream points, according to
the value of the object to which pos points; pos is a value obtained from an earlier call to f get pos on the
same stream.

A successful call to the f set pos function clears the end-of-file indicator (EOF) for stream and undoes any
effects of unget ¢(3C) on the same stream. After an f set pos call, the next operation on an update stream
can be either input or output.

RETURN VALUES

If successful, these functions return O; on failure, they return a nonzero value and store a positive value in
errno.

SEE ALSO
errno. h(3C), unget c(3C)

184 SR-2080 10.0

FILE(3C) FILE(3C)

NAME

fil e — Introduction to file system and directory functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

These functions provide means for accessing basic system resources affecting file systems and directories.

ASSOCIATED HEADERS

The following header files are documented in the UNICOS File Formats and Special Files Reference
Manual, Cray Research publication SR—2014:

<di rent. h>

<fcntl.h>
<f st ab. h>
<ut np. h>

The following header files are documented in separate entries in this manual:

<stdi 0. h>
<sys/types. h>

ASSOCIATED FUNCTIONS

Function Description

al phasort Sorts alphabetically an array of pointers to directory entries (see scandi r (3C))
cl osedir Closes directory stream (see di r ect or y(3C)

endf sent Gets file system descriptor file entry (see get f sent (3C))
endmt ent Gets file system descriptor file entry (see get mt ent (3))
endut ent Accesses ut np file entry (see get ut (3C))

f1 ock(3C) Applies or removes an advisory lock on an open file

ft W(3C) Walks afile tree

get cwd(3C) Gets path name of current directory

get f sent (3C) Gets file system descriptor file entry

getfsfile Gets file system descriptor file entry (see get f sent (3C))
get f sspec Gets file system descriptor file entry (see get f sent (3C))
get f stype Gets file system descriptor file entry (see get f sent (3C))
get mt ent (3C) Gets file system descriptor file entry

get ut ent Accesses ut np file entry (see get ut (3C))

getutid Accesses ut np file entry (see get ut (3C))

getutline Accesses ut np file entry (see get ut (3C))

get wd(3C) Gets current directory path name

SR-2080 10.0 185

FILE(3C)

hasmmt opt
I ockf (3C)
nftw
opendi r
pututline
readdi r
readdi r
readdir _r
rewi nddir
scandi r (3C)
seekdir
set f sent
set mt ent
set ut ent
telldir
ut i mes(3C)
ut npnane

SEE ALSO

nmessage(3C), mul ti c(3C), passwor d(3C), t er m nal (3C) (al introductory pages to other operating
system service functions)

See the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014,
for more complete descriptions of UNICOS header files.

186

FILE(3C)

Gets file system descriptor file entry (see get rmt ent (3))

Provides record locking on files

Walks afile tree (see f t W(3C))

Opens directory and associates stream with it (see di r ect or y(3C))
Accesses ut np file entry (see get ut (3C))

Returns a pointer to the next active directory entry (see di r ect or y(3C))
Returns a pointer to the next active directory entry (see di r ect or y(3C))
Returns a pointer to the next active directory entry (see di r ect or y(3C))
Resets position of directory stream to beginning of directory (see di r ect or y(3C))
Scans a directory

Sets up next r eaddi r operation (see di r ect or y(3C))

Gets file system descriptor file entry (see get f sent (3C))

Gets file system descriptor file entry (see get rt ent (3C))

Accesses ut np file entry (see get ut (3C))

Returns current location of directory stream (see di r ect or y(3C))

Sets file times

Accesses ut np file entry (see get ut (3C))

SR-2080 10.0

FILENO(3C) FILENO(3C)

NAME

fil eno — Returns integer file descriptor associated with stream

SYNOPSIS
#i ncl ude <stdio. h>
int fileno (FILE *stream);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

Thefi | eno function returns the integer file descriptor associated with the named stream; see open(2).

NOTES

In extended mode, the f i | eno function is implemented as a macro; it cannot be declared or redeclared.

FORTRAN EXTENSION
You can aso cal thefi | eno function from Fortran programs, as follows:

| NTEGER FI LENO, stream
I = FI LENQ(stream)

SEE ALSO
f open(3C)
open(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 187

float.h (3C) float.h (3C)

NAME
fl oat. h — Library header for floating-point number limits

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

TYPES

None

MACROS

The header f | oat . h defines macros that determine the characteristics of floating-point numbers, which, in
turn, define the floating-point arithmetic available on Cray Research systems. Variables used in the
explanations of the macros are as follows:

Sign (x 1)
Base or radix of exponent representation (an integer > 1)
Exponent (an integer between a minimum e, and a maximum e,)

Precision (the number of base-b digits in the significand)

-~ T ®d T O”

=~

Nonnegative integers less than b (the significand)

A normalized floating-point number x (f 1 > 0 if x # 0) is defined by the following model:

p
Xx=sxb®x 3 fi xb*, enyn<e < en
k=1

The macros and definitions are shown in the following table:

Macro Definition

FLT_RADI X A constant expression suitable for use in #i f preprocessing directives, which
is the radix of exponent representation, b.

FLT_ROUNDS The rounding modes for floating-point arithmetic, as follows: -1,
indeterminate; 0, toward zero; 1, to nearest; 2, toward positive infinity; or 3,
toward negative infinity. All other values for FLT_ROUNDS are used for
implementation-defined rounding behavior.

188 SR-2080 10.0

float.h (3C)

float.h (3C)

Macro

Definition

FLT_MANT DI G
DBL_MANT DI G
LDBL_MANT DI G

FLT DI G
DBL_DI G
LDBL_DI G

FLT_M N_EXP
DBL_M N_EXP
LDBL_M N_EXP

FLT_M N_10_EXP
DBL_M N_10_EXP
LDBL_M N_10_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT_MAX
DBL_ MAX
LDBL_MAX

FLT_EPSI LON
DBL_EPSI LON
LDBL_EPSI LON

FLT_M N
DBL_M N
LDBL_M N

fl oat, doubl e, or | ong doubl e value that is the number of base-
FLT_RADI X digits in the floating-point significand, p.

fl oat, doubl e, or | ong doubl e value that is the number of decimal
digits, g, such that any floating-point number with g decimal digits can be
rounded into a floating-point number with p radix b digits and back again
without change to the q decimal digits.

if b is apower of 10

0 0
n(P — 1 xlogib 5+ 0 otherwise

fl oat, doubl e, or | ong doubl e value that is the minimum negative
integer such that FLT_RADI X raised to that power minus 1 is a normalized
floating-point number, enin

fl oat, doubl e, or | ong doubl e value that is the minimum negative
integer such that 10 raise% to that poweDr isin the range of normalized
floating-point numbers. Dloglobe”‘”_1 0

fl oat, doubl e, or | ong doubl e value that is the maximum integer such

that FLT_RADI X raised to that power minus 1 is a representable finite
floating-point number, e

fl oat, doubl e, or | ong doubl e value that is the maximum integer such

that 10 I‘aiSEd to that power isin the rDange of representable finite floating-point
numbers. logi((1 - b™) x b*™) g

fl oat, doubl e, or | ong doubl e value that is the maximum representable
finite floating-point number. (1 — b™P) x b=

fl oat, doubl e, or | ong doubl e value that is the difference between 1.0
and the least value greater than 1.0 that is representable in the given floating
point type, b1™P.

fl oat, doubl e, or | ong doubl e value that is the minimum normalized
positive floating-point number. b

SR-2080 10.0

189

float.h (3C)

190

float.h (3C)

Thevaluesin f | oat . h are shown in the following table comparing the values for Cray format floating
point and the values required by the ISO/ANSI and IEEE standards. Information in the left column applies
to al Cray Research PVP machines, such as CRAY C90 series and CRAY Y-MP series systems.
Information in the right column applies to Cray MPP systems and some CRAY T90 series systems. Some
early CRAY T90 series systems use Cray format floating point. Where values for Cray MPP systems and

CRAY T90 series differ, both values are shown.

|EEE format values

Macro CRI format values (Cray MPP/CRAY T90)

FLT_ROUNDS 0 1

FLT_RADI X 2 2

FLT_MANT_DI G 47 24/ 53

DBL_MANT_DI G 47 53

LDBL_MANT_DI G 94 53/ 113

FLT_D G 13 6/15

DBL_DI G 13 15

LDBL_DI G 27 15/33

FLT_M N_EXP —8189 —-125/-1021

DBL_M N_EXP —8189 -1021

LDBL_M N_EXP —8189 —1021 / - 16381

FLT_M N_10_EXP — 2465 -37/-307

DBL_M N_10_EXP — 2465 —307

LDBL_M N_10_EXP —2465 —307/-4931

FLT_MAX_EXP 8190 128 / 1024

DBL_MAX_EXP 8190 1024

LDBL_MAX_EXP 8190 1024 / 16384

FLT_MAX_10_EXP 2465 38/ 308

DBL_MAX_10_EXP 2465 308

LDBL_MAX_10_EXP 2465 308 / 4932

FLT_MAX 2.726870339048517€2465 3.4028234663852886e+38F /
1.7976931348623158€308

DBL_MAX 2.726870339048517€2465 1.7976931348623158e+308

LDBL_MAX 2.726870339048517e2465L 1.7976931348623158€308 /
1.189731495357231765085759326628007016E+4932L

FLT_EPSI LON 7.10542735760100e- 15 1.1920928955078125e— 7F /
2.2204460492503131e- 16

DBL_EPSI LON 7.10542735760100e- 15 2.2204460492503131e- 16

LDBL_EPSI LON 2.524354896707237777317531408%— 29L
2.2204460492503131e- 16 /
1.925929944387235853055977942584927319E-34L

FLT_M N 1/2.726870339048517e2465 1.1754943508222875e— 38F /

2.2250738585072014e—- 308

SR-2080 10.0

float.h (3C) float.h (3C)

|EEE format values

Macro CRI format values (Cray MPP/CRAY T90)
DBL_M N 1/2.726870339048517e2465 2.2250738585072014e- 308
LDBL_M N 1/2.726870339048517e2465L 2.2250738585072014e- 308 /

3.362103143112093506262677817321752603E-4932L

Because of the dynamic characteristics of Cray format (not |IEEE format) floating-point operations, some of

the floating-point values defined by this header are not exactly the same as the limiting values of the actual

hardware. (This does not apply to to Cray systems that comply with the IEEE floating-point standard, such
as CRAY T90 systems with floating-point hardware and Cray MPP systems systems.) The values are those
closest to the actual hardware, meeting the following criteria

* The reciprocal of the maximum floating-point value does not cause underflow.
* The reciprocal of the minimum positive floating-point value does not cause overflow.

¢ Correct results are obtained for the tests described by the paper "A Test of a Computer’s Floating-Point
Arithmetic Unit," Computing Science Technical Report No. 89, Bell Laboratories, by N. L. Schryer,
February 4, 1981.

In other words, the model must allow all arithmetic operations on operands that are within the range of
minimum to maximum, inclusive, and for which results are, mathematically, also within the range; and
further, the results must be accurate to within the ability of the hardware to represent the mathematical value.

These values for floating-point maximum and minimum values define a range that is slightly smaller than the
value that can be represented by Cray hardware, but use of numbers outside this range may not yield
predictable results. When the defined values are used, the following relationships or expressions can be
handled without the occurrence of floating-point exceptions:

max/max min/min 1/max
1/min max = 1/min min = 1/max
(max/2)*2

This model is defined by 47 bits in the mantissa, 94 bits for long double, a minimum biased exponent of
020003 (octal), and a maximum biased exponent of 057776 (octal).

Decimal representation of all numbers in this range are guaranteed to be accurate to 13 significant digits, 27
significant digits for long double. That is, any decimal string within the range of minimum to maximum
with this or fewer significant digits are guaranteed to be convertible from decimal string to internal
representation and back to the same decimal string.

SR-2080 10.0 191

float.h (3C) float.h (3C)

FUNCTION DECLARATIONS

None

SEE ALSO
fenv. h(3C), f p. h(3C), I i mi ts. h(3C), val ues. h(3C)

192 SR-2080 10.0

FLOCK (3C) FLOCK (3C)

NAME

fl ock — Applies or removes an advisory lock on an open file

SYNOPSIS
#include <sys/file.h>

int flock (int fd, int operation);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The f | ock function is a compatibility function, provided to aid in the porting of code from other systems.
It is built on top of record locking. Shared locks are implemented as read record locks, and exclusive locks
are implemented as write record locks. See f cnt | (2) for more information.

The f | ock function applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter that is the inclusive OR of LOCK_SH or LOCK_EX
and, possibly, LOCK_NB. To unlock an existing lock, operation should be LOCK_UN.

The header file sys/ fi | e. h contains the following declarations:

#define LOCK SH 1 /* shared |lock */

#define LOCK EX 2 [/* exclusive lock */

#define LOCK NB 4 /* don’t block when |ocking */
#define LOCK UN 8 [/* unlock */

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
consistency (that is, processes can still access files without using advisory locks, which could possibly result
in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time, multiple
shared locks can be applied to afile, but at no time are multiple exclusive, or both shared and exclusive,
locks alowed simultaneously on afile.

A shared lock can be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type; this results in the previous lock being released and the new lock applied (possibly after other
processes have gained and released the lock).

SR-2080 10.0 193

FLOCK (3C) FLOCK (3C)

Requesting a lock on an object that is already locked usually causes the caller to be blocked until the lock
can be acquired. If LOCK_NB is included in operation, this does not happen; instead, if the object is aready
locked, the call fails, and the error EWOULDBLOCK is returned.

NOTES

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or f or k(2) do
not result in multiple instances of a lock, but rather multiple references to a single lock. If a process holding
alock on afile forks and the child explicitly unlocks the file, the parent loses its lock.

Processes that have been blocked while awaiting a lock can be awakened by signals.

RETURN VALUES

If the operation was successful, O is returned; otherwise, —1 is returned and an error code is stored in
errno.

Seefcntl (2) for alist of possible error values.

FILES

fusr/include/sys/file.h

SEE ALSO

cl ose (2), dup (2), execve (2),fcntl (2), fork (2), open (2) in the UNICOS System Calls Reference
Manual, Cray Research publication SR—2012

194 SR-2080 10.0

FLOCKFILE(3C) FLOCKFILE(3C)

NAME

flockfile,ftrylockfile,funlockfile — Locksfile stream

SYNOPSIS
#i ncl ude <stdio. h>
void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

IMPLEMENTATION
All Cray Research systems

STANDARDS
PThreads

DESCRIPTION

Thefl ockfile, ftrylockfile,andfunl ockfil e functions provide for explicit application-level
locking of st di o (FI LE *) objects. A thread can use these functions to delineate a sequence of 1/O
statements that are to be executed as a unit.

Thefl ockfil e function is used by a thread to acquire ownership of a (FI LE *) object.

Theftryl ockfil e functionis used by athread to acquire ownership of a (FI LE *) object if the object
isavailable; ft ryl ockfi |l e isanonblocking version of f1 ockfil e.

The f unl ockfi | e junction is used to relinquish the ownership granted to the thread. The caller must be
the current owner of the (FI LE *) object.

Logicaly, each (FI LE *) object is associated with a lock count. This count is implicitly initialized to zero
when the (FI LE *) object is created. The (FI LE *) object is unlocked when the count is zero. When the
count is positive, a single thread owns the (FI LE *) object.

When the f | ockfi | e function is called, if the count is zero or if the count is positive and the caller owns
the (FI LE *) object, the count is incremented. Otherwise, the calling thread is suspended, waiting for the
count to return to zero. Each call to f unl ockf i | e decrements the count. This alows matching calls to

fl ockfile (or successful callstoftryl ockfile)andfunl ockfil e to be nested.

You must link your program with | i b/ i bcm a to use these functions.

When linked with | i bcm a, the basic I/O functions that reference (FI LE *) objects behave as if they use
flockfile andfunl ockfil e internally to obtain ownership of these (FI LE *) objects.

SR-2080 10.0 195

FLOCKFILE(3C) FLOCKFILE(3C)

RETURN VALUES

There are no return values for f | ockfil e and f unl ockfil e. The function ftryl ockfil e returns 0
for success and a nonzero value to indicate that the lock cannot be acquired.

196 SR-2080 10.0

FLOOR(3C) FLOOR(3C)
NAME
floor,floorf,floorl,ceil,ceilf,ceill,fnod,fnodf,fnodl, fabs, fabsf, fabsl, cabs
— Provides math function for floor, ceiling, remainder, and absolute value
SYNOPSIS

#i ncl ude <math. h>
#i ncl ude <conpl ex. h> (for function cabs only)

doubl e fl oor

float floorf

| ong doubl e
doubl e ceil
float ceilf
| ong doubl e
doubl e fnod
float fnodf
| ong doubl e
doubl e fabs
float fabsf
| ong doubl e

doubl e cabs

IMPLEMENTATION

(doubl e x);

(float x);
floorl (long double x);
(doubl e x);
(float x);
ceill (long double x);
(doubl e x, double vy);
(float x, float y);
frrodl (long double x, long double vy);
(doubl e x);
(float x);
fabsl (long double X);
(doubl e compl ex X);

All Cray Research systems (f | oor, cei |, f nod, f abs, cabs only)
Cray MPP systems (f | oor f, cei | f, f nodf, f absf only)
Cray PVP systems (f | oor |, cei | | , f modl , f absl only)

STANDARDS

ISO/ANSI (functionsf | oor, f abs, cei | only)
CRI extension (all others)

DESCRIPTION

Thefl oor, floorf,andfl oorl functions compute, respectively, the largest integral value not greater
than x for doubl e, f| oat, and | ong doubl e numbers.

SR-2080 10.0

197

FLOOR(3C) FLOOR(3C)

Theceil ,ceilf,andceill functions compute, respectively, the smallest integral value not less than x
for doubl e, fl oat, and | ong doubl e numbers.

The f nod, f modf , and f modl functions compute, respectively, the floating-point remainder of x/y for
doubl e, fl oat, and | ong doubl e numbers.

Thef abs, f absf, f absl , and cabs functions compute, respectively, the absolute value of a
floating-point number x for doubl e, f | oat, | ong doubl e, and doubl e conpl ex numbers. For
cabs, thisis computed as follows:

sortereal (x)%+cimag (x)?

Vectorization is inhibited for loops containing calls to al functions except f abs, f absf, f absl , and
cabs. In gtrict conformance mode, vectorization is inhibited for loops containing calls to functions f abs,
f absf, f absl, and cabs.

RETURN VALUES

198

Thefl oor, floorf,andfl oorl functions return the largest integral value not greater than x, expressed
asadoubl e, fl oat, orl ong doubl e, respectively.

Theceil,ceilf,andceill functions return the smallest integral value not less than x, expressed as a
doubl e, fl oat, or | ong doubl e, respectively.

The f nod, f modf , and f nodl functions return the value x — i Oy, for some integer i such that, if y is not
0, the result has the same sign as x and a magnitude less than the magnitude of y. If y is O, these functions
return 0. Under some implementations, this may cause a domain error to occur.

Thef abs, f absf, f absl , and cabs functions return the absolute value of x, expressed as adoubl e,
fl oat, | ong doubl e, or doubl e conpl ex number, respectively.

SR-2080 10.0

FLOWMARK (3C)

NAME
FLOAWWARK — Allows timing of a section of code

SYNOPSIS
#i nclude <stdlib. h>
int FLOAWARK (long *name);

IMPLEMENTATION
Cray PVP systems

STANDARDS

CRI extension

DESCRIPTION

FLOWMARK (3C)

The FLOAWMARK function subdivides a large function into several smaller logical functions for Flowtrace.
name points to a null-terminated ASCII character string that starts on a word boundary; it identifies the mark
within the function. name should be 8 characters or less and should not contain blanks or nonprinting
characters. The library can handle any pointer, no matter what its definition. To terminate a mark, call

FLOAVARK again with a 0 argument.

For more information about tracing a program, see the description of the - F command-line option in the
Cray Sandard C Reference Manual, Cray Research publication SR—2074, and the Guide to Parallel Vector

Applications, Cray Research publication SG—2182.

EXAMPLES

In Standard C, a mark is used as follows:

SR-2080 10.0

199

FLOWMARK (3C)

#i ncl ude <stdlib. h>

mai n()
{
| ong zero = 0;
FLOWVARK(" phant om") ;
for (i = 0; i<10; i++) {
/* loop performs desired work */
}
FLOWVARK(&z er o) ;
}

FORTRAN EXTENSIONS

In Fortran, the calls would be:

CALL FLOWARK(' newnane’)

CALL FLOWARK(0)

SEE ALSO

fl owt race(7), performance(7), perftrace(7) (al online only)
Cray Standard C Reference Manual, Cray Research publication SR—2074
Guide to Parallel Vector Applications, Cray Research publication SG—2182

200

FLOWMARK (3C)

SR-2080 10.0

FNMATCH(3C)

NAME

FNMATCH(3C)

f nmat ch — Matches file name or path name

SYNOPSIS

#i ncl ude <fnmatch. h>

int fnmatch (const char *pattern, const char *string, int flags);

IMPLEMENTATION

All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

The f nmat ch function matches patterns according to the rules used by the shell. It checks the string
specified by the string argument to determine whether it matches the pattern specified by the pattern

argument.

The flags argument modifies the interpretation of pattern and string. The value of flags is the bitwise
inclusive OR of any of the following constants, which are defined in the include file <f nnmat ch. h>:

Constant
FNM_NOESCAPE

FNM_PATHNAME

FNM_PERI GD

NOTES

Description

Causes the backdash character (\) to be treated as an ordinary character negating any
special meaning for the character. Normally, every occurrence of a backslash followed
by a character in pattern is replaced by that character.

Causes the slash character (/) to be treated as an ordinary character. Slash charactersin
string must be explicitly matched by slashes in pattern.

Causes a leading period (.) in string to be matched as it would be matched by the shell,
where the definition of leading is determined by the value of FNM_PATHNAME. If
FNM_PATHNAME is set, a period is "leading” if it is the first character in string or if it
immediately follows a slash; if FNM_PATHNAME is not set, a period is "leading” only if
it is the first character of string.

The pattern * matches the empty string, even if FNM_PATHNAME is specified.

RETURN VALUES

The f nmat ch function returns zero if string matches the pattern specified by pattern; otherwise, it returns
the value FNM_NOVATCH.

SR-2080 10.0

201

FNMATCH(3C) FNMATCH(3C)
SEE ALSO

gl ob(3C), wor dexp(3C), r egexp(3)
sh(2) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

202 SR-2080 10.0

FOPEN(3C) FOPEN(3C)

NAME
f open, f r eopen, f dopen — Opens a stream
SYNOPSIS
#i ncl ude <stdio. h>
FILE *fopen (const char *filee const char *type);

FILE *freopen (const char *fileg const char *type, FILE *stream);
FILE *fdopen (int fildess, const char *type);

IMPLEMENTATION
All Cray Research systems
STANDARDS

ISO/ANSI (except f dopen)
POSIX (f dopen only)

DESCRIPTION

The f open function opens the file specified by file and associates a stream (stream) with it. It returns a
pointer to the FI LE structure associated with the stream.

The file argument points to a character string that contains the name of the file to be opened.
The type argument is a character string that has one of the following values:

Value Description

"rt Opens text file for reading.

"w' Creates text file for writing or truncates it to O length.

"a" Appends; opens or creates text file for writing at end-of-file.

"r+" Opens text file for update (reading and writing).

"wa" Creates text file for update or truncates it to 0 length.

"at" Appends; opens or creates text file for update; writing at end-of-file.
"rb" Opens binary file for reading.

"wb" Creates binary file for writing or truncates it to 0 length.

"ab" Appends; opens or creates binary file for writing at end-of-file.

"r+b" or"rb+" Opens binary file for update (reading and writing).

"wtb" or "wb+" Creates binary file for update or truncates it to 0 length.

"a+b" or "ab+" Appends; opens or creates binary file for updating, and writing at end-of-file.
You must specify the two-letter type values in the order shown; that is, " r b" isvalid, but " br" isnot. The

same is true for the type arguments that contain the plus signs; " r +b" isvalid, but " b+r" isnot. (Under
UNICOS, binary and text streams are implemented identically; specifications of " b" are ignored.)

SR-2080 10.0 203

FOPEN(3C) FOPEN(3C)

The f r eopen function opens the file whose name is the string to which file points and associates the stream
to which stream points with it. The type argument is used just as in the f open function.

The f r eopen function first tries to close any file that is associated with the specified stream. Failure to
close the file successfully is ignored. The error and end-of-file indicators for the stream are cleared.
Typically the f r eopen function is used to attach the preopened streams associated with st di n, st dout ,
and st derr to other files.

The f dopen function associates stream with a file descriptor obtained from open(2), dup(2), cr eat (2), or
pi pe(2), which opens files but does not return pointers to a Fl LE structure stream that are necessary input
for many of the C library functions. The type of stream must agree with the mode of the open file.

If the file does not exist or cannot be read, opening a file with read mode (r as the first character in the type
argument) fails.

Opening a file for writing causes the file to be truncated to a length of O if it exists; otherwise, the file is
created.

When afile is opened for append, you cannot overwrite information already in the file. You can use

f seek(3C) to reposition the file pointer to any position in the file, but when output is written to the file, the
current file pointer is disregarded. All output is written at the end of the file, and the file pointer is
repositioned at the end of the output. If two separate processes open the same file for append, each process
may write freely to the file without fear of destroying output being written by the other. The output from
the two processes is intermixed in the file.

When afile is opened for update, both input and output can be done on the resulting stream. Output may
not be directly followed by input, however, without an intervening f f | ush(3C), f set pos(3C),

f seek(3C), or r ewi nd(3C) function/operation, and input cannot be directly followed by output without an
intervening f set pos(3C), f seek(3C), or r ewi nd(3C) function/operation, or an input operation that
encounters end-of-file.

When opened, a stream is fully buffered if, and only if, it can be determined not to refer to an interactive
device. The error and end-of-file indicators for the stream are cleared.

By default, f open and the associated functions that perform I/O on streams are not multitask-protected. To
obtain a multitask-protected version, link with | i b/ 1i bm a.

RETURN VALUES
Function f open returns a pointer to an object controlling stream. Function f r eopen returns the value of
stream. Both f open and f r eopen return a null pointer on failure.

FORTRAN EXTENSIONS

You can aso cal the f open function from Fortran programs, as follows:

CHARACTER file *m, type *n
| NTEGER*8 FOPEN, stream
stream = FOPEN(file, type)

204 SR-2080 10.0

FOPEN(3C) FOPEN(3C)

You can aso cal the f r eopen function from Fortran programs, as follows:
CHARACTER file *m, type *n
| NTEGER*8 FREOPEN, stream
stream = FREOPEN(file, type, stream)

You can aso cal the f dopen function from Fortran programs, as follows:

CHARACTER type *n
| NTEGER*8 FDOPEN, stream, fildes
stream = FDOPEN(fildes, type)

On systems other than Cray MPP systems and the CRAY T90 series, for any of these functions, arguments
file or type may be integer variables. These integer variables must be packed 8 characters per word and
terminated with a null (0) byte.

SEE ALSO

fcl ose(3C), f seek(3C)

creat (2), dup(2), open(2), pi pe(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

SR-2080 10.0 205

fortran.h(3C) fortran.h (3C)

NAME
fortran. h — Library header for interlanguage communication functions

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION
The header file f or t r an. h defines the functions for interlanguage communication.

Type
The header file f or t r an. h defines the following type:

Type Standards ~ Description

_fcd CRI C representation of the Fortran character descriptor

Function Declarations
Functions declared in the header file f ort r an. h are as follows:

_btol _cptofcd _fcdtocp _fcdlen _isfcd _Itob

SEE ALSO

Cray Sandard C Reference Manual, Cray Research publication SR—2074
Interlanguage Programming Conventions, Cray Research publication SN—3009

206 SR-2080 10.0

FPCLASSIFY(3C) FPCLASSIFY(3C)

NAME
fpclassify,isfinite,isnormal,isnan — ldentifiesits argument as NaN, infinite, normal,
subnormal, or zero

SYNOPSIS
#i nclude <fp.h>

int fpclassify (floating-type X);
int isfinite (floating-type X);
int isnormal (floating-type X);
int isnan (floating-type X);

IMPLEMENTATION
Cray MPP systems (type doubl e versions only)
CRAY T90 systems with |EEE floating-point arithmetic
STANDARDS
ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

Thef pcl assi fy macro returns the value of the number classification macro appropriate to the value of its
argument.

Thei sfi ni t e macro determines if the argumentx has a finite value. Values that are zero, subnormal, or
normal are considered finite, but values that are infinite or NaN are not.

Thei snor mal macro determines if its argument value is normal, meaning it is neither zero, subnormal,
infinite, nor NaN.

The i snan macro determines whether its argument value is a NaN. On CRAY T3D systems, floating-point
must be doubl e. On CRAY T90 systems with |EEE hardware, the floating-type x argument indicates a
parameter of any floating type. If the argument is not a floating type, the behavior is undefined.

If any of the macro definitions are suppressed in order to access an actual function, or if a program defines
an external identifier with the name of one of the macros, the behavior is undefined.

RETURN VALUES

Thei sfi ni t e macro returns a nonzero value if its argument has a finite value.

Thei snor mal macro returns a nonzero value if its argument has a normal value.

SR-2080 10.0 207

FPCLASSIFY(3C) FPCLASSIFY(3C)

The i snan macro returns a nonzero value if its argument has a NaN value.

The number classification macros returned by f pcl assi fy are as follows:

FP_NAN The argument is a NaN.

FP_I NFI NI TE The argument is either positive or negative infinity.

FP_NORMAL The argument is a normal floating-point number (neither zero, subnormal, infinite,
nor NaN).

FP_SUBNORMAL The argument is a denormalized floating-point number.

FP_ZERO The argument is positive or negative zero.

NOTES

A version of i snan that is implemented as a function is also available on all Cray Research systems. That
version is defined in the <mat h. h> header file. It offers the advantage of being compliant with the XPG4
standard but accepts only doubl e arguments.

SEE ALSO

i snan(3C), for the <mat h. h> version of i snan
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

208 SR-2080 10.0

FP.H(3C) FP.H(3C)

NAME
f p. h — Library header for IEEE floating-point functions and macros

IMPLEMENTATION

Cray MPP systems (see individual man pages for restrictions)
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

The header f p. h declares macros and functions to support general |EEE floating-point programming.

MACROS

The following macros defined in the f p. h header file return predefined values:
Macro Description

HUGE_VAL, HUGE_VALF, and HUGE_VALL
On CRAY T90 systems with IEEE arithmetic, expands to positive infinity for their
corresponding data types. They expand to doubl e, fl oat, and | ong doubl e
expressions, respectively. HUGE_VAL is also defined, with the same value, in the
mat h. h header file. On CRAY T3D systems, HUGE_VAL expands to a positive
expression that is the largest representable doubl e value. HUGE_VALF and
HUGE_VALL are not defined.

I NFI NI TY Expands to a floating expression of type doubl e, representing positive infinity.
The I NFI NI TY macro is not suitable for static and aggregate initialization.

NAN Expands to a floating-point expression of type doubl e, representing a quiet NaN.
The NAN macro is not suitable for static and aggregate initialization.

FP_NAN, FP_I NFI NI TE, FP_NORMAL, FP_SUBNORMAL, and FP_ZERO
Represent the mutually exclusive kinds of floating-point values. They expand to
i nt constant expressions with distinct values. They are for number classification.
See the f pcl assi f y(3C) man page for individual descriptions of these macros.

SR-2080 10.0 209

FP.H(3C)

FP.H(3C)

DECI MAL_DI G Expandsto an i nt constant expression representing the number of decimal digits
supported by conversion between decimal and al internal floating-point formats.
(DECI MAL_DI Gis intended to give an appropriate number of digits to carry in
canonical decimal representations.) Conversion from any floating-point value to
decimal with DECI MAL_ DI G digits and back is the identity function.
DECI MAL_DI Gis distinct from DBL_DI G, which is defined in terms of conversion

from decimal to doubl e and back.

The following function-like macros are described on their own man pages:

f pcl assi fy(3C)
isfinite,seefpclassify(3C)
shan, seef pcl assi f y(3C)

snor mal , seef pcl assi f y(3C)

sgr eat er (3C)

sgreat er equal , seei sgr eat er (3C)
sl ess, seei sgreat er (3C)

sl essequal , seei sgr eat er (3C)
sl essgreater, seei sgreat er (3C)
sunor der ed, seei sgr eat er (3C)
si gnbi t (3C)

FUNCTION DECLARATIONS

210

The following functions are described on their own man pages:

copysi gn(3C)

copysi gnf, see copysi gn(3C)
copysi gnl , see copysi gn(3C)

| ogb(3C)

| ogbf, seel ogh(3C)

| ogbl , seel ogh(3C)

next af t er (3C)

next af t er f, see next af t er (3C)
next af t erl, see next af t er (3C)
r emai nder (3C)

remai nder f , seer emai nder (3C)
remai nder |, seer emai nder (3C)
rint (3C)

rintf, seerint (3C)
rintl,seerint(3C)

rinttol (3C)

scal b(3C)

scal bf , see scal b(3C)

scal bl , see scal b(3C)

SR-2080 10.0

FP.H(3C) FP.H(3C)

SEE ALSO

copysi gn(3C), f pcl assi fy(3C), i sgreat er (3C), | ogb(3C), next af t er (3C), r emai nder (3C),
rint (3C), rinttol (3C), scal b(3C), si gnbi t (3C)

Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 211

FREAD(3C) FREAD(3C)

NAME

fread, fwite — Readsor writes input or output

SYNOPSIS
#i ncl ude <stdio. h>
extern size t fread (void *ptr, size_t size, size_t nitems, FILE *stream);

extern size t fwite (const void *ptr, size_ t sizes size_t nitems, FILE
* stream) ;

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The f r ead function copies, into an array to which ptr points, nitems items of data from the specified input
stream, in which an item of data is a sequence of bytes (not necessarily terminated by a null byte) of length
size. (size_t isdefined in st di 0. h to beunsi gned.) Thefread function stops appending bytes if
an end-of-file or error condition is encountered while reading stream, or if nitems items have been read. If
an error occurs, the resulting value of the file position indicator for the stream is indeterminate. If a partial
element is read, its value is indeterminate. The f r ead function does not change the contents of stream.
The file position indicator for the stream (if defined) is advanced by the number of characters successfully
read.

Thefwrit e function appends at most nitems items of data of size size from the array to ptr points to the
specified output stream. The f wri t e function stops appending when it has appended nitems items of data
or if an error condition is encountered on stream. The file position indicator for the stream (if defined) is
advanced by the number of characters successfully written. 1f an error occurs, the resulting value of the file
position indicator for the stream is indeterminate. The f wr i t e function does not change the contents of the
array to which ptr points.

The size argument is typically si zeof ([ptr) , where the pseudo-function si zeof specifies the length of
an item to which ptr points. If ptr points to a data type other than char , it should be cast into a pointer to
char.

RETURN VALUES

Function f r ead returns the number of items successfully read. If size or nitemsis O or nonpositive, O is
returned, and the contents of the array and the state of the stream remain unchanged.

212 SR-2080 10.0

FREAD(3C) FREAD(3C)

Function f wr i t e returns the number of items written. If size or nitems is 0, no characters are read or
written, and O is returned.

FORTRAN EXTENSIONS

You also can cal thefread and f wri t e functions from Fortran programs. The following shows their use
as Fortran functions:

| NTEGER*8 ptr, size, nitems, stream, FREAD, |
| = FREAD(ptr, size, nitems, stream)
| NTEGER*8 ptr, size, nitems, stream, FWRI TE, |
| = FWRI TE(ptr, size, nitems, stream)
The following shows the use of fwri t e or f r ead as Fortran subroutines.

| NTEGER*8 ptr, size, nitems, stream
CALL FREAD(ptr, size, nitems, stream)

| NTEGER*8 ptr, size, nitems, stream
CALL FWRI TE(ptr, size, nitems, stream)
In this case, the library function’s return value is unavailable.

The Fortran program cannot specify both the subroutine call and the function referenceto fwri t e or
f r ead from the same procedure.

On all systems except Cray MPP systems and CRAY T90 series systems, argument ptr may be a Fortran
character variable.

On all Cray Research systems, FREADC and FWRI TEC are also available as Fortran interfaces to f r ead
and fwrite. These two functions require that ptr be a Fortran character variable.

CHARACTER [h ptr
| NTEGER*8 size, nitems, stream, FREADC, |
| = FREADC(ptr, size, nitems, stream)

| NTEGER*8 size, nitems, stream, FWRI TEC, |
| = FPWRI TEC(ptr, size, nitems, stream)

SEE ALSO
f open(3C), get ¢(3C), get s(3C), pri nt f (3C), put c(3C), put s(3C), scanf (3C)
read(2), writ e(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 213

FREXP(3C) FREXP(3C)

NAME

frexp, frexpf, frexpl,|dexp, | dexpf,| dexpl, nodf, nodf f, modf | — Manipulates parts of
floating-point numbers

SYNOPSIS

#i ncl ude <math. h>

double frexp (double value, int *ptr);

float frexpf (float value, int *ptr);

| ong double frexpl (long double value, int *ptr);

doubl e | dexp (double value, int exp);

float |dexpf (float value, int exp);

| ong double Idexpl (long double valug, int exp);

doubl e nodf (double valuge, double *iptr);

float nodff (float value, float *iptr);

| ong double nodfl (long double value |ong double *iptr);

IMPLEMENTATION

All Cray Research systems (f r exp, | dexp, nodf only)
Cray MPP systems (f r expf , | dexpf, nodf f only)
Cray PVP systems (f r expl , | dexpl , modf | only)

STANDARDS

ISO/ANSI (f r exp, | dexp, nodf only)
CRI extension (all others)

DESCRIPTION

214

Thefrexp, frexpf, andfrexpl functions break a floating-point number into a normalized fraction and
an integral power of 2. They store the integer in the i nt object to which ptr points.

The |l dexp, | dexpf, and | dexpl functions multiply a floating-point number by an integral power of 2.
A range error may occur. If the result underflows, the functions return zero. If the result overflows, the
function | dexp returns HUGE_VAL (defined in both the mat h. h and f p. h header files), and | dexpl
returns LDBL__MAX (defined in the f | oat . h header file), with the same sign as the correct value of the
function. Both functions set er r no to ERANGE on overflow.

