MBSTRING (3C) MBSTRING (3C)

nbst owcs, west onmbs — Multibyte string functions

SYNOPSIS

#include <stdlib. h>
size_t nbstows (wchar_t *pwcs, const char *s size_ t n);

size_t westonbs (char *s const whar_t *pwcs, size_ t n);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

The mbst owcs function converts a sequence of multibyte characters that begins in the initial shift state
from the array to which s points into a sequence of corresponding codes and stores not more than n codes
into the array pointed to by pwcs. No multibyte characters that follow a null character (which is converted
into a code with value 0) are examined or converted. Each multibyte character is converted as if by a call to
nmbt owc, except that the shift state of the nbt owc function is not affected. If pwes is a null pointer, the
nmbst owcs function returns the number of elements required for the wide character code array.

No more than n elements are modified in the array to which pwcs points. If copying occurs between objects
that overlap, the behavior is undefined.

Thewcst onbs function converts a sequence of codes that correspond to multibyte characters from the array
to which pwcs points into a sequence of multibyte characters that begins in the initial shift state and stores
these multibyte characters into the array to which s points, stopping if a multibyte character would exceed
the limit of n total bytes or if a null character is stored. Each code is converted as if by a call to the

wet omb(3C) function, except that the shift state of the wet onb function is not affected. If sis anull
pointer, the wcst onbs function returns the number of bytes required for the character array.

No more than n bytes are modified in the array to which s points. If copying takes place between objects
that overlap, the behavior is undefined.

The LC_CTYPE category of the current locale affects the behavior of the multibyte string functions.

RETURN VALUES

If a multibyte character that is not valid is encountered, mbst owcs returns (si ze_t) —1, and may set
errno to El LSEQ (a character sequence that is not valid is detected). Otherwise, mbst owcs returns the
number of array elements modified, not including a terminating O code, if any.

SR-2080 10.0

MBSTRING (3C) MBSTRING (3C)

On encountering a code that does not correspond to a valid multibyte character, west onbs returns
(size_t)-1,andit may set errno to El LSEQ Otherwise, wcst onbs returns the number of bytes
modified, not including a terminating null character, if any.

SEE ALSO
| ocal e. h(3C), nbchar (3C)

SR-2080 10.0 411

MEMORY (3C) MEMORY (3C)

NAME

menchr, mencnp, mencpy, menccpy, renmove, nenset — Performs memory operations

SYNOPSIS

#i ncl ude <string. h>

void *menchr(const void *s int c, size_t n);

int nmencnp(const void *sl, const void *s2, size t n);
void *mencpy(void *sl, const void *s2, size_ t n);

void *menccpy(void *sl, const void *s2, int ¢, size_t n);
void *memmove(void *sl, const void *s2, size_t n);

void *menset(void *s, int ¢, size_t n);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANSI (except nenccpy)
XPG4 (mentcpy only)

DESCRIPTION

412

The menchr function locates the first occurrence of ¢ (converted to an unsi gned char) in theinitia n
characters (each interpreted as unsi gned char) of the object pointed to by s.

The mencnp function compares the first n characters of the object pointed to by sl to the first n characters
of the abject pointed to by s2.

The mencpy function copies n characters from the object pointed to by s2 into the object pointed to by s1.
If copying takes place between objects that overlap, the behavior is undefined.

The menctcpy function copies characters from memory area s2 into sl, stopping after the first occurrence of
character ¢ has been copied, or after n characters have been copied, whichever comes first.

The memmove function copies n characters from the object pointed to by s2 into the object pointed to by s1.
Copying takes place as if the n characters from the object pointed to by s2 are first copied into a temporary
array of n characters that does not overlap the objects pointed to by s1 and s2, and then the n characters
from the temporary array are copied into the object pointed to by s1.

The menset function copies the value of ¢ (converted to an unsi gned char) into each of the first n
characters of the object pointed to by s.