SR-2080 10.0

FREXP(3C)

FREXP(3C)

The modf , modf f , and nodf | functions break the argument value into integral and fractional parts, each of
which has the same sign as the argument and store the integral part as a doubl e, f | oat, or | ong
doubl e, respectively, in the object to which iptr points.

Vectorization is inhibited for loops containing calls to any of these functions.

RETURN VALUES

Thefrexp, frexpf, and frexpl functions return the value x, such that x isadoubl e, fl oat, or
| ong doubl e with a magnitude in the interval [1/2, 1] or 0, and value equals x multiplied by 2 raised to
the power * ptr. If valueis 0, both parts of the result are 0.

The |l dexp, | dexpf, and | dexpl functions return the value of value multiplied by 2 raised to the power
exp.

The modf , modf f , and nodf | functions return the signed fractional part of the value argument.

On Cray MPP systems and CRAY T90 systems with |EEE floating-point arithmetic:

frexp(NaN, *iptr) returns NaN.

frexpl (NaN, *iptr) returns NaN.

frexp(x, *iptr),wherexis+/-infinity, returns x.

frexpl (x, *iptr), wherexis+/- infinity, returns x.

| dexp(NaN) returns NaN.

| dexpl (NaN) returns NaN.

nmodf (NaN, *iptr) returns NaN and err no is set to EDOM
nmodf | (NaN, *iptr) returnsNaN and er r no is set to EDOM

SR-2080 10.0

215

FSEEK (3C) FSEEK (3C)

NAME

f seek, rewi nd, ftel |l — Repositions a file pointer in a stream

SYNOPSIS

#i ncl ude <stdio. h>

int fseek (FILE *stream, [ong int offset, int whence);
void rewind (FILE *stream);

long int ftell (FILE *stream);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

216

The f seek function sets the file position indicator for stream. The new position is at the signed distance
offset bytes from the beginning of the file, from the current position of the file pointer, or from the end of
the file, according to the value of whence, as follows:

Name Description
SEEK_SET Sets position equal to offset bytes
SEEK _CUR Sets position to current location of file position indicator plus offset

SEEK_END Sets position to EOF plus offset

If the stream will be used with wide character input/output functions, offset must either be O or a value
returned by an earlier call totheft el | function on the same stream and whence must be SEEK _SET.

A successful call to the f seek function clears the end-of-file (EOF) indicator for the stream and undoes any
effects of the unget c(3C) function on the same stream. After f seek, the next operation on a file opened
for update can be either input or output.

The r ewi nd function sets the file position indicator for the stream to which stream points to the beginning
of the file. Calling r ewi nd(stream) is equivalent to calling f seek(stream, 0L, SEEK SET), except
that no value is returned, and the error indicator for the stream is cleared.

Theftel |l function obtains the current value of the file position indicator for the stream to which stream
points. For atext or binary stream, the value is the number of characters from the beginning of the file.

Functions f seek and r ewi nd undo any effects of unget ¢(3C) on the same stream.

SR-2080 10.0

FSEEK (3C) FSEEK (3C)

After f seek or r ewi nd, the next operation on a file opened for update can be either input or output.

NOTES

The functionsf seek andftel |, aswell asf set pos(3C) and f get pos(3C), exist because on some
computer systems, the size of i nt istoo small to contain the position for large files. Thus, for functions
f set pos(3C) or f get pos(3C), positions may be contained in structures.

A file position of 0 is ambiguous. It can mean "at beginning of file" or "at beginning of file after calling the
unget c(3C) function once."

RETURN VALUES

The f seek function returns nonzero for improper seeks, or seeks that could not be honored; otherwise, it
returns 0. An improper seek can be, for example, an f seek done on afile that has not been opened using
f open(3C); in particular, you cannot use f seek on aterminal, or on a file opened using popen(3C).

If successful, theft el I function returns the current value of the file position indicator for the stream. On
failure, theft el | function returns - 1L and stores a positive value in er r no: EBADF if stream does not
point to an opened stream; otherwise, ft el | can return the same er r nos as | seek(2).

FORTRAN EXTENSIONS

You can aso cal thef seek and ft el | functions from Fortran programs, as follows:

| NTEGER*8 FSEEK, whence, stream, offset, |
| = FSEEK(stream, offset, whence)

| NTEGER*8 FTELL, stream, |
| = FTELL(stream)

SEE ALSO
f get pos(3C), f open(3C), get c(3C), popen(3C), unget c(3C)
unget (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
| seek(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 217

FTRUNCATE(3C) FTRUNCATE(3C)

NAME

truncat e, ftruncat e — Truncates afile to a specified length

SYNOPSIS
#i ncl ude <unistd. h>
int truncate (const char *path, off_t Ilength);

int ftruncate (int fd, off_t length);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Thet runcat e function causes the file to which path refers (or for f t r uncat e, the file to which fd
refers) to be truncated to a maximum of length bytes. If the file was previously larger than this size, the
extradataislost. Withftruncat e, the file must be open for writing.

These are compatibility functions, which are provided to aid in the porting of code from other systems.
They are implemented through a combination of open(2), | seek(2), and t r unc(2) system calls.

RETURN VALUES

If the call succeeds, avalue of 0 isreturned. If the cal fails, —1 isreturned, and er r no is set to the error.

SEE ALSO

| seek(2), open(2), t runc(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012, for the specific error values.

218 SR-2080 10.0

FTW(3C) FTW(3C)

NAME

ftw, nf t w— Walks afile tree

SYNOPSIS
#i ncl ude <ftw h>

int ftw (const char *path, int (*fn) (const char *, const struct stat
*,int), int depth);

int nftw (const char *path, int (*fn) (const char *, const struct stat
* int, struct FTW *), int depth, int flags);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4 (f t wonly)
AT&T extension (nf t wonly)

DESCRIPTION

The f t wand nf t w functions recursively descend the directory hierarchy rooted in path. For each object in

the hierarchy, f t wor nf t wcalls fn, passing it a pointer to a null-terminated character string containing the

name of the object, a pointer to a st at structure (see st at (2)) containing information about the object, and
an integer. Possible values of the integer, defined in the header file f t w. h are as follows:

Flag Value Description

FTW F The object is afile.

FTW D The object is a directory.

FTW DP (nf t wonly) The object is a directory and subdirectories have been visited.
FTW SL (nf t wonly) The object is a symbolic link.

FTW DNR The object is a directory that cannot be read.

FTW NS Object for which st at could not be successfully executed.

If the integer is FTW DNR, descendants of that directory are not processed. If the integer is FTW NS, the
st at structure contains nothing meaningful. For example, afile in a directory with read permission but
without execute (search) permission would cause FTW NS to be passed to fn. For nf t w, st at failure for
any reason is considered an error and nf t w will return —1.

The nf t w function works similarly to f t w except that it takes an additional argument flags. The possible
values for flag are specified in the header file f t w. h and are as follows:

Flag Value Description
FTW PHYS A physical walk; it does not follow symboalic links.
FTW MOUNT The walk does not cross a mount point.

SR-2080 10.0 219

FTW(3C) FTW(3C)

NOTES

FTW DEPTH All subdirectories are visited before the directory itself.
FTW CHDI R The wak changes to each directory before reading it.

Also, the nf t w function calls fn with four (instead of three) arguments at each file and directory. This
fourth argument is a pointer to ast ruct FTWthat contains the following members:

i nt base;
int |evel;

The value of base is the offset to the base of the path name of the object; this path name is passed as the
first argument to fn. The value of | evel indicates depth relative to the root of the walk, where the root
level has a value of zero.

The f t w function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero value, or some
error, such as an 1/O error, is detected within the function. If the tree is exhausted, f t w or nf t w returns 0.
If fn returns a nonzero value, f t w or nf t w stops its tree traversal and returns whatever value was returned
by fn. If either function detects an error, it returns —1 and sets the error type in er r no.

The f t wand nf t w functions use one file descriptor for each level in the tree. The depth argument limits
the number of file descriptors so used. If depth is zero or negative, the effect is the same as if it were 1.
The depth argument must not be greater than the number of file descriptors currently available for use;
however, these functions run more quickly if depth is at least as large as the number of levelsin the tree.

Because f t wand nf t w are recursive, it is possible for them to terminate with a memory fault when applied
to very deep file structures.

Functions f t wnf t wuse mal | oc to alocate dynamic storage during its operation. If they are forcibly
terminated (for example, if | ongj np is executed by fn or an interrupt function) they do not have a chance
to free that storage, so it remains allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its next invocation.

SEE ALSO

220

mal | oc(3C)
st at (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0

GETC(3C)

NAME

GETC(3C)

get c, get char, f get ¢, get c_unl ocked, get char _unl ocked, get w, f get wc, get wchar,
get wc — Gets a character or word from a stream

SYNOPSIS

#i ncl ude <stdi o. h>

i nt
i nt
i nt
i nt
i nt

i nt

fgetc (FILE *stream);

getc (FILE *stream);

getchar (void);

getc_unl ocked (FILE *stream);
get char _unl ocked (void);
getw (FILE *stream);

#i ncl ude <wchar. h>

wint_t fgetwe(FILE *stream);

wint_t getwc(FlILE *stream);

wint_t getwchar(void);

IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANSI (f get c, get c, and get char only)

POSIX (get c_unl ocked and get char _unl ocked only)
XPG4 (get w, f get we, get we, and get wehar only)

DESCRIPTION

The f get ¢ function obtains the next character (if present) as an unsi gned char converted to ani nt,
from the input stream to which stream points, and it advances the associated file position indicator for the
stream (if defined).

The get ¢ function is equivalent to f get ¢, except that it is implemented as a macro, and it may evaluate
stream more than once; therefore, the argument should never be an expression with side effects. In

particular, get c(*f ++) does not work sensibly; use f get ¢ instead.

The get char function is equivalent to get ¢ with the argument of st di n.

SR-2080 10.0

221

GETC(3C) GETC(3C)

NOTES

The get c_unl ocked and get char _unl ocked functions provide functionality equivaent to the get ¢
and get char functions, respectively. However, these interfaces are not guaranteed to be locked with
respect to concurrent standard 1/O operations in a multitasked application. Thus, you should use these
functions only within a scope protected by the f | ockfi | e(3C) or ftryl ockfi | e(3C) functions.

The get w function returns the next word (that is, type i nt') from the specified input stream. Function
get w increments the associated file position indicator, if defined, to point to the next word. The size of a
word is the size of atypei nt (64 bits). The get w function assumes no specia alignment in the file.

The f get we function obtains the next character (if present) from the input stream to which stream points,
converts that to the corresponding wide-character code, and advances the associated file position indicator for
the stream (if defined). The st _cti nme and st _nt i e fields of the file are marked for update between the
successful execution of f put we (3C) and the next successful completion of acal to f f | ush(3C) or

f cl ose(3C) on the same stream or a call to exi t (3C) or abort (3C).

The get we function is equivalent to f get we, except that, if it is implemented as a macro, it may evaluate
stream more than once; therefore, the argument should never be an expression with side effects. Because it
can be implemented as a macro, get wc can incorrectly treat a stream argument with side effects. In
particular, get we(*f ++) might not work as expected. Therefore, this function is not recommended; you
should use the f get we function instead.

The get wchar function is equivalent to get we(stdin) . If the value returned by get wchar is stored into
avariable of type wchar _t and then compared against the wi nt _t macro WEOF, the comparison may
never succeed.

The f get ¢ function runs more slowly than get c, but it takes less space per invocation, and its name can
be passed as an argument to a function.

The macro version of the get ¢ function is not multitask protected. To obtain a multitask protected version,
compile your code by using - D MJULTI P_ and link by using /i b/1i bcm a.

WARNINGS

222

If the integer value returned by get c, get char, or f get ¢ is stored into a character variable and then
compared against the integer constant EOF, the comparison may never succeed, because sign-extension of a
character when it is widened to an integer is not done by the Cray Standard C implementation.

If you use get wto read a file whose size is not a multiple of a word, the last partial word will not be read;
get wwill return ECF after the last full word is read from the file.

Because of possible differences in word length and byte ordering, files written using put w are machine-
dependent, and they may not be read correctly using get w on a different machine.

SR-2080 10.0

GETC(3C) GETC(3C)

RETURN VALUES

Thef get c, get ¢, and get char functions return the next character from the input stream to which stream
points (or st di n for get char). If the stream is at end-of-file (EOF), the EOF indicator for the stream is
set and the functions return ECF. If aread error occurs, the error indicator for the stream is set and the
functions return EOF.

The get w function returns the constant ECF at end-of-file or on an error. Because ECF is a valid integer,
you should use f eof or f error to detect get w errors.

The return values for the f get we, get we, and get wehar functions behave similarly to those returned for
f get c, get c, and get char. They differ in that they return wide characters or WECF as their values.

SEE ALSO
fcl ose(3C), ferror (3C), f open(3C), f read(3C), get s(3C), put c(3C), scanf (3C)

SR-2080 10.0 223

GETCONFVAL (3C) GETCONFVAL (3C)

NAME

get confval , get conf val s, freeconf val — Gets configuration values

SYNOPSIS
#i ncl ude <stdlib. h>

char *getconfval (char *product, char *field);
char **getconfvals (char *product, char *field);

void freeconfval (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

Function get conf val searches through the configuration file looking for the specified product and field,
and returns a character pointer to the string defined in the configuration file. If no item is found for the
requested program or field, a null pointer is returned. If more than one item is found for the requested
program or field, the first item in the list is returned. To obtain the entire list, use function get conf val s.

Function get conf val s performs the same search as get conf val ; however, it returns a pointer to a list
of character pointers, which point to the configuration data. If no item is found for the requested program or
field, the return value is null. A successful call returns a pointer to an array of character pointers associated
with the desired product and field, which can be processed in a similar fashion as ar gv (for example,

get opt (3C)).

The return strings can be interpreted as the calling program desires (for example, passing the resultant string
into at oi (see st rt ol (3C)) as shown in example 3, following).

Function f r eeconf val frees up all memory allocated during previous calls to get conf val and/or

get conf val s. This function should not be called unless all needed configuration information has been
obtained. The get conf val and get conf val s functions buffer the configuration information internally
to allow for faster access to same-product information, thereby reducing the number of disk requests.

Calling function f r eeconf val deallocates these buffers, which forces any subsequent get conf val call
to reprocess and buffer the relevent portions of the configuration file. Function f r eeconf val also closes
the/ et ¢/ confi g/ confval file

For more information about the structure of the configuration file, see conf val (5) in the UNICOS File
Formats and Secial Files Reference Manual, Cray Research publication SR—2014.

224 SR-2080 10.0

GETCONFVAL (3C) GETCONFVAL (3C)

EXAMPLES

For all of the following examples, assume that the configuration file contains the following information:
| ogi n. root _consol e: "consol e" "weat her"
| ogi n. debug: "1
gat ed. debug: "o"

Example 1:
char *val;
val = getconfval ("login", "root_consol e");

freeconfval ();

The call in example 1 would result in:

*val = "consol e"

Example 2:

char *val s;
val s = getconfval s("login", "root_consol e");

The call in example 2 would result in:

"consol e’
"weat her'

*(val s)
*(vals + 1)

Example 3:
#i ncl ude <stdlib. h>

i nt debug;
debug = atoi (getconfval ("gated", "debug"));

The call in example 3 would result in:
debug =0

Example 4:

char **val s;
val s = get confval s("gated", "debug");

The call in example 4 would result in:

*vals = "0"

SR-2080 10.0 225

GETCONFVAL (3C) GETCONFVAL (3C)

Example 5:
char *val;
val = getconfval ("junk", "junk");

The call in example 5 would result in:
val = NULL

Example 6:
char **vals;
val s = getconfval s("junk", "junk");
The call in example 6 would result in:
val s = NULL

CAUTIONS

If a program uses get conf val or get conf val s, and it execs another image without an intervening
cal to f r eeconf val , the original file is not released, although the memory is released.

NOTES

The get conf val and get conf val s functions buffer information on a product basis. During the first
call to either function, the configuration file is opened and all of the consecutive entries defined for the given
product are buffered into memory. This improves the performance of any subsequent calls that attempt to
reference information about the same product. If the program no longer needs any information from the
configuration files, function f r eeconf val can be called to free up al memory allocated during previous
get conf val and get conf val s cals.

Also, if the conf val configuration file is modified between calls to these functions, the executing binary
may not detect the changes due to the buffering scheme. For best results, the binary should be restarted (if
possible).

RETURN VALUES

The get conf val cal returns a character pointer to the first configuration value for the given program/field
found in the configuration file. If no item is found, a null value is returned.

The get conf val s cal returns a pointer to a list of character pointers that point to the value information
for the specified product/field strings. If no item is found, a null value is returned.

226 SR-2080 10.0

GETCONFVAL (3C) GETCONFVAL (3C)

FILES
[etc/ confi g/ confval Contains configuration information

SEE ALSO
atoi (seestrtol (3C)), get opt (3C)

conf val (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 227

GETCWD(3C)

NAME
get cwd — Gets path name of current directory

SYNOPSIS
#i ncl ude <uni std. h>

char *getcwd(char *buf, size_t size);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

GETCWD(3C)

The get cwd function copies the absolute path name of the current working directory to the character array
pointed to by the argument buf and returns a pointer to the result. The size argument is the size in bytes of
the character array pointed to by the buf argument. The value of size must be at least two greater than the

length of the path name to be returned.

If buf is anull pointer, get cwd obtains size bytes of space using the mal | oc(3C) function. In this case,

the pointer returned by get cwd may be used as the argument in a subsequent call to f r ee.

RETURN VALUES

The get cwd function returns null with er r no set if size is not large enough, or if an error occursin a

lower-level function.

EXAMPLES

The following source code fragment prints to standard output the name of the current directory:

228

SR-2080 10.0

GETCWD(3C) GETCWD(3C)

#i ncl ude <stdlib.h> [* exit */
#i ncl ude <stdio. h> [* perror, printf */
#i nl cude <uni std. h> /[* getcwd */

char [wd;

cwd = getcwd((char [) NULL, 64);
if (cwd == NULL) {
perror ("getcwd");
exit(1);
}
printf("%\n", cwd);
free (cwd);

SEE ALSO
errno. h(3C), get wd(3C), mal | oc(3C)

SR-2080 10.0 229

GETDOMAIN(3C) GETDOMAIN(3C)

NAME

get domai nnane, set domai nname — Gets or sets name of current domain

SYNOPSIS

#i ncl ude <unistd. h>
int getdomai nnane (char *name, int namelen);

int setdomai nnane (char *name, int namelen);

IMPLEMENTATION

All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

NOTES

The purpose of domains is to enable two distinct networks that may have common host hames to merge.
Each network would be distinguished by a different domain name. Currently, only the network information
service (formerly known as yellow pages) makes use of domains.

The get dormai nnane function returns the name of the domain for the current processor, as previously set
by set domai nnane. The parameter namelen specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

The set dormai nnane function sets the domain of the host machine to name, which has the length
namelen. This call is restricted to the super user and is normally used only when the system is bootstrapped.

Domain names are limited to 64 characters.

RETURN VALUES

If the call succeeds, avalue of 0 isreturned. If the cal fails, a value of —1 is returned, and an error code is
placed in the global variable er r no.

MESSAGES

230

This function can set er r no to one of the following values (defined in header er r no. h) on error:

Error Code Description

EFAULT The name parameter gave an invalid address.

EPERM The caller was not the super user. This error applies only to function set domai nnarre.

SR-2080 10.0

GETDOMAIN(3C) GETDOMAIN(3C)

SEE ALSO
errno. h(3C)

SR-2080 10.0 231

GETDTABLESIZE(3C) GETDTABLESIZE(3C)

NAME

get dt abl esi ze — Gets file descriptor table size

SYNOPSIS
#i ncl ude <uni std. h>

int getdtablesize (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Each process has a fixed-size file descriptor table. The entries in the file descriptor table are numbered with
small integers, starting at 0. The get dt abl esi ze function returns the size of this table (that is, the
number of file descriptors).

The following example is a compatibility routine, which is provided to aid in the porting of code from other
systems, and is implemented by the following code:

#i ncl ude <uni std. h>

i nt getdtabl esize(void);

{
}

return(sysconf(_SC OPEN_MAX));

SEE ALSO

cl ose(2), dup(2), open(2), sel ect (2), sysconf (2) in the UNICOS System Calls Reference Manual,
Cray Research publication SR—2012

232 SR-2080 10.0

GETENV(3C) GETENV(3C)

NAME

get env — Returns the value for the specified environment name

SYNOPSIS
#i ncl ude <stdlib. h>

char *getenv (const char *name);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The get env function searches the environment list (see sh(1)) for a string of the form name = value; and
it returns a pointer to value in the current environment if such a string is present. If such a string is not
present, get env returns a null pointer.

RETURN VALUES

The get env function returns a pointer to a string associated with the matched list member. The string
pointed to cannot be modified by the program, but may be overwritten by a subsequent call to the get env
function. If the specified name cannot be found, a null pointer is returned.

FORTRAN EXTENSIONS

On systems other than Cray MPP systems and the CRAY T90 series, the get env function can be called
from Fortran programs. It may be called as an integer function, as follows. The function PXFGETENV is
available on all Cray systems and is a recommended alternative to GETENV.

CHARACTER name*m, value*n
| NTEGER*8 GETENV , found
found = GETENV(name, value)

or

| NTEGER* 8 value(valuesz)

| NTEGER*8 name

| NTEGER*8 GETENV , found

found = GETENV(name, value, values?)

SR-2080 10.0 233

GETENV(3C) GETENV(3C)

Function GETENV returns 1 if name was found in the environment, and O if it is not.

The get env function can also be called from Fortran programs as a subroutine, as follows (as already
stated, not on Cray MPP systems and CRAY T90 series):

CHARACTER name*m, value*n
CALL GETENV(name, value)

or

| NTEGER* 8 value(valuesz)
| NTEGER*8 name
CALL GETENV(name, value, valuesz)

A status is not returned for the GETENV subroutine call.

Arguments m and n are integer constants specifying the length in characters of the character strings name
and value, respectively.

NOTES
GETENV must be declared type integer to ensure proper testing of the return code.

SEE ALSO

put env(3C), set env(3C)
sh(2) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

234 SR-2080 10.0

GETFSENT(3C) GETFSENT(3C)

NAME
getfsent, getfsspec,getfsfile, getfstype,setfsent, endfsent — Gets file system
descriptor file entry
SYNOPSIS
#i ncl ude <fstab. h>
struct fstab *getfsent (void);
struct fstab *getfsspec (char *gspec);
struct fstab *getfsfile (char *file);
struct fstab *getfstype (char *type);
int setfsent (void);

int endfsent (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

These functions are included for compatibility with existing programs. They call the get rmt ent (3C)
functions.

The get f sent , get f sspec, get f st ype, and get f sfi | e functions each return a pointer to an object
with the following structure, which contains the broken-out fields of a line in the file system description file,
header file <f st ab. h>, as follows:

struct fstab {

char *fs_spec; /* block special device name */
char *fs file; [* file systempath prefix */

char *fs_type; [* file systemtype */

i nt fs freq; /* dunp frequency, in days */

i nt fs_passno; /* pass nunmber on parallel check */

b

The get f sent function reads the next line of the file, opening the file if necessary.

SR-2080 10.0 235

GETFSENT(3C) GETFSENT(3C)

The set f sent function opens and rewinds the file.
The endf sent function closes the file.

Functions get f sspec and get f sfi | e sequentially search from the beginning of the file until a matching
special file name or file system file name is found, or until EOF is encountered. Function get f st ype does
likewise, matching on the file system type field.

NOTES
All information is contained in a static area, so it must be copied if it is to be saved.

FILES
/etc/fstab

RETURN VALUES

All of these functions return a null pointer on EOF or error.

SEE ALSO
get mt ent (3C)

f st ab(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

236 SR-2080 10.0

GETGRENT(3C) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrgid_r, getgrnam getgrnamr, setgrent, endgrent,
f get gr ent — Gets group file entry

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <grp. h>

struct group *getgrent (void);
struct group *getgrgid (int gid);

int getgrgid_r (int gid, struct group *grp, char *buf, size_t bufsize, struct
group **result) ;

struct group *getgrnam (const char *name);

int getgrname_r (char *name, struct group *grp, char *buf, size_ t bufsize, struct
group **result) ;

void setgrent (void);
voi d endgrent (void);

struct group *fgetgrent (FILE *f);

IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX (get gr gi d and get gr nam
PThreads (get grgi d_r and get gr nam r)
AT&T extension (endgrent, f get grent, getgrent, and set grent)

DESCRIPTION

Functions get gr ent , get gr gi d, and get gr nameach return pointers to an object with the following
structure, which contains the broken-out fields of aline in the / et c/ gr oup file. Each line contains a
gr oup structure, defined in header file gr p. h.

struct group {

char *gr_nane; /* the nanme of the group */

char *gr_passwd; /* the encrypted group password */

gid_t gr_gid; /* the nunerical group ID */

char **gr_nmem /* vector of pointers to nenber names */

b
When first called, get gr ent returns a pointer to the first gr oup structure of the first line in the file;
thereafter, it returns a pointer to the gr oup structure of the next line in the file. Therefore, successive calls

SR-2080 10.0 237

GETGRENT(3C) GETGRENT(3C)

may be used to search the entire file. The get gr gi d function searches from the beginning of the file until
a numerical group ID matching gid is found and returns a pointer to the particular structure in which it was
found. The get gr namfunction searches from the beginning of the file until a group name matching name
is found and returns a pointer to the particular structure in which it was found. If an end-of-file or an error
is encountered on reading, these functions return a null pointer.

A call to set gr ent has the effect of rewinding the group file to allow repeated searches. The endgr ent
function may be called to close the group file when processing is complete.

The f get gr ent function returns a pointer to the next gr oup structure in stream f that matches the format
of / et c/ group.

The functions whose names end with _r provide equivalent functionality but with an interface that is safe
for multitasked applications. The primary difference is that, instead of returning a pointer to a structure, they
place the results in the structure pointed to by the grp argument. In addition, they use the provided buffer
buf of size bufsize to store auxilary data. The maximum size needed for this buffer can be determined with
the _SC GETGR_R Sl ZE MAX sysconf parameter. A NULL pointer is returned at the location pointed
to by result on error or if the required entry is not found.

NOTES

All information is contained in a static area, so it must be copied if it is to be saved.

WARNINGS

For groups with a large number of members, several linesin file / et ¢/ gr oup will be generated with the
same group ID. Thus, to fully scan a particular group may require more than one get gr ent call.

The preceding functions use header st di 0. h, which causes them to increase the size of programs more
than might otherwise be expected.
RETURN VALUES

For all interfaces other than get gr gi d_r and get gr nam r, a null pointer is returned on ECF or error.
For get grgi d_r and get gr nam r, O is returned on success. Otherwise an error number is returned:

ERANCE Insufficient storage was supplied via buf and bufsize to contain the data to be referenced by the
resulting struct group structure.

FILES
[etc/group

SEE ALSO
get | ogi n(3C), get pwent (3C)

gr oup(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

238 SR-2080 10.0

GETHOST(3C) GETHOST(3C)

NAME

get host byaddr, get host bynane, get host ent , get host | ookup, set host ent , endhost ent ,
set host | ookup — Gets a network host entry

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <net db. h>
#i ncl ude <netinet/in. h>
struct hostent *gethostbyaddr (char *addr, int len, int type);
struct hostent *gethostbynane (char *name);
struct hostent *gethostent (void);
i nt gethostl ookup (void);
i nt sethostl ookup (int |ookup_type);
voi d sethostent (int stayopen);

voi d endhost ent (void);
IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension (except get host | ookup and set host | ookup)
CRI extension (only get host | ookup and set host | ookup)

DESCRIPTION

The get host byaddr, get host bynane, and get host ent functions each return a pointer to an object
describing an Internet host entry. The information in the network host entry will be obtained either from the
user's HOSTALI ASES file, the / et c/ host . al i ases file, the network host database / et ¢/ host s (or
its binary version, / et ¢/ host s. bi n, if it exists), or from the domain name service provided by
naned(8), as determined by the get host | ookup function and the existance of an al i ases file.

The following structure describes a network host entry:

SR-2080 10.0 239

GETHOST(3C) GETHOST(3C)

240

struct hostent {
char *h_name; [* official host name */
char **h aliases; [* alias list */
i nt h_addrtype; /* address type */
i nt h_| engt h; /* length of address */
char **h addr _list; /* list of addresses */
}
The members of this structure are as follows:
Member Description
h_nane Official name of the host.
h_al i ases Zero-terminated array of alternative names for the host.
h_addrtype Type of the address being returned; the only address type currently supported is
AF_I NET.
h_| ength Length, in bytes, of the host address.

h_addr |ist Listof network addresses for the host from the name server. Host addresses are in
network byte order (bytes ordered from left to right). For backward compatibility,
h_addr isthe first entry in h_addr _Ii st.

The get host | ookup function returns either HOSTLOOKUP_HOSTFI LE or HOSTL OOKUP_NANMED
(defined in net db. h), depending on whether the network host information should be retrieved from the

/ et ¢/ host s database or the domain name service. The function checks for the existence of the
environment variable HOSTLOCOKUP. If the value of HOSTLOOKUP is either host t abl e or naned,

get host | ookup returns the corresponding value. Otherwise, get host | ookup checks for the existence
of the file/ et ¢/ host s. usenamed. If thisfile exists, get host | ookup returns HOSTL OOKUP_NAMVED;
otherwise, it returns HOSTLOOKUP_HOSTFI LE.

The set host | ookup function lets an application inform the get host byaddr , get host bynane, and
get host | ookup functions to use either the name server or / et c/ host s file. For an application, this
would be equivalent to a user defining the environment variable HOSTL OOKUP.

If the input name contains no dot, and if the environment variable HOSTALI ASES contains the name of an
alias file, the alias file will be searched for an alias matching the input name before either the network host
database (/ et c/ host s) or the domain name service search happens. If thefile/ et ¢/ hosts. al i ases
exists, that file will be searched next if no match is found in the HOSTALI ASES file.

The al i ases file should consist of lines made up of two columns separated by whitespace. The first
column contains the hostname aliases, and the second column lists the hostname (or 1P address) to be
substituted for the alias listed in the first column.

When the domain name service is used for host lookup, the set host ent function instructs the service to
use a virtua circuit for connections to name servers if the stayopen flag is not zero. When the host database
is used for lookup, the set host ent function opens and rewinds either the / et ¢/ host s. bi n file (if it
exists) or the / et ¢/ host s file.

SR-2080 10.0

GETHOST(3C) GETHOST(3C)

When the domain name service is used for host lookup, the endhost ent function closes the virtual circuit
connection to a name server, if one was used. When the host database is used for lookup, the endhost ent
function closes the / et ¢/ host s. bi n or / et ¢/ host s file if thefile is till open.

The get host byaddr function fetches information for the host with address addr. Address addr for the
get host byaddr function is cast as a character pointer to a structure defined by i n. h (st ruct

i n_addr). The get host bynamne function fetches information for the host with name (or aias) name.
When host database lookup is used, the appropriate database (/ et ¢/ host s. bi n or / et ¢/ host s) is
searched sequentially until the desired information is found or the last entry is reached. Both functions
return host addresses in network byte order.

When using host database lookup, the get host ent function returns the next entry in the
/etc/hosts. binor/etc/hosts database, opening the file if necessary. When using the domain name
service, it returns a null pointer.

NOTES

All information is contained in a static area that must be copied if it is to be saved. Only the Internet

address and OSI are currently recognized by the UNICOS operating system.. The get host byaddr code

checks only the first address in the list. The/ et ¢/ host s. bi n file is not automatically kept current with

/ et c/ host s. If the administrator forgets to run nkbi nhost (8), users will get obsolete host information.
RETURN VALUES

For functions get host byaddr, get host bynane, and get host ent , a null pointer (0) is returned at
end-of-file or when an error occurs. When the null pointer is returned at end-of-file, this indicates that
get host byaddr or get host bynane did not find the specified name or address in the file.
FILES
[etc/ hosts
/etc/hosts. bin
/ et c/ hosts. usenaned
/etc/ hosts. aliases
[usr/include/ netdb. h

/usr/include/netinet/in.h

SEE ALSO

get host i nf 0(3C), r esol ver (3C)

host s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

nmkbi nhost (8), naned(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

SR-2080 10.0 241

GETHOSTINFO(3C) GETHOSTINFO(3C)

NAME
get host i nf o — Gets network host and service entry

SYNOPSIS
#i ncl ude <netdb. h>
struct hostinfo *gethostinfo (char *host, char *service, int family,
i nt type, int flags);
IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The get host i nf o function returns a pointer to an object describing a network host and service entry.
Information on the host is obtained either from the network host database / et ¢/ host s (or its binary
version, / et ¢/ host s. bi n, if it exists), or from the domain name service provided by naned(8), as
determined by the get host | ookup(3C) function. Information on the service portion of the entry is
obtained from the network service database / et ¢/ ser vi ces. These functions, unlike the get host
functions, have entry structures that can contain an entry for an OS| host.

The following structure describes a network host and service entry:

struct hostinfo {

char *h_name; /* official host name */
char **h aliases; /* host alias list */
struct hostserv **h_addr_serv; [/* list of services */
1
struct hostserv {
struct sockaddr *hs_addr; /* address info */
char *hs_narme; [* official service name */
char **hs_aliases; /* service alias list */
i nt hs_type; /* socket type (for TCP only) */
}
The members of these structures are as follows:
Member Description
h_namne Official name of the host.
h_al i ases Zero-terminated array of aternative names for the host.

hs_addr_serv List of network addresses and service information for the host.

242 SR-2080 10.0

GETHOSTINFO(3C) GETHOSTINFO(3C)

hs_addr Address information for the host. This field serves as a place holder to be overlayed
with either ast ruct sockaddr i norastruct sockaddr i so structure. The
sockaddr _i n structure is used for Internet entries; sockaddr _i so is used for ISO

(OSl) entries.
hs _nane Official service name.
hs_al i ases Zero-terminated array of alternative names for the service.
hs_type Socket type.

The get host i nf o function returns host information by either host name or host address. If

CGHI _HOST_ADDR (defined in net db. h) is set in the flags argument, the host field is treated as if it
pointed to ast ruct sockaddr structure. The get host i nf o function searches for a match to the
address contained in the sockaddr structure. If GHl _HOST_ADDR is not set in the flags argument, the
host field is treated as a host name to be searched for in the database. If host is null, only service
information is returned from the get host i nf o call.

The get host i nf o function returns service information by either service name or service address. |If

CGHI _SERV_ADDR is set in the flags argument, the service field is treated as if it pointed to a st r uct
sockaddr structure. The get host i nf o function searches for a match to the socket port number or
address contained in the sockaddr structure. If GHI _SERV_ADDR is not set in the flags argument, the
service field is treated as a service name to be searched for in the database. If service is null, only host
information is returned from the get host i nf o call.

The family field must be AF_1 NET for Internet entries or AF_I SOfor 1SO (OSl) entries.
The type field is used for searches based on Internet socket types. These types are listed in the socket (2)
manual page.

NOTES

All information is contained in a static area that must be copied if it is to be saved. The
/ et c/ host s. bi n fileis not automatically kept current with / et ¢/ host s. If the administrator forgets
to run nkbi nhost (8), users will get obsolete host information.

RETURN VALUES

A null pointer (0) is returned at end-of-file or when an error occurs. When the null pointer is returned at
end-of-file, this indicates that get host i nf o did not find the specified name or address in the file.

SR-2080 10.0 243

GETHOSTINFO(3C) GETHOSTINFO(3C)

FILES
[etc/hosts
/etc/hosts. bin
/ et c/ host . usenaned
[etc/services
[usr/include/sys/socket.h
fusr/include/ netinet/in.h
/fusr/include/ netiso/iso.h
[usr/include/ netdb. h

SEE ALSO
get host (3C), resol ver (3C)
socket (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

host s(5), servi ces(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

nmkbi nhost (8), naned(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

244 SR-2080 10.0

GETLOGIN(3C) GETLOGIN(3C)

NAME

get | ogi n, getl ogi n_r — Getslogin name

SYNOPSIS
#i ncl ude <uni std. h>
char *getlogin (void);

int getlogin_r (char *bufname, size_t bufsize);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX (get | ogi n)
PThreads (get | ogi n_r)

DESCRIPTION

The get | ogi n function returns a pointer to the login name as found in / et ¢/ ut np; get | ogi n_r isthe
same but specifies a buffer for the name. These may be used in conjunction with get pwnam (see

get pwent (3C)) to locate the correct password file entry when the same user ID is shared by several login
names.

If get | ogi n is called within a process that is not attached to a terminal, it returns a null pointer. The
correct procedure for determining the login name is to call cuseri d(3C), or get | ogi n, and, if that
function fails, to then call get pwui d (see get pwent (3C)).

The get | ogi n_r function provides functionality eguivalent to the get | ogi n function, but with an
interface that is safe for multitasked applications; the caller provides a buffer bufname of size bufsize for the
storage of the login name. The maximum size needed for this buffer can be determined with the
_SC GETLOG N_R_SI ZE_ MAX sysconf parameter.

NOTES

The return values from get | ogi n(3C) point to static data that is overwritten by each call.

RETURN VALUES
The get | ogi n function returns a null pointer if the process is not attached to a terminal.
On success, the get | ogi n_r function returns 0. Otherwise it returns an error number:

ERANGE The value of namesize is smaller than the length of the string to be returned including the
terminating null character.

SR-2080 10.0 245

GETLOGIN(3C) GETLOGIN(3C)

FILES
[etc/utmp File of user information

SEE ALSO
cuseri d(3C), get gr ent (3C), get pwent (3C)

ut np(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

246 SR-2080 10.0

GETMNTENT(3C) GETMNTENT(3C)

NAME

set mt ent, get mt ent, endmmtent, li stimtent, getmtinfo, fi ndmtentry,
freemtlist,freemtent, dupmt ent, hasmmt opt — Gets file system descriptor file entry or
kernel mount table entry

SYNOPSIS

#i ncl ude <stdi 0. h>
#i ncl ude <mtent. h>

FI LE *set rmt ent (char *fname);
struct mmtent *getmtent (FILE *filep);
int endmtent (FILE *filep);

int listmtent (struct tabmmtent **entlist, char *fname, char *comp,
int (*func)());

struct kmtinfo *getmmtinfo (char *fname);

struct mtent *findmtentry (struct tabmtent **entlist,
struct mmtent *mnt, int flag, int upd);

void freemtlist (struct tabmtent *tabmnt);
void freemmtent (struct mtent *mnt);
struct mtent *dupmmtent (struct mmtent *mnt);

char *hasmtopt (struct mtent *mnt, char *opt);

IMPLEMENTATION
Cray PVP systems

STANDARDS

set mt ent , get mt ent , endnmmt ent , and hasmmt opt — These routines may exist on other operating
systems, but the parameters may be different.

Cray Research extension (1 i st mtent, getmtinfo, findmtentry,freemtli st,

freemmt ent , and dupmt ent)

DESCRIPTION

These functions access the file system description file / et ¢/ f st ab or the mounted file systems in the
kernel mount table.

SR-2080 10.0 247

GETMNTENT(3C) GETMNTENT(3C)

248

The behavior of the set mt ent function depends on whether a file name is specified. If fname is specified
(usually / et c/ f st ab), the set mt ent function opens a file system description file and returns a file
pointer that can then be used with get mt ent or endmimt ent .

If fname is not specified (NULL), the set nmt ent function obtains data about mounted file systems from
the kernel mount table and puts it into mt ent structures with the following format:

struct mmtent {

char *mt _f snane; [* file system nane */

char *mt _dir; [* file system path prefix */

char *mt _type; [* 4.2, nfs, swap, or xx */

char *mt_opts; /* ro, quota, etc. */

int mt_freq; [* dunp frequency, in days */

int mt_passno; /* pass number on parallel fsck */

i
For ease of use, the following define statementss were added to the mt ent . h include file:

#defi ne FSTAB "/etc/fstab"
#defi ne KMIAB NUL L

Depending on the file pointer that the set rt ent function returns, the get mt ent function reads the
next line from filep or obtains information about the next mounted file system. The get mt ent function
returns a pointer to an object with the structure defined as in the preceding mt ent structure. The pointer
contains either the broken-out fields of a line in the file system description file or the same fields from the
kernel mount table. See f st ab(5) for a description of the fields.

Themt _freq and mt _passno fields are meaningless for the kernel table. Any field that is
meaningless contains a pointer to a zero byte.

The endmt ent function uses mal | oc(3C) to close the file or free space previously reserved; the
information that is copied from the kernel mount table depends on the file descriptor that the set mt ent
function returns.

Thel i st mt ent function combines the set mt ent , get mt ent , and endmt ent functions to build
alinked list of objects with the structure defined in the mt ent structure shown previously. The linked list
is defined as follows:

struct tabmtent {
struct mmtent *ment ;
struct tabmmtent *next;
i
After it is built, the list contains either a description of all file systems found in the file fname, or a
description of all mounted file systems, depending on whether fname is specified. fname follows the same
convention as that of the set mt ent function. Thel i st mt ent function allows you to build a subset
list of file system information, depending on the values of comp and func. func is the name of the
comparison function that determines whether file system information should be added to the list. Use the
following arguments to call this function:

SR-2080 10.0

GETMNTENT(3C) GETMNTENT(3C)

int func(char *comp, struct mntent *mnt);

Generally, comp is defined as the argument of the | i st mt ent function. If the mnt structure must be
added to the list, the func function always returns O; otherwise, it returns a nonzero value.

The get mt i nf o function obtains general information about the file system description file or the kernel
mount table, depending on fname. fname follows the same convention as the set rt ent function. The
get rmt i nf o function returns a pointer to an object with the following structure:

struct kmmtinfo {
int nbent;
| ong | ast chge; /* last time the file or nount table changed */

b
The fi ndmmt ent ry function returns a specific entry in a linked list built with the | i st mt ent function.
The function bases its search on the flag definition. Available flags are as follows:

Flag Description

DI RFLAG Finds the entry that has the specified mount point.
FSFLAG Finds the entry that has the specified file system name.
OPTFLAG Finds the first entry with the specified mount options.

TYPEFLAG Finds the first file system with the specified type.
The flags are defined in the mt ent . h file.

The fi ndmmt ent ry function compares data in each entry of the linked list with data found in the mnt
structure. You can update the pointer to the beginning of the linked list, depending on the value of the upd
flag. The values are as follows:

Flag Description

UPD Specifies that the beginning of the list points to the entry found during the search.

UPREC Specifies that the beginning of the list points to the entry previous to the one found during
the search.

NCUP Specifies that the list remains the same.

These flags are defined in the rmt ent . h file.

If you use UPD to call the f i ndmmt ent ry function, the function does not release the space for the entries
on the list that precedes the found entry. The user must keep a second pointer to those entries so that they
can be released |ater.

Thefreemmt | i st function frees the linked list that was built with the | i st mt ent function.

The dupmt ent function returns a pointer to a new rmt ent structure, which is a duplicate of the structure
to which mnt points. Use mal | oc(3C) to abtain the space for the new structure.

The f reemmt ent function frees the mt ent structure to which mnt points.

The hasmt opt function scans the mt _opt s field of the t ent structure mnt for a substring that
matches opt. It returns the address of the substring if a match is found; otherwise, it returns 0.

SR-2080 10.0 249

GETMNTENT(3C)

NOTES

The returned rmt ent structure points to static information that is overwritten in each call.

RETURN VALUES

FILES

250

If fname is specified, the set mt ent function returns the following:
* The file pointer on success

* A NULL value on error

If fname is NULL or KMTAB, the set mt ent function returns the following:
¢ KIWNT_FP on success (defined in rmt ent . h)

* A NULL value on error.

The get mt ent function returns the following:

* A pointer to the next mt ent entry on success

* A NULL vaue on EOF

Thel i st mt ent function returns the following:

* Zero on success and if the entlist argument points to the linked list
* Nonzero on error

The get mt i nf o function returns the following:

* A pointer to the general information structure on success

* A NULL value on error

The f i ndmmt ent ry function returns the following:

¢ A pointer to the entry found in the list on success

¢ A NULL vaue if no entry has been found

The dupmt ent function returns the following:

* A pointer to the duplicate structure on success

* A NULL value on error

[etc/fstab File containing static information about system files

GETMNTENT(3C)

SR-2080 10.0

GETMNTENT(3C) GETMNTENT(3C)

EXAMPLES

The following program prints the list of mounted file systems:

#i ncl ude <stdio. h>
#i ncl ude <mtent. h>

nmai n()

{
struct mtent *mmt;
FILE *fd;

if ((fd = setmtent (KMIAB)) == NULL) {
fprintf(stderr,"Cannot get information fromthe nount table\n");
exit(1);

}

while ((mt = getmtent (fd)) !'= NULL) {
fprintf(stdout, "File system name: %\n", mmt->mt_fsnane);
fprintf(stdout, "Munt point: %\n", mt->mt _dir);
fprintf(stdout, "Options: %\n", mt->mt_opts);
fprintf(stdout, "File systemtype: %\n", mmt->mmt _type);

}

endmt ent (fd);

SR-2080 10.0 251

GETMNTENT(3C) GETMNTENT(3C)

The following program builds a linked list of NFS mounted file systems and prints it:

#i ncl ude <stdio. h>
#i ncl ude <mtent. h>

int
nfstype (conp, mt)
char *conp;
struct mtent *mmt;
{
return(strcnp(conp, mmt->mt _type));
}
mai n()
{
struct tabmtent *tabmmt;
struct tabmtent *mmt;
if (listmtent (& abmt, KMIAB, MNTTYPE_NFS, nfstype) != 0) {
fprintf(stderr, "Cannot build list of NFS mounted FS\n");
exit(1l);
}
for (mt = tabmt; mt; mmt = mt->next) {
fprintf(stdout, "File system name: %\n", mmt->ment->mt_fsnane);
fprintf(stdout, "Munt point: %\n", mt->nment->mt_dir);
fprintf(stdout, "Options: %\n", mt->ment->mt_opts);
fprintf(stdout, "File systemtype: %\n", mt->nent->mt_type);
}
freemmtlist(tabmt);
}

252 SR-2080 10.0

GETMNTENT(3C) GETMNTENT(3C)

The following program finds the first NFS mounted file system:

#i ncl ude <stdio. h>
#i ncl ude <mtent. h>

mai n()
{
struct tabmtent *tabmt;
struct mmtent *mt, tenplate;
if (listmtent (& abmt, KMIAB, NULL, NULL) '= 0) {
fprintf(stderr, "Cannot build list of nounted FS\n");
exit(1);
}

if ((tenplate.mt_type = (char *)malloc(strlen(MNTTYPE_NFS))) == NULL) {
fprintf(stderr, "Cannot nalloc space\n");
exit(1);

}

strcpy(tenpl ate. mt _type, MTTYPE_NFS);

if ((mt = findmtentry(& abmt, & enplate, TYPEFLAG NOUP)) != NULL) {
fprintf(stdout, "File system name: %\n", mmt->mt_fsnanme);
fprintf(stdout, "Munt point: 9%\n", mt->mt_dir);
fprintf(stdout, "Options: %\n", mt->mt_opts);
fprintf(stdout, "File systemtype: %\n", mmt->mt_type);

}

freemtlist(tabmt);

SEE ALSO
f open(3C), get f sent (3C), mal | oc(3C)

f st ab(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 253

GETNET(3C) GETNET(3C)

NAME

endnet ent , get net byaddr, get net bynane, get net ent, set net ent — Gets network entry

SYNOPSIS
#i ncl ude <net db. h>
i nt endnetent (void);
struct netent *getnetbyaddr (int net, int type);
struct netent *getnetbynane (char *name);
struct netent *getnetent (void);

int setnetent (int stayopen);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The get net byaddr, get net bynane, and get net ent functions each return a pointer to an object in
the network database, / et ¢/ net wor ks. The following structure contains the fields of a line in the
network database. In future releases of the UNICOS operating system, the location and format of this
database may change, but this interface will remain.

struct netent {

char *n_name; [* official name of net */
char **n_aliases; [* alias list */
i nt n_addrtype; /[* net nunber type */
unsi gned | ong n_net; /* net nunber */
i

The members of this structure are as follows:

Member Description

n_nane Officia name of the network.

n_al i ases Zero-terminated list of alternative names for the network.

n_addrtype Type of the network number returned; currently only AF_I NET and AF_| SO are
supported.

n_net Network number; network numbers are returned in host byte order.

254 SR-2080 10.0

GETNET(3C) GETNET(3C)

The set net ent function opens and rewinds the / et ¢/ net wor ks file.
The endnet ent function closes the / et ¢/ net wor ks file.

The get net byaddr function searches for the network address, and the get net bynane function searches
for the network name (or alias), sequentially from the first entry in the database. The search continues until
the desired information is found or until the last entry is reached. These functions return network addresses
in host byte order. Because get net byaddr and get net byname use set net ent and endnet ent ,
they open and close the file if the stayopen flag is O.

The get net ent function reads the next entry in the / et ¢/ net wor ks database, opening the database if
necessary.

NOTES

All information is contained in a static area that must be copied if it is to be saved.

RETURN VALUES

A null pointer (0) is returned upon end-of-file or error. For get net byaddr and get net bynane, a null
pointer returned upon end-of-file indicates that an entry containing the specified name or address was not
found.

FILES
/ et ¢/ net wor ks
/usr/include/ netdb. h
SEE ALSO

net wor ks(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 255

GETOPT(3C) GETOPT(3C)

NAME

get opt, optarg, opti nd, opterr, optopt — Parses command options

SYNOPSIS

#i ncl ude <uni std. h>
int getopt (int argc, char * const argv[], const char *optstring);

extern char *optarg;
extern int optind, opterr, optopt;

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX

DESCRIPTION

256

The get opt function is a command line parser. The argc parameter specifies the argument count and the
argv parameter specifies the argument array. The optstring argument contains a string of recognized option
characters; if a character is followed by a colon, the option takes an argument.

The variable opt i nd specifies the index of the next element of the argv array to be processed. The system
initializes it to 1, and the get opt function updates it with each element of argv.

The get opt function returns the next option character from the argv parameter if one is found that matches
a character in the optstring argument. If the option takes an argument, the get opt function sets the
variable opt ar g to point to the option argument according to the following rules:

¢ |f the option was the last character in the string, opt ar g contains the next element of the argv
parameter, and the opt i nd variable is incremented by 2. If the resulting value of opt i nd is greater
than or equal to ar gc, the get opt function returns an error status.

¢ Otherwise, opt ar g points to the string following the option character in that element of the argv
parameter, and the opt i nd variable is incremented by 1.

If the following conditions are true when the get opt function is called, the get opt function returns a -1
without changing the opt i nd variable:

e argv[optind] isanull pointer
e *argv[opti nd] is not the character "~

e argv[opti nd] points to the string

SR-2080 10.0

GETOPT(3C) GETOPT(3C)

If the argv[opt i nd] parameter points to the "--" string, the get opt function returns -1 after incrementing
the opt i nd variable.

If the get opt function encounters an option character that is not contained in the optstring parameter, it
returns a question mark (?) character. If it detects a missing option argument, it returns a colon (:) character
if the first character of the optstring parameter was a colon. Otherwise, it returns a question mark (?)
character. In either case, the get opt function sets the variable opt opt to the option character that caused
the error. If the application has not set the variable opt er r to 0, and the first character of the optstring
parameter is not a colon, the get opt function aso prints a diagnostic message to the st der r file in the
format specified by the get opt s(1) command.

WARNINGS

The get opt function uses the header file st di 0. h, which causes it to increase the size of programs more
than might otherwise be expected.

RETURN VALUES
The get opt function returns the next option character specified on the command line.

A colon (:) is returned if the get opt function detects a missing argument and the first character of the
optstring argument was a colon.

A question mark (?) is returned if the get opt function encounters an option character not in the optstring
argument or detects a missing argument and the first character of the optstring argument is not a colon.

Otherwise, the get opt function returns -1 when all command line options are parsed.

EXAMPLES

The following code fragment shows how you might process the arguments for a command that can take the
mutually exclusive options a and b, and the options f and o, both of which require arguments:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

main (int argc, char * argv[])

{ .
int c;
while ((c = getopt (argc, argv, "abf:o0:")) = -1){
switch (c) {
case 'a’':
if (bflg)
errfl g++;
el se

SR-2080 10.0 257

GETOPT(3C) GETOPT(3C)

af | g++;
br eak;
case 'b’:
if (aflg)
errfl g++;
el se
bproc();
br eak;
case 'f’':
ifile = optarg;
br eak;
case '0':
ofile = optarg;
bufsiza = 512;
br eak;
case '?':
errfl g++;
br eak;
}
}
if (errflg) {
fprintf (stderr, "usage: . . . \n");
exit (2);
}

for (; optind < argc; optind++) {
if (access (argv[optind], 4)) {

FORTRAN EXTENSION

The functionality of get opt is available in Fortran through the integer functions GETOPTC, GETVARGC,
and GETQARGC. For most applications, only GETOPTC is needed. GETOPTC returns the next character
found in the string of characters, optstr, or -1 when no option characters can be found.

258 SR-2080 10.0

GETOPT(3C) GETOPT(3C)

The following example shows the call to GETOPTC:

| NTEGER*8 GETOPTC, | ARG
CHARACTER OPTSTR *n, OPTARG *m
| ARG = GETOPTC(optstr, opt arg)

Both arguments must always be present, but opt ar g is used only when an individual option letter (I ARG

has arguments.

The GETOPTC call works the same as get opt , with the following exceptions:

e |f aletter in optstr is followed by a colon (:), exactly one argument is expected for the option; it is copied
into opt ar g.

e |f aletter in optstr is followed by a semicolon (;), zero or more arguments are expected for the option.
You must then call GETVARCGC to get the variable arguments until GETVARGC returns O before the next
cal to GETOPTC.

The GETVARGC call has the following format:

| NTEGER*8 GETVARGC, MOREARG
CHARACTER VARG *n
MOREARG = GETVARGC (varg)

The next variable argument is copied into the character variable varg. GETVARGC returns 0 when no more
variable arguments exist.

After GETOPTC returns -1, you can call GETQARGC to get the remaining arguments from the command line.
GETQARCC has the following format:

| NTEGER*8 GETQARGC, MOREARG
CHARACTER QARG *n
MOREARG = GETQARGC (oarg)

GETQARCC returns O if there are no more arguments. The next remaining argument is copied into the
character variable oarg.

If GETOPTC is not used, GETOARGC can be called to get the command line arguments in order, starting
with the first argument.

On systems others than Cray MPP systems and the CRAY T90 series, the integer functions GETOPT,
GETVARG, and GETOARG are also available. These provide functionality similar to GETOPTC, GETVARGC,
and GETQARGC. They are called as follows:

| NTEGER*8 GETOPT, | ARG
| ARG = GETOPT(optsh, opt ar g,optargsz)

SR-2080 10.0 259

GETOPT(3C) GETOPT(3C)

The opt ar g argument is an array of optargsz words into which GETOPT places the string of characters that
represents the argument associated with | ARG The optargsz argument is ignored if opt ar g is a character
variable.

The GETVARG call has the following format:

| NTEGER*8 GETVARG MOREARG

MOREARG = GETVARG (varg, vargs?)
The next variable argument is copied into the array varg (of size vargsz). The GETVARG call returns 0
when no more variable arguments exist.
After GETOPT returns -1, you can call GETOARG to get the remaining arguments from the command line.
The GETQARG call has the following format:

| NTEGER*8 GETQARG MOREARG

MOREARG = GETQARG (oarg, oargs?)
The GETQARG call returns O if there are no more arguments. The next remaining argument is copied into
the array oarg (of size oargsz).

If GETOPT is not used, GETQARG can be called to get the command line arguments in order, starting with
the first argument.

Fortran Examples
Example 1: The following example shows how the options of a command might be processed using
GETOPTC. This example assumes a and b, which have arguments, and x and y, which do not.

260 SR-2080 10.0

GETOPT(3C) GETOPT(3C)

CHARACTER*8 OPTI ONS
CHARACTER* 80 ARGWNTS
CHARACTER OPLET

| NTEGER*8 GETOPTC

| NTEGER*8 OPTVAL

DATA OPTI ONS/’ a: b; : xy'/

100 CONTI NUE
OPTVAL = GETOPTC(OPTI ONS, ARGWNTS)
IF (OPTVAL . EQ -1) GOTO 200
OPLET = CHAR(OPTVAL)
IF (OPLET .EQ 'a') THEN
C Analyze argunents from ARGWTS
ELSEI F (OPLET .EQ 'b’) THEN
C Analyze argunents from ARGWTS
ELSEI F (OPLET .EQ 'x') THEN
C Process x option
ELSEI F (OPLET .EQ 'y') THEN
C Process y option
ENDI F
GOTO 100
200 CONTI NUE

Example 2: The following example illustrates the use of GETOPT and GETOARG together:

PROGRAM TEST

EXTERNAL GETOPT, GETOARG

I NTEGER*8 GETOPT, CGETOARG

| NTEGER*8 ARGLEN

PARAMETER (ARGLEN = 10)

| NTEGER*8 OPT, DONE, ARGBUF(ARGLEN)

10 CONTI NUE OPT = GETOPT(' abo:’, ARGBUF, ARGLEN)
IF (OPT .GE. 0) THEN IF (OPT .EQ 'a R THEN
PRINT "(a)’', ' option -a- present ’

ELSEIF (OPT .EQ 'b’'R) THEN
PRINT "(a)’, ' option -b- present ’

SR-2080 10.0 261

GETOPT(3C) GETOPT(3C)

ELSEIF (OPT .EQ '0'R) THEN

PRINT "(a,a8)’, ' option -o- present-’,argbuf(1)
ELSE C unknown option
PRINT "(a,a8)’, ' bad option present-’, opt ENDI F
GOoro 10 ENDI F C all options processed C
C Get argunents 20 CONTI NUE
DONE = GETOARG(ARGBUF, ARCGLEN) IF (DONE . NE. 0) THEN
PRINT ' (a,a8)’, ' argunent present-’,argbuf(1) GOoro 20
ENDI F C Done processi ng argunents END

SEE ALSO
get opt s(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

262 SR-2080 10.0

GETOPTLST(3C) GETOPTLST(3C)

NAME
get opt | st — Gets option argument list

SYNOPSIS
#i ncl ude <stdlib. h>

int getoptlst (char *optarg, char ***optargv);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The get opt | st function parses the list to which the given optarg points. This list is not modified. A
single block of memory, which must be large enough to contain pointers to consecutive elements and the
elements themselves, is alocated by this function, using mal | oc(3C). The returned optargv serves as a
pointer both to this single block of memory and to consecutive element pointers. Thus, the returned optargv
can be used by the calling function to obtain consecutive elements in the list and, once the list is complete,
to free (using f r ee) the space alocated by mal | oc.

An array of pointersis stored in consecutive locations, beginning in the location indicated by the returned
optargv. These pointers point to elements that were obtained from the list to which the given optarg points.
The first pointer points to the first element, the second pointer points to the second element, and so on. The
number of pointers is represented by the return value of this function. Also, get opt | st inserts a null
pointer at the end of the array. Elements to which the array of pointers point are represented as
null-terminated character strings.

The list to which the given optarg points is assumed to be a null-terminated string of characters, which is
not modified by this function. Elements in this string are separated by one of the following: white space
(including blank, tab, or new-line chracters), a comma, or the final null character. Any character (other than
a null character) that is preceded by a backslash is interpreted as the single character following the backslash
(the\ isremoved). The specia meaning for that character, if any, is removed. Thus, you can force a
backslash, blank, tab, new-line character, or comma into any element within the list by preceding it with a
backslash character. If the backslash character is the last character of the string to which the given optarg
points (that is, it precedes a terminating null byte), the backslash is treated as a normal character and is not
removed.

An empty list contains one empty element. Empty fields can be recognized when the comma or null-byte
terminator is used as a separator. Example:

, elenment2

SR-2080 10.0 263

GETOPTLST(3C) GETOPTLST(3C)

The above list contains one empty element followed by a second element that has a value of el enent 2.

RETURN VALUES

If an error is encountered in this function, the return value is —1. (The only possible error is the failure of
mal | oc(3C).) Otherwise, the return value equals the number of elements in the list. If the given optarg is
null, the return value is set to O; the optargv returned is set to null in this case. If the given optarg is not
null, the return value is set to 1 or greater (there is always at least one element in this case, even though it
may be an empty element).

EXAMPLES

The get opt | st function is intended for use with the get opt (3C) library function. The following code
fragment shows how you might process the arguments of a command by using both get opt and
getoptl st. The-| option requires an argument in this example; this argument is processed as a list of
elements.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

mai n(argc, argv)
int argc;
char [argv[];
{
static int aflg = 0, bflg =0, errflg = 0;
static char Ofile, [ofile;
char [Oopt ar gv;
int optargc, c, i;
voi d bproc (void);

while ((c = getopt(argc, argv, "abf:l1:0:")) !'= EOF) {
switch (c) {

case 'a’':
if (bflg)
errfl g++;
el se
af | g++;
br eak;
case 'b’:
if (aflg)
errfl g++;
el se
bproc();
br eak;
case 'f’:

264 SR-2080 10.0

GETOPTLST(3C) GETOPTLST(3C)

ifile = optarg;
br eak;
case '|':
if ((optargc = getoptlst(optarg, &optargv)) < 0)
errfl g++;
el se {
fprintf(stdout, "El ements: %\ n", optargc);
for (i =0; i < optargc; i++) {
fprintf(stdout, "optargv[%]: '%’\n", i, optargv[i]);
}
free(optargv)
}
br eak;
case '0’:
ofile = optarg;
br eak;
case ' ?':
errfl g++;
}od

if (errflg) {
fprintf(stderr, "Usage: ...\n");
exit (2);

for (; optind < argc; optind++) {
if (laccess(argv[optind], 4)) {
fprintf(stdout, "% readable\n", argv[optind]);

}
el se {
fprintf(stdout, "% NOT readable\n", argv[optind]);
}
}
}
voi d bproc(void);
{
fprintf(stdout, "bproc called\n");
}

SEE ALSO
get opt (3C), mal | oc(3C)

SR-2080 10.0 265

GETPASS(3C) GETPASS(3C)

NAME

get pass — Reads a password

SYNOPSIS
#i ncl ude <uni std. h>

char *getpass (const char *prompt);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The get pass function reads up to a new-line character or EOF from file / dev/ t t y; before doing so, it
prompts on the standard error output with the null-terminated string prompt and disables echoing.

Upon successful completion, a pointer is returned to a null-terminated string of at most PASS_MAX (defined
in<limts.h>) characters. If / dev/tty cannot be opened, a null pointer is returned. An interrupt
terminates input and sends an interrupt signal to the calling program before returning.

NOTES

The return value points to static data that is overwritten by each call.

FILES
[dev/tty

SEE ALSO
get pwent (3C), | i budb(3C)

udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

266 SR-2080 10.0

GETPROT(3C)

NAME

GETPROT(3C)

endpr ot oent , get pr ot obynane, get pr ot obynunber, get pr ot oent, set pr ot oent — Gets
protocol entry

SYNOPSIS

#i ncl ude <net db. h>
(void);

*get pr ot obynane (char *name);

i nt endpr ot oent
struct protoent
struct protoent *getprotobynunber (int proto);
struct protoent *getprotoent (void);

i nt setprotoent (int stayopen);

IMPLEMENTATION

All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The get pr ot obynunber, get pr ot obynane, and get pr ot oent functions each return a pointer to an
object in the network protocol database, / et ¢/ pr ot ocol s. The following structure contains the fields of
aline in the network protocol database:

struct protoent {
char *p_nane; /* official name of protocol */
char **p al i ases; /* alias |ist */
i nt p_pr ot o; /* protocol number */
b
The members of this structure are as follows:
Member Description
p_nane Official name of the protocoal.
p_aliases Zero-terminated list of alternative names for the protocol.
p_proto Protocol number; protocol numbers are returned in host byte order.

The set pr ot oent function opens and rewinds the / et ¢/ pr ot ocol s file. If the stayopen flag is
nonzero, the / et c/ pr ot ocol s file remains open across get pr ot o* calls until closed by

ent pr ot oent .

SR-2080 10.0

267

GETPROT(3C) GETPROT(3C)

The endpr ot oent function closes the / et ¢/ pr ot ocol s file only if the stayopen flag to
set prot oent is0. Otherwise, endpr ot oent leaves the file open.

The get pr ot obynane function searches for the protocol name (or alias), hame, and the
get pr ot obynunber function searches for the protocol number, proto, sequentially from the first entry in
the database. The search continues until the desired information is found or until the last entry is reached.

The get pr ot oent function reads the next entry in the database, opening the database if necessary.

NOTES

All information is contained in a static area that must be copied if it is to be saved.

RETURN VALUES

A null pointer (0) is returned upon end-of-file or error. For get pr ot obynane and
get pr ot obynunber, anull pointer returned upon end-of-file indicates that the search did not find the
specified name or number.

FILES

[etc/protocols
/usr/include/ netdb. h

SEE ALSO

pr ot ocol s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

268 SR-2080 10.0

GETPW(3C) GETPW(3C)

NAME
get pw — Gets name from UID

SYNOPSIS

#i ncl ude <stdlib. h>

i nt getpw (int uid, char *buf);
IMPLEMENTATION

All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

The get pw function searches the password file for a user ID number that equals uid, copies the line of the
password file in which uid was found into the array pointed to by buf, and returns 0. The get pw function
returns a nonzero value if uid" cannot be found.

This function is included only for compatibility with prior systems and should not be used; see
get pwent (3C) and | i budb(3C) for functions to use instead.

WARNINGS

The preceding function uses header st di 0. h, which causes it to increase the size of programs more than
might otherwise be expected.

FILES
/ et c/ passwd

RETURN VALUES

The get pw function returns nonzero on error.

SEE ALSO
get pwent (3C), | i budb(3C)

passwd(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 269

GETPWENT(3C) GETPWENT(3C)

NAME
get pwent , get pwui d, get pwui d_r, get pwnam get pwnam r, set pwent , endpwent ,
f get pwent — Gets password file entry

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <pwd. h>

struct passwd *get pwent (void);
struct passwd *get pwuid (int uid);

int getpwuid_r (int uid, struct passwd *pwd, char *buf, size_ t bufsize, struct
passwd **result) ;

struct passwd *get pwnam (const char *name);

i nt getpwnamr (char *name, struct passwd *pwd, char *buf, size_t bufsize
struct passwd **result);

voi d set pwent (void);
voi d endpwent (void);

struct passwd *fget pwent (FILE *f);

IMPLEMENTATION
All Cray Research systems

STANDARDS

POSIX (get pwnamand get pwui d)
PThreads (get pwnam r and get pwui d_r)
AT&T extension (get pwent , set pwent , endpwent , and f get pwent)

DESCRIPTION

The get pwent , get pwui d, and get pwnamfunctions each return a pointer to an object with the
following structure, which contains the broken-out fields of one entry from either the / et ¢/ udb or the

[et c/ udb. publi c file. The UNICOS user-information database, or udb(5), file is a superset of the
information in the passwd(5) file; its use is mandatory. Generally, the udb file can be accessed only by
super users. The udb. publ i c file is always available and provides information to nonprivileged programs.

The information for one user’s entry is described in the following structure, which is declared in header file
pwd. h:

270 SR-2080 10.0

GETPWENT(3C)

struct passwd {

GETPWENT(3C)

char *pw_nare; /* login name */

char *pw_passwd; /* encrypted password */

uid_t pw_uid; [* UD*/

gid_t pw.gid; [* @D */

char *pw_age; /* password age */

char *pw_coment ; /* comment */

char *pw_gecos;

char *pw_dir; /* default login directory */

char *pw_shel | ; /* default login shell / program*/

b
The pw_coment and pw_gecos fields point to the same string.

The get pwent function, when first called, returns a pointer to the first passwd structure in the user
data-base; thereafter, it returns a pointer to the next passwd structure in the file. Therefore, successive calls
can be used to search the entire file.

The get pwui d function uses the get udbui d function to find the first numerical user ID matching uid,
trandates the udb information into the passwd structure, and returns a pointer to the structure containing
the information for the entry associated with uid.

The get pwnamfunction uses the get udbnamfunction to find a login name matching name, translates the
udb information into the passwd structure, and returns a pointer to the structure containing the information
for the entry associated with name.

If an error is encountered on accessing the udb, or if the requested information could not be found, these
functions return a null pointer.

A call to set pwent uses the function set udb, which has the effect of rewinding the udb to alow
repeated searches. The endpwent function may be called to close the file when processing is complete.

The f get pwent function returns a pointer to the next passwd structure in stream f; which must match the
format of / et ¢/ passwd (see passwd(5)). This function is included only for compatibility with prior
systems; use of f get pwent in new code is discouraged.

The functions whose names end with _r, get pwui d_r and get pwnam r, provide equivalent
functionality but with an interface that is safe for multitasked applications. The primary difference between
these interfaces is that instead of returning a pointer to a structure, they put the results into the structure
pointed to by the pwd argument. In addition, they use the provided buffer buf of size bufsize to store
auxilary data. The maximum size needed for this buffer can be determined with the

_SC GETPW R _SI ZE_MAX sysconf parameter. A NULL pointer is returned at the location pointed to by
result on error or if the required entry is not found.

SR-2080 10.0 271

GETPWENT(3C) GETPWENT(3C)

NOTES
All information is contained in a static area that must be copied if it is to be saved.

Unless the caller is a super user, calls using function get pwnamreturn the indicated information minus the
encrypted password field.

Since these calls use the get udbxxx functions to perform their function, mixing get pwxxx and get udbxxx
calls may have unexpected side effects. This is a concern if sequential reading is being done through
get pwent while get udbxxx calls are also being issued in the same program.

WARNINGS

Successive calls to get pwent , get pwui d, and get pwnamreturn a pointer to the same static passwd
structure each time they are called; these calls overwrite the same data area. Use caution when working with
more than one passwd structure at a time.

The get pwent routine | eaves the udb file open to assure reasonable performance for multiple
cals; the get pwui d and get pwnamcalls close the udb file before returning. If it is important that the
program in which the get pwent calls are made can be restarted, an endpwent call must be made to close
the udb file after the access is complete.

RETURN VALUES

For all interfaces other than get pwui d_r and get pwnam r, a null pointer is returned on ECF or error.
For get pwui d_r and get pwnam r, O is returned on success. Otherwise an error number is returned:

ERANCGE Insufficient storage was supplied via buf and bufsize to contain the data to be referenced by the
resulting struct passwd structure.

FILES

[et c/ passwd
/et c/ udb
[etc/udb. public

SEE ALSO
get gr ent (3C), get | ogi n(3C), i d2nam3C), | i budb(3C)

passwd(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

272 SR-2080 10.0

GETRPCENT(3C) GETRPCENT(3C)

NAME

get rpcent, endr pcent, get r pcbynane, get r pcbynunber, setr pcent — Gets remote procedure
cal entry
SYNOPSIS
#i ncl ude <rpc/ netdb. h>
struct rpcent *getrpcent (void)
struct rpcent *getrpcbynane (char *name);
struct rpcent *getrpcbynunber (int number);
int setrpcent (int stayopen);

i nt endrpcent (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The get r pcent, get r pcbynane, and get r pcbynumnber functions each return a pointer to an object
with the following structure that contains the broken-out fields of a line of the remote procedure call (RPC)
program number database (/ et ¢/ r pc):

struct rpcent {

char *r_nane; /* name of server for this RPC program */
char **r _aliases; /* Alias list */
| ong r _nunber; /* RPC program nunber */
b

A breakdown of this structure is as follows:

Member Description

r _name The name of the server for this RPC program

r_aliases A zero-terminated list of alternative names for the RPC program

r _number The RPC program number for this service

The get r pcent function reads the next line of the file and opens the file if necessary.

SR-2080 10.0 273

GETRPCENT(3C) GETRPCENT(3C)

The set r pcent function opens and rewinds the file. If the stayopen flag is nonzero, the RPC program
number database does not close after each call to get r pcent , whether the call is direct or indirect (that is,
made through one of the other get r pcent calls).

The endr pcent command closes the file.

The get r pcbynane and get r pcbynumnber function search sequentially from the beginning of the file
until a matching RPC program name or program number is found, or until an end-of-file (EOF) marker is
encountered.

NOTES

All information is contained in a static area; therefore, it must be copied if it is to be saved.

RETURN VALUES

A null pointer (0) is returned when reaching EOF or an error.

FILES

net db. h
[etclrpc
/ et c/ yp/ domainname/ r pc. bynumnber

SEE ALSO
r pc(3C)

r pci nf o(8), ypser v(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

274 SR-2080 10.0

GETS(3C) GETS(3C)

NAME

gets, fgets, f get ws — Gets a string from a stream

SYNOPSIS
#i ncl ude <stdio. h>
char *gets (char *s);
char *fgets (char *s, int n, FILE *stream);
#i ncl ude <wchar. h>

wchar _t *fgetws(wchar_t *ws, int n, FILE *stream);

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (get s and f get s only)
XPG4 (f get ws only)

DESCRIPTION

The get s function reads characters from the standard input stream, st di n, into the array to which s points,
until a newline character is read or an end-of-file (EOF) condition is encountered. The newline character is
discarded, and the string is terminated with a null character.

The f get s function reads characters from the specified stream into the array to which s points, until n—1
characters are read, a newline character is read and transferred to s, or an EOF condition is encountered.
The string is then terminated with a null character.

The f get ws function reads characters from the stream, converts these to the corresponding wide-character
codes, places them in the wchar _t array to which ws points, until n—1 characters are read, or a newline
character is read, converted and transferred to ws, or an EOF condition is encountered. The wide character
string, ws, is then terminated with a null wide-character code. The f get ws function may mark the

st _at i ne field of the file associated with stream for update. The st _at i ne field is marked for update
by the first successful execution of f get c(3C), f get s, f get we(3C), f get ws, f r ead(3C), f scanf (3C),
get ¢(3C), get char (3C), get s, or scanf (3C) by using stream that returns data not supplied by a prior
call to unget c() or unget we().

CAUTIONS

The use of get s is discouraged because of the potential for memory overwrites.

SR-2080 10.0 275

GETS(3C) GETS(3C)

RETURN VALUES

These functions return s or ws if successful. If an EOF is encountered and no characters have been read, no
characters are transferred to s and a null pointer is returned. (To determine if an EOF was reached, call

f eof (3C).) If aread error occurs, such as that caused by trying to use these functions on a file that has not
been opened for reading, the array contents are indeterminate and a null pointer is returned.

FORTRAN EXTENSIONS

You also can cal the f get s function from Fortran programs, as follows:

| NTEGER*8 FGETS, stream, s (m), n, |
| = FGETS(s, n, stream

or

CHARACTER *lens (m), n, |
| = FGETS(s, n, stream

Argument m is an integer constant that specifies the number of elements in array s. If the second declaration
is used for array s, len is the length in characters of each element in character array s.

SEE ALSO
ferror (3C), f open(3C), f read(3C), get c(3C), scanf (3C)

276 SR-2080 10.0

GETSERV(3C) GETSERV/(3C)

NAME

endservent, get ser vbynane, get servbyport, get servent, set servent — Gets service entry

SYNOPSIS
#i ncl ude <net db. h>
i nt endservent (void);
struct servent *getservbynane (char *name, char *proto);
struct servent *getservbyport (int port, char *proto);
struct servent *getservent (void);

i nt setservent (int stayopen);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The get ser vbynane, get servbyport, and get ser vent functions each return a pointer to an object
in the network services database, / et ¢/ ser vi ces. The following structure contains the fields of aline in
the network services database:

struct servent {

char *s_ name; [* official name of service */
char **s aliases; [* alias list */
i nt s_port; /* port service resides at */
char *s_proto; /* protocol to use */
i

The members of this structure are as follows:

Member Description

S_nane Official name of the service.

s_aliases Zero-terminated list of alternative names for the service.

s_port Port number at which the service resides; port numbers are returned in network byte order.

s_proto Name of the protocol to use when contacting the service.

The set ser vent function opens and rewinds the / et c/ ser vi ces file. If the st ayopen flag is
nonzero, the / et c/ ser vi ce file will remain open across get ser vbyname and get ser vbyport cals
until closed by the endser vent function.

SR-2080 10.0 277

GETSERV(3C) GETSERV(3C)

NOTES

The endser vent function closes the / et c/ ser vi ces file. Otherwise, endser vent leaves the file
open.