SR-2080 10.0

MEMORY (3C) MEMORY (3C)

RETURN VALUES

The menchr function returns a pointer to the located character, or a null pointer if the character does not
occur in the object.

The mencnp function returns an integer that is greater than, equal to, or less than O, according to whether
the object pointed to by sl is greater than, equal to, or less than the object pointed to by 2.

The mencpy and menmove functions return the value of sl.

Function menccpy returns a pointer to the character after the copy of c in s, or a null pointer if ¢ was not
found in the first n characters of s2.

The menset function returns the value of s.

SEE ALSO
bstri ng(3C)

SR-2080 10.0 413

memory.h (3C) memory.h(3C)

NAME
menory. h — Library header for string-handling functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION
Header menory. h isidentical to header st ri ng. h; it isincluded only for compatibility with prior use.

SEE ALSO
st ring. h(3C)

414 SR-2080 10.0

MEMWORD(3C) MEMWORD(3C)

NAME

memacpy, nemaset , nenst ri de, mremachr, memacnp — Performs word-oriented memory operations

SYNOPSIS
#i ncl ude <string. h>
void *memacpy(long *sl, long *s2, int n);
long *memnset(long *s, long w, int n [, int str]);
long *menmstride(long *sl, int strl, long *<2, int str2, int n);
long *memachr(long *s, longw, int n[, int str]);

int memacnp(long *sl, long *s2, int n);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The memacpy function copies n words in the memory area addressed by s2 to the memory area addressed
by s1. It handles overlapping moves correctly.

The memaset function sets the first n words in memory area s to the value of word w; it returns s. If the
optional str argument is used, it sets every str’th word to the value of w.

The menst ri de function copies n words from s2 (with a stride of str2) to sl (with a stride of strl); it
returns sl.

The memachr function returns a pointer to the first occurrence of the word w in the first n words of s; it
returns O if w is not found in the first n words of s. If the optional str argument is used, it compares w with
every str'th word of s.

The memacp function compares the first n words of its arguments; it returns O if they are identical, or the
index of the first detected difference. The index is one-based.

NOTES

For user convenience, all these functions are declared in the optional <st ri ng. h> header file. The
memaepy, nenst ri de, and memacnp functions are declared as fast in-line functions in <st ri ng. h>.

SR-2080 10.0 415

MESSAGE (3C) MESSAGE (3C)

NAME
nmessage — Introduction to UNICOS message system functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

These functions provide means for accessing basic system resources affecting the UNICOS message system.

ASSOCIATED HEADERS
<nl _types. h>

ASSOCIATED FUNCTIONS

Function Description
cat cl ose(3C) Closes a message catalog (see cat open(3C))
cat get msg(3C) Reads a message from a message catalog
cat get s(3C) Gets message from a message catalog
cat nmsgf nt (3C) Formats an error message
cat open(3C) Opens a message catalog
SEE ALSO

file(3C), nultic(3C), password(3C), t er mi nal (3C) (al introductory pages to other operating system
service functions)

nl _t ypes(5) for a description of header nl _t ypes. h in the UNICOS File Formats and Special Files
Reference Manual, Cray Research publication SR—2014

Cray Message System Programmer’s Guide, Cray Research publication SG—2121

416 SR-2080 10.0

MKTEMP(3C) MKTEMP (3C)

NAME
nmkt emrp — Makes a unique file name

SYNOPSIS
#i nclude <stdlib. h>
char *nktenp (char *template);

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

The nkt enp function replaces the contents of the string to which template points with a unique file name,
and it returns the address of template. The string in template should look like a file name with six trailing
X's; mkt enp replaces the X's with a letter and the current process ID. The letter is chosen so that the
resulting name does not duplicate that of an existing file.

NOTES

You may run out of letters. If nkt enp cannot create a unique name, it assigns the null string to template.

FORTRAN EXTENSIONS

You also can all the nkt enp function from Fortran programs, as follows:

CHARACTER* n template
| NTEGER*8 MKTEMP, |
| = MKTEMP(template)

The template argument also may be an integer variable. In this case, the data must be packed 8 characters
per word and terminated with a null (0) byte.