The get ser vbynane function searches for the service name (or alias) name, and the get ser vbyport
function searches for the port number port at which the service resides, sequentially from the first entry in
the database. |If the address type pr ot o is nonzero, the s_pr ot o field of the database entry must also
match pr ot o; otherwise, thes_pr ot o field isignored. The search continues until the desired information
is found or until the last entry is reached. If the optional pr ot o argument is specified, the pr ot 0 argument
must match the s_pr ot o field in the database entry. Because get ser vbynanme and get ser vbyport
use set servent and endser vent , they open and close the file if the stayopen flag is O.

The get ser vent function reads the next entry in the database, opening the database if necessary.

All of these functions call get host i nf 0(3C) functions to perform the searches.

All information is contained in a static area that must be copied if it is to be saved.

RETURN VALUES

FILES

A null pointer (0) is returned upon end-of-file or error. For get ser vbynane and get ser vbyport, a
null pointer returned upon end-of-file indicates that an entry containing the specified name or port humber
was not found in the database.

/ etcl/ services
/usr/include/ netdb. h

SEE ALSO

278

get host i nf 0(3C), get pr ot (3C)

servi ces(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0

GETTOS(3C) GETTOS(3C)

NAME

endt osent, gett osbynane, gett osent, par set os, sett osent — Gets network Type Of Service
information

SYNOPSIS

#i ncl ude <net db. h>

i nt endtosent (void);

struct tosent *gettosbynane (char *name, char *proto);
struct tosent *gettosent (void);

i nt parsetos (char *name, char *proto);

int settosent (int stayopen);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The get t osbynane and get t osent functions each return a pointer to an object that describes a Type Of
Service (TOS) entry. The information in the TOS entry is obtained from the file / et ¢/ i pt os. The
following structure describes a TOS entry:

struct tosent ({
char *t _nane;
char **t aliases;
char *t _proto;
i nt t_tos;
}
The members of this structure are as follows:
Member Description
t _nane Official name of the TOS.
t _aliases Zero-terminated array of alternative names for the TOS.
t_proto The name of the IP protocol for which the TOS entry applies. Examples aret cp, udp,
i cnp, and the wildcard, *.
t_tos The actual TOS bits for this entry.

SR-2080 10.0 279

GETTOS(3C) GETTOS(3C)

The set t osent function opens and rewindsthe / et ¢/ i pt os file. If the stayopen flag is nonzero,
successive calls to get t osbynane do not close and reopen the / et ¢/ i pt os file.

The endt osent function closesthe/ et ¢/ i pt os file.

The get t osbynane function fetches information for the TOS with name (or alias) name for the protocol

proto. If proto is null or the string * (a single asterisk), the get t osbyname function fetches information
for the first encountered TOS with name name, regardless of protocol. The get t osbynane function uses
the sett osent and endt osent functions, thus opening and closing the file, if the stayopen flag is 0.

The get t osent function returns the next entry in the / et ¢/ i pt os database, opening the file if
necessary.

The par set os function returns the actual t _t os TOS value from the t osent structure for the specified
name and proto fields, as returned by get t osbyname. If the gett osbynane function does not find an
appropriate t osent value, the par set os function returns the presumed numeric value that is specified in
the string nane.

NOTES

All information is contained in a static area that must be copied if it is to be saved.

RETURN VALUES

The get t osbynane function returns NULL at the end-of-file or when an error occurs. When the null
pointer is returned at end-of-file, this indicates that get t osbynane did not find the specified name or
address in the file.

The par set os function returns the actual TOS value, or returns —1 and sets er r no if it detects an error,
as follows:

Error Description
El NVAL No TOS entry for the name name is found, and name is not a humeric string.
ERANCGE The specified TOS value is outside the legal range of TOS values (0 to 255).

FILES
[etcliptos
/usr/include/ netdb. h
SEE ALSO

i pt 0s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

280 SR-2080 10.0

GETUSERSHELL (3C) GETUSERSHELL (3C)

NAME

get usershel |, setusershel | , endusershel | — Gets user shells

SYNOPSIS
#i ncl ude <stdlib. h>
char *getusershell (void);
i nt setusershell (void);

i nt endusershell (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The get user shel | function returns a pointer to a user shell as defined by the system manager in the file
/etc/shells. If/etc/shells doesnot exist, pointers to the standard system shells / bi n/ sh,
/ bi n/ csh, and/ bi n/ ksh are returned.

The get user shel | function reads the next line (opening the file if necessary); set user shel | rewinds
the file; enduser shel | closesit.

NOTES

All information is contained in a static area; it must be copied if it is to be saved.

RETURN VALUES

The get user shel | function returns a null pointer on end-of-file or error.
FILES

/etc/shells File that contains a list of available shells.

SR-2080 10.0 281

GETUT(3C) GETUT(3C)

NAME

getutent,getutid, getutline,pututline,setutent,endutent, utnpname — Accesses
ut np file entry

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <ut np. h>

struct utnp *getutent (void);

struct utnp *getutid (const struct utnp *id);
struct utnp *getutline (const struct utnp *line);
struct utnp *pututline (const struct utnp *utmp);
void setutent (void);

voi d endut ent (void);

i nt utmpnane (const char *file);

IMPLEMENTATION

All Cray Research systems

STANDARDS

AT&T extension

DESCRIPTION

282

The get ut ent , get uti d, and get ut | i ne functions each return a pointer to a structure of type st r uct
ut np, which is defined in header file <ut np. h>. (See ut np(5) in the UNICOS File Formats and Special
Files Reference Manual, Cray Research publication SR—2014.)

The get ut ent function reads in the next entry from a ut np-like file. If the file is not already open,
get ut ent opensit. If get ut ent reaches the end of the file, it returns a null pointer.

If the type specified by the id argument is RUN_LVL, BOOT_TI Mg, OLD_TI Mg, or NEW Tl VE, get uti d
searches forward from the current point in the ut np file until it finds an entry with a ut _t ype matching

i d->ut _type. If the type specified inid is| NI T_PROCESS, LOd N_PROCESS, USER_PROCESS, or
DEAD PROCESS, get ut i d returns a pointer to the first entry whose type is one of these four and whose
ut _i d field matchesid- >ut _i d. If the end-of-file is reached without a match, get ut i d returns a null
pointer.

The get ut | i ne function searches forward from the current point in the ut np file until it finds an entry of
type LOG N_PROCESS or USER_PROCESS that aso has aut _| i ne string matching the line->ut_line
string. If the end-of-file is reached without a match, get ut | i ne returns a null pointer.

SR-2080 10.0

GETUT(3C) GETUT(3C)

NOTES

The put ut | i ne function writes the supplied ut np structure into the ut np file. It usesgetutid to
search forward for the proper place if it finds that it is not aready at the proper place. It is expected that,
normally, the user of put ut | i ne will have searched for the proper entry using one of the get ut
functions. If so, put ut | i ne does not search. If put ut | i ne does not find a matching slot for the new
entry, it adds a new entry to the end of the file.

The set ut ent function resets the input stream to the beginning of the file. This should be done before
each search for a new entry if the entire file is to be examined.

The endut ent function closes the currently open file.

The ut mpnane function lets you change the name of the file examined, from / et ¢/ ut np to any other file.
It is most often expected that this other file name will be / et ¢/ wt np. If the file does not exigt, it is not
apparent until the first attempt to reference the file is made. The ut npname function does not open the file;
it just closes the old file if it is currently open and saves the new file name.

The most current entry is saved in a static structure. Multiple accesses require that the current entry be
copied before further accesses are made. Upon each call, get uti d or get ut | i ne examine the static
structure before performing more 1/0. If the contents of the static structure match what the function is
searching for, it looks no further. For this reason, using get ut | i ne to search for multiple occurrences
necessitates zeroing out the static structure after each success to prevent get ut | i ne from returning the
same pointer over and over again.

There is one exception to the rule about removing the structure before further reads are done. The static
structure contents are not harmed in an implicit read done by put ut | i ne if the function finds that it is not
already at the correct place in the file. This is true even if you have just modified those contents and passed
the pointer back to put ut | i ne.

These functions use buffered standard 1/O for input, but put ut | i ne uses an unbuffered nonstandard write
to avoid race conditions between processes trying to modify the ut mp and wt np files.

RETURN VALUES

FILES

The put ut | i ne function returns a null pointer if it fails, otherwise, it returns a pointer to a copy of the
structure.

The ut npnane function returns O if it fails; otherwise, it returns 1.

The other functions return a null pointer upon failure to read (whether due to the lack of necessary
permissions or due to reaching the end-of-file) or upon failure to write.

[etc/utmp File of user information

SR-2080 10.0 283

GETUT(3C) GETUT(3C)

[etc/wnmp File of user information

SEE ALSO
ut np(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

284 SR-2080 10.0

GETWD(3C)

NAME
get wd — Gets current directory path name

SYNOPSIS

#i ncl ude <sys/ param h>
#i ncl ude <uni std. h>

char *getwd (char *pathname) ;

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

GETWD(3C)

The get wd function copies the absolute path name of the current directory to pathname and returns a

pointer to the result.

CAUTIONS

The length of the pathname array should be at least PATH _MAX characters, as defined in the header file

sys/ param h.

RETURN VALUES

The get wd function returns O and places a message in pathname if an error occurs.

SEE ALSO
get cwd(3C)

SR-2080 10.0

285

GLOB(3C) GLOB(3C)

NAME

gl ob, gl obf r ee — Generates path names matching a pattern

SYNOPSIS
#i ncl ude <gl ob. h>

i nt glob(const char *pattern, int flags,
int (*errfunc) (const char *, int), glob_t *pglob);

voi d gl obfree (glob_t *pglab);
IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

The gl ob function is a path name generator that implements the rules for file name pattern matching used
by the shell.

The include file gl ob. h defines the structure type gl ob_t , which contains at least the following fields:
typedef struct {

i nt gl _pat hc; /* count of total paths so far */
int gl_matchc; /* count of paths matching pattern */
int gl_offs; /* reserved at beginning of gl _pathv */
int gl_flags; /* returned flags */
char **gl _pathv; /* list of paths matching pattern */

} glob_t;

The argument pattern is a pointer to a path name pattern to be expanded. The gl ob argument matches all
accessible path names against the pattern and creates a list of the path names that match. In order to have
access to a path name, gl ob requires search permission on every component of a path except the last and
read permission on each directory of any file name component of pat t er n that contains any of the special
characters*, ?, or [.

The gl ob argument stores the number of matched path names into the gl _pat hc field, and a pointer to a
list of pointers to path names into the gl _pat hv field. The first pointer after the last path name is NULL.
If the pattern does not match any path names, the returned number of matched paths is set to zero.

It is the caller’s responsibility to create the structure pointed to by pgl ob. The gl ob function allocates
other space as needed, including the memory pointed to by gl _pat hv.

286 SR-2080 10.0

GLOB(3C) GLOB(3C)

The argument flags is used to modify the behavior of gl ob. The value of flags is the bitwise inclusive OR
of any of the following values defined in gl ob. h :

Value Description

GLOB_APPEND Appends path names generated to those from a previous call (or calls) to gl ob. The
value of gl _pat hc will be the total matches found by this call and the previous
cal(s). The path names are appended to, not merged with the path names returned by
the previous cal(s). Between calls, the caller must not change the setting of the
GLOB_DOOFFS flag, nor change the value of gl _of f s when GLOB_DOOFFS is set,
nor (obviously) call gl obf r ee for pgl ob.

GLOB_DOOFFS Causes the gl _of f s field to specify how many null pointers should be prepended to
the beginning of the gl _pat hv field. That is, gl _pat hv will point to gl _of f s null
pointers, followed by gl _pat hc path name pointers, followed by a null pointer.

GLOB_ERR Causes gl ob to return when it encounters a directory that it cannot open or read.
Ordinarily, gl ob continues to find matches.
GLOB_MARK Appends a slash to each path name that is a directory matching pat t er n.

GLOB_NOCHECK Causes the following result if pattern does not match any path name: gl ob returns a
list consisting of only pattern, with the total number of path names set to 1, and the
number of matched path names set to 0. If GLOB_QUOTE is set, its effect is present in
the pattern returned.

GLOB_NOVAGQ C Has the same effect as GLOB_NOCHECK but appends pat t er n only if it contains
none of the specia characters*, ?, or [. GLOB_NOVAG Cis needed only to simplify
implementation of the historic behavior of gl ob under csh(1).

GLOB_NOSORT Disables sorting of path names in ascending ASCII order; this increases the performance
of gl ob.

GLOB_QUOTE Enables the backslash (\) character for quoting. Every occurrence of a backslash
followed by a character in the pattern is replaced by that character, preventing any
special interpretation of the character.

If, during the search, a directory is encountered that cannot be opened or read and er r f unc is non-NULL,
gl ob cals (*errfunc) (path, errno). This may be counterintuitive: a pattern such as */ Makefil e
will try to st at f oo/ Makefi | e evenif f 00 is not a directory, resulting in acall to errfunc. The
error routine can suppress this action by testing for ENOCENT and ENOTDI R; however, the GLOB_ERR flag
will still cause an immediate return when this happens.

If errfunc returns nonzero, gl ob stops the scan and returns G_OB_ABEND after setting gl _pat hc and
gl _pat hv to reflect any paths already matched. This happens also if an error is encountered and
GLOB_ERRs set in flags, regardless of the return value of er r f unc, if called. If GLOB_ERRis not set
and either er r f unc isNULL or err f unc returns zero, the error is ignored.

The gl obf r ee function frees any space associated with pgl ob from a previous call(s) to gl ob.

SR-2080 10.0 287

GLOB(3C) GLOB(3C)

RETURN VALUES

On successful completion, gl ob returns zero. In addition, the fields of pgl ob contain the following values:

Value Description

gl _pat hc Total number of matched path names so far. This includes other matches from previous
invocations of gl ob if G.OB_APPEND was specified.

gl _mat chc Number of matched path names in the current invocation of gl ob.

gl _flags Copy of the f | ags parameter with the G_.OB_MAGCHAR bit set if patt er n contained
any of the special characters*, ? or [; the bit is cleared if not these characters were
absent.

gl _pat hv Pointer to a NULL-terminated list of matched path names. However, if gl _pat hc is

zero, the contents of gl _pat hv are undefined.

If gl ob terminates due to an error, it sets errno and returns one of the following nonzero constants, which
are defined in the include file gl ob. h:

Constant Description

GLOB_NOSPACE An attempt to allocate memory failed.

GLOB_ABEND The scan was stopped because an error was encountered and either GLOB_ERR was set
or (*errfunc) () returned nonzero.

The arguments pgl ob- >gl _pat hc and pgl ob- >gl _pat hv are still set as specified above.

NOTES
Patterns longer than MAXPATHLEN may cause unchecked errors.

The gl ob argument may fail and set er r no for any of the errors specified for the st at (2) system call, and
the library routines cl osedi r (3C), opendi r (3C), r eaddi r (3C), mal | oc(3C), and f r ee(3C).

EXAMPLES
A rough equivaent of "I s -1 *.c *.h" can be obtained with the following code:
GLOB t g;

g.gl _offs = 2;

glob("*.c", GLOB_DOOFFS, NULL, &g9);

glob("*.h", GLOB_DOOFFS | GLOB_APPEND, NULL, &g);
g.gl _pathv[0] = "Is";

g.gl _pathv[1] N B

execvp("ls", g.gl_pathv);

SEE ALSO
sh(1) and csh(21) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
f nmat ch(3C), r egexp. h(3C), wor dexp(3C)

288 SR-2080 10.0

HERROR(3C) HERROR(3C)

NAME

her r or — Produces host lookup error messages

SYNOPSIS
#i ncl ude <net db. h>
void herror (char *s);
int h_nerr;
char *h_errlist[];

int h_errno;

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The her r or function writes a short error message to st der r, describing the last error encountered during
a host lookup. The argument string s is printed first (if it is not null). Next, a colon and a blank are printed,
followed by the message and a new line. To be of most use, the argument string should include the name of
the program (and possibly the name of the subfunction) that encountered the error. The error number is
taken from the external variable h_er r no, which is set when host lookup errors occur, but not cleared when
successful calls are made.

To simplify variant formatting of messages, the vector of message strings, known asthe h_errl i st table,
isprovided. h_errno can be used as an index in this table to get the message string without the new line.
The number of messages provided for in the table is stored in h_nerr. This field should be checked to
ensure that an error code in h_er r no has a corresponding message string in the table.

NOTES

The function her r or and the objectsh_nerr, h_errli st, and h_errno will not work with code that
is multitasked.

SEE ALSO
get host (3C), resol ver (3C), st di 0. h(3C)

SR-2080 10.0 289

HSEARCH(3C) HSEARCH(3C)

NAME
hsear ch, hcr eat e, hdest r oy — Manages hash search tables

SYNOPSIS
#i ncl ude <search. h>
ENTRY *hsear ch (ENTRY item, ACTI ON action) ;
int hcreate (size_t nd);

voi d hdestroy (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The hash-table search function hsear ch is generalized from Knuth (6.4) Algorithm D. It returns a pointer
into a hash table indicating the location at which an entry can be found. item is a structure of type ENTRY
(defined in header file <sear ch. h>) containing two pointers: item.key points to the comparison key, and
item.data points to any other data to be associated with that key. (Pointers to types other than voi d should
be cast to pointer-to-void.) action is a member of an enumeration type ACTI ON indicating the disposition of
the entry if it cannot be found in the table. ENTER indicates that the item should be inserted in the table at
an appropriate point. FI ND indicates that no entry should be made. Unsuccessful resolution is indicated by
the return of a null pointer.

The hcr eat e function allocates sufficient space for the table and must be called before hsear ch is used.
The nel argument is an estimate of the maximum number of entries that the table will contain. You can use
the algorithm to adjust this number upward to obtain certain mathematically favorable circumstances.

The hdest r oy function destroys the search table, and it can be followed by another call to hcr eat e.

NOTES

Only one hash search table may be active at any given time.

The hsear ch function uses open addressing with a multiplicative hash function. Its source code, however,
has many other options available; you may select options by compiling the hsear ch source with the
following symbols defined to the preprocessor:

Symbol Description
D Vv Use the remainder modulo table size instead of the multiplicative algorithm as the hash
function.

290 SR-2080 10.0

HSEARCH(3C) HSEARCH(3C)

USCR Use a user-supplied comparison function for ascertaining table membership. The function
should be named hconpar and should behave in a manner similar to st r cnp (see
st ri ng(3C)).

CHAI NED Use alinked list to resolve collisions. If this option is selected, the following other options
become available:
START Places new entries at the beginning of the linked list; default is placement at the

end.

SORTUP Keeps the linked list sorted by key in ascending order.
SORTDOWN Keeps the linked list sorted by key in descending order.

Additionally, there are preprocessor options for obtaining debugging printout (- DDEBUG) and for including a
test driver in the calling function (- DDRI VER). See the source code for further details.

WARNINGS

Both hsear ch and hcr eat e use the mal | oc(3C) function to allocate space.

RETURN VALUES

The hsear ch function returns a null pointer if the action is FI ND and the item could not be found, or if
the action is ENTER and the table is full.

If it cannot allocate sufficient space for the table, hcr eat e returns 0.

EXAMPLES

The following example reads in strings, followed by two numbers, and stores them in a hash table,
discarding duplicates. It then reads in strings, finds the matching entry in the hash table, and prints it out.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <search. h>

struct info { /[* This is the info stored in the table */
int age, room /* other than the key. */

i

#defi ne NUM _EMPL 5000 /* # of elenents in search table */

mai n()

{
char string_space[NUM EMPL*20] ; /* space to store strings */
struct info info_space[NUM EMPL]; /* space to store enployee info */
char *str_ptr = string_space; /* next avail space in string_space */
struct info *info_ptr = info_space; /* next avail space in info_space */
ENTRY item *found_ item
char name_t o_find[30]; /* name to | ook for in table */
int i =0;

SR-2080 10.0 291

HSEARCH(3C) HSEARCH(3C)

(void) hcreate(NUM EMPL) ; /* create table */
while (scanf ("%%%", str_ptr, & nfo_ptr->age,
& nfo_ptr->room != EOF & i++ < NUM EMPL) {

itemkey = str_ptr;

/[* put info in structure, and structure in item*/
itemdata = (void *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
i nfo_ptr++;
(void) hsearch(item ENTER);
/[* put iteminto table */
}
itemkey = name_to_find,; /* access table */
while (scanf ("%", itemkey) != EOF) {
/* if itemis in the table */
if ((found_item = hsearch(item FIND)) != NULL) {
(void)printf("found %, age = %, room = %\ n",
found_item >key,
((struct info *)found_item >data)->age,
((struct info *)found_item >data)->room;
} else {
(void)printf("no such enployee %\n", name_to_find);

}

SEE ALSO
bsear ch(3C), | sear ch(3C), mal | oc(3C), st ri ng(3C), t sear ch(3C)

292

SR-2080 10.0

IA_FAILURE(3C) IA_FAILURE(3C)

NAME

i a_fail ure — Processes identification and authentication (I&A) failures

SYNOPSIS

#i ncl ude <i a. h>
#i ncl ude <udb. h>

int ia_failure(
ia_failure_t *paramsent,
i a_success_ret_t *paranret);

IMPLEMENTATION
All Cray Research systems except Cray MPP systems running UNICOS MAX

DESCRIPTION

Thei a_fai | ure routine provides the following functionality:

* Manages the updating of the authentication failure information in the user database (UDB).

¢ Performs I/A failure auditing.

* Processes delayed logging; this is not done for batch jobs.

paramsent contains a pointer to the structure that contains the input parameters. paramret contains a pointer
to the structure that contains the output parameters.

RETURN VALUES

If successful, | A_NORMAL is returned. Otherwise, an IA exception code is returned. This routine does not
return if the exit code supplied in paramsent is nonzero.

NOTES

This routine supports two user exits, i a_uex_f ai | ur e (which is called on entry to this routine) and
i a_uex_failaudit (whichis caled after normal auditing is performed).

SR-2080 10.0 293

IA_FAILURE(3C) IA_FAILURE(3C)

SEE ALSO
get conf val (3C), i a_success(3C), i a_user (3C)
sl gent r y(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

exi t (3C), ti me(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

conf val (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR—2014, for descriptions of | ogi n-related UNICOS centralized user |dentification/Authentication (1/A)
options

udb(5) for a description of the UNICOS user database file

294 SR-2080 10.0

IA_MLSUSER(3C) IA_MLSUSER(3C)

NAME

i a_m suser — Determines the user’s mandatory access control (MAC) attributes

SYNOPSIS

#i ncl ude <sys/ mac. h>
#i ncl ude <sys/ udb. h>

int ia_msuser(
struct udb *ueptr,
struct secstat *shptr,
struct usrv *usptr,
m s_t *rlabptr;
int prntactive);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thei a_m suser routine determines the security attributes of the session based on the attributes of the user
and the connection. The attributes of the session are not set.

ueptr is a pointer to the user database (UDB) entry of the user. sbptr is the pointer to the attributes of the
connection. usptr is the structure in which the attributes of the session are returned to the caller. rlabptr is
arequired active label of the session. If i nt prntacti ve is nonzero, the active label of the session is
echoed.

The label range for the session is the intersection of the label range of the user and the label range of the
connection. If specified, the required active label must be within the range of the session. If the required
active label is null, the active label of the session is set to the default [abel of the user. The active label is
set to the minimum label of the session if the default is not within the range of the session.

NOTES

No auditing is performed by this routine; the caller must perform auditing.

The label on the current process is not changed.

RETURN VALUES
I A_NORMAL is returned for successful completion. Otherwise, | A MAC is returned.

SR-2080 10.0 295

IA_MLSUSER(3C) IA_MLSUSER(3C)

SEE ALSO
get conf val (3C), M s_creat e(3C), M s_free(3C), M s_gl b(3C), M s_| ub(3C),
set usrv(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

conf val (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014, for descriptions of centralized user identification and authentication options

296 SR-2080 10.0

IA_SUCCESS(3C) IA_SUCCESS(3C)

NAME

i a_success — Processes identification and authentication (1& A) successes

SYNOPSIS

#i ncl ude <i a. h>
#i ncl ude <udb. h>

int ia_success(
i a_success_t *paramsent,
i a_success_ret_t *paranret);
IMPLEMENTATION

All Cray Research systems except Cray MPP systems running UNICOS MAX

DESCRIPTION
Thei a_success routine provides the following functionality:
* Manages the updating of the authentication success information in the user database (UDB).
¢ Performs the I/A success auditing.
paramsent contains a pointer to the structure that contains the input parameters. paramret contains a pointer
to the structure that contains the output parameters.
RETURN VALUES
If successful, I A_NORMAL is returned. Otherwise, an IA exception code is returned.

NOTES
This routine supports two user exits, i a_uex_success (which is called on entry to this routine) and
i a_uex_succaudit (whichis caled at the end of this routine).
SEE ALSO
ia_failure(3C),ia_user(3C)
ti me(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
sl gent r y(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 297

IA_USER(3C)

NAME

IA_USER(3C)

i a_user — Performs user identification and authentication (1&A)

SYNOPSIS

#i ncl ude <ace. h>

#i ncl ude <i a. h>

#i ncl ude <udb. h>

int ia_user(

ia_user_t *param,
ia_user_ret_t *ret);

IMPLEMENTATION

All Cray Research systems except Cray MPP systems running UNICOS MAX

DESCRIPTION

298

Thei a_user routine provides a common UNICOS identification and authentication mechanism. The caller
specifies what authentication to perform and the order of authentication. The pswdlist field in the param
structure is the list and order of authentication to be performed.

The following types of authentication are supported by this routine:

Type

| A DI ALUP

| A SECURI D
| A UDB

I A WAL

Description

Dialup authentication; not supported in batch.
SecurlD passcode identification.

User database (UDB) password identification.
Workstation access list (WAL) verification.

These authentications can be requested in any order and combination. However, the order and handling of
| A SECURI D and | A_UDB authentication have specia rules, which are as follows:

Combination

Description

| A_SECURI D then | A_UDB

| A_UDB only
| A_SECURI D only

This combination should be the first choice for authentication. UDB authentication is
performed only if the SecurlD acm bot h flag is set, or the user is not configured for
Secur| D authentication.

This is the authentication choice if SecurlD is bypassed.

This is the authentication choice if UDB authentication is bypassed. Neither SecurlD
or UDB authentication is performed if the user is not configured with SecurlD.

SR-2080 10.0

IA_USER(3C)

IA_USER(3C)

| A_UDB then | A_SECURI D

UDB authentication is performed, then Secur | D authentication is performed if the
user has a SecurlD account. In this case, the acm bot h flag has no meaning. Both
authentications are always checked.

I A_SECURI D can be specified regardless of whether SecurlD is configured at your site. All SecurlD
authentication is bypassed if your site is not configured with SecurlD. No warning is returned.

The caller identifies itself to this routine. The following list describes known callers; special handling is
noted for several of the callers:

Caller

I A DGDAEMON
| A FTAMD

| A FTPD

IA LOGA N

| A_NQS
| A_REXECD

| A_RSHD
| A_SU

Description

No specia handling.

Setsunameto f t p if thel A_GUEST flag is set.
Setsunameto f t p if thel A_GUEST flag is set.

Supports the login back door. Only alows r oot to log in from the console when
CONSOLE is defined.

No special handling of r oot .
No specia handling.
No specia handling.

Supports no authentication for authorized users.

The flags field in the param structure is a bit mask. The following list describes each of the supported flags:

Flag
| A FFLAG

| A GUEST

Description

Indicates authentication can be skipped. This flag implies the same functionality as
the | ogi n implementation.

Indicates anonymous ft p or f t am

I A_| DENTI FI CATI ON

I A | NTERACTI VE

I A_PUBLI Cl DENT

| A_RFLAG

SR-2080 10.0

Indicates that only identification should be performed. The private UDB is returned
to authorized callers, while the public UDB is returned to unauthorized users.
I A_PUBLI Cis returned if the public UDB entry is returned.

Indicates an interactive session and that the user can be prompted for information. |f
this flag is not set, passwords must be supplied.

Indicates that identification should be performed. The public UDB entry is returned.
Does not require any other flag. If this flag is set, the private UDB is never returned.
| A | DENTI FI CATI ON has no meaning and is not processed.

Indicates that this is aremote I&A and clears | A FFLAG.

299

IA_USER(3C)

NOTES

IA_USER(3C)

To be an authorized user you must have read access to the private UDB.

This routine does not perform auditing or update the UDB based on the status of the I& A request. The
caller must perform auditing and ensure that the UDB is updated, which can be done by using the
i a_success(3C) andi a_fail ure(3C) routines.

This routine supports three user exits, i a_uex_aut hr ep (which is called on entry to this routine);
i a_uex_aut hadd (which is called after the requested authentication has been performed); and

i a_uex_aut hend (which is called at the end of this routine). i a_uex_aut hadd is not caled if
| A_| DENTI FI CATI ONor | A_PUBLI Cl DENT are specified.

RETURN VALUES

300

The following return values are possible:

Value

| A BACKDOOR
| A_ BADAUTH

| A_ DI ALUPERR
| A DI SABLED
| A GETSYSV

| A LOCALHOST
| A MAXLOGS

I A_NOPASS

I A_NORMAL

| A PUBLIC

| A_SECURI DERR
| A_TRUSTED

| A_UDBERR

| A_UDBEXPI RED

I A_UDBPWDNUL L

| A_UDBWEEK
I A_UNKNOMN

Description

Access allowed through the back door.

Unknown authorization type.

An error was encountered when processing the dial-up authentication.
The account is disabled; disabled flag is set in the UDB.

The get sysv(2) system call failed.

Access from | ocal host not allowed.

Access denied; maximum failures on account reached.

User alowed to bypass authentication.

Normal return code.

The user was identified and the public UDB entry was returned. Only returned if
| A_| DENTI FI CATI ONisset and | A_PUBLI Cl DENT is not set.

An error was encountered when processing SecurlD authentication.
Trusted user not allowed.
An error was encountered when processing UDB authentication.

Authentication successful; however the UDB password has expired. Caller must
process expired passwords.

The password in the UDB is null, and the user is not configured for SecurlD
authentication.

The password expires within the week.

Identification error; unknown user.

SR-2080 10.0

IA_USER(3C) IA_USER(3C)

I A UNKNOWNYP User known in UDB, but configured for network information services (NIS) and not
known to NIS.

I A WALERR The workstation access list (WAL) denied access.

EXAMPLES

The following examples show how to use thei a_user routine.

SR-2080 10.0 301

IA_USER(3C) IA_USER(3C)

Example 1: This example shows how i a_user can be called to identify a user. This example returns the
public UDB entry.

ia_user _ret t uret; /* Parameters returned fromia_user. */
ia_user_t usent; /* Paranmeters sent to ia_user.*/
struct udb ue;

/*

* Set up request structure.

*/

usent.revision = 0;

usent. uname = u_nane; /* May be null for interactive*/

usent. host = NULL;
usent.ttyn = ttyn;
usent.caller = 1A LOG N,;
usent. pswdli st = NULL;
usent. ueptr = &ue;

/*

* |nitialize the return structure.
*/

uret.revision = 0O;

uret.pswd = NULL;

uret.normal = O;

/*

* Set flag requesting public udb entry.
*/

usent. flags = | A PUBLI Cl DENT,;

retcode = ia_user(&usent, &uret);
if (retcode == I A_NORMAL) /* User identified, public UDB entry returned.*/
el se

/* User identified failed, UDB entry NOT returned. */

302 SR-2080 10.0

IA_USER(3C)

IA_USER(3C)

Example 2: This example shows how i a_user can be called to identify a user. This example returns

either the public or private UDB entry.

ia_user _ret t uret; /* Parameters returned fromia_user. */
ia_user_t usent; /* Paranmeters sent to ia_user.*/
struct udb ue;
/*

* Set up request structure.

*/

usent. revision = 0;

usent. unanme = u_nane; /* May be null for interactive*/
usent. host = NULL;

usent.ttyn = ttyn;

usent.caller = A LOG N,

usent. pswdl i st = NULL;

usent. ueptr = &ue;
/*

* |nitialize the return structure.

*/

uret.revision = 0O;

uret.pswd = NULL;

uret.normal = 0;
/*

* Set flag requesting identification only.

*/

usent. flags = | A | DENTI FI CATI ON,

retcode = ia_user(&usent, &uret);

if (retcode == | A_NORMAL) /* User identified, private UDB entry returned. */
else if (retcode == | A _PUBLIC)

/* User identified, public UDB entry returned.*/

el se

/* User identified failed, UDB entry NOT returned. */

SR-2080 10.0

303

IA_USER(3C)

304

IA_USER(3C)

Example 3: This example shows how to cal i a_user and bypass authentication. In this example, the
i a_uex_aut hadd user exit is still called. The difference between this example and example 2 is that
disabled account, password expiration, and so on are all processed.

/[* NMay be null for

Par ameters returned fromia user. */
Par ameters sent to ia_user.*/

interactive */

Thi s indicates that
nanme and password.

ia_user ret t uret; /*
ia_user_t usent; /*
struct udb ue;

/*

* Set up request structure.
*/

usent.revision = 0;
usent.uname = u_narne;

usent. host = utnp.ut_host;
usent.ttyn = ttyn;
usent.caller = | A SU;

usent. pswdl i st = NULL;

usent . ueptr = &ue;

/-k

* Set interactive flag.

* the user can be pronpt for
*/

usent.flags = | A | NTERACTI VE;
/*

* Initialize the return structure.
*/

uret.revision = 0;

uret.pswd = NULL;

uret.normal = O;

retcode = ia_user(&usent,

&uret);

SR-2080 10.0

IA_USER(3C) IA_USER(3C)

Example 4: This example shows how | ogi n(1) can be used to call i a_user . Inthis example, | ogi n
calsi a_user to perform SecurlD, UDB, DIALUP, and WAL access verification. The verification is
performed in this order because of the order of the linked list.

ia_user_ret_t uret; /* Paraneters returned fromia_user. */
ia_user_t usent; /* Paraneters sent to ia_user.*/
passwd_t pwdacm /* Verification el enents. */

pwddi al up,

pwdudb,

pwdwal ;

struct udb ue;

/*

* Set up the verification list. The order of the |ist
* is the order verification will be perforned.

*/

pwdacm atype = | A SECURI D

pwdacm pwdp = NULL;

pwdacm next = &pwdudb;

pwdudb. at ype = | A_UDB;
pwdudb. pwdp = NULL;
pwdudb. next = &pwddi al up;

pwddi al up. atype = | A _DI ALUP;
pwddi al up. pwdp NULL;
pwddi al up. next &wdwal ;

pwdwal . atype = | A WAL;
pwdwal . pwdp = NULL;

pwdwal . next NULL;

/*

* Set up request structure.
*/

usent.revision = 0O;

usent.uname = u_nane; /* May be null for interactive */
usent. host = utnp. ut_host;

usent.ttyn = ttyn;

usent.caller = A LOG N,

usent. pswdl i st = &wdacm

usent.ueptr = &ue;

/*
* Set interactive flag. This indicates that
* the user can be pronpt for nanme and password.
*
/
usent.flags = | A | NTERACTI VE;

/*

* |nitialize the return structure.
*/

SR-2080 10.0 305

IA_USER(3C) IA_USER(3C)

uret.revision = 0;
uret.pswd = NULL;
uret.normal = O;

retcode = ia_user(&usent, &uret);

SEE ALSO
ia failure(3C),ia_msuser(3C),ia_success(3C) sl gentry(2)
ti me(l) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

306 SR-2080 10.0

ICONV/(3C) ICONV/(3C)

NAME

i conv,iconv_cl ose, i conv_open — Code conversion function

SYNOPSIS
#i ncl ude <iconv. h>

size_t iconv (iconv_t cd, const char **inbuf, size_t *inbytedeft, char **outbuf,
si ze_t *outbytedeft) ;

iconv_t iconv_open (const char *tocode, const char *fromcode);

int iconv_close (iconv_t cd);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

Thei conv function converts the sequence of characters from one codeset, in the inbuf array, into a
seguence of corresponding characters in another codeset in the outbuf array. Codesets are specified in the

i conv_open call that returned the conversion descriptor, cd. The inbuf argument points to a variable that
points to the first character in the input buffer; inbytesleft indicates the number of bytes to the end of the
buffer to be converted. The outbuf argument points to a variable that points to the first available byte in the
output buffer, and outbytesleft indicates the number of the available bytes to the end of the buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state by a call for
which inbuf is a null pointer, or for which inbuf points to a null pointer. When i conv is called in this way,
and if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft points to a positive value,

i conv places, into the output buffer, the byte sequence to change the output buffer to its initial shift state.
If the output buffer is too small to hold the entire reset sequence, i conv fails and setserrno to [E2Bl G .
Subsequent calls with inbuf as other than a null pointer or a pointer to a null pointer cause the conversion to
occur from the conversion descriptor’s current state.

SR-2080 10.0 307

ICONV/(3C) ICONV/(3C)

If a sequence of input bytes forms no valid character in the specified codeset, conversion stops after the
previous successfully converted character. If the input buffer ends with an incomplete character or shift
seguence, conversion stops after the previous successfully converted bytes. If the output buffer is too small
to hold the entire converted input, conversion stops just before the input bytes that would cause the output
buffer to overflow. The variable to which inbuf points is updated to point to the byte following the last byte
successfully used in the conversion. The value to which inbytesleft points is decremented to reflect the
number of still-unconverted bytes in the input buffer. The variable to which outbuf points is updated to
point to the byte following the last byte of converted output data. The value to which outbytesleft points is
decremented to reflect the number of bytes still available in the output buffer. For state-dependent
encodings, the conversion descriptor is updated to reflect the shift state in effect at the end of the last
successfully converted byte sequence.

If i conv encounters a character in the input buffer that is legal, but for which an identical character does
not exist in the target codeset, i conv performs an implementation-defined conversion on this character.

Thei conv_open function returns a conversion descriptor that describes a conversion from the codeset
specified by the string to which the fromcode argument points to the codeset specified by the string to which
the tocode argument points. For state-dependent encodings, the conversion descriptor is in a codeset-
dependent initial shift state, ready for immediate use with the i conv function.

Settings of fromcode and tocode and their permitted combinations depend on the implementation. A
conversion descriptor remains valid in a process until that process closes it.

Thei conv_cl ose function deallocates the conversion descriptor cd and all other associated resources
allocated by thei conv_open function. If afile descriptor is used to implement the type i conv_t , that
file descriptor is closed.

RETURN VALUES

Thei conv function updates the variables to which the arguments point to reflect the extent of the
conversion and returns the number of nonidentical conversions performed. If the entire string in the input
buffer is converted, the value to inbytesleft points is 0. If the input conversion is stopped due to any of the
preceding conditions, the value to which inbytedeft points is nonzero and er r no is set to indicate the
condition. If an error occurs, i conv returns (si ze_t) - 1 and sets er r no to indicate the error.

If successful, thei conv_open function returns a conversion descriptor for use on subsequent calls to
i conv; otherwise, i conv_open returns (i conv_t) - 1 and sets er r no to indicate the error.

If successful, thei conv_cl ose function returns O; otherwise, it returns —1 and sets er r no.

MESSAGES
Thei conv function fails if any of the following errors occur:
[EILSEQ Input conversion stopped due to an input byte that does not belong to the input codeset.
[E2BI G Input conversion stopped due to lack of space in the output buffer.

308 SR-2080 10.0

ICONV/(3C) ICONV/(3C)

[EI NVAL] Input conversion stopped due to an incomplete character or shift sequence at the end of the
input buffer.

Thei conv function may fail if the following occurs:

[EBADF] The cd argument is an open conversion descriptor that is not valid.

Thei conv_open function may fail if any of the following errors occur:

[EMFI LE] The cd argument is not a valid open conversion descriptor.

[ENFI LE] Input conversion stopped due to an input byte that does not belong to the input codeset.
[ENOVEM Input conversion stopped due to lack of space in the output buffer.

[EI NVAL] Input conversion stopped due to an incomplete character or shift sequence at the end of the
input buffer.

Thei conv_cl ose function may fail if the following occurs:

[EBADF] The conversion descriptor is not valid.

SEE ALSO
| ocal e(3C), | ocal e. h(3C), | ocal econv(3C), set | ocal e(3C)

SR-2080 10.0 309

ID2NAM(3C) ID2NAM(3C)

NAME

ui d2nam gi d2nam aci d2nam nanfui d, nan®gi d, nanRaci d, gi dnanf r ee, aci dnanfree —
Maps IDs to names

SYNOPSIS

#i ncl ude <stdlib. h>

char *ui d2nam (i nt uid);
char *gi d2nam (i nt gid*C);
char *aci d2nam (i nt acid);

i nt nanRui d (char *uname);
i nt nanmRgid (char *gname);
i nt namRaci d (char *aname);
voi d gi dnanfree (void);

voi d aci dnanfree (void);

IMPLEMENTATION

All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

310

The ui d2namfunction maps a numerical user ID to a character string; nanRui d maps a character string to
anumerical user ID.

The gi d2namfunction maps a numerical group ID to a character string; nan2gi d maps a character string
to a numerical group ID.

The aci d2namfunction maps a numerical account ID to a character string; nanRaci d maps a character
string to a numerical account ID.

The aci dnanf r ee and gi dnanf r ee functions update the mapping information from the map files.

These functions provide fast mapping of numerical 1Ds to names, and vice versa, in the UNICOS
user-information database. (See newacct (1) and udb(5).)

The aci d functions copy the corresponding map files into main memory upon the first call and use either a
binary search algorithm (for 1D-to-name trandations) or a linear search algorithm (for name-to-1D
tranglation); the gi d functions call get gr gi d and get gr nam(see get gr ent (3C)).

SR-2080 10.0

ID2NAM(3C) ID2NAM(3C)

If an application depends on the most recent data in the map files and has run for a considerable amount of
time, the gi dnanf r ee and aci dnanf r ee functions may be used to force the tranglation functions to
update the memory copy of the map files.

WARNINGS

The nanRui d and ui d2namroutines leave the udb file open to assure reasonable performance for multiple
cals. If it isimportant that the program in which the calls are made can be restarted, call endpwent or
endudb to close the udb file after the access is complete.

The nanRaci d and aci d2namroutines leave the account ID file open for the same reason. If it is
important that the program in which the calls are made can be restarted, call aci dnanf r ee to close the
udb file after the access is complete.

The nan?gi d and gi d2namfunctions close the group file before returning.

RETURN VALUES

If no match is found, aci d2nam ui d2nam and gi d2namreturn a null pointer. The nan®ui d,
nan®gi d, and nanRaci d functions all return —1 if no match is found for the name.

FILES
/etc/acid
[etc/ group
/et c/udb. public

SEE ALSO
get pwent (3C), get gr ent (3C), | i budb(3C)
newacct (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

accti d(2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012

udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 311

IEEE_FLOAT(3C) IEEE_FLOAT(3C)

NAME

i eee_f | oat — Introduction to the IEEE floating-point environment

IMPLEMENTATION

Cray MPP systems
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

The man pages in this section describe the header files, types, macros, and functions developed to support
the Cray Research implementation of the |EEE floating-point standard in the Cray C and C++ compilers.
The corresponding Fortran routines are described in the Fortran Language Reference Manual, Volume 2,
Cray Research publication SR—3903.

ASSOCIATED HEADERS

<fp. h>
<fenv. h>

ASSOCIATED TYPES

fenv. h Types

Type Description

fenv_t Represents the entire floating-point environment
f except _t Represents the floating-point exception flags
fetrap_t Represents the floating-point trap flags

ASSOCIATED MACROS

f p. h Macros

Macro Description
HUGE_VAL, HUGE_VALF, HUGE_VALL
Expand to positive infinity
I NFI NI TY Expands to positive infinity
NAN Expands to a quiet NaN
FP_NAN, FP_I NFI NI TE, FP_NORMAL, FP_SUBNORMAL, FP_ZERO
Represent the mutually exclusive kinds of floating-point values
DECI MAL_DI G Represents the digits supported by conversion to internal floating-point formats

312 SR-2080 10.0

IEEE_FLOAT(3C)

f pcl assi fy(3C)
isfinite

i snan

i snor mal

si gnbi t (3C)

i sgreater (3C)
i sgreat erequa
i sl ess

i sl essequa

i sl essgreater
i sunor der ed

f env. h Macros

Macro

FE | NEXACT
FE_ DI VBYZERO
FE_UNDERFLOW
FE OVERFLOW
FE | NVALI D
FE_EXCEPTI NPUT
FE ALL_ EXCEPT

IEEE_FLOAT(3C)

Returns the macro (FP_NAN, and so on) that identifies its argument
Determines if its argument value is finite

Determines if its argument value is a NaN

Determines if its argument value is hormal

Determines if its argument value is negative

Determines if its first argument is greater than its second
Determines if its first argument is greater than or equal to its second
Determines if its first argument is less than its second

Determines if its first argument is less than or equal to its second
Determines if its first argument is less than or greater than its second
Determines if its arguments compare unordered

Description

Represents the inexact exception flag

Represents the divide-by-zero exception flag
Represents the underflow exception flag
Represents the overflow exception flag

Represents the invalid exception flag

Represents the exceptional input exception flag
Represents the bitwise OR of all exception macros

FE_TRAP_I NVALI D Represents the invalid operation trap flag
FE_TRAP_DI VBYZERO

Represents the divide-by-zero trap flag

FE_TRAP_OVERFLOW Represents the overflow trap flag
FE_TRAP_UNDERFLOW

FE_TRAP_| NEXACT

FE_ALL_TRAPS
FE_TONEAREST
FE_UPWARD
FE_DOWKWARD
FE_TOWARDZERO
FE_DFL_ENV

ASSOCIATED FUNCTIONS

f p. h Functions

Function

Represents the underflow trap flag

Represents the inexact trap flag

Represents all of the trap flags

Round toward nearest

Round toward positive infinity

Round toward negative infinity

Round toward zero

Represents the default floating-point environment

Description

[ogb(3C), | ogbf, | ogbl

Return the signed exponent of their arguments

scal b(3C), scal bf, scal bl

SR-2080 10.0

Compute x * FLT_RADI X" efficiently

313

IEEE_FLOAT(3C) IEEE_FLOAT(3C)

rint(3C), rintf,rintl
Round arguments to an integral value in floating-point format
rinttol (3C) Rounds a floating-point number to a long integer value
r emai nder (3C), r enai nder f, r emai nder |
Divide their arguments and return the remainder
copysi gn(3C), copysi gnf, copysi gnl
Assign the sign of the second argument to the value of the first argument
next af t er (3C), next afterf, nextafterl
Return the next value in the direction of the second argument

f env. h Functions

Function Description
f ecl ear except (3C) Clears exception flags
feget exceptflag Stores the representation of the exception flags

f er ai seexcept Raises exceptions

fesetexceptflag Restores the representation of the exception flags

f et est except Determines which exception flags are currently set

f eset round(3C) Establishes the rounding direction

f eget round Gets the current rounding direction

f eget env(3C) Stores the current floating-point environment

f ehol dexcept Saves the environment, clears exception flags, and disables traps

f eset env Establishes the floating-point environment

f eupdat eenv Saves the current exceptions, installs a new environment, and raises the saved
exceptions

f edi sabl et r ap(3C) Disables traps

feenabl etrap Enables traps

fegettrapfl ag Stores the representation of the trap flags
fesettrapfl ag Restores the representation of the trap flags
fetesttrap Determines which traps are currently enabled

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

314 SR-2080 10.0

IHPSTAT (3F) IHPSTAT(3F)

NAME
| HPSTAT — Returns statistics about the heap

SYNOPSIS
value=1 HPSTAT(code)

IMPLEMENTATION
UNICOS and UNICOS/mk systems

DESCRIPTION
| HPSTAT returns statistics about the heap.

When using the CF90 compiler on UNICOS or UNICOS/mk systems, all arguments must be of default kind
unless documented otherwise. On UNICOS and UNICOS/mkK, the default kind is KI ND=8 for integer, real,
complex, and logical arguments.

The following is alist of valid arguments for this routine.

value Requested information.
code Code for the type of information requested, as follows:
Code Meaning

1 Current heap length
4 Number of allocated blocks
10 Size of the largest free block
11 Amount by which the heap can shrink
12 Amount by which the heap can grow
13 First word address of the heap; on UNICOS/mk systems, byte addresses are returned.
14 Last word address of the heap; on UNICOS/mk systems, byte addresses are returned.
22 Amount by which the shared heap can grow.
All values returned by | HPSTAT are in words.

SEE ALSO

HPALLOC(3F), HPCHECK(3F), HPCLMOVE(3F), HPDEAL LC(3F), HPDUVP(3F), HPNEWLEN(3F),
HPSHRI NK(3F), | HPLEN(3F), | HPVALI D(3F)

SR-2080 10.0 315

INDEX (3C)

NAME

i ndex, ri ndex — Locates characters in string

SYNOPSIS
#i ncl ude <string. h>
char *index (const char *s, int c);

char *rindex (const char *s, int ¢);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

INDEX(3C)

The i ndex function returns a pointer to the first occurrence of character ¢ in string s, or null if ¢ does not

occur in the string.

The ri ndex function returns a pointer to the last occurrence of character c in string s, or null if ¢ does not

occur in the string.

These functions operate on null-terminated strings.

NOTES

Functions st r chr and strrchr (seestri ng(3C)) are the same asi ndex and ri ndex, respectively,
and they should be used in all new codes. Functionsi ndex and r i ndex are provided only for

compatibility with other BSD codes.

SEE ALSO
st ri ng(3C)

316

SR-2080 10.0

INET(3C) INET(3C)

NAME
i net _addr,inet | naof,inet mnekeaddr,inet netof,inet _network,inet ntoa,
i net _subnet of , i net _subnet maskof — Manipulates Internet address

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
#i ncl ude <arpa/inet. h>

unsi gned | ong i net _addr (char *cp);

int inet_I|naof (struct in_addr in);

struct in_addr inet_makeaddr (int net, int host);
int inet_netof (struct in_addr in);

unsi gned | ong i net _network (char *cp);

char *inet_ntoa (struct in_addr in);

unsi gned | ong i net _subnetof (struct in_addr in);

unsi gned | ong i net _subnet maskof (struct in_addr in);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Thei net _network and i net _addr functions each interpret character strings representing numbers
expressed in the Internet standard ". " notation (dot notation), returning numbers suitable for use as Internet
network numbers and Internet addresses, respectively.

Thei net _net of andi net _| naof functions break apart Internet host addresses, returning the network
number and local network address part, respectively.

Thei net _makeaddr function takes an Internet network number and the host number and constructs an
Internet address from them.

Thei net _nt oa function takes an Internet address and returns an ASCII string representing the address in

. " notation.

SR-2080 10.0 317

INET(3C) INET(3C)

Thei net _subnet of andi net subnet maskof functions return the subnet and subnet mask,
respectively, of the Internet address in. These functions determine the actual subnet mask by consulting the
configured subnet masks of the active network interfaces on the system the first time either function is
caled. Thisinformation is cached, and later calls to either function consult the configured network
interfaces again only when a search of the accumulated information fails to match the network portion of in,
and only for those interfaces whose associated addresses or flags have changed (for example, to detect a
newly configured interface).

All Internet addresses are returned in network byte order, except for single port addresses. All network
numbers and local address parts are returned as machine-format integer values.

INTERNET ADDRESSES

NOTES

318

Values specified using the Internet ". " notation take one of the following forms:

a.b.cd
a.b.c
ab

a

When a four-part address is specified, each part is interpreted as a byte of data and is assigned, from left to
right, to the 4 bytes of an Internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and is placed in the
rightmost 2 bytes of the network address. This makes the three-part address format convenient for
specifying Class B network addresses as net.net.host.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and is placed in the
rightmost 3 bytes of the network address. This makes the two-part address format convenient for specifying
Class A network addresses as net.host.

When only a one-part address is specified, the value is stored directly in the network address without any
byte rearrangement, in host byte order.

All numbers supplied as partsin a™. " notation address may be in decimal, octal, or hexadecimal format, as
specified in the C language (that is, a leading Ox or OX implies hexadecimal, and a leading O implies octal;
otherwise, the number is interpreted as decimal).

The problem of host byte ordering versus network byte ordering is confusing.

A simple way to specify Class C network addresses in a manner similar to that used for specifying Class B
and Class A addresses is needed.

The string returned by i net _nt oa resides in a static memory area that must be copied if it is to be used.

SR-2080 10.0

INET(3C) INET(3C)

For i net _subnet of andi net _subnet naskof , checking the cached information first means that they
might use or return an old, incorrect subnet mask if an interface is configured down and configured back up
with the same address, but a different subnet mask, between calls to either function. In practice, this should
rarely happen.

Relying on active network interfaces for subnet mask information means that i net _subnet of and

i net _subnet maskof are useless without networking facilities (for example, in single-user mode).
Similarly, neither function can be of any help for networks that are not directly connected to the system (for
example, for networks that are not directly connected, a return value of "OL means "l don’'t know if thisis a
subnet," not "this is definitely not a subnet").

RETURN VALUES

FILES

Thei net _addr andi net _net wor k functions return a value of "OL for incorrect reguests.

i net _subnet of andi net _subnet maskof return the value "OL if the network portion of the address
cannot be matched with a configured interface, and O for addresses whose network portions are matched with
an interface that has no subnet mask. Both functions set er r no to El NVAL if the system has more
interfaces than they can support.

/usr/include/arpal/inet.h
{usr/include/netinet/in.h
/usr/include/sys/socket.h

/usr/include/sys/types.h

SEE ALSO

get host (3C), get net (3C)

host s(5), net wor ks(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

SR-2080 10.0 319

INITGROUPS (3C) INITGROUPS(3C)

NAME

i ni t groups — Initializes group access list

SYNOPSIS
#i ncl ude <grp. h>
int initgroups (char *name, int basegid);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Thei ni t gr oups function reads through the / et ¢/ gr oup file and uses the set gr oups(2) call to set up
the group access list for the user specified by name. The basegid is automatically included in the groups list.
Typically, this value is given as the group number from the user database.

NOTES

Thei ni t gr oups function uses the functions based on get gr ent (3C). If the invoking program uses any
of these functions, the gr oup structure is overwritten in the call to i ni t gr oups.

FILES
[etc/group

RETURN VALUES

If it was not invoked by the super user, i ni t gr oups returns —1.

SEE ALSO
get gr ent (3C), get pwent (3C)
set gr oups(2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012

gr oups(1B), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

320 SR-2080 10.0

INTER_LANG (3C) INTER_LANG (3C)

NAME

i nt er _| ang — Introduction to interlanguage communications functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The interlanguage communications functions provide various means for passing information between
functions written in C and functions written in Fortran, Pascal, or Cray Assembly Language (CAL).

These languages use different calling sequences and have different representation for some data types; as
explained in this entry, these differences must be understood and the correct conventions must be followed to
ensure correct interlanguage communication. The following subsections describe these differences and
conventions.

Calling Conventions
The Cray Standard C compiler running in extended mode, and all Cray Research Fortran compilers, generate
code that uses the call-by-register convention for math library functions (it is the fastest calling sequence).
These functions, called VFUNCTIONS, follow the call-by-register naming convention, which requires that
the name be of the form NAME%or YNAVEY The compilers automatically translate the math function
names to the VFUNCTION names. For further information about VFUNCTIONS, see the Cray Standard C
Reference Manual, Cray Research publication SR—2074.

The Cray Standard C compiler running in strict conformance mode generates code that uses the call-by-value
math functions. These functions perform argument domain and range checking. The names of these
functions do not get trandlated.

In a Fortran program, if a math library function is declared EXTERNAL or | NTRI NSI C, the Fortran
compilers generate code that uses the call-by-address math functions. The names of these functions do not
get tranglated.

Character Pointers/Character Descriptors
The C language does not explicitly support a character string type, but by convention, C character pointers
typically point to character arrays that are terminated with a 0 byte, and several functions in the C library
process such strings (for more information, see char act er (3C)). A C character pointer, like a Fortran
character descriptor, contains a character location. Unlike a Fortran character descriptor, a C character
pointer does not contain a length. A C character pointer cannot be passed to a Fortran function or subroutine
that expects a character argument. The format of the C character pointer is not compatible with the format
of a Fortran character descriptor.

SR-2080 10.0 321

INTER_LANG(3C) INTER_LANG (3C)

A Fortran character variable has a length associated with it that tells the number of charactersin a variable.
Generally, character strings used in Fortran programs are stored in character variables, rather than in arrays
of single characters. A character argument can have an actual argument that is a substring or an array
element that does not begin on a word boundary, so that the address of a Fortran character argument has
both a word address and a bit offset. A character argument can be declared as CHARACTER [{) , which
means that the length of the argument is not known at compile time and must be passed to the subprogram
at execution time. A Fortran character descriptor that contains the first character location and the length of a
single entity (scalar or array element) is always passed for a character argument.

The interlanguage convention for passing character strings is through the use of Fortran character descriptors.
Although this is automatic from Fortran, you, as a C user, must use the functions described in header file
fortran. h to do the necessary conversions.

C Boolean Data versus Fortran Logical
C users must use functions provided as CRI extensions to pass C Boolean values as Fortran logical values.
The interlanguage convention for the representation of logical values is that of Fortran type LOG CAL.

Calling C Functions from Fortran Functions
The Fortran language is case-insensitive; therefore, the CRI Fortran compilers map all code into uppercase.
This means that functions that have lowercase names cannot be called from Fortran programs.

Calling Fortran Functions from C Functions
The C language is case-sensitive, so you must use the exact case specified in the documentation when coding
references to a function.

All of the functions documented in the Application Programmer’s Library Reference Manual, Cray Research
publication SR—2165, and in the Scientific Libraries Reference Manual, Cray Research publication SR—2081,
are callable from C programs. If the manual entry for the function does not explicitly provide the C
synopsis, the following rules can be used:

* Because the function is not declared in a C header, explicitly declare the function as external and specify
the type of the return value.

* When calling the function, pass the address of the arguments by using the address operator (&) for each
argument, or by using a pointer to the argument for the argument. Array names are considered to be
addresses; therefore, the address operator is not needed when using them.

* The value returned by the function is the value, not the address of the value.

¢ Specify the f ort ran keyword. The f ortran keyword is a CRI extension to the C language and is
useful when a C program calls a function following the Cray Fortran calling sequence. Specifying the
f ort ran keyword causes the C compiler to verify that the arguments used in each call to the function
are pass-by-address. For more information on the f or t r an keyword, see the Cray Sandard C
Reference Manual, Cray Research publication SR—2074.

322 SR-2080 10.0

INTER_LANG(3C) INTER_LANG(3C)

Calling C Functions from CAL Functions
External references from CAL are case-sensitive, so you must use the exact name for functions as specified
in the appropriate manual. Cray Research supports two standard calling methods for math library functions:
call-by-register and call-by-address. Cray Research supports only the call-by-address method for the
scientific library. For more information on the details of calling sequences, see the documentation for the
CALL macro for the machine you are using. (See the UNICOS Macros and Opdefs Reference Manual, Cray
Research publication SR—2403.)

Y ou should use the CALL macros to do function linkage. Avoid direct user calls to functions that use the
return-jump instruction.

Scalar functions return the result in registers S1 (and S2 if needed). Vector functions return their result in
registers V1 (and V2 if needed). The contents of the vector-length register (VL) upon entry determine the
number of elements computed for vector functions.

Calling CAL Functions from C Functions
The following example shows a C program that calls the CAL ALOG function:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

ext ern doubl e ALOE doubl e*);

mai n()
{
doubl e x, v;
X = 1.2345;
y = ALOE &x); /* use call-by-address to pass argunent */
printf("ALO(%) = %\n", X, Yy);
}

The output from the execution of this program is as follows:
ALOG(1. 234500) = 0.210666

It is also possible to call library functions from the scientific library, as shown in the following example:

#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>
nxixyiy

extern double SDOT(int *, double [], int *, double [], int*);

mai n()

{
doubl e sx[]
doubl e sy[]

1
i~

SR-2080 10.0 323

INTER_LANG(3C) INTER_LANG (3C)

doubl e answer;
int n, incx, incy;

n = 6; /* nunmber of elements in array */
incx = 1; /* increment between elenments in words */
incy = 1;

/* Note that arrays are already passed-by-address,
but other argunents are passed by val ue */

answer = SDOT(&n, sx, & ncx, sy, &incy);
printf("Dot product of x and y is %\n", answer);
}

To execute this program (in source file b. c¢), enter the following commands. To get access to the SDOT
function, you must link to the scientific library.

$ cc -lsci b.c
$ a.out

The output is as follows:
Dot product of x and y is 91. 000000

Naming Conventions
Most of the Cray Research math library functions adhere to the following naming conventions:

NANVE Entry for scalar call-by-address
YNAME Entry for vector call-by-address
NAVE% Entry for scalar call-by-register
YNAVEY% Entry for vector call-by-register

CAL does not support generic function names or automatic data type conversion. For example, no math
library LOG function exists for the logarithm function. The user must specify either ALOG, DLOG, or CLOG
for real, double-precision, or complex logarithm, respectively, and the argument must be of the correct type
(real, double precision, or complex).

Associated Headers
<fortran. h>

Associated Functions

Function Description

_btol Converts a 0 to a Fortran logical . FALSE. and a nonzero value to a Fortran logical
.TRUE. (see _| t ob)

_cptofcd Converts a C character pointer to a Fortran character descriptor

_fcdtocp Converts a Fortran character descriptor to a C character pointer (see _cpt of cd)

_fcdlen Extracts the byte length from the Fortran character descriptor (see _cpt of cd)

324 SR-2080 10.0

INTER_LANG(3C) INTER_LANG(3C)

_ltob Converts a Fortran logical . FALSE. to a0 and a Fortran logical .TRUE. to a1 (see
_cptof cd)
_isfcd Determines whether a generic pointer is a Fortran character descriptor
SEE ALSO

Cray Sandard C Reference Manual, Cray Research publication SR—2074

Application Programmer’s Library Reference Manual, Cray Research publication SR—2165
UNICOS Macros and Opdefs Reference Manual, Cray Research publication SR—2403
Interlanguage Programming Conventions, Cray Research publication SN—3009

CF77 Commands and Directives, Cray Research publication SR—3771

SR-2080 10.0 325

I_O(3C) |_O(3C)

NAME

i _0 — Introduction to input/output functions

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The input/output functions provide various means for getting data into an executing program and for sending
data out of an executing program. Some functions perform input or output on streams, and some perform
input or output on files. The following subsections describe these two fundamental concepts.

Streams

326

Input and output, whether to or from physical devices such as terminals and tape drives, or to or from files
supported on structured storage devices, are mapped into logical data streams, whose properties are more
uniform than their various inputs and outputs. UNICOS supports two forms of mapping, for text streams
and for binary streams. Under the Cray Research operating system UNICOS, text streams and binary
streams are implemented identically. This may not be true for other implementations.

A text stream is an ordered sequence of characters composed into lines, each line consisting of 0O or more
characters plus a terminating newline character. Characters may have to be added, altered, or deleted on
input and output by library functions to conform to differing conventions for representing text in the host
environment. Thus, a one-to-one correspondence may not exist between the characters in a stream and those
in the external representation. Data read in from a text stream compares equal to the data that was earlier
written out to that stream only if the following conditions are met:

* The data consists only of printable characters, and the control characters consist only of horizontal tabs
and newline characters.

* No newline character is immediately preceded by space characters.
* The last character is a newline character.

An implementation defines whether space characters that are written out immediately before a newline
character appear when the data is read in. On all Cray Research systems, space characters that are written
out immediately before a hewline character do appear when read.

A binary stream is an ordered sequence of characters that can transparently record internal data. Data read
in from a binary stream compares egual to the data that was written earlier out to that stream, under the
same implementation. However, such a stream may have an implementation-defined number of null
characters appended to the end of the stream on some systems. Under the Cray Research operating system
UNICOS, no null characters are appended.

SR-2080 10.0

I_O(3C) |_O(3C)

Files
A stream is associated with an external file (or physical device) by opening afile or creating a new file if no
file exists. Creating an existing file causes its former contents to be discarded if necessary. If afile can
support positioning requests, a file position indicator associated with the stream is positioned at the start
(character number zero) of the file; for example, a disk file supports positioning requests, but a terminal does
not. If, however, afile that supports positioning is opened with append mode, it is implementation-defined
whether the file position indicator is initially positioned at the beginning or the end of the file. On Cray
Research systems, the file position indicator is maintained by subsequent reads, writes, and positioning
requests ensuring an orderly progression through the file.

Usage
Binary files are not truncated, except as defined in function f open. Whether a write on a text stream causes
the associated file to be truncated beyond that point is implementation-defined. On Cray Research systems,
the associated file is not truncated.

When a stream is unbuffered, characters are intended to appear from the source or at the destination as soon
as possible; otherwise, characters may be accumulated and transmitted to or from the host environment as a
block. When a stream is fully buffered, characters are intended to be transmitted to or from the host
environment as a block when a buffer is filled. When a stream is line-buffered, characters are intended to be
transmitted to or from the host environment as a block when a newline character is encountered.
Furthermore, characters are intended to be transmitted as a block to the host environment when a buffer is
filled, when input is requested on an unbuffered stream, or when input is requested on a line-buffered stream
that requires the transmission of characters from the host environment. Support for these characteristics is
implementation-defined and can be affected by use of the set buf and set vbuf functions.

To disassociate a file from a controlling stream, close the file. Output streams are flushed (any unwritten
buffer contents are transmitted to the host environment) before the stream is disassociated from the file. The
value of a pointer to a FI LE object is indeterminate after the associated file is closed (including the standard
text streams). Whether afile of 0 length (on which no characters have been written by an output stream)
actually exists is implementation-defined. On Cray Research systems, the file exists.

The file may be subsequently reopened, by the same or another program execution, and its contents
reclaimed or modified (if it can be repositioned at its start). If the mai n function returns to its original
caler, or if the exi t function is called, al open files are closed and all output streams are flushed before
program termination. Other paths to program termination, such as calling the abor t function, need not
close all files properly.

The address of the FI LE object used to control a stream may be significant; a copy of a FI LE object may
not necessarily serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly: standard input (for
reading conventional input), standard output (for writing conventional output), and standard error (for
writing diagnostic output). When opened, the standard error stream is not fully buffered; the standard input
and standard output streams are fully buffered if and only if the stream can be determined not to refer to an
interactive device.

SR-2080 10.0 327

1 O(3C)

1 O(3C)

Functions that open additional (nontemporary) files require a file name, which is a string. The rules for
composing valid file names are implementation-defined. Whether the same file can be simultaneously open
multiple times is also implementation-defined. For Cray Research systems, file names can consist of letters,
numbers, periods, and the underscore symbol and the same file can be open multiple times simultaneously.

Associated Headers

Associated Functions

328

<ffio.h>

<stdi o. h>

File for flexible file 11O (FFIO) functions

File for input and output functions

The I_O(3C) function performs the following associated functions:

Character 1/0 Functions

Function
fgetc
fgets
fputc
fputs
getc
get char
gets
put c
put char
put s
unget c

Direct 1/0 Functions

Function
fread
fwite
getw
put w

Description

Gets a character from a stream (see get ¢)
Gets a string from a stream (see get s)
Puts a character on a stream (see put ¢)
Puts a string on a stream (see put s)

Gets a character from a stream

Gets a character from a stream (see get ¢)
Gets a string from a stream

Puts a character on a stream

Puts a character on a stream (see put ¢)
Puts a string on a stream

Pushes a character back into the input stream

Description

Reads input

Writes output (see f r ead)

Gets word from stream (see get ¢)
Puts a word on a stream (see put c)

File Access Functions

Function

dup?2

fcl ose

f dopen

fflush

f open

freopen

get dt abl esi ze
pcl ose

popen

Description

Duplicates an open file descriptor

Closes a stream

Associates stream with file descriptor (see f open)
Flushes a stream (see f cl ose)

Opens a stream

Substitutes named file for stream (see f open)
Gets descriptor table size

Closes a pipe to a process (see popen)

Initiates a pipe to a process

SR-2080 10.0

1 O(3C)

set buf
set vbuf

File Error Handling

Function
clearerr
f eof
ferror

1 O(3C)

Assigns buffering to a stream
Assigns buffering to a stream (see set buf)

Functions

Description

Clears error and EOF indicators (see f er r or)
Tests EOF indicator (seef error)

Tests error indicator

File Positioning Functions

Function
f get pos
f seek

f set pos
ftell
rewi nd

Description

Stores the value of the file position indicator
Repositions a file pointer in a stream

Sets file position indicator for stream

Repositions a file pointer in a stream (see f seek)
Repositions a file pointer in a stream (see f seek)

Flexible File I/O (FFIO) Functions

Function
ff bksp
ffcl ose
fffcentl
fflistio
ff open

f f opens
ffpos
ffread
ffreada
ffseek
ffsetsp
ffweod

f f weof
ffwite
ffwitea

Description

Repositions an FFIO file (see f f seek)

Closes afile using FFIO (see f f open)
Performs functions on files opened using FFIO
Initiates a list of 1/O requests using FFIO
Opens afile using FFIO

Opens afile using FFIO (see f f open)
Positions files opened using FFIO

Provides FFIO

Provides asynchronous read using FFIO
Repositions an FFIO file

Initiates EOV processing for files opened using FFIO
Provides FFIO (see f f r ead)

Provides FFIO (see f f r ead)

Provides FFIO (see f f r ead)

Provides asynchronous write using FFIO

For more information about these routines, see the Application Programmer’s 1/O Guide, Cray Research
publication SG—2168. Man pages for these routines are found in the Application Programmer’s Library
Reference Manual, Cray Research publication SR—2165.

Formatted I/O Functions

Function
fprintf
f scanf
printf

SR-2080 10.0

Description

Prints formatted output (see pri nt f)
Converts formatted input (see scanf)
Prints formatted output

329

1 O(3C)

330

scanf Converts formatted input

sprintf Prints formatted output (see pri nt f)

sscanf Converts formatted input (see scanf)

vfprintf Prints formatted output of avar ar gs argument list (see vpri ntf)
vprintf Prints formatted output of avar ar gs argument list

vsprintf Prints formatted output of avar ar gs argument list (see vpri ntf)

Operations on Files

Function Description

fileno Returns indication of stream status

ftruncate Truncates a file to a specified length

nkt enmp Makes a unique file name

renmove Removes files

renane Renames a file

t erpnam Creates a name for a temporary file (see t mpnan)
tmpfile Creates a temporary binary file

t npnam Creates a name for a temporary file

User Information Functions

Function Description
ctermd Generates file name for terminal
cuserid Gets character login name of the user

1 O(3C)

SR-2080 10.0

ISELFADD(3F)

NAME

ISELFADD(3F)

| SELFADD, | CRI TADD — Allows performance of ivar = ivar+l VALUE under the protection of a hardware

semaphore

SYNOPSIS
jvar = | SELFADD(ivar, ivalue)
CALL | CRI TADD(ivar, ivalue)
IMPLEMENTATION

Cray PVP systems
SPARC systems

DESCRIPTION
| SELFADD is a function, and | CRlI TADD is a routine.

The following is alist of valid arguments:

Argument Description
ivar Integer variable to be incremented by ivalue.
ivalue Amount by which ivar should be incremented.

A call to | SELFADD is functionally equivalent to, but considerably faster than, the following code block:

CALL LOCKON(lockvar)
jvar ivar

ivar ivar + ivalue
CALL LOCKOFF(lockvar)

A call to | CRI TADD is functionally equivalent to, but considerably faster than, the following code block:

CALL LOCKON(lockvar)
ivar = ivar + ivalue
CALL LOCKOFF(lockvar)

SEE ALSO
XSELFADD(3F)

SR-2080 10.0

331

ISELFMUL (3F)

NAME

ISELFMUL (3F)

| SELFMUL, | CRI TMUL — Allow performance of ivar = ivar* | VALUE under the protection of hardware

semaphore

SYNOPSIS
jvar = | SELFMJL(ivar, ivalue)
CALL ICRITMUL(ivar, ivalue)
IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

| SELFMUL is afunction, and | CRI TMUL is a routine.

The following is alist of valid arguments:

Argument Description
ivar Integer variable to be multiplied by ivalue.
ivalue Amount by which ivar should be multiplied.

A call to | SELFMUL is functionally equivalent to, but considerably faster than, the following code block:

CALL LOCKON(lockvar)
jvar = ivar

ivar = ivar*ivalue

CALL LOCKOFF(lockvar)

A call to | CRI TMUL is functionally equivalent to, but considerably faster than, the following code block:

CALL LOCKON(lockvar)
ivar = ivar*ivalue
CALL LOCKOFF(lockvar)

SEE ALSO
XSELFMUL(3F)

332

SR-2080 10.0

ISELFSCH (3F)

NAME

ISELFSCH (3F)

| SELFSCH — Allows performance of ivar = ivar+1 under the protection of a hardware semaphore

SYNOPSIS
jvar = | SELFSCH(ivar)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

| SELFSCH allows performance of ivar = ivar+1 under the protection of a hardware semaphore.

The following is a valid argument for this routine:

Argument Description

ivar Integer variable to be incremented

A call to | SELFSCH is equivalent to, but considerably faster than, the following code block:

CALL LOCKON(lockvar)
jvar ivar

ivar ivar+1

CALL LOCKOFF(lockvar)

SEE ALSO
XSELFMUL(3F)

SR-2080 10.0

333

ISGREATER(3C) ISGREATER(3C)

NAME

i sgreater,isgreaterequal,isless,islessequal,islessgreater,isunordered—
Determines the relationship between two arguments

SYNOPSIS

#i ncl ude <fp. h>

nt isgreater (floating-type x, floating-type vy) ;

nt isgreaterequal (floating-type x, floating-type v) ;
nt i sl ess (floating-type x, floating-type V) ;

nt isl essequal (floating-type x, floating-type v) ;

nt isl essgreater (floating-type x, floating-type y);

[
[
[
[
[
i nt isunordered (floating-type x, floating-type vy) ;

IMPLEMENTATION

CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

334

The relational and equality operators (<, >, >=, <=, ==, and ! =) support the usual mathematical
relationships between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, or equal) is true. Relational operators may raise the invalid exception when
argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the unordered
relationship is true. The macros described here are quiet (do not raise exceptions) versions of the relational
operators that facilitate writing efficient code that accounts for NaNs without raising the invalid exception.

The floating-type type in the SYNOPSIS section indicates an argument of any floating type. If the argument
is not a floating type, the behavior is undefined.

If any of the macro definitions are suppressed in order to access an actual function, or if a program defines
an external identifier with the name of one of the macros, the behavior is undefined.

Thei sgr eat er macro determines whether its first argument is greater than its second argument.

Thei sgreat er equal macro determines whether its first argument is greater than or equal to its second
argument.

Thei sl ess macro determines whether its first argument is less than its second argument.

SR-2080 10.0

ISGREATER(3C) ISGREATER(3C)

Thei sl essequal macro determines whether its first argument is less than or equal to its second
argument.

Thei sl essgr eat er macro determines whether its first argument is less than or greater than its second
argument.

Thei sunor der ed macro determines whether its arguments are unordered (that is, at least one argument is
a NaN).

The |EEE standard enumerates 26 functionally distinct comparison predicates, including combinations of the
four comparison results and whether invalid is raised. The following table shows how the Cray Research
implementation covers all important cases.

|EEE comparisons

Raises
Greater Less Equal Unordered exception Cray implementation
X X ==y
X X X X l=y
X X X >y
X X X X >=y
X X X <y
X X X X <=y
X i sunordered(x,Yy)
X X X N/A
X X X X N/A
X X I islessequal (X,Y)
X X X I isless(x,Yy)
X X I isgreaterequal (X,Y)
X X X I isgreater(x,y)
X X I islessgreater(x,y)
X X X X I (x >y)
X X X I (x >=)
X X X X I (x <y)
X X X I (x <= y)
X X X I isunordered(x,y)
X X X N/A
X X N/A
X X i sl essequal (x,Y)
X i sl ess(x,y)
X X i sgreaterequal (x,Y)
X i sgreater(x,y)
X X i sl essgreater(x,y)

SR-2080 10.0 335

ISGREATER(3C) ISGREATER(3C)

RETURN VALUES

Thei sgr eat er macro returns a nonzero value if its first argument is greater than its second argument.

Thei sgr eat er equal macro returns a nonzero value if its first argument is greater than or equal to its
second argument.

Thei sl ess macro returns a nonzero value if its first argument is less than its second argument.

Thei sl essequal macro returns a nonzero value if its first argument is less than or equal to its second
argument.

Thei sl essgr eat er macro returns a nonzero value if its first argument is less than or greater than its
second argument.

Thei sunor der ed macro returns a nonzero value if its arguments are unordered.

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

336 SR-2080 10.0

ISNAN(3C) ISNAN(3C)

NAME
i snan — Test for NaN

SYNOPSIS
#i ncl ude <mat h. h>

i nt isnan(doubl e x);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

Thei snan function tests whether x is NaN (not a number).

RETURN VALUES

On Cray Research machines supporting |EEE arithmetic, the i snan function returns a nonzero value if x is
NaN; otherwise, a 0 is returned.

On Cray Research machines with Cray Research floating-point format, i snan always returns a 0.

NOTES

A function-like macro version of i snan is implemented on Cray MPP systems and CRAY T90 systems
with |EEE-standard floating-point hardware (see the f pcl assi f y(3C) man page for more information).
This IEEE version is defined in the <f p. h> header file.

If you are using a CRAY T90 system with |EEE-standard floating-point hardware, the <f p. h> version of
i snan offers the advantage of accepting f | oat and | ong doubl e arguments as well as doubl e
arguments. The Cray MPP systems version accepts only doubl e arguments.

The <mat h. h> version described on this man page offers XPG4 compatibility, and it is available on all
Cray Research systems.

SEE ALSO

f pcl assi f y(3C) on Cray Research |IEEE systems for a description of the <f p. h> version of i snan

SR-2080 10.0 337

ISO_ADDR(3C) ISO_ADDR(3C)

NAME
i so_addr, i so_nt oa — Manipulates ISO/OS| address

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <netiso/iso. h>

struct iso_addr *iso_addr (char *cp);

char *iso_ntoa (struct iso_addr *isoa);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Thei so_addr function interprets a character string (cp) representing numbers that reference an 1SO
network service access point (NSAP) address, returning a structure that is a valid 1SO address.

Thei so_nt oa function does the reverse, taking an SO address structure (isoa) and returning an ASCII
string representing the NSAP address.
RETURN VALUES

Thei so_addr function returns a pointer to ani so_addr structure. Thei so_addr function returns a
null pointer for requests that are not in an accepted format of hexadecimal characters or single-quoted ASCI|
characters.

Thei so_nt oa function aways returns a character pointer.
FILES

{usr/include/ netiso/iso.h

[fusr/include/sys/types.h

SEE ALSO

get host i nf 0(3C)

host s(5), net wor ks(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

338 SR-2080 10.0

KERBEROS_RPC(3C) KERBEROS_RPC(3C)

NAME

ker beros_r pc, aut hker b_get ucr ed, aut hkerb_seccreat e, svc_kerb_reg — Library routines
for remote procedure calls that use Kerberos authentication

SYNOPSIS

cc LDFLAGS += -l krb -lIcraylm
#i ncl ude <rpc/rpc. h>
#i ncl ude <sys/types. h>

i nt aut hkerb_getucred(struct svc_req *rgst, uid_t *uid, gid_t *gid, short
*grouplen, int grouplist[NGROUPY);

AUTH *aut hker b_seccreat e(char *service, char *srv_inst, char *realm, unsigned int
window, char *timehost, i nt *dtatus);

i nt svc_kerb_reg(SVCXPRT *xprt, char *name, char *inst, char *realm);

IMPLEMENTATION
All Cray Research systems licensed for Open Network Computing Plus (ONC+)

DESCRIPTION

Remote Procedure Call (RPC) library routines let C programs make procedure calls on other machines across
the network.

RPC supports various authentication flavors, including the following:

Flavor Description

AUTH_DES DES encryption-based authentication
AUTH_KERB Kerberos encryption-based authentication
AUTH_NULL (none) No authentication

AUTH_SHORT Shorthand form of UNICOS credentias
AUTH_UNI X Traditional UNIX-style authentication

The aut hker b_get ucr ed, aut hker b_seccr eat e, and svc_ker b_r eg routines implement the
AUTH_KERB authentication flavor. The user must have run ki ni t (1) or ksr vt gt (1) in al cases. This
man page discusses only the AUTH_KERB style of authentication.

For more information about the AUTH_NULL, AUTH_UNI X and AUTH_DES styles of authentication, see the
r pc(3C) man page. See the Remote Procedure Call (RPC) Reference Manual, Cray Research publication
SR-2089, for a definition of the AUTH data structure.

aut hker b_get ucr ed
The server side routine, aut hker b_get ucr ed, converts an AUTH_KERB credential received in an RPC
request, which is operating-system independent, into an AUTH_UNI X credential. If this routine succeeds, it
returns 1; if it fails, it returns O.

SR-2080 10.0 339

KERBEROS_RPC(3C) KERBEROS_RPC(3C)

The uid is set to the numerical ID of the user associated with the RPC request referenced by rgst. gid is set
to the numerical 1D of the user’s group. The numerical IDs of the other groups to which the user belongs
are stored in gr oupl i st (). grouplen is set to the number of valid group ID entries returned in

groupl i st (). All information that this routine returns is based on the Kerberos principal name contained
inrgst. This principal name is assumed to be the login name of the user, and the IDs returned are the
same as if that user had physically logged in to the system.

aut hkerb_seccreate

The client side routine, aut hker b_seccr eat e, returns an authentication handle that enables the use of
the Kerberos authentication system. The service parameter is the Kerberos principal name of the service to
be used. This name is generally a constant with respect to the service being used.

The srv_inst is the instance of the service to be called. realm is the Kerberos realm name of the desired
service; if it is NULL, the local default realm is used.

The window parameter validates client credential, with time measured in seconds. If the difference in time
between the client’s clock and the server’s clock exceeds the time value of window, the server regjects the
client’s credentials, and the clock must be resynchronized. On a Cray Research machine the nt pd(8)
command provides this function. A small window is more secure than a large one.

The timehost parameter is optional and does nothing. Client and server should run the network time protocol
(NTP) to synchronize time.

The status parameter is also optional. If you specify status, it is used to return a Kerberos error status code
if an error occurs. If statusis NULL, no detailed error codes are returned.

If aut hker b_seccr eat e fails, it returns NULL.

svc_kerb_reg

340

The server routing, svc_ker b_r eg, performs registration tasks in the server that are required before
AUTH_KERB requests are processed. xprt is the UDP RPC transport handle which is associated with this
information. Only the UDP transport handles may be registered with the xprt parameter. If xprt is NULL,
this registration is effective for any requests that arrive on transports that have not been specifically
registered. If you use the xprt parameter to register transports, you must use a separate svc_kerb_reg
call for each transport.

The name, inst and realm parameters describe the Kerberos principal identity that this server assumes. This
identity must be the same identity that the clients use when requesting Kerberos tickets for authentication.
The required name parameter is the principal name of the service. inst is the instance; most common value
for inst is *, which allows the Kerberos library to determine the correct instance to use, (such as the
hostname on which the service is running). realm is the Kerberos r eal mname to use in validating tickets.
If it is NULL, the local default realm is used.

Generally, svc_ker b_r eg should be called immediately before svc_r un. If the routine succeeds, it
returns O; if it fails, it returns -1. Kerberos RPC servers must be run as root to access the / et ¢/ srvt ab
file to decrypt authentication messages.

SR-2080 10.0

KERBEROS_RPC(3C) KERBEROS_RPC(3C)

NOTES

You must be licensed for Open Network Computing Plus (ONC+) to use Kerberos encryption-based
authentication.

You must load the following library routines and include files along with your C program:

cc LDFLAGS += -lkrb -lcraylm
#i ncl ude <rpc/rpc. h>
#i ncl ude <sys/types. h>

You must install Kerberos enigma for Kerberized RPC to function. These interfaces are unsafe in
multithreaded applications; therefore you should call unsafe interfaces only from the main thread.
SEE ALSO
ker ber 0s(3K) in the Kerberos User’s Guide, Cray Research publication SG—2409
r pc(3C) in the UNICOS System Libraries Reference Manual, Cray Research publication SR—2080
ki ni t (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
ker ber os(7) available only online
nt pd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2080 10.0 341

KILLPG(3C)

NAME
kil | pg — Sends signa to a process group

SYNOPSIS

#i ncl ude <si gnal . h>

int killpg (int pgrp, int sg);
IMPLEMENTATION

All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

KILLPG(3C)

The ki | | pg function sends the signal sig to the process group pgrp. See si gnal (2) for alist of signals.

The sending process and members of the process group must have the same effective user ID, or the sender

must be the super user.

The ki | | pg function is provided as a compatibility function. It is equivalent to the ki | | (2) system call

with arguments sig, and pgrp multiplied by —1.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned, and er r no is

set to indicate the error. See ki | | (2) for alist of error codes.

SEE ALSO
errno. h(3C)

kill (2),signal (2) inthe UNICOS System Calls Reference Manual, Cray Research publication SR—2012

342

SR-2080 10.0

L3TOL (3C) L3TOL(3C)

NAME
| 3tol, Itol 3— Converts between 3-byte integers and long integers

SYNOPSIS
#i ncl ude <stdlib. h>
void | 3tol (long *Ip, char *cp, int n);
void lItol 3 (char *cp, long *Ip, int n);

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

Thel 3t ol function converts a list of n 3-byte integers packed into a character string to which cp points
into alist of long integers to which Ip points.

Thel t ol 3 function performs the reverse conversion from long integers (Ip) to 3-byte integers (cp).

These functions are useful for file-system maintenance in which the block numbers consist of 3 bytes.

CAUTIONS

Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent.

SEE ALSO

f s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 343

LGAMMA (3C) LGAMMA (3C)

NAME

| gamma, gamma, si gngam— Computes log gamma function

SYNOPSIS
#i ncl ude <mat h. h>
doubl e gamma (doubl e X);
doubl e | gamma (doubl e x);
i nt signgam
IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The gamma function behaves identically to the | gamma function, which will be referred to on the remainder
of this page. Use of the name | gama is preferred to gamma, which may be withdrawn in a future release.

The | gama function returns In(O (x) O), where I'(x) is defined asJ' e't*Idt. Thesign of I'(x) is
0

returned in the external integer signgam. |If X is negative, it must not have an integral value. Argument x
may not be 0.
The following C program fragment might be used to calculate I':

if ((y = lgamma(x)) > LN_MAXDOUBLE)

error();

y = signgam O exp(y);
LN_MAXDOUBLE is the least value that causes exp to return arange error. LN_MAXDOUBLE is defined in
the header file val ues. h(3C).

Vectorization is inhibited for loops containing calls to the | gamma function.

RETURN VALUES

For nonpositive integer arguments, HUGE VAL is returned, and er r no is set to EDOM
If the correct value would overflow, | gamma returns HUGE VAL and sets er r no to ERANGE.

344 SR-2080 10.0

LGAMMA (3C) LGAMMA (3C)

On Cray MPP systems and CRAY T90 systems with |EEE arithmetic, | gamma(NaN) and ganma(NaN)
return NaN and er r no is set to EDOM

On Cray MPP systems and CRAY T90 systems with |EEE arithmetic, the value returned by the | gamma
and gamma functions when a domain error occurs can be selected by setting the environment variable

CRI | EEE LI BM The second column describes what is returned when CRI _| EEE LI BMis not set, or is
set to a value other than 1. The third column describes what is returned whe CRI _ | EEE LI B is set to 1.

Error CRI _IEEE LIB=0 CRI _IEEE LIB=1
| gamma(x) , where x is less than zero HUGE_VAL NaN
ganma(X) , where x is less than zero HUGE_VAL NaN

SEE ALSO

exp(3C), val ues. h(3C)

val ues(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 345

LIBUDB(3C)

NAME

LIBUDB(3C)

addudb, del et eudb, endudb, get sysudb, get t r ust edudb, get udb, get udbchai n,

get udbdef aul t, get udbnam get udbst at , get udbt map, get udbui d, | ockudb, rew i t eudb,
set udb, set udbdef aul t, set udbpat h, set udbt nap, udbi sopen, unl ockudb, zer oudbst at
— Library of user database access functions

SYNOPSIS
#i ncl ude <udb. h>

i nt addudb (struct udb *udb);
i nt del eteudb (char *name);
voi d endudb (void);

voi d getsysudb (void);

346

voi d gettrustedudb (void);

struct udb *getudb (void);

struct udb *getudbchain (int option);
struct udbdefault *getudbdefault (void);

struct udb *getudbnam (char *name);
struct udbstat *getudbstat (void);

struct udbtmap *get udbt map (void);
struct udb *getudbuid (int uid);

nt
nt
nt
nt
nt
nt

nt

| ockudb (void);

rewiteudb (struct udb *udb);

setudb (void);

setudbdefault (struct udbdefault *def);
set udbpat h (char *path);

setudbt map (struct udbtmap *tmap);

udbi sopen (void);

extern int udb_errno;

voi d unl ockudb (void);

voi d zeroudbstat (void);

SR-2080 10.0

LIBUDB(3C) LIBUDB(3C)

The following routines are for Cray Research internal use only:

const Udbhdr *udb_header access(const | ong magic, const Hdrfield field,
const void *val ue);

const char *udb_strerror(const int code);

i nt reset maxui d(void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The user database (UDB) contains control information for users of the UNICOS operating system and for the
fair-share scheduler’s resource groups. The UDB files replace the / et ¢/ passwd file as the primary source
for user validation and control information.

The UDB consists of the following files:
e /etc/udb

/et c/udb. public

/et c/udb_2/udb. i ndex
/etc/udb_2/udb. priva

/et c/ udb_2/ udb. pubva

The files in the directory / et ¢/ udb_2 extend the capability of the UDB beyond what was available in
previous releases.

To alow users access to nonsensitive UDB information, the files / et ¢/ udb. publ i c,
/etc/udb_2/index, and/ et c/ udb_2/ udb. pubva are publicly readable. The other files contain
privileged information, such as encrypted passwords and security information, and can be read only by
privileged callers. Write access to al files is restricted to privileged users.

The UDB files are binary files that are carefully constructed (and carefully accessed) so that multiple reader
processes can access them without being disturbed by ongoing modifications of the database. That is,
privileged processes can update the database concurrently with other processes reading the database. In
addition, the | i budb(3C) functions use hash lists and a direct-access index to speed the search for locating
user information by user ID (UID), resource group ID, user name, and resource group name.

SR-2080 10.0 347

LIBUDB(3C) LIBUDB(3C)

348

Because of this capability for multiple accesses, the UDB should be accessed only through the provided
library functions described in the following paragraphs. These functions provide access to the user
information and system defaults contained in the UDB. Other access methods might corrupt the database
and require regeneration of the files.

The get udb, get udbnam and get udbui d functions each return a pointer to an object with the
following UDB structure containing the broken-out fields of one entry from the UDB. If the pointer returned
has the value UDB_NULL, a record could not be returned for the reason set in the udb_er r no file. When
get udb is being used for sequential reading of the database, a UDB_NULL pointer along with the value
UDBERR _END in udb_er r no signas the end of the database.

If more than one record has the same UID, then get udbui d returns the most recently added record. (To
check for multiple identical UIDs after a call to get udbui d, use the get udbchai n function with the
UDBCHAI N_PRI OR direction option and check the UID of the returned record.)

The get udbchai n function is used to take advantage of the UID chain maintained in the database. The
chain is bidirectional, ordered by UID value. The direction of ascending value of UID is called next, and the
direction of descending value of UID is called prior. Each get udb, get udbnam or get udbui d call sets
the current position to that of the returned record; a call to set udb or to get udbchai n with option set to
UDBCHAI N_FI RSTNR sets the current position so that the next record is the one with the smallest UID
value. Definitions for the information shown in the structure are found in udb. h.

Option Description

UDBCHAI N_FI RST UID value 0. Returns the first record in the UID chain and sets the current
position to that record.

UDBCHAI N_FI RSTNR UID value 1. Sets the current chain position so that the next record is the first

record in the UID chain (smallest numeric UID value). A record is not
returned, so the returned pointer is UDB_NULL and udb_errno is0. An
error has occurred if udb_er r no is nonzero.

UDBCHAI N_LAST UID value 2. Returns the last record in the UID chain and sets the current
position to that record.
UDBCHAI N_LASTNR UID value 3. Sets the current chain position so that the next record is the last

record in the UID chain (largest numeric UID value). A record is not
returned, so the returned pointer is UDB_NULL and udb_errno is0. An
error has occurred if udb_er r no is nonzero.

UDBCHAI N_NEXT UID value 4. Returns the next record in the UID chain. The end of the chain
is indicated by the returned pointer being set to UDB_NULL and udb_er r no
being set to UDBERR_END.

UDBCHAI N_PRI OR UID value 5. Returns the prior record in the UID chain. The beginning of
the chain is indicated by the returned pointer being set to UDB_NULL and
udb_er rno being set to UDBERR_END.

SR-2080 10.0

LIBUDB(3C) LIBUDB(3C)

The addudb and r ewr i t eudb functions take a st ruct udb object and create or update a named record
in the UDB; del et eudb removes the named record. When the return value is UDB_FAI L, it means that
the requested function could not be done for the reason set in udb_er r no. Before any of these functions is
caled, acal tol ockudb is required to prevent multiple processes from writing to the database at the same
time, thereby possibly corrupting it. The database is automatically unlocked upon return from these
functions. Each call to | ockudb should be checked for the return value UDB_FAI L, which indicates that
the lock could not be obtained. All of these functions require write permission to the database.

A call to set udb has the effect of rewinding the database to allow sequential reading with get udb, and it
also positions the chain pointer to the first record (lowest UID value) for use by get udbchai n. The
endudb function can be called to close the database when processing is complete.

For security reasons, UDB information is divided into protected and public categories; the access method
retrieves only the public information unless special library set-up calls are made. A caller needing specific
access to the protected category of information (to read or update the information in any way) must make a
call to get sysudb or get t r ust edudb after the optional set udbpat h call but before any other calls to
the database are made. If this is not done, the public file will be opened and no updating or access to
protected information will be possible unless endudb is called to close the files. To guarantee predictable
behavior for the system security programs, the various get requests will fail if the protected copy of the
database cannot be accessed. The get sysudb function also causes such behavior.

The difference between get sysudb and get t r ust edudb is that no files remain open for writing after an
unl ockudb call (including the implicit calls from addudb, del et eudb, and r ewr i t eudb) unless

get trust edudb is called. Except for updates of multiple records, use get sysudb when updating the
database, because this improves data integrity.

The set udbpat h function changes the path name to the database files and can be used to support multiple
user databases. The path must be accessible to the caller and must end in the name of a directory. If this
function is called after the database is opened and the name changes because of this call, the previously
accessed database will be closed. If the pointer or the string is null, the path will be restored to the default.
The entire file name is limited in length to the value UDBFNAMELEN (1024 characters). If a st at (2) call
using path_name/ udb_2 returns a directory named udb_ 2, the library assumes that the files udb. i ndex,
udb. pri va, and udb. pubva will be found in that directory. If udb_2 is not found, those files are
assumed to exist in path_name rather than path_name/ udb_2.

The get udbst at function returns a pointer to a udbst at structure (shown later in this section) that
contains statistical and other information related to the UDB access method. The values in the structure are
not guaranteed to be accurate and static except immediately following this call and before any other UDB
library calls are made. (Make a private copy of the returned structure if historical information is needed.)
The zer oudbst at function resets al statistical information and may be used after set udbpat h is called
to restart the gathering of statistics on the new database.

The udbi sopen function returns the open state of UDB files. When no files are open, 0 is returned;
otherwise the return values are as follows:

State Value
Protected open read 00001

SR-2080 10.0 349

LIBUDB(3C) LIBUDB (3C)

350

Protected open write 00002
Public open read 00004
Public open write 00010
Index open read 00020
Index open write 00040

These values may be returned in combinations.

The get udbdef aul t function returns a pointer to the current default table (st ruct udbdef aul t).
This table contains the defaults currently recorded in the UDB. The set udbdef aul t function replaces the
default table in the UDB with a new table. The set udbdef aul t function requires that the calling process
have write permission to the UDB.

The get udbt map function returns a pointer to the current global tape name structure (st r uct

udbt map). Each of the eight tape name ordinals is represented in this table. If an ordinal does not have an
associated global name, the name string is null. The set udbt map function replaces the existing tape name
map in the UDB with a new tape name map. The set udbt map function requires that the calling process
have write permission to the UDB.

The udb_strerror function returns the message string associated with a given UDB error code.

SR-2080 10.0

LIBUDB(3C)

Description of struct

struct udb {

char
char
char
char
char
i nt

i nt

char
char
char
char
| ong
| ong
| ong
| ong
| ong
i nt

| ong
| ong
| ong
| ong
| ong
| ong

udb

ue_passwd[MAXUE_EPASSWD + 1];
ue_conment [MAXUE_COWENT + 1];
ue_di r [MAXUE_HOMEDI R + 1];
ue_shel | [MAXUE_SHELL + 1];
ue_age[MAXUE_AGE + 1];
ue_aci ds[MAXVI DS] ;
ue_gi ds[MAXVI DS] ;

ue_r oot [MAXUE_LOGQ NROOT + 1];
ue_l ogli ne[MAXUE_LOGLI NE + 1];
ue_I| oghost [MAXUE_HOSTNAME + 1];
ue_bat chhost [MAXUE_HOSTNAME + 1];
ue_l ogti ne;

ue_bat chti ne;

ue_per nbi ts;

ue_sitebits;

ue_archlim

ue_ar chned;

ue_j procl i nf MAXUE_RCLASS] ;
ue_j cpul i nf MAXUE_RCLASS] ;
ue_pcpul i nf MAXUE_RCLASS] ;

ue_j mem i nf MAXUE_RCLASS] ;
ue_prem i nf MAXUE_RCLASS] ;
ue_pfilelin MAXUE_RCLASS];

unsi gned char
ue_j tapel i nf MAXUE_RCLASS] [MAXUE_TAPETYPE] ;

i nt
int
int
int
int

| ong
| ong
int
int
int
char
i nt

i nt

| ong
short
short
mimt _t
| ong
| ong
fl oat

SR-2080 10.0

ue_ni ce[MAXUE_RCLASS] ;
ue_l ogfails;

ue_def | vl ;

ue_maxl vl ;

ue_nminlvl;

ue_def conps;

ue_conparts;

ue_pernits;

ue_di sabl ed;

ue_trap;

ue_nane[16] ;

ue_ui d;

ue_resgrp;

ue_shfl ags;

ue_shares;

ue_shplimt;

ue shmimt;

ue_j sdsl i nf MAXUE_RCLASS] ;
ue_psdsl i nf MAXUE_RCLASS] ;
ue_shusage;

LIBUDB(3C)
encrypted password;
comrent
default login directory
default login shell or program
included for conpatibility; not used

valid account ids

valid group ids

login root directory

line used for last login

hostname for last |ogin

host name of last batch req origin
time of last login (GMI in secs)
time of last batch request

user permnission bits

site supported permission bits

di sk space protected from archiving
archi vi ng medi um sel ect or

per job max # processes

per job cpu limt [seconds]

per proc. cpu limt [seconds]

per job mem limt [512 words]

per proc. mem limt [512 words]

per proc. file size limt: [512 words]
per job tape limt

user’s nice value (0..19)

#of consecutive login failures
default security |evel
maxi mum security |eve

m numum security |eve
def aul t conpartnents at
val id conpartnents

val id perm ssions

user login disabled flag
trap on login

user’s login nane

u D

resource group U D
share fl ags

al | ocated shares
included for conpatibility; not
included for conpatibility; not
per job sds limt

per process sds limt

decayi ng accum costs

login

used
used

351

LIBUDB(3C)
float ue_shchar ge
| ong ue_shexti ne;
| ong ue_linflags
i nt ue_unask;
i nt ue_war ni ngs;
i nt ue_reason;
i nt ue_intcls;
i nt ue_nmaxcl s;
| ong ue_intcat;
| ong ue_val cat ;
| ong ue_l astlogti ne;
i nt ue_cpu_quot a;
i nt ue_cpu_quot a_used;
| ong ue_jfilelinf MAXUE_RCLASS];

352

struct ue_pwage {
| ong time;

LIBUDB(3C)

| ong-term accum cost

time last | node freed

included for conpatibility; not used
included for conpatibility; not used
included for conpatibility; not used
included for conpatibility; not used
default integrity class (obsol ete)
maxi mumintegrity class (obsol ete)
default integrity categories

valid integrity categories

time of last login attenpt

CPU quota (seconds * 10)

accunul ated CPU time (seconds * 10)
per job new file space allocation limt

second cl ock when password was changed
see PWFL_xxx fl ags

maxi mum password age in seconds

m ni mum password age in seconds

U D of this user’s adm nistrator
nunmber of users this U D can adm ni ster
per job max # MPP PEs

per job max time MPP rsvd

per job max MPP barriers

per process max time MPP rsvd

per proc core file limt [512 words]
per process open file limt

default conpartnents at |ogin

per job max shared nenmory segnments
per job max shared nenory [512 wor ds]

per job max socket buffer limt [512 words]

Arbitrary string of no more than 39 characters usually including the user’s name,

Default login directory (home directory) name of no more than 63 characters.

i nt flags;
i nt maxage;
i nt m nage;
} ue_pwage;
i nt ue_par ent ui d;
i nt ue_adm nmax;
i nt ue_j pel i mi t [MAXUE_RCLASS]
i nt ue_j mppti nme[MAXUE_RCLASS] ;
i nt ue_j nppbarri er [MAXUE_RCLASS] ;
i nt ue_pnppti me[MAXUE_RCLASS]
i nt ue_pcorel i nff MAXUE_RCLASS]
i nt ue_pfdlimt[MAXUE_RCLASS]
i nt ue_mi nconps;
i nt ue_j shmsegs[MAXUE_RCLASS] ;
i nt ue_j shnsi ze[MAXUE_RCLASS]
i nt ue_j socbf | i mf MAXUE_RCLASS] ;
ue_passwd Encrypted password of no more than 15 characters.
ue_conmment
department, and other personal information.
ue dir
ue_shel | Default login shell or program name up to 63 characters in length.
ue_age

The ue_age field is obsolete, but remains present for compatibility reasons. It isa

read-only field which is constructed by the interface library from the newly added
ue_pwage structure. For more information, see the description of ue_pwage.

SR-2080 10.0

LIBUDB(3C)

ue_aci ds

ue_gids

ue_r oot

ue_l ogline
ue_| oghost
ue_bat chhost
ue_| ogti ne
ue_batchtinme

ue_permbits

SR-2080 10.0

LIBUDB(3C)

List of zero or more (maximum of 64) numerical account IDs (ACIDs) for the user. When
fewer than 64 ACIDs are declared, the list is terminated by an entry with the value —1;
udbgen(8) and udbsee(1) present these as comma-separated values.

List of zero or more (maximum of 64) numerical group IDs (GIDs) for the user. When
fewer than 64 GIDs are declared, the list is terminated by an entry with the value —1;
udbgen(8) and udbsee(1) present these as comma-separated values.

Login root directory name consisting of a maximum of 63 characters.

A string of no more than 15 characters specifying the line or port from which the most
recent login originated.

A string of no more than 31 characters specifying the host from which the most recent
login originated.

A string of no more than 31 characters naming the host from which the most recently
submitted batch job originated.

The time at which the most recent login occurred.

The time at which the most recently submitted batch job arrived.

User permission bits. Thisis a bit list in which the meaning of each bit is defined in
udb. h; udbgen(8) and udbsee(1) present these as named bits separated by commas.
For alist that maps user permission hits to kernel permbits, see get per mi t (2).

Bit Description

PERMBI TS_ACCT Accounting permission. Allows the user to run the
acct on(8) and csaswi t ch(8) commands. The
acct on(8) command turns process accounting on and off.
The csaswi t ch(8) command checks the status of and
enables or disables process, daemon, and record accounting.

PERMBI TS_ACCTI D Allows the user to use the di skusg(8) command to merge
intermediate disk accounting records. By using the
chaci d(1) command, the user may set the account ID of a
file that is owned by another user and may specify any
account ID value. By using the quot a(1) command, the
user can see all acccount IDs, group IDs, and user IDs. By
using the newacct (1) utility, the user can change the
account ID of the calling shell.

353

LIBUDB(3C)

354

PERMBI TS_ASKACI D

PERMBI TS_BYPASSLABEL

PERMBI TS_CHOWN

PERMBI TS_CHROOT

PERMBI TS_DEDI C
PERMBI TS_DEVIVAI NT

PERMBI TS_GROUPADM

PERMBI TS_GUARD

PERMBI TS_GUEST

PERMBI TS_GUESTADM

LIBUDB(3C)

Allows queries for active account ID. When this permbit is
assigned to a user login account in the UDB, and the
account also has multiple account IDs or the accti d
(PERMBI TS_ACCTI D) permbit, | ogi n prompts the user
for the account ID that should be assigned to the session.

Allows the user to bypass label processing. This permission
bit replaces the | bypass permit.

Allows the user to change owner (chown(2)), change group
(chgr p(1)), or change permissions (chnod(1)) for any file
owned by that user.

Allows the user to use the chr oot (8) command to execute
a command relative to a newroot.

Allows the user to dedicate a CPU to a process.

Allows the user to use the ddmrs (8) (disk diagnostic and
maintenance system) command without being super user.

Allows the user to be a group administrator. The

xadm n(8) utility supports group administration and this
permission controls which users are group administrators.
Other configuration of xadm n(8) is also required to
support group administration.

Driver DONUT guard mode. When running disk
diagnostics, a user with this permission can access user data
space. This is denied without this privilege.

Allows use of guest operating system. Allows the user
access to most of the functionality provided by the
guest (1) command. This includes starting, stopping,
changing and dumping a guest. This permission is not
needed to obtain guest status.

Allows administration of guest operating system. The use
of certain guest (1) command line options is controlled
through this permission. The controlled options are those
that may have a global system effect, including the
following:

-T Enable or disable extended kernel tracing.

- K Enable or disable panicking the host if the guest
panics.

-D Dump all active systems.
- O Usurp guest system from the original owner.

SR-2080 10.0

LIBUDB(3C)

PERMBI TS_I D

PERMBI TS_| PCPERSI ST

PERMBI TS_MKNCD

PERMBI TS_M_SIMNT

PERMBI TS_MOUNT

PERMBI TS_NI CE

PERMBI TS_NOBATCH

PERMBI TS_NO ACTI VE

SR-2080 10.0

LIBUDB(3C)

- P Change CPU percentages of active guests.

Allows ID changes. Allows the user to set his or her real,
effective, and saved-set user IDs (set ui d(2)). Allows the
user to set his or her real, effective, saved-set group 1Ds
(set gi d(2)), and group list (set gr oups(2)). Allows the
user to set his or her account ID (acct i d(2)) and the
account ID of afile (chaci d(2)).

Allows the user to allocate persistent shared memory blocks.
When a user with this permission uses the nsgget (2),
senget (2) or shnget (2) system calls, reserved memory
segments are retained beyond the life of the creating session.

Allows the user to use the nknod(2) system call with a
mode other than S_| FI FO.

Unused. This permbit is available to assign user accounts,
but it no longer grants special abilities.

Allows mount . The nount (2) system call that alows a
user to mount a file system, requires this permission or
super user privilege and returns an EPERM error code if the
user is not permitted. The unount (2) system call that
allows a user to unmount a file system, requires this
permission or super user privilege and returns an EPERM
error code if the user is not permitted.

Allows ni ce negative values. The ni ce(2) system call
that allow users to change their nice value requires this
privilege or super-user if the nice value is not zero (0). The
system call will return an EPERM error code if the user is
not permitted.

Denies users permission to run batch processes. The
setlimts() cal fromthel ogi n(1) command for a
batch job request will fail if the user has this permission and
the user will seethe message"setlimts: batch
sessions not permtted".

Denies users permission to run interactive processes. The
setlimts() cal fromthel ogi n(1) command for an
interactive job request will fail if the user has this
permission and the user will see the message
"setlimts: interactive sessions not
permtted".

355

LIBUDB(3C)

356

PERMBI TS_PLOCK

PERMBI TS_REALTI ME

PERMBI TS_RESLI M

LIBUDB(3C)

Allows a process to lock itself in memory (pl ock(2)). The
pl ock(2) system call that allows a process to become
locked into memory during execution requires this privilege
or super-user. The system call will return an EPERM error
code if the user is not permitted. This privilege is added to
the process permits during a cpuopen() cal.

Allows the user to activate real-time processes. The
cpucnt | (CPU_SETRT) call that allows the process to set
the real-time execution state requires this privilege or
super-user. The system call will return an EPERM error
code if the user is not permitted.

Resource limits permission. Thel i mi t s(2) system call for
function L_SETLI Mrequires this privilege or super-user to
connect the process to a new limits structure that is passed
as an Inode structure. The system call will return an
EPERM error code if the user is not permitted.

Thel i m t s(2) system call for function L_ DEADGROUP
requires this privilege or super-user to collect the dead limits
structure and returns an Inode structure. The system call

will return an EPERM error code if the user is not
permitted.

Thel i m t s(2) system call for function L_SETI DLE
requires this privilege or super-user to set the limits fields in
an idle limits structure that is passed as an Inode structure.
The system call will return an EPERM error code if the user
is not permitted.

Thel i m t s(2) system call for function L_CHNGLI M
requires this privilege or super-user to change the limits
fields in the limits structure that is passed as an Inode
structure with the correct user ID. The system call will
return an EPERM error code if the user is not permitted.

Thel i m t s(2) system call for function L_UPDATEKN
requires this privilege or super-user to alow the

shr daenon to update the kernel Inode fields previously
calculated by the kernel. The system call will return an
EPERM error code if the user is not permitted.

Theul i m t (2) system call for function UL_SETFSI ZE
requires this privilege or super-user if the file size limit is
being increased. The system call will return an EPERM
error code if the user is not permitted.

The set per mi t (2) system call requires this privilege or

SR-2080 10.0

LIBUDB(3C)

ue_sitebits

ue_archlim

SR-2080 10.0

PERMBI TS_RESTRI CTED

PERMBI TS_SI GANY

PERMBI TS_SUSPRES

PERMBI TS_SYSPARAM

LIBUDB(3C)

super-user if the permits for a job or process are being
increased. The system call will return an EPERM error
code if the user is not permitted.

The cpu(4) system call with ani oct| for function
CPU_RTPERM T requires this privilege or super-user. The
system call will return an EPERM error code if the user is
not permitted.

Restricts system access (udbr stri ct (8)). Set and cleared
by the udbr st ri ct (8) command to allow or disallow
creation of sessions, either batch or interactive, by the user.

Allows the user to send signals to any process, regardless of
ownership.

Allows the user to suspend and resume processes outside
their own session.

Allows the user to change various system parameters.
These include:

* System tick rate

* Maximum user error interrupts

* Memory scheduling parameters (nschedv(8))
* System memory size (chnem(8))

* Fair-share parameters

* CPU characteristics (t ar get (1))

* Time-of-day

PERMBI TS_TAPEMANAGER Allows the user special tape access privileges such as

PERMBI TS_WRUNLABEL

PERMBI TS_YP

allowing tape formatting and mounting of tapes owned by
other users.

Allows the user to read and write unlabeled tapes. This
permission bit replaces the wr unl ab permit. For
information on labeling tapes, see t pl abel (8).

Network information services (NIS) reference flag.

There are 32 site-defined permission bits. These bits are named si t e1 (octal 01) through
si t e32 (octal 020000000000). These hits can be set, cleared, and displayed through
udbgen(8) and udbsee(1) by either their generic name or octal value.

Disk space immune to data migration.

357

LIBUDB(3C)

358

ue_ar chned

ue_jproclim

ue_jcpulim

ue_pcpul i m

ue_jmemim

ue_prem i m

ue_pfilelim

ue_jtapelim

ue_nice

ue_logfails

ue_defl vl

ue_maxl| vl
ue_m nl vl

ue_def conps

LIBUDB(3C)

An index to the medium selected for data migration. The meaning of this field is
site-specific except for the value 0, which is reserved for the default medium; O is always
valid in the released system.

Job process limit. Two values exist, one for batch and the other for interactive work;
udbgen(8) and udbsee(1) present the values asj procl i nf b] for batch and
jproclinfi] forinteractive.

Job CPU time limit in seconds. Two values exist, one for batch and the other for
interactive work; udbgen(8) and udbsee(1) present the values asj cpul i n{ b] for
batch and j cpul i n{i] for interactive.

Per-process CPU time limit in seconds. Two values exist, one for batch and the other for
interactive work; udbgen(8) and udbsee(1) present the values as pcpul i n{ b] for
batch and pcpul i n{i] for interactive.

Job memory limit in units of 512 words (4096 characters). Two values exist, one for
batch and the other for interactive work; udbgen(8) and udbsee(1) present the values as
jmem i nf b] for batchand j mem i n{i] for interactive.

Per-process memory limit in units of 512 words (4096 characters). Two values exist, one
for batch and the other for interactive work; udbgen(8) and udbsee(1) present the
values as pnem i n{ b] for batch and prrer i nf i] for interactive.

Per-process file alocation limit in units of 4096 characters (512 words). Two values exist,
one for batch and the other for interactive work; udbgen(8) and udbsee(1) present the
valuesaspfil el i nf b] for batchand pfilelinfi] for interactive.

Job tape assignment limit. Sixteen values exist, 8 for batch and 8 for interactive work.
Commands udbgen(8) and udbsee(1) present the values as j t apel i n{ b] [t] for batch
and j tapelinfi][t] forinteractive; t is atape type represented by an integer from O
through 7.

Job nice increment in the range 0 through 19; default is 0. Two values exist, one for
batch and the other for interactive work; udbgen(8) and udbsee(1) present the values as
ni ce[b] for batch and ni ce[i] for interactive. See ni ce(1) for more information.

The field in which the number of failed password attempts is recorded. Login is
prohibited when the value of this field exceeds the limit defined at installation.

Default security level assigned to the user at login. This is a numeric value with a default
of 0.

Maximum security level alowed for the user; the default value is O.
Minimum security level allowed for the user; the default value is O.

Default security compartments, which are compartments assigned to the user at login. The
format and meaning are included in the following ue_conpart s description. The
default is no initial security compartment assignment.

SR-2080 10.0

LIBUDB(3C)

ue_conparts

ue_permts

ue_di sabl ed
ue_trap
ue_name
ue_uid

ue_resgrp
ue_shfl ags
ue_shares

ue_shplimt

SR-2080 10.0

LIBUDB(3C)

Authorized security compartments. These are compartments the user may select. The
field is actually a bit list, but it is represented externally as a comma-separated list of
compartments; the default is no authorized compartments. The valid compartment names
and bits are defined in the sys/ secpar m h include file, as follows:

Name Description

crayri Cray Research, Inc.

net adm Network administrator
secadm Security administrator
sysadm System administrator
sysops System operator

uni cos UNICOS system (obsolete)

Permissions attributed to the user. The field is actually a bit list, but it is represented
externally as a comma-separated list of permission names; the default is no permissions.
The valid permissions are defined in the sys/ secpar m h include file, as follows:

Permission Description

i nstall This field is obsolete.

| bypass This field is obsolete; see the bypass! abel permbit.

recl sfy This field is obsolete.

rntaccs This field is obsolete.

sui dgi d Allows the user to set the set-UID or set-GID bits for afile.

usrtrap Sets the user in trap mode during login; al discretionary and mandatory

access attempts are logged.
wr unl ab This field is obsolete; see the wr unl ab permbit.

User password lock. When this field is honzero, the user is not allowed to access the
system.

"Trap on login" security feature.

The user name, consisting of up to 8 alphanumeric characters. The first character in this
field must be a letter; uppercase letters are allowed but are not recommended. This field
must be defined and unique.

Numeric user ID (UID); used internally in UNICOS utilities and the operating system.
This field must be defined.

Fair-share resource group UID.
Fair-share flags as defined in sys/ shar e. h.
Fair-share user’s allocated shares.

Included for compatibility; obsolete.

359

LIBUDB(3C)

360

ue shmimt

ue_j sdslim

ue_psdslim

ue_shusage
ue_shchar ge

ue_shexti nme

ue_linflags
ue_umask
ue_war ni ngs
ue_reason

ue_intcls
ue_maxcl s
ue_intcat

ue_val cat

LIBUDB(3C)

Included for compatibility; obsolete.

Job secondary data segment limit in units of 512 words (4096 characters). Two values
exist, one for batch and the other for interactive work; udbgen(8) and udbsee(1) present
the values asj sdsl i n b] for batch and j sdsl i nfi] forinteractive. The field is
present but not used on Cray Research systems without an SSD.

Process secondary data segment limit in units of 512 words (4096 characters). Two values
exist, one for batch and the other for interactive work; udbgen(8) and udbsee(1) present
the values as prrer i n{ b] for batch and premi i n{ i] for interactive. Thisfield is
present but not used on Cray Research systems without an SSD.

Fair-share decaying accumulated costs.
Fair-share user’s long-term accumulated costs.

Time at which this user’s last fair-share scheduler Inode was released. The Inode is a
kernel structure that holds running user control information for the scheduler.

Included for compatibility; obsolete.
Included for compatibility; obsolete.
Included for compatibility; obsolete.
Included for compatibility; obsolete.

Default integrity class assigned to an administrator at login. This is a numeric value with
adefault of 0. Thisfield is obsolete.

Maximum integrity class allowed for an administrator. This is a numeric value with a
default of 0. This field is obsolete.

Default category assigned to an administrator at login. The format and meaning are
described in ue_val cat. The default is no initial integrity category assignment.

Authorized categories assigned to an administrator. These are categories that an
administrator may enable. This field is a word, in which each category is represented by a
single bit. A name is associated with each category. Externally, authorized categories are
displayed as a comma-separated list of category names. Valid category names and bits are
defined in the sys/ t f m h include file. Categories that may be assigned to an
administrator are as follows:

Category Description

secadm Security administrator
sysadm System administrator
sysops System operator

uni cos UNICOS system (obsolete)
sysfil System file (obsolete)

SR-2080 10.0

LIBUDB(3C) LIBUDB(3C)

ue_l astl ogtine
The time at which a user’s most recent login attempt occurred. This time is updated
whether or not the login attempt was successful.

ue_cpu_quot a
CPU quota in seconds * 10. If this field is nonzero, the user will not be permitted to
accumulate (in ue_cpu_quot a_used) more than the value in this field.

ue_cpu_quot a_used
Accumulated CPU time in seconds * 10. If ue_cpu_quot a is nonzero and if the value
in this field exceeds ue_cpu_quot a, the user will not be permitted to run.

ue_jfilelim Perjob file alocation limit in units of 4096 characters (512 words). Two values exist, one
for batch and the other for interactive work; udbgen(8) and udbsee(1) present the
valuesasjfilelinib] forbatchandjfilelinfi] for interactive.

ue_pwage This is a structure containing a number of fields specifying the password age control for
the record. Password age makes it possible for the administrator to control how long
passwords remain valid and how they can be changed. Each of the fields in the structure
will be described separately.

Field Description
ue_pwage. time A copy of the time of day clock when the password was last
changed.

ue_pwage. fl ags Control flags. If the value is PWFL_FORCE, the user must change
the password at the next login. If the value is
PWFL__ SUPERUSER, only the administrator is allowed the change
the password.

ue_pwage. maxage The maximum age in seconds the password may have. If the
difference between ue_pwage. t i ne and the current time
exceeds this value, the user will be required to change the
password.

ue_pwage. m nage The minimum amount of time that must elapse before a password
may be changed.

ue_parentuid
UID of the group administrator (used by xadmi n(8)).

ue_adm nmax Reserved for future use.

ue_jpelimt Per-job maximum number of massively parallel processing (MPP) processing elements
(PEs). Two values exist, one for batch and the other for interactive work; udbgen(8) and
udbsee(1) present the valuesasj pel im t [b] for batchand j pel im t[i] for
interactive. A value of 0 in this field makes the MPP system inaccessible by the jab.
This field is present but not used on Cray Research systems without an MPP system.

SR-2080 10.0 361

LIBUDB(3C)

362

ue_j nmppti me

LIBUDB(3C)

Per-job maximum amount of wall-clock time (in seconds) that the MPP system can be
reserved by the job. Two values exist, one for batch and the other for interactive work;
udbgen(8) and udbsee(1) present the values asj nmppt i me[b] for batch and
jpptimel[i] forinteractive. A value of 0 in this field makes the MPP system
inaccessible by the job. This field is present but not used on Cray Research systems
without an MPP system.

ue_j mppbarri er

ue_pnppti me

ue_pcorelim

ue_pfdlimt

ue_m nconps

ue_j shnmsegs

ue_j shmsi ze

ue_jsochbflim

Per-job maximum number of MPP barriers. Two values exist, one for batch and the other
for interactive work; udbgen(8) and udbsee(1) present the values as

j mppbarri er[b] for batch and j nppbarrier[i] forinteractive. Thisfield is
present but not used on Cray Research systems without an MPP system.

Per-process maximum amount of wall-clock time (in seconds) that the MPP system can be
reserved by the process. Two values exist, one for batch and the other for interactive
work; udbgen(8) and udbsee(1) present the values as pnppt i me[b] for batch and
prppti me[i] for interactive. A value of 0 in this field makes the MPP system
inaccessible by the process. This field is present but not used on Cray Research systems
without an MPP system.

Per-process maximum core file limit in units of 512 words. This represents the maximum
size of a core file that the process can create. If the size of the process is larger than this
limit, a partial core file will be created. A partial core file contains just the user and user
common structures. Two values exist, one for batch and the other for interactive work;
udbgen(8) and udbsee(1) present the values as pcor el i n b] for batch and
pcorelinfi] forinteractive.

Per-process maximum open file limit. This represents the maximum number of file
descriptors that a process belonging to this user can allocate. This limit is restricted by the
value of OPEN_MAX (64) at the low end, and the system configurable value of
K_OPEN_MAX at the high end. Two values exist, one for batch and the other for
interactive work; udbgen(8) and udbsee(1) present these values as pf dl i mi t [b] for
batch and pfdlimt[i] interactive.

Minimum security compartments. The field is actually a bit list but is represented
externally as a comma-separated list of compartments. See ue_conpart s for more
information.

Number of shared memory segments a job can create. This field aways present but is
used only on CRAY T90 series systems supporting shared memory.

Per-job maximum shared memory allocation in units of 512 words. This field always
present but is used only on CRAY T90 series systems supporting shared memory.

Per-job maximum amount of socket buffer space in units of 512 words. If this field is O,
an unlimited amount of socket buffer space is allowed.

SR-2080 10.0

LIBUDB(3C)

The ue_cpu_quot a and ue_cpu_quot a_used fields hold values expressed in seconds * 10.

LIBUDB(3C)

Externally, udbgen(8) and udbsee(1) accept and display these fields in the form wwv.v (seconds and tenths
of asecond). The internal form is used so that tenth-of-second resolution can be maintained in a 32-bit field.

The maximum value allowed in these fields is 4294967295, which limits the maximum CPU quota to
429,496,729.5 seconds.

Description of struct

udbst at

struct udbstat {

SR-2080 10.0

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

add;
dbhits;
dbr ead;
dbwrite;
del et e;
get nam
get udb;
get udbchai n
get ui d;
hdr ead;
hdwri t e;
| ock;
maxui d;
nhr ead;
nhwri t e;
rewrite;
uhr ead;
uhwrite;
unl ock;
ver si on;
maxrecs;

nunber
nunber
nunber
nunber
number
number
nunber
nunber
nunber
nunber
number
number

of
of
of
of
of
of
of
of
of
of
of
of

add record requests
data bl ock rereads

data bl ocks read

data blocks witten

del ete by nane requests
get by name requests
sequential read requests
chain reads

get by uid requests
header bl ock reads
header block wites

| ock requests

hi ghest value U D in the database

nunber
nunber
nunber
number
number
nunber

of
of
of
of
of
of

name hash bl ocks read
name hash bl ocks witten
rewrite requests

uid hash bl ocks read

uid hash blocks witten
unl ock requests

dat abase versi on number
maxi mum nunber of records in the udb

363

LIBUDB(3C) LIBUDB(3C)

Description of struct udbdefault
struct udbdefault {

| ong j cpul i nf MAXUE_RCLASS] ; default job CPU limt
| ong pcpul i nf MAXUE_RCLASS] ; default process CPU limt
| ong j mem i nf MAXUE_RCLASS] ; default job menory limt
| ong pmenm i nf MAXUE_RCLASS] ; default process nmenory limt
| ong j sdsli nf MAXUE_RCLASS] ; default job SDS limt
| ong psdsl i nf MAXUE_RCLASS] ; default process SDS limt
| ong jfilelinf MAXUE_RCLASS]; default job new file space allocation limt
| ong pfilelin]f MAXUE_RCLASS]; default process new file space allocation limt
unsi gned char default tape limts
j tapel i nf MAXUE_RCLASS] [MAXUE_TAPETYPE] ;
i nt ni ce[MAXUE_RCLASS] ; default nice val ue
i nt j procl i nf MAXUE_RCLASS] ; default job process limt
i nt j pelimt[MVAXUE_RCLASS]; default MPP PE limt
i nt j mppti me[MAXUE_RCLASS] ; default MPP tinme limt
i nt j mppbarrier[MAXUE_RCLASS]; default MPP barrier limt
i nt prppt i me[MAXUE_RCLASS] ; default per process MPP time limt
i nt pcorel i n{ MAXUE_RCLASS] ; default per proc core file limt [512 words]
i nt pfdlimt[MAXUE_RCLASS]; default file descriptor limt
i nt j shmsegs[MAXUE_RCLASS] ; default created shared nmenory segnents limt
i nt j shnsi ze[MAXUE_RCLASS] ; default job shared nenmory size limt
i nt j socbf li nf MAXUE_RCLASS] ; default per job max socket buffer limt [512 words]
b
Description of struct udbtmap
struct udbtmap {
struct {
char name[MAXUE_TNAME + 1]; tape name
} mt_entry[MAXUE_TAPETYPE] ;
i
NOTES

The external representation of the records in the UDB is located in the files | i bc/ udb/ uent rydb. ¢ and
i bc/udb/1ibudb. h. To save space in the files, the data is packed in uent r ydb. c, using the
structure defined in that file. In the extension files, data is tagged and compressed; all zero-valued fields are
discarded. Transformation functions in the library convert between the file and st ruct udb
representations.

In the previously described st ruct udb, the following fields are included only for compatibility with
previous releases: ue_shplimt,ue_shminit,ue_rmask, ue_warni ngs, ue_reason, ue_age,
and ue_| i nfl ags. These fields are obsolete and are not referenced by the UDB.

364 SR-2080 10.0

LIBUDB(3C)

WARNINGS

LIBUDB(3C)

Successive calls to function get udbnamreturn a pointer to the same static memory space each time they
are called; these calls overwrite the same data area. Use caution when working with more than one UDB

structure at a time.

Most functions in this library leave the udb file open to assure reasonable performance for multiple calls. If
it is important that the program in which the calls are made can be restarted, an endudb() call must be
made to close the udb file after the access is complete.

RETURN VALUES

Successful calsto typei nt functions return with the value UDB_SUCCESS (0); unsuccessful calls return
UDB_FAI L (—1). Structure pointer type requests return with a pointer to a structure if successful, or the
pointer value UDB_NULL ((struct udb) O0) if they fail (except for some options of

get udbchai n). In any failing case, theext ern i nt udb_errno variable contains a reason code from
the following list. The descriptions of some reason codes state that further information for the failure can be
found in the er r no file (see header er r no. h).

Symbol
UDBERR_BADPATH

UDBERR_BADUFN

UDBERR_CHANGED

UDBERR_CORRUPT

UDBERR _CREATE
UDBERR_DEADLK

UDBERR_END
UDBERR _| DCHG

UDBERR _| NTERR
UDBERR _| OERR
UDBERR_NAMEI NUSE

SR-2080 10.0

Description

Return value 1. Path name specified in the set udbpat h() call is bad (see
errno. h(3C)).

Return value 2. A UDB file nameis illegal. UDB or UDBPUB is zero length,
it ends with '/ ’, or the full name is longer than UDBFNANMEL EN.

Return value 3. Another user changed the database while get udbchai n()
was being used. The current position is lost.

Return value 4. Something is wrong with the content of the database. The
files must be regenerated.

Return value 5. Error in creating the database (see er r no. h(3C)).

Return value 6. Protected user database could not be locked, because a
deadlock condition would have resulted.

Return value 7. No more records in database.

Return value 8. An update must be performed as a del et eudb() and
addudb() seguence because the name or UID has changed.

Return value 9. An internal program error occurred.
Return value 10. An I/O error occurred (see er r no. h(3C)).

Return value 11. The user-name of the record to be created is already in use.

365

LIBUDB(3C)

UDBERR_NOLCK

UDBERR_NOPOS
UDBERR_NORW

UDBERR_NOSUCHUSER
UDBERR_NOTLCCKED

UDBERR_UDBCHAI N
UDBERR_VERSI ON

UDBERR_BADDEFER

FILES

/et c/udb

[etc/udb. public

/et c/udb_2/udb. i ndex
[etc/udb_2/udb. priva
/et c/udb_2/udb. pubva
[et c/ passwd

LIBUDB(3C)

Return value 12. Protected user database could not be locked, because some
privileged process has the protected user database locked by a means other
than the | ockudb() call. If this occurs, an error exists in some non-kernel
(user-level) system software.

Return value 13. Undefined current position.

Return value 14. Caller does not have read or write access on a protected
database.

Return value 15. No such record in the database.

Return value 16. User information cannot be rewritten because the database
was not locked.

Return value 17. The cal to get udbchai n() has an unknown option code.

Return value 18. The software level of the database access functions linked
with the caller is incompatible with the current version of the UDB.

Return value 19. The DEFERTORESGRP flag was set on more than four
chained entries.

User validation file containing user control limits
Public version of the user database file

Public extention file index

Private field extension file

Public field extension file

Traditional password file

Other path names can be used if set udbpat h has been called.

366

SR-2080 10.0

LIBUDB(3C) LIBUDB(3C)

SEE ALSO
errno. h(3C), get pwent (3C), per r or (3C)

chaci d(1), guest (1), | ogi n(1), newacct (1), ni ce(1), quot a(1), udbsee(1) in the UNICOS User
Commands Reference Manual, Cray Research publication SR—2011

accti d(2), chaci d(2), getpermit (2), i m ts(2), nknod(2), mount (2), msgget (2), ni ce(2),

pl ock(2), senget (2), set gi d(2), set gr oups(2), set ui d(2), shnget (2), ul i m t (2), unount (2) in
the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

cpu(4), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

acct on(8), chr oot (8), csaswi t ch(8), ddns(8), di skusg(8), t pl abel (8), udbgen(8), xadmni n(8)
in the UNICOS Administrator Commands Reference Manual, Cray Research publication SR—2022

SR-2080 10.0 367

limits.h (3C) limits.h (3C)

NAME
[imts.h— Library header for integral type limits

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

TYPES

None

MACROS

The header | i i t s. h defines the various machine-dependent numerical limits for Cray Research systems.
Each of these limits expands into constant expressions suitable for use in a#i f preprocessing directive.
The macros and definitions are shown in the following table:

Macro Standard Definition

CHAR BI T ISO/ANSI Number of hits for smallest object that is not a bit-field (byte).

_WORD BIT CRI Number of bits in a word.

SCHAR M N ISO/ANSI Minimum value for an object of type si gned char.

SCHAR MAX ISO/ANSI Maximum value for an object of type si gned char.

UCHAR _MAX ISO/ANSI Maximum value for an object of type unsi gned char.

CHAR M N ISO/ANSI Minimum value for an object of type char .

CHAR_MAX ISO/ANSI Maximum value for an object of type char .

MB_LEN MAX ISO/ANSI Maximum number of bytes in a multibyte character, for any supported
locale.

SHRT M N ISO/ANSI Minimum value for an object of type short int.

SHRT_MAX ISO/ANSI Maximum value for an object of type short i nt.

USHRT _MAX ISO/ANSI Maximum value for an object of type unsi gned short int.

INT_MN ISO/ANSI Minimum value for an object of typei nt .

I NT_MAX ISO/ANSI Maximum value for an object of typei nt .

Ul NT_MAX ISO/ANSI Maximum value for an object of type unsi gned int.

LONG M N ISO/ANSI Minimum value for an object of typel ong i nt.

LONG_MAX ISO/ANSI Maximum value for an object of typel ong i nt.

ULONG_MAX ISO/ANSI Maximum value for an object of type unsi gned | ong int.

368 SR-2080 10.0

limits.h (3C)

limits.h (3C)

Thevauesinlimts. h are as shown in the following table. For comparison, the "CRI Vaue' column in
the table is followed by a column listing the minimum value (in magnitude) required by the standard.

Minimum for
Macro CRI Vaue ISO/ANSI C
CHAR BI T 8 8
_WORD BITT 64 -
SCHAR M N -128 -127
SCHAR MAX 127 127
UCHAR_MAX 255 255
CHAR_ M N 0 -
CHAR_MAX 255 -
MB_LEN MAX 1 1
SHRT M N —8388608 (24-hit A register) —-32767
—2147483648 (32-hit A register)
SHRT_MAX 8388607 (24-bit A register) 32767
2147483647 (32-bit A register)
USHRT _MAX 16777215 (24-bit A register) 65535
4294967295 (32-bit A register)
INT_MN —35184372088832 (default) —-32767
—9223372036854775808 (- h nof ast nd)
I NT_MAX 35184372088831 (default) 32767
9223372036854775807 (- h nof ast nd)
Ul NT_MAX 18446744073709551615 65535
LONG M N —9223372036854775808 —2147483647
LONG_MAX 9223372036854775807 2147483647
ULONG_MAX 18446744073709551615 4294967295

T _WORD BI T is aCRI extension; not specified by the standard

See the Cray Sandard C Reference Manual, Cray Research publication SR—2074, for information about the
-h fastnd and - h nof ast nd command line options. (The - h fast nd command-line option is the

compiler default.)

None

SR-2080 10.0

FUNCTION DECLARATIONS

369

limits.h (3C) limits.h (3C)

CAUTIONS

On CRI systems, comparisons between two integer values is done by subtraction. That is, the expression

(A > B) isevaluated by performing the operation (A - B) and testing the sign of the result. If, however, A
and B are signed variables with different signs and either A or B is greater than (2**62-1) or less than
—(2**62), integer overflow can occur and the sign of the result may be incorrect. For this reason, it is not
safe to use the values LONG_MAX or LONG_M N as an arbitrary large number with the relational operators.
Instead, pick a smaller number; LONG_MAX/2 is sufficiently small. | NT_MAX in the absence of the - h

nof ast md command-line option is aso safe. Comparison of unsigned integer values is always safe.

SEE ALSO
f1 oat. h(3C), val ues. h(3C)

370 SR-2080 10.0

LOADED(3C) LOADED(3C)

NAME
| oaded, | oaded_dat a — Tells whether soft external routine/data is loaded

SYNOPSIS
#i ncl ude <infobl k. h>
int |oaded ();
int |oaded_data ();

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The | oaded function tells whether a soft-referenced function has been loaded into a user program. The
| oaded_dat a function tells whether a soft-referenced data item has been loaded into a user program.
Both take as arguments the address of the specified function or data item.

RETURN VALUES

The |l oaded and | oaded_dat a functions return 1 if the specified function or data item has been loaded
into the user program; if it has not been loaded, they return O.

EXAMPLES

The following example shows how | oaded and | oaded_dat a execute:

SR-2080 10.0 371

LOADED(3C)

372

#i ncl ude <stdi o. h>
#i ncl ude <i nfobl k. h>

#pragma _CRlI soft data, func
extern int data;
extern int func(void);

mai n()

{

if (loaded_data(&data))
printf("data |oaded; value %\ n", data);
el se
printf("data NOT | oaded\n");
if (loaded(func))
printf("func |oaded; returns %\ n", func());
el se
printf("func NOT | oaded\n");

LOADED(3C)

SR-2080 10.0

LOCALE(3C) LOCALE(3C)

NAME

| ocal e — Introduction to locale information functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The locale information functions and header file | ocal e. h provide various means for setting and accessing
a specific set of run-time environment variables that may vary with culture, geography, or other factors
related to location. The set of locale information variables affects the following:

¢ Formatting of monetary information

* Representation of date and time

¢ Classification of characters

¢ Collation of characters and character strings
* Formatting of humeric values

The ANSI standard defines one structure type, st ruct | conv, which contains members related to the
formatting of numeric values. These members are as follows:

char [Meci mal _poi nt
The decimal-point used to format nonmonetary quantities.

char [housands_sep
The characters used to separate groups of digits before the decimal-point character in formatted
nonmonetary quantities.

char [groupi ng
The characters that indicate the size of each group of digits in formatted nonmonetary quantities.

The elements of gr oupi ng are interpreted according to the following:
CHAR_MAX No further grouping will be performed.

0 The previous element will be used repeatedly for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

char 0O nt_curr_synbol
The international currency symbol applicable to the current locale. The first three characters contain
the aphabetic international currency symbol in accordance with those specified in 1SO 4217 Codes for
the Representation of Currency and Funds. The fourth character (immediately preceding the null
character) is the character used to separate the international currency symbol from the monetary
guantity.

SR-2080 10.0 373

LOCALE(3C) LOCALE(3C)

374

char [turrency_synbol
The local currency symbol applicable to the current locale.

char [hron_deci mal _poi nt
The decimal-point used to format monetary quantities.

char [hon_t housands_sep
The separator for groups of digits before the decimal-point in formatted monetary quantities.

char [ron_gr oupi ng
A string whose elements indicate the size of each group of digits in formatted monetary quantities.

The elements of non_gr oupi ng are interpreted according to the following:
CHAR_MAX No further grouping will be performed.

0 The previous element will be used repeatedly for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

char [positive_sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char [hegative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a internationally
formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed in a formatted monetary
guantity.

char p_cs_precedes
Set to 1 or O if the currency_synbol respectively precedes or succeeds the value for a
nonnegative formatted monetary quantity.

char p_sep_by_space
Set to 1 or O if the currency_synbol respectively is or is not separated by a space from the value
for a nonnegative formatted monetary quantity.

char n_cs_precedes
Set to 1 or O if the currency_synbol respectively precedes or succeeds the value for a negative
formatted monetary quantity.

char n_sep_by_ space
Set to 1 or O if the currency_synbol respectively is or is not separated by a space from the value
for a negative formatted monetary quantity.

SR-2080 10.0

LOCALE(3C) LOCALE(3C)

char p_sign_posn
Set to a value that indicates the positioning of the posi ti ve_si gn for a nonnegative formatted
monetary quantity. (See the note following the n_si gn_posn descriptions.)

char n_sign_posn
Set to a value that indicates the positioning of the negat i ve_si gn for a negative formatted
monetary quantity.

The value of p_si gn_posn and n_si gn_posn is interpreted according to the following:
0 Parentheses surround the quantity and cur r ency_synbol .

1 The sign string precedes the quantity and cur r ency_synbol .
2 The sign string succeeds the quantity and cur r ency_synbol .
3 The sign string immediately precedes the cur r ency_symnbol .
4 The sign string immediately succeeds the cur r ency_synbol .

The members of the structure with type char [Oare pointers to strings, any of which (except

deci mal _poi nt) can point to "" to indicate that the value is not available in the current locale or is of O
length. The members with type char are nonnegative numbers; to indicate that the value is not available in
the current locale, any members can be CHAR_MAX.

The method by which users defined their own locales (described in previous releases on this man page) is no
longer supported. It is no longer necessary because the | ocal edef command provides a superset of this
functionality. If you use the old method and try to compile a program to generate a locale, the program will
not compile. However, existing binary files that create locales will work through the UNICOS 9.0 release.
Any successfully generated locale files will continue to be accepted by set | ocal e(3C).

Associated Headers
<l ocal e. h>

Associated Functions

Function Description
i conv(3C), i conv_cl 0se(3C), i conv_open(3C)
Converts a sequence of characters from one codeset into another codeset

| ocal econv(3C) Reports program’s numeric formatting conventions
nl _| angi nf o(3C) Points to language information.
set | ocal e(3C) Selects program’s locale

NOTES

The UNICOS C library functions that set or access these variables include the following:

| ocal econv(3C), nl _I| angi nf o(3C), pri nt f (3C), scanf (3C), strcol | (3C), strf non(3C),
strftinme(3C), strptime(3C), strxfrm3C), wescol | (3C), wesxf r m(3C), and the
character-handling functions (see char act er (3C)).

SR-2080 10.0 375

LOCALECONV/(3C) LOCALECONV(3C)

NAME

| ocal econv — Reports program’s numeric formatting conventions

SYNOPSIS
#i ncl ude <l ocal e. h>

struct | conv *| ocal econv (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The |l ocal econv function sets the components of an object with type st ruct | conv with values
appropriate for the formatting of numeric quantities (monetary and otherwise) according to the rules of the
current locale.

RETURN VALUES

The |l ocal econv function returns a pointer to the filled-in object. The structure pointed to by the return
value cannot be modified by the program, but may be overwritten by a subsequent call to | ocal econv. In
addition, callsto set | ocal e with categories LC_ALL, LC_MONETARY, or LC_NUMERI C can overwrite
the contents of the structure.

SEE ALSO
| ocal e(3C), | ocal e. h(3C), set | ocal e(3C)

376 SR-2080 10.0

locale.h(3C) locale.h(3C)

NAME

| ocal e. h — Library header for locale information functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS
DESCRIPTION
The header file | ocal e. h defines locale information functions.
Types
The types declared in | ocal e. h are as follows:
Type Description
struct |conv Structure that contains members related to the formatting of numeric values. This
conforms to the ISO/ANSI standard.
Macros

The macros defined in the header file| ocal e. h are as follows (unless noted, macros conform to the
ISO/ANSI standard):

Macro Description

LC ALL Each of these macros expands to an integral constant expression with distinct

LC COLLATE values, and is suitable for use as the first argument to the set | ocal e(3C)

LC CTYPE function.

LC_MONETARY

LC_NUMERI C

LC TI ME

LC MESSAGES Same as above. Conforms with POSIX P1003.2.

NULL An implementation-defined null pointer constant, equal to 0 on Cray Research
systems.

Function Declarations
Thel ocal econv and set | ocal e functions are declared in the header file | ocal e. h.

SEE ALSO
ctype. h(3C), | ocal e(3C)

SR-2080 10.0 377

LOCKASGN(3F) LOCKASGN (3F)

NAME
LOCKASGN — Identifies an integer variable intended for use as a lock

SYNOPSIS
CALL LOCKASGN(name [, value])

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

LOCKASGN identifies an integer variable that the program intends to use as a lock. The program must call
the LOCKASGN routine for each lock variable before it is used with any other lock routines. The
multitasking library gives alock an initial state of off or cleared. A data statement can initialize the lock to
the value in the optional argument, allowing the program to assign it in aroutine. The first call assigns the
lock, and further calls are ignored.

The following is alist of valid variables for this routine:

Argument Description

name Name of an integer variable to be used as alock. The library stores an identifier into this
variable; do not modify this variable after the call to LOCKASGN.

value The initial integer value of the lock variable. An identifier should be stored into the

variable only if it contains the value. If value is not specified, an identifier is stored into
the variable unconditionally.

CAUTIONS

For SPARC systems, the value parameter is optional, and LOCKASGN is not predeclared (not intrinsic).
Therefore, if a call is made to it with only the name parameter, L OCKASGN must be declared with an

| NTERFACE block in the calling module.

378 SR-2080 10.0

LOCKASGN(3F)

EXAMPLES

SR-2080 10.0

PROGRAM MULTI
| NTEGER LKI NPUT, LKOUTPUT, LKCALL
REAL | NDATA(20000) , OUTDATA(20000)
COMMON / CBI NPUT/ LKI NPUT, | NDATA
COMMON / CBOUTPUT/ LKOUTPUT, QUTDATA
COVMWNON /M SC/ LKCALL

CALL LOCKASGN (LKI NPUT)
CALL LOCKASGN (LKOUTPUT)
CALL LOCKASGN (LKCALL)
END

SUBROUTI NE SUB1

COMMON / LOCK1/ LOCK1
DATA LOCK1 /-1/

CALL LOCKASGN (LOCK1,-1)

END

LOCKASGN (3F)

379

LOCKF(3C) LOCKF(3C)

NAME

| ockf — Provides record locking on files

SYNOPSIS

#i ncl ude <uni std. h>

int 1ockf (int fildes, i nt function, | ong size);

IMPLEMENTATION

All Cray Research systems

STANDARDS

AT&T extension

DESCRIPTION

380

The |l ockf function alows sections of a file to be locked with advisory or mandatory write locks,
depending on the mode bits of the file (see chnbd(2)). Locking calls from other processes that attempt to
lock the locked file section either return an error value or are put to sleep until the resource becomes
unlocked. All locks for a process are removed when the process terminates. (Seef cnt | (2) for more
information about record locking.) Thel ockf function does not work on NFS files.

The fildes operand is an open file descriptor. The file descriptor must have O WRONLY or O_RDWR
permission to establish a lock with this function call.

The function operand is a control value that specifies the action to be taken. Permissible values for function
are defined in the header file uni st d. h, as follows:

#define F_ULOCK O /* Unl ock a previously |ocked section */
#define F_LOCK 1 /* Lock a section for exclusive use */

#define F_TLOCK 2 /* Test and lock a section for exclusive use */
#define F_TEST 3 /* Test section for other processes |ocks */

All other values of function are reserved for future extensions and result in an error return if used.

F_TEST detects whether a lock by another process is present on the specified section. F_LOCK and
F_TLOCK both lock a section of afile if the section is available. F_ULOCK removes locks from a section
of the file.

The size operand is the number of contiguous bytes to be locked or unlocked. The resource to be locked
starts at the current offset in the file; it extends forward for a positive size and backward for a negative size
(the preceding bytes up to but not including the current offset). If sizeis 0, the section from the current
offset through the largest file offset is locked (that is, from the current offset through the present or any
future end-of-file). An area need not be allocated to the file to be locked, because such locks can exist past
the end-of-file.

SR-2080 10.0

LOCKF(3C) LOCKF(3C)

The sections locked with F_LOCK or F_TLOCK can, in whole or in part, contain or be contained by a
previously locked section for the same process. When this occurs, or if adjacent sections are locked, the
sections are combined into a single section. If the request requires that a new element be added to the table
of active locks and this table is aready full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not available. F_LOCK
causes the calling process to sleep until the resource is available. F_TLOCK causes the function to return a
-1 and set er r no to EACCES error if the section is already locked by another process.

F_ULQOCK reguests can, in whole or in part, release one or more locked sections controlled by the process.
When sections are not fully released, the remaining sections are till locked by the process. Releasing the
center section of a locked section requires an additional element in the table of active locks. If this table is
full, an EDEADLK error is returned, and the requested section is not released.

A potentia for deadlock occurs if a process that controls a locked resource is put to sleep by accessing
another process's locked resource. Thus, callsto | ockf or f cnt | scan for a deadlock before sleeping on a
locked resource. An error return is made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The al ar m(2) system call can be used to provide a
time-out facility in applications that require this facility.

If the | ockf function fails, er r no is set to one of the following values, defined in the header file

errno. h:

Error Code Description

EBADF File descriptor fildes is not a valid open descriptor.

EACCES Cmd is F_TLOCK or F_TEST, and the section is aready locked by another process.

EDEADLK Cmd is F_LQOCK, and a deadlock would occur. Also the cmd is F_LOCK, F_TLQOCK, or
F_ULOCK, and the number of entries in the lock table exceeds the number allocated on the
system.

ECOWM File descriptor fildes is on a remote machine, and the link to that machine is no longer
active.

WARNINGS

Unexpected results can occur in processes that do buffering in the user address space. The process can later
read/write data that is’'was locked. The standard 1/O package is the most common source of unexpected
buffering.

Because in the future, variable er r no will be set to EAGAI N rather than EACCES when a section of afile
is aready locked by another process, portable application programs should expect and test for either value.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 isreturned and er r no is set
to indicate the error.

SR-2080 10.0 381

LOCKF(3C) LOCKF(3C)

SEE ALSO

al ar m2), chnod(2), cl ose(2), creat (2), fcnt 1 (2), i ntro(2), open(2), read(2), wit e(2) in the
UNICOS System Calls Reference Manual, Cray Research publication SR—2012

382 SR-2080 10.0

LOCKOFF(3F) LOCKOFF(3F)

NAME
LOCKOFF — Clears a lock and returns control to the calling task

SYNOPSIS
CALL LOCKOFF(lock)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

LOCKOFF clears a lock and returns control to the calling task. Clearing the lock can alow another task to
resume execution, but this is transparent to the task calling LOCKOFF.

The following is a valid argument for this routine:

Argument Description
lock Name of an integer variable used as a lock.
EXAMPLES

PROGRAM MULTI

| NTEGER LKOUTPUT

REAL OUTDATA(20000)

COMMON / CBOUTPUT/ LKOUTPUT, OUTDATA

CALL LOCKASGN (LKOUTPUT)
CALL LOCKON (LKOUTPUT)
DO 100 |=1, 20000
OUTDATA(|) =MAX(OUTDATA(1) , 0)
100 CONTI NUE
CALL LOCKOFF (LKOUTPUT)
END
SEE ALSO
LOCKON(3F), LOCKTEST(3F), mul t i f (3F), NLOCKOFF(3F), NLOCKON(3F),

SR-2080 10.0 383

LOCKON(3F) LOCKON(3F)

NAME
LOCKON — Sets alock and returns control to the calling task

SYNOPSIS
CALL LOCKON(lock)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

LOCKON sets a lock and returns control to the calling task. If the lock is already set when LOCKON is
called, the task calling LOCKON waits until the lock is cleared by another task and then sets it. This means
that placing LOCKON before a critical region ensures that the code in the region is executed only when the
task has unique access to the lock. Calls to LOCKON cannot be nested.

The following is a valid argument for this routine:

Argument Description
lock Name of an integer variable used as a lock.
SEE ALSO

LOCKOFF(3F), LOCKTEST(3F), nul ti f (3F), NLOCKOFF(3F), NLOCKON(3F)

384 SR-2080 10.0

LOCKREL (3F)

NAME
LOCKREL — Releases the identifier assigned to a lock

SYNOPSIS
CALL LOCKREL(name)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION
LOCKREL releases the identifier assigned to a lock.
The following is a valid argument for this routine:

Argument Description
name Name of an integer variable used as a lock.

LOCKREL (3F)

If the lock is set or atask is waiting for the lock when LOCKREL is called, an error results. This routine
detects some errors that arise when atask is waiting for a lock that is never cleared. The lock variable can

be reused following another call to LOCKASGN(3F).

EXAMPLES

PROGRAM MULTI
| NTEGER LKOUTPUT
REAL | NDATA(20000) , OUTDATA(20000)
COMMON / CBOUTPUT/ LKOUTPUT, QUTDATA

C
CALL LOCKASGN (LKOUTPUT)

C

C

CALL LOCKON (LKOUTPUT)
DO 100 |=1, 20000
OUTDATA(|) =MAX(OUTDATA(1) , 0)
100 CONTI NUE
CALL LOCKOFF (LKOUTPUT)

CALL LOCKREL (LKOUTPUT)

END

SR-2080 10.0

385

LOCKREL (3F) LOCKREL (3F)

SEE ALSO
LOCKASGN(3F)

386 SR-2080 10.0

LOCKTEST(3F) LOCKTEST(3F)

NAME
LOCKTEST — Tests alock to determine its state (locked or unlocked)

SYNOPSIS
LOG CAL LOCKTEST
return = LOCKTEST(lock)
IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

LOCKTEST tests alock to determine its state. By using this function, a task can avoid blocking on a set
lock.

The following is alist of valid variables for this routine:

Arguemnt Description

return A logical . TRUE. if the lock was originally set. A logical . FALSE. if the lock was
originally clear. The lock variable's state is always set to locked upon return.

name Name of an integer variable used as a lock.

Unlike a task using LOCKON(3F), the task does not wait if the lock is already locked. A task using
LOCKTEST must always test the return value before continuing.

NOTES
LOCKTEST and return must be declared type LOG CAL in the calling module.

SEE ALSO
mul t i f (3F), LOCKOFF(3F), LOCKON(3F), NLOCKOFF(3F), NLOCKON(3F)

SR-2080 10.0

387

LOGB (3C) LOGB (3C)

NAME
| ogb, | ogbf, | ogbl — Returns the signed exponent of its argument

SYNOPSIS
CRAY T90 systems with IEEE floating-point hardware:
#i ncl ude <fp. h>

doubl e | ogb(doubl e x);
float | ogbf(float x);
| ong doubl e | ogbl (1 ong doubl e x);

Cray MPP systems:
#i ncl ude <fp. h>
doubl e | ogb(doubl e X);

IMPLEMENTATION

Cray MPP systems (implemented as a macro)

CRAY T90 systems with |EEE floating-point arithmetic
STANDARDS

ANSI/IEEE Std 754-1985

X3/TR-17:199x
DESCRIPTION

The | ogb function or macro extracts the exponent of x as a signed integral value in the format of x. If xis
subnormal, it is treated as though it were normalized; thus, for positive finite x, the following is true:

1<x* FLT_RADI X990 < FLT_RADI X
RETURN VALUES
Each function or macro returns the signed exponent of its argument.

SEE ALSO
f 1 oat . h(3C) for a description of the FLT_RADI X macro
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

388 SR-2080 10.0

LOGNAME(3C) LOGNAME (3C)

NAME

| ognane — Returns the login name of the user

SYNOPSIS
#i ncl ude <stdlib. h>

char *| ognane (void);
IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

The | ognane function returns a pointer to the null-terminated login name of the user; it extracts the
$LOGNAME variable from the user’s environment.

CAUTIONS

This method of determining a login name is subject to forgery.

FILES
/etc/profile Systemwide shell start-up file

SEE ALSO
env(1), | ogi n(1), sh(1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011
profil e(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 389

LSEARCH(3C) LSEARCH(3C)

NAME

| search, | fi nd — Performs a linear search and update

SYNOPSIS
#i ncl ude <search. h>

void *I search (const void *key, void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

void *Ifind (const void *key, const void *base, size_t *nep,

size_t width, int (*compar)(const void *, const void *));
IMPLEMENTATION

All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The | sear ch function performs linear searches. It returns a pointer into a table that indicates where data
may be found. If data does not occur, it is added at the end of the table. The key argument points to the
data to be sought in the table. The base argument points to the first element in the table. The integer to
which nelp points contains the current number of elements in the table. (This integer is incremented if the
data is added to the table.) The value of width is the size in bytes of an element. You must supply the
name of the comparison function, compar (for example, st r cnp). It is called with two arguments that
point to the elements being compared. If the elements are equal, the function must return O; otherwise, it
returns nonzero.

Thel f i nd function is the same as | sear ch except that if the data is not found, it is not added to the
table. Instead, a null pointer is returned.

NOTES
The pointers to the key and the element at the base of the table may be pointers to any type.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements in
addition to the values being compared.

The value required should be cast into type pointer-to-element.

390 SR-2080 10.0

LSEARCH(3C) LSEARCH(3C)

CAUTIONS

Undefined results can occur if not enough room is in the table to add a new item.

RETURN VALUES
If the searched for data is found, both | sear ch and | fi nd return a pointer to it; otherwise, | fi nd returns
null and | sear ch returns a pointer to the newly added element.

EXAMPLES

The following fragment reads in < TABSI ZE strings of length < ELSI ZE and stores them in a table,
eliminating duplicates:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <search. h>

#defi ne TABSI ZE 50
#define ELSIZE 120

char |ine[ELSI ZE], tab[TABSI ZE] [ELSI ZE];
size_t nel = 0;

while (fgets(line, ELSIZE, stdin) !'= NULL & nel < TABSIZE)
(void) Isearch(line, tab, &nel, ELSIZE, strcnp);

SEE ALSO
bsear ch(3C), hsear ch(3C), t sear ch(3C)

SR-2080 10.0 391

MALLOC(3C)

NAME

MALLOC(3C)

mal | oc, cal l oc,free,reall oc, mal | oc_i npl ace, mal | oc_expand, mal | oc_ext end,
mal | oc_howbi g, mal | oc_i sval i d, mal | oc_space, mall oc_brk, malloc_linit,

mal | oc_check, mall oc_stats,malloc_tron,mall oc_troff,mall oc_etrace,

mal | oc_dtrace, mal | opt, mal I i nfo, mal | oc_error — Memory management functions

SYNOPSIS

392

#i ncl ude <stdlib.h> or #i ncl ude <mal | oc. h>
void *mal |l oc (size_t size);

void *calloc (size_t nmemb, size_ t size);
void free (void *ptr);

void *realloc (void *ptr, size_t size);

#i ncl ude <mal | oc. h>

void *mal | oc_i npl ace (void *ptr, size_ t size);
size_t mall oc_expand (void *ptr);

size_t mall oc_extend (void *ptr);

size_t mall oc_howbi g (void *ptr);

int malloc_isvalid (void *ptr);

size_t mall oc_space (| ong nbytes);

int malloc_brk (void *endds);

void malloc_limt (size_t thresh, size_t limit);

int malloc_check (int leve);

void mall oc_stats (int levd);
void malloc_tron (void);

void malloc_troff (void);

void mal | oc_etrace (I ong funcs);
void mal | oc_dtrace (I ong funcs);
int mallopt (int cmd, int value);
struct mallinfo mallinfo (void);

extern | ong mal | oc_error;

SR-2080 10.0

MALLOC(3C) MALLOC(3C)

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (mal | oc, cal | oc, free,andreal | oc only)
AT&T extension (mal | opt and mal | i nf 0 only)

CRI extension (all others)

DESCRIPTION

The mal | oc function returns a pointer to a block of at least size bytes suitably aligned for any use.
mal | oc calls sbreak (see br k(2)) to get more memory from the system when no suitable space is aready
free. The space returned is left uninitialized.

The cal | oc function allocates space for an array of nmemb objects, each of whose size is size bytes. The
space is initialized to all bits 0.

The f r ee function causes the block to which ptr points to be deallocated, that is, made available for further
alocation. If ptr isanull pointer, no action occurs. Otherwise, if the argument does not match a pointer
earlier returned by a memory manager function, or if the space has aready been deallocated by a call to
freeorreall oc,malloc_error issettoindicate the error, and f r ee returns.

Ther eal | oc function changes the size of the block to which ptr points to the size (in bytes) specified by
size. The contents of the block are unchanged up to the lesser of the new and old sizes. If the new sizeis
larger, the value of the newly allocated portion of the block is indeterminate. If ptr is a null pointer, the
real | oc function behaves like the mal | oc function for the specified size. If size is 0 and ptr is not a null
pointer, the block to which it pointsis freed. Otherwise, if ptr does not match a pointer earlier returned by a
memory manager function, or if the space has been deallocated by a call to the f r ee or r eal | oc function,
the mal | oc_error variableis set to indicate the error, and r eal | oc returns a null pointer. If the space
cannot be allocated, the block to which ptr points is unchanged.

The mal | oc_i npl ace function tries to change the size of the block to which ptr points to the size (in
bytes) specified by size. However, if the size of the block cannot be changed without moving the block, the
request fails and a null pointer is returned.

The mal | oc_expand function causes the memory block to which ptr points to grow as large as possible,
without causing an sbr eak or moving the block. It returns the new size of the block in bytes.

The mal | oc_ext end function returns the expanded size of the block to which ptr points without actually
doing the expansion. If the block is at the end of memory, a very large number is returned.

The mal | oc_howbi g function returns the current size (in bytes) of the block to which ptr points (which
may not be the same as the original size argument to mal | oc, et al.)

SR-2080 10.0 393

MALLOC(3C) MALLOC(3C)

394

Themal | oc_i sval i d function returns a nonzero value if addr points to a valid allocated block of
memory used by the memory manager.

The mal | oc_space function tries to return up to nbytes bytes of memory to the system (only possible if
the last block in the heap is free). If nbytesis—1, it returns as much memory as possible. If nbytesis 0, it
returns the number of bytes of memory that could be freed.

The mal | oc_Dbr k function extends the end of the heap to the address specified in endds. If endds is
already contained within the heap, mal | oc_br k does nothing. Any new space created is turned into a free
block. If the heap cannot be extended to the desired address, mal | oc_br k returns —1; otherwise, it returns
0.

Themal | oc_I i nit function controls the behavior of f r ee when the last block in the heap is freed. If
the threshold argument is nonzero, and the last block in the arenais free and larger than threshold, all but
the last limit number of nbytes of that block are returned automatically to the system. The minimum positive
value for threshold (512 Kwords) is silently enforced. Initialy, threshold and limit are O.

The mal | oc_check function checks the consistency of mal | oc’s memory structure. If level is less than
0, mal | oc_check silently performs validation of the heap, and returns O if the heap is consistent, or
nonzero if the heap has been corrupted. If level equals O, mal | oc_check prints a message to st derr
that describes the first inconsistency found. If level is greater than O, mal | oc_check printsaline to

st der r that describes each heap block in addition to checking the heap.

The mal | oc_st at s function prints out memory manager statistics and heap block information to

stdout . If level equals O, mal | oc_st at s reports the number of calls to each memory manager function,
as well as summary statistics on the number and total size of the busy blocks, free blocks, and "spec" blocks
(that is, blocks that are created by user callsto sbr eak) in the heap. If level equals 1, mal | oc_st at s
prints a line with a* for each busy block, a. for each free block, and a @for each "spec" block, in addition
to the level O statistics. If level equals 2, mal | oc_st at s prints a line describing each heap block, in
addition to the level O statistics. The number of calls for each function are only available by linking with
thel i brral | oc library; al of the other information is available in the default memory manager.

Thenmalloc_tron,malloc_troff, mall oc_etrace, and nal | oc_dt race macros trace calls to
the memory manager and to br k(2), sbr k(2), and sbr eak(2); however, they are operational only by
linking with the | i bmal | oc library. When tracing is on, each memory manager function prints a line to
st der r that shows the function called, its arguments, a one or two-level traceback, and the return value of
the function. Theral | oc_t ron and mal | oc_t r of f macros turn tracing on and off, respectively.
Tracing is off by default. You can usethe mal | oc_et race and mal | oc_dt r ace macros can be used
to enable or disable, respectively, a given set of functions. For alist of the functions that can be traced, see
the header file mal | oc. h. You may combine the function values using OR. The —1 constant refers to all
functions.

The mal | opt function allows you to set various options in the memory manager. The values for the cmd
argument are defined in the header file mal | oc. h as follows (the values marked (I i brral | oc only) are
operational only if the | i bmal | oc library has been linked into the program):

Value Description

SR-2080 10.0

MALLOC(3C)

M_TRACE

M_ETRACE and M_DTRACE
M LIM T and M_THRESH

M_BREAKSZ

M_MEMCHK

M LOWFI T

M_| NDEF

M_ABORT

MALLOC(3C)

(I'i bmal I oc only) If value = 0, memory tracing is turned on, with the trace
being written to file descriptor value. If value is less than O, memory tracing
is turned off.

(I'i bmal I oc only) These usethe mal | oc_etrace and nal | oc_dtrace
macros, respectively, with value passed as an argument to them.

These set the free limit and threshold values, respectively, to value words (see
mal loc_limt).

If value is greater than 0, any sbr eak(2) calls from the memory manager are
made in multiples of value words. If value equals O, the heap is fixed to its
current size, and mal | oc returns O rather than calling sbr eak(2).

(I'i bmal I oc only) If valueis 1, each call to a memory manager function
checks the consistency of the heap; if the heap has been corrupted, it prints an
error message to st der r and return an error status from the function called.
If valueis 2, the abort function is called rather than returning an error status
(this flushes all open files and performs other cleanup actions before dumping
core). If valueis 3, an immediate core-dump is performed on detection of a
corrupted heap. Setting value to O turns off heap consistency checking. If
value is nonzero, the memory manager checks al callsto f r ee, and prints an
error message to st der r if an invalid pointer is passed as an argument.

If value is nonzero, the memory manager keeps the large block free lists
sorted by address. This slows down the memory manager, but ensures that
blocks are alocated from the lowest address possible (which keeps the heap as
small as possible). This can be called anywhere in a program; the free lists
will be sorted if they are in an unsorted state when mal | opt is called.
Setting the environment variable MEMLOWFI T to nonzero has the same effect.
If value is nonzero, calls to mal | oc and f r ee initialize their blocks to the
'indef’ pattern (this causes an operand range error if used as an address, or a
floating-point exception if used as a floating-point number). You can also do
this by setting the MEM NDEF environment variable to a nonzero number.

If value is nonzero, mal | oc prints an error message and calls abor t if the
program runs out of memory (that is, a call to sbr eak(2) fails). Setting the
environment variable MEMABORT to nonzero has the same effect as setting
value to nonzero.

The mal | i nf o function provides information that describes space usage. It returns the structure
mal | i nf o, which contains the following members:

SR-2080 10.0

395

MALLOC(3C) MALLOC(3C)

NOTES

396

nt arena; /* total space in arena */

nt ordbl ks; /* nunmber of ordinary blocks */

nt snbl ks; /* number of small blocks */

nt hbl ks; /* nunber of hol ding bl ocks */

nt hbl khd; /* space in holding block headers */

i
nt usnbl ks; /* space in small blocks in use */

nt fsnbl ks; /* space in free small bl ocks */

nt uor dbl ks; /* space in ordinary blocks in use */

nt fordbl ks; /* space in free ordinary blocks */

nt keepcost; /* cost of enabling keep option (unused) */

Themal | oc_error variableis set if an error is encountered in the memory manager; it is never reset to 0.
mal | oc_error may be set to the following values, defined in the header file mal | oc. h:

Value Description

VE_EXTEND Could not extend block in place
VE_BADLEN Bad length supplied

VE_NOVEM No memory available
VE_BADADDR Address is outside bounds of heap
ME | SFREE A free block

ME_NOTBLOCK Address is not a free/busy block
ME_CORRUPT Corrupt memory arena
VE_BREAK Arena truncated by user’s sbr k(2)

The mal | oc function uses a two-level alocation strategy for memory and time efficiency. Any requests to
mal | oc larger than 64 bytes alocate a large block, which has a 2-word header. Free blocks also use the
first 2 words of the block as free list pointers. All large blocks are on a doubly linked list, and there are 16
doubly linked free lists (hashed by size of the block). Requests to mal | oc smaller than 64 bytes allocate a
large block of 4096+ bytes (called a holding block); from this block, many small blocks (which have a 1-
word header) can be allocated and freed quickly. Different holding blocks are created when needed for
different sizes of small blocks. Holding blocks are never freed, even if all of the small blocks within them
have been freed.

A free of alarge block causes any blocks immediately surrounding it to be coalesced into one free block.
Each free list is unsorted, and the last block freed is put at the end of its corresponding free list (unless the
M _LOWFI T option to mal | opt is used).

The order of the algorithm that r eal | oc (for large blocks) uses is as follows:

1. Coalesce any free block following the specified block.

2. Check if the block is at the end of memory, and use sbr eak(2) to extend the block.
3. Check for a preceding free block, and slide the block lower in memory.
4

Use mal | oc to allocate a new block, and move the data to the new space.

SR-2080 10.0

MALLOC(3C) MALLOC(3C)

ENVIRONMENT VARIABLES

You can use several environment variables to alter the behavior of the memory manager; their usage
corresponds to the options for mal | opt , as follows: The environment variables are:

Variable Description
MEMTRON=value (I'i bmal I oc only) If value is nonzero, the equivalent of mal | oc_t r on is done.
MEMCHK=value (I'i bmal | oc only) If value is nonzero, the equivalent of mal | opt (M_MEMCHK,

value) is done.
MEM NDEF=value If value is nonzero, the equivalent of mal | opt (M_I NDEF, 1) is done.
MEMABORT=value If value is nonzero, the equivalent of mal | opt (M_ABORT, 1) isdone.
MEMLOWFI T=value If value is nonzero, the equivalent of mal | opt (M_LOWFI T, 1) isdone.
RETURN VALUES

Themal | oc and cal | oc functions return a pointer to the alocated space; otherwise, they return a null
pointer (with mal | oc_error set).

Thefree,malloc |imt,andmmal | oc_stats functions return no value.

Thereal | oc and mal | oc_i npl ace functions return a pointer to the allocated space (which may have
moved in the case of r eal | oc); otherwise, they return a null pointer (with mal | oc_error set).

The mal | oc_expand, mal | oc_ext end, and mal | oc_howbi g functions return the size of the
(possibly expanded) block; otherwise, they return O (with mal | oc_error set).

Themal | oc_i sval i d function returns nonzero if pointing to a valid block; otherwise, it returns O.

The mal | oc_space function returns the size of the space available to return to the system; otherwise, it
returns O.

The mal | oc_br k function returns —1 if the heap cannot be extended to the desired address; otherwise, it
returns O.

The mal | oc_check function returns nonzero if the heap is corrupt; otherwise, it returns 0.
Themal loc_tron,malloc_troff, mall oc_etrace, and nal | oc_dt race macros return no value.
The mal | opt function returns —1 if either cmd or value is invalid; otherwise it returns O.

The mal | i nf o function returns amal | i nf o structure, which describes the heap.

EXAMPLES

The following example turns memory tracing on:

mal l oc_tron();

The following example disables tracing for all functions but mal | oc and f r ee:
mal | oc_dtrace(~(M-_MALLOC| MF_FREE)) ;

SR-2080 10.0 397

MALLOC(3C) MALLOC(3C)

The following example enables tracing for r eal | oc:
mal | oc_etrace(M-_REALLCC) ;

The following example turns memory tracing off:

mal | oc_troff();

The following example links C and Fortran programs with | i bmal | oc:

cc -oprog prog.c -lmalloc
cf77 -oprog prog.f -lmalloc

The following example runs programs with memory tracing and checking on:

env MEMITRON=1 MEMCHK=3 ./ prog

SEE ALSO

mal | oc. h(3C)
br k(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

398 SR-2080 10.0

malloc.h (3C) malloc.h (3C)

NAME

mal | oc. h — Library header for memory alocation and management functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

TYPES
The types defined in header mal | oc. h are as follows:

Type Standards ~ Description

struct mallinfo AT&T The structure type that is the type returned by the nal | opt
function. (See the description following this table.)

size_t ISO/ANSI The unsigned integral type of the result of the si zeof operator.

Structure mal | i nf o contains the following members:

i nt arena; /* total space in arena */

i nt ordbl ks; /* nunber of ordinary blocks */

int smbl ks; /* number of small blocks */

i nt hbl ks; /* nunber of hol ding blocks */

i nt hbl khd; /* space in holding block headers */
i nt usnbl ks; /* space in snmall blocks in use */
int fsnbl ks; /* space in free small bl ocks */

i nt uordbl ks; /* space in ordinary blocks in use */
i nt fordbl ks; /* space in free ordinary blocks */

i nt keepcost; /* cost of enabling keep option */

MACROS

The header file mal | oc. h defines the following macros for use with the mal | opt function (see
mal | opt (3C) for complete information):

M_MXFAST M _NLBLKS M_GRAI N M _KEEP M TRACE
M_ETRACE M_DTRACE MLIMT M _THRESH M _BREAKSZ
M_MEMCHK M _LOWFI T M_| NDEF M_ABORT

SR-2080 10.0

399

malloc.h (3C) malloc.h (3C)

The header file mal | oc. h defines the following function-like macros for use with the | i bmal | oc debug
library (see mal | oc(3C) for complete information):

mal | oc_tron mal | oc_troff mal | oc_dtrace nmalloc_etrace

The header file mal | oc. h defines the following macros for use with the mal | oc_et r ace and
mal | oc_dt r ace function-like macros (see mal | oc(3C) for complete information):

MF_MALLOC MF_REALLOC MF_FREE MF_EXTEND MF_I NPLACE
MF_EXPAND MF_HOWBI G MF_CHECK MF_I SVALID MF_SPACE
MF LIMT MF_SBREAK MF__SBREAK MF_BRK

The header file mal | oc. h defines the following macros, which describe the possible error values for the
mal | oc_error variable (see mal | oc(3C) for complete information):

ME_EXTEND ME_BADLEN ME_NOVEM ME_BADADDR ME_| SFREE
ME_NOTBLOCK ME_CORRUPT ME_BREAK

FUNCTION DECLARATIONS

The following functions are declared in the header file mal | oc. h:

call oc free mal | oc real |l oc

mal | opt mal i nfo mal | oc_check mal | oc_i npl ace
mal | oc_expand rmalloc_extend malloc_howbig malloc_isvalid
mal | oc_space mal loc limt mal | oc_stats mal | oc_brk

OBJECT DECLARATIONS
The following object is declared in the header file mal | oc. h:

long mal l oc_error

NOTES

If only ISO/ANSI standard functions are used (i.e. mal | oc, cal | oc, free, real | oc), the header file
stdlib. hispreferred for use with Cray Standard C.

SEE ALSO
stdl i b. h(30)

400 SR-2080 10.0

MATH(3C) MATH(3C)

NAME

mat h — Introduction to math functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The math functions provide various means for computing the results of common mathematical functions
applied to specific arguments. The functions available include the common trigonometric and hyperbolic
functions, exponential and logarithmic functions, and several others. Many more mathematical functions are
available in the UNICOS math and scientific libraries, described in the A8, and Scientific Libraries Reference
Manual, Cray Research publication SR—2081.

Function Argument and Return Types
The arguments to and the values returned by these functions are al, with a few noted exceptions, floating
types. fl oat, doubl e, | ong doubl e, and doubl e conpl ex. In the presence of the function
prototypes in the header file mat h. h or conpl ex. h, if arguments of type integral are given where type
doubl e arguments are required, the compiler automatically promotes them to type doubl e.

Double Complex and Long Double Functions
Math functions for | ong doubl e and doubl e conpl ex values are provided. See conpl ex. h(3C)
and the Cray Standard C Reference Manual, Cray Research publication SR—2074, for more information.

Domain and Range Checking
For all functions, a domain error occurs if an input argument is outside the domain over which the
mathematical function is defined. The description of each function describes the valid domain. Similarly, a
range error occurs if the result of the function cannot be represented by the return type. The behavior of
each of these mathematical functions when there is a domain or range error depends on the compilation
mode; that is, the command-line options specified. Loops containing calls to these functions are candidates
for vectorization, if compiled in extended mode.

When code containing calls to these functions is compiled by the Cray Standard C compiler in extended
mode (the default), er r no is not set on error and the functions do not return to the caller on error. If a
domain error occurs, the program aborts with a run-time error. The reasons for this behavior being the
default behavior are discussed in the next subsection, Fast Calling Sequence and Vector Functions. When
calls to these functions are compiled in extended mode on CRAY T90 series systems with |EEE floating-
point arithmetic, er r no is not set on error. The functions do return to the caller on error; the return value
for each function is documented on the corresponding man page in | i bm(see the Intrinsic Procedures
Reference Manual, Cray Research publication SR—2138, or the online man page).

SR-2080 10.0 401

MATH(3C) MATH(3C)

In strict conformance mode (specified by the cc(1) command-line option - hst dc), each function must
execute as if it were a single operation, without generating any externally visible exceptions. This means
that for those functions for which a domain or range error is possible, the function arguments are checked
before the result is computed. If the value is such that it is outside the valid domain, the result is not
computed; instead, er r no is set to EDOM If the value is such that the result of the function would
overflow (the magnitude of the result is so large that it cannot be represented in an object of the specified
type), the function returns the value of the macro HUGE VAL with the same sign as the correct value of the
function. If the value is such that the result of the function would overflow (that is, the magnitude of the
result is so large that it cannot be represented in an object of the specified type), the function returns the
value of the macro HUGE_VAL with the same sign as the correct value of the function. If the function
returns af | oat , it returns the value of (+/-)HUGE_VALF. If the function returnsal ong doubl e, it
returns the value of (+/-)HUGE_VALL on Cray MPP systems and on CRAY T90 systems with |[EEE
arithmetic; on other Cray PVP machines, the function returns HUG_VAL for | ong doubl e. The value of
the macro ERANGE is stored in er r no. On CRI systems, if the result underflows (the magnitude of the
result is so small that it cannot be represented in an object of the specified type), the function returns O; the
integer expression er r no does not acquire the value of the macro ERANGE, although it can in other
implementations. (An exception to this rule is the function | dexp.)

In strict conformance mode, it is up to the calling function to set er r no to O before the call and to check
err no after the call to seeif an error occurred. (See the pr og_di ag(3C) man page.)

Fast Calling Sequence and Vector Functions

Unfortunately, checking the arguments (and possibly setting er r no) takes considerable time and prevents
vectorization. For this reason, the Cray Standard C compiler offers a faster alternative. In extended mode
(the default mode), argument checking is not done. The functions assume that the arguments are valid; if
they are not, a program on any system (except the CRAY T90 system with IEEE floating-point arithmetic)
aborts during computation, either because of a floating-point exception or because a low-level function
detects the error. When calls to these functions are compiled in extended mode on CRAY T90 series
systems with 1EEE floating-point arithmetic, no error checking is done. The functions do return to the caller
on a computation error; the return value for each function is documented on the corresponding man page in
I i bm(see the Intrinsic Procedures Reference Manual, Cray Research publication SR—2138, or the online
man page). In extended mode, if al the arguments are valid, the compiler generates code that uses the
call-by-register calling sequence to call many of the standard math functions. Further, if the function call is
in a vectorizable loop, the call will be made with vector arguments to vector versions of the functions. To
compile in extended mode, do not specify the - hst dc option on the cc (1) command line (that is, extended
mode is the default).

The slower mode of execution may be appropriate if you are not sure that the arguments are all valid. If
you are sure about the validity of the arguments, the performance gain with the vector versions is significant.

ISO/ANSI Standard Reserved Names

402

All ISO/ANSI standard functions are reserved external names to the implementation. If you define an
external with the same name as an ISO/ANSI library function, the behavior is undefined.

SR-2080 10.0

MATH(3C)

ASSOCIATED HEADERS

<conpl ex. h>

<mat h. h>

ASSOCIATED FUNCTIONS

Function
acos(3C)
acosl (3C)
asi n(3C)
asi nl (3C)
at an(3C)
at anl (3C)
at an2(3C)
at an2l (3C)
ccos(3C)
cos(3C)
cosl (3C)
csi n(3C)
hypot (3C)
si n(3C)
si nl (3C)
t an(3C)

t anl (3C)

Hyperbolic Functions

Function
cosh(3C)
coshl (3C)
si nh(3C)
si nhl (3C)
t anh(3C)
t anhl (3C)

Function
cexp(3C)

| dexp(3C)
I dexpl (3C)

exp(3C)
expl (3C)

SR-2080 10.0

Description

Determines the arccosine of a doubl e value (see asi n(3C))
Determines the arccosine of al ong doubl e vaue (see asi n(3C))
Determines the arcsine of a doubl e value

Determines the arcsine of al ong doubl e value (see asi n(3C))
Determines the arctangent of a doubl e value (see asi n(3C))
Determines the arctangent of al ong doubl e value (see asi n(3C))
Determines the arctangent of a doubl e value x/y (see asi n(3C))
Determines the arctangent of al ong doubl e x/y (see asi n(3C))
Determines the cosine of adoubl e conpl ex value (see si n(3C))
Determines the cosine of a doubl e value (see si n(3C))
Determines the cosine of al ong doubl e value (see si n(3C))
Determines the cosine of adoubl e conpl ex value (see si n(3C))
Determines the hypotenuse of a value (see sqrt (3C))

Determines the sine of adoubl e value

Determines the sine of al ong doubl e value (see si n(3C))
Determines the tangent of a doubl e value (see si n(3C))
Determines the tangent of al ong doubl e value (see si n(3C))

Description
Determines the hyperbolic cosine of a doubl e value (see si nh(3C))

MATH(3C)

Determines the hyperbolic cosine of al ong doubl e vaue (see si nh(3C))

Determines the hyperbolic sine of a doubl e value

Determines the hyperbolic sine of al ong doubl e value (see si nh(3C))

Determines the hyperbolic tangent of a doubl e value (see si nh(3C))

Determines the hyperbolic tangent of al ong doubl e value (see si nh(3C))

Exponential and Logarithmic Functions

Description

Determines the exponentia for doubl e conpl ex values (see exp(3C))

Multiplies a doubl e floating-point humber by an integral power

Multipliesal ong doubl e floating-point number by an integral power of 2 (see

frexp(3C))
Determines the exponentia for doubl e values
Determines the exponential for | ong doubl e values (see exp(3C))

403

MATH(3C)

frexp(3C)
frexpl (3C)

ganma(3C)
| 0g(3C)

I ogl (3C)
cl 0g(3C)
 0g10(3C)
[0g10l (3C)
nmodf (3C)

modf | (3C)

pow(3C)
pow (3C))
cpow(3C)
sqrt (3C)
sqrtl (3C)
csqrt (3C)

Function
cei | (3C)
ceill (3C)
f abs(3C)
f absl (3C)

cabs(3C)

f1 oor (3C)
fl oorl (3C)
f mod(3C)

f modl (3C)

Bessel Functions

Function

MATH(3C)

Breaks a doubl e floating-point number into a normalized fraction and an integral
power of 2

Breaks al ong doubl e floating-point number into a normalized fraction and an
integral power of 2 (see f r exp(3C))

Compuites the log gamma function for double values

Determines the logarithm for doubl e values (see exp(3C))

Determines the logarithm for | ong doubl e values (see exp(3C))

Determines the logarithm for doubl e conpl ex values (see exp(3C))
Determines the base 10 logarithm values for doubl e (see exp(3C))

Determines the base 10 logarithm values for | ong doubl e values (see exp(3C))
Breaks the doubl e argument value into integral and fractional parts (see
frexp(3C))

Breaks the | ong doubl e argument value into integral and fractional parts (see
frexp(3C))

Raises the specified doubl e value to a given power

Raises the specified | ong doubl e value to a given power (see pow(3C))
Raises the specified doubl e conpl ex value to a given power (see pow(3C))
Determines the square root of adoubl e value

Determines the square root of al ong doubl e value (see sgrt (3C))
Determines the square root of adoubl e conpl ex value (see sgrt (3C))

Nearest Integer, Absolute Value, and Remainder

Description

Provides type doubl e math functions for ceiling (see f | oor (3C))

Provides type | ong doubl e math functions for ceiling (see f | oor (3C))
Compuites the absolute value of a doubl e floating-point number (see f | oor (3C))
Compuites the absolute value of al ong doubl e floating-point number (see

f 1 oor (3C))

Compuites the absolute value of adoubl e conpl ex floating-point number (see
f 1 oor (3C))

Provides type doubl e math functions for floor

Provides type | ong doubl e math functions for floor (see f | oor (3C))
Provides type doubl e math functions for remainder (see f | oor (3C))

Provides type | ong doubl e math functions for remainder (see f | oor (3C))

Description

j 0(3C), j 1(3C), j n(3C), yO(3C), y1(3C), yn(3C)

Return Bessel functions (see bessel (3C))

SR-2080 10.0

MATH(3C)

Statistical Functions

Function
erf (3C)
er f c(3C)

Complex Functions

Function
creal (3C)
ci mag(3C)
conj (3C)

SEE ALSO

MATH(3C)

Description
Returns error function
Returns complementary error function (see er f (3C))

Description

Compuites the real part of the doubl e conpl ex number x (see ci nag(3C))
Computes the imaginary part of the doubl e conpl ex number x

Computes the conjugate of the doubl e conpl ex number x (see ci mag(3C))

conpl ex. h(3C), prog_di ag(3C), utiliti es(3C) for integer arithmetic functions

Intrinsic Procedures Reference Manual, Cray Research publication SR—2138

Scientific Libraries Reference Manual, Cray Research publication SR—2081
Cray Sandard C Reference Manual, Cray Research publication SR—2074, for discussion of complex

arithmetic

SR-2080 10.0

405

math.h (3C) math.h (3C)

NAME
mat h. h — Library header for math functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
ANSI

TYPES

None

MACROS

The macros defined in header mat h. h are as follows. Unless noted as ISO/ANSI, all items are XPG4
compatible.

Macro Description

HUGE_VAL, HUGE_VALF, HUGE_VALL
Expands to a positive doubl e expression, not necessarily representable asaf | oat ; a
positive f | oat expression; and a positive | ong doubl e expression, respectively. On
al systems except CRAY T90 systems with |EEE arithmetic, HUGE_VAL is the same as
DBL_MAX, which is the largest doubl e value representable. On CRAY T90 systems
with |EEE arithmetic, HUGE VAL expands to positive infinity. On machines with IEEE
arithmetic, HUGE_VAL is aso defined, with the same value, in the |EEE floating-point
header file, f p. h. ISO/ANSI standard.

HUGE Symbolic constant whose value is the largest representable doubl e value.

M E 2.7182818284590452354

M LORE 1.4426950408889634074

M LOGLOE 0.43429448190325182765

M _LN2 0.69314718055994530942

M _LN10 2.30258509299404568402

MPI_2 Expands to the machine's best representation of pi/2 or 1.57079632679489661923.
MPI_4 Expands to the machine's best representation of pi/4 or 0.78539816339744830962.
M1 PI Expands to the machine's best representation of 1/pi or 0.31830988618379067154.
M2 PI Expands to the machine's best representation of 2/pi or 0.63661977236758134308.

M 2 SQRTPI Expands to the machine's best representation of 2/sgrt pi or 1.12837916709551257390.
M SQRT1_2 Expands to the machine's best representation of sgrt (1/2) or 0.70710678118654752440.

When compiling in extended mode, header file val ues. h isincluded in mat h. h. Thus, al macros
defined in val ues. h are available in addition to the previous list. See val ues. h(3C) for more
information about these additional macros.

406 SR-2080 10.0

math.h (3C) math.h (3C)

FUNCTION DECLARATIONS

Math functions take doubl e or | ong doubl e arguments and return doubl e or | ong doubl e values,
respectively. Functions declared in header mat h. h are as follows:

acos(3C) cosf (3C) fl oorl (3C) 0g(3C) si nhl (3C)
acosf (3C) cosh(3C) f mod(3C) | ogf (3C) si nl (3C)
acosl (3C) coshf (3C) f modf (3C) 0g10(3C) sqrt (3C)
asi n(3C) coshl (3C) f modl (3C) [0g10f (3C) sqrtf (3C)
asi nf (3C) cosl (3C) frexp(3C) [0g10l (3C) sqrtl (3C)
asi nl (3C) erf (3C) f r expf (3C) [ogl (3C) t an(3C)
at an(3C) er f c(3C) frexpl (3C) nmodf (3C) t anf (3C)
at anf (3C) exp(3C) ganma(3C) nmodf f (3C) t anh(3C)
at an2(3C) expf (3C) hypot (3C) nmodf | (3C) t anhf (3C)
at an2l (3C) expl (3C) j 0(3C) pow(3C) t anhl (3C)
at of (3C) f abs(3C) j 1(3C) powf (3C) t anl (3C)
cei | (3C) f absf (3C) j n(3C) pow (3C) y0(3C)
cei |l f(3C) f absl (3C) I dexp(3C) si n(3C) y1(3C)
ceill (3C) fl oor (3C) | dexpf (3C) si nf (3C) yn(3C)
cos(3C) fl oorf (3C) I dexpl (3C) si nh(3C)

Function at of (3C) is declared in header file mat h. h only when compiling in extended mode. See
st rt 0d(3C) for more information about function at of (3C).
CAUTIONS

Some function declarations that were previously in mat h. h and st di 0. h(3C) are now in st dl i b. h(3C).
Therefore, check to see that your code includes the proper header.

If you have selected strict ANSI conformance mode and, during compilation, the compiler complains about
incompatible types for a function and its return value, first check the reference manual to determine if in fact
the function is ANSI standard. If it is not and you still want to use it, you will have to explicitly declare it
because it will not be declared in the header file you have included.

SEE ALSO
st di 0. h(3C), stdl i b. h(3C), st rtod(3C), val ues. h(3C)
Scientific Libraries Reference Manual, Cray Research publication SR—2081
Intrinsic Procedures Reference Manual, Cray Research publication SR—2138

SR-2080 10.0 407

MBCHAR(3C) MBCHAR(3C)

NAME
nbt owc, bl en, wet onb — Multibyte character handling

SYNOPSIS
#include <stdlib. h>
int nbtowc (wchar_t *pwc, const char *s, size_t n);
int nblen (const char *s, size_t n);

int wtonb (char *s, wchar_t wchar);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

If sisnot anull pointer, the nbt owc function determines the number of bytes that comprise the multibyte
character to which s points. It then determines the code for the value of type wchar _t that corresponds to
that multibyte character. (The value of the code that corresponds to the null character is 0.) If the multibyte
character is valid, and pwe is not a null pointer, mbt owc stores the code in the object to which pwc points.
At most n bytes of the array to which s points are examined.

If sisnot anull pointer, the nbl en function determines the number of bytes comprising the multibyte
character to which s points. Except that the shift state of the nbt owc function is not affected, it is
equivaent to the following:

nbt owc((wchar_t *)0, s, n);

Thewct onb function determines the number of bytes needed to represent the multibyte character that
corresponds to the code that has the value wchar (including any change in shift state). It stores the
multibyte character representation in the array object to which s points (if sis not a null pointer). At most
MB_CUR_MAX characters are stored. |f the value of wchar is 0, wet onb is left in the initial shift state.

NOTES

The LC_CTYPE category of the current locale affects the behavior of the multibyte character functions. For
a state-dependent encoding, each function is placed into its initial state by a call for which its character
pointer argument, s, is a null pointer. Subsequent calls with s as other than a null pointer cause the internal
state of the function to be altered as necessary. A call with s as a null pointer causes these functions to
return a nonzero value if encodings have state dependency; otherwise, these functions return 0. Changing
the LC_CTYPE category causes the shift state of these functions to be indeterminate.

408 SR-2080 10.0

MBCHAR(3C) MBCHAR(3C)

RETURN VALUES

If sisanull pointer, mbl en and bt owc return a nonzero value if multibyte character encodings have
state-dependent encodings; they return O if multibyte character encodings do not have state-dependent
encodings.

If sisnot anull pointer, mbl en or mbt owc return O if s points to the null character. They return the
number of bytes that comprise the multibyte character if the next n or fewer bytes form a valid multibyte
character. They return —1 if they do not form a valid multibyte character.

The value returned is never greater than n or the value of the MB_CUR_MAX macro.

If sisanull pointer, wct onb returns a nonzero value if multibyte character encodings have state-dependent
encodings. It returns O if multibyte character encodings do not have state-dependent encodings.

If sisnot anull pointer, wct onb returns —1 if the value of wchar does not correspond to a valid multibyte
character; otherwise, it returns the number of bytes that comprise the multibyte character that correspond to
the value of wchar.

In the cases in which the preceding functions return —1, they also may set er r no to the value El LSEQ (a
byte/character sequence that is not valid is detected).

SEE ALSO
| ocal e. h(3C), mbstri ng(3C)

SR-2080 10.0 409