SEE ALSO

t npfil e(3C), t mpnan(3C)
get pi d(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 417

MKTIME(3C) MKTIME(3C)

NAME

nkt i me — Converts loca time to calendar time

SYNOPSIS
#i ncl ude <tine. h>

time_t nktime (struct tm *timeptr);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The nkt i me function converts the broken-down time, expressed as local time, in the structure pointed to by
timeptr, into a calendar time value with the same encoding as that of the values returned by the t i me(3C)
function. The original values of thet m wday and t m yday components of the structure are ignored, and
the original values of the other components are not restricted to the ranges indicated in the t i me. h entry.
On successful completion, the values of thet m wday and t m yday components of the structure are set
appropriately, and the other components are set to represent the specified calendar time, but their values are
forced to the ranges indicated above; the final value of t m nday is not set until t m mon and t m year are
determined.

NOTES

A positive or zero value for t m i sdst causes the nkt i me function to presume initially that daylight
saving time, is (+) or isnot (0) in effect for the specified time. A negative value for t m i sdst causes
the mkt i me function to attempt to determine whether daylight saving time is in effect for the specified time.

RETURN VALUES

The nkt i me function returns the specified calendar time encoded as a value of typeti me_t . If the
calendar time cannot be represented, the function returns the value (ti ne_t) - 1.

SEE ALSO
ti me(3C)
ti me(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

418 SR-2080 10.0

MLDLIST(3C) MLDLIST(3C)

NAME
m dl i st — Obtains the list of mandatory access control (MAC) labels currently represented in a multilevel
directory

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/nmac. h>

int mdlist(char *path, mMs_t *labels, int count);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them dl i st routine scans the directory structure indicated by the multilevel symbolic link file path. If
the label list buffer pointer specified by labels is a non-null pointer, M dl i st merely counts the labels in
the multilevel directory and returns that number.

The labels placed in the array to which labels points are of the opaque type, m s_t . This data type is
created by using m s_cr eat e and destroyed by using m s_f r ee. Before discarding the labels array, the
user should destroy al labelsinit by usingm s_fr ee.

If path is not a multilevel symbolic link, but is a directory or a normal symbolic link to a directory,
m dl i st returns the label of the directory specified in path. This alowsm dl i st to be used on wildcard
directories as well as multilevel directories.

NOTES

The ability to obtain an accurate list of labels depends on MAC access to all subdirectories in the multilevel
directory structure. The list of labels returned always represents the total list of labels to which the calling
process has MAC read access.

WARNINGS

This routine calls st at (2), | st at (2), and r eadl i nk(2), among other system calls. As aresult, the
routine can sleep or hang if a needed file system resource is unavailable.

RETURN VALUES

If path specifies a multilevel symbolic link file, and the target of the symboalic link is an accessible directory,
m dl i st returns the number of labels represented in the multilevel directory structure.

SR-2080 10.0 419

MLDLIST(3C) MLDLIST(3C)

If path is a norma symbolic link to a directory, or path is a directory itself, m dl i st returnsa 1 (in this
case, the number of labels represented is 1).

If path is a not a symbolic link or path is not a directory, or access is denied to path or its symbolic link
target for some reason, m dl i st returnsa—1.

SEE ALSO
m dnane(3C), m dwal k(3C), M s_cr eat e(3C), m s_fr ee(3C), pat hname(3C)

420 SR-2080 10.0

MLDNAME (3C) MLDNAME (3C)

NAME
m dnane — Expands a multilevel symbolic link reference at an arbitrary mandatory access control (MAC)
label

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <dirent.h>
#i ncl ude <sys/nmac. h>

char *m dnanme(char *path, m s_t labd);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The m dnane routine determines the actual path name to which a multilevel symbolic link redirects a path
name search at an arbitrary MAC label. The routine takes a path name (path) and a MAC label (label) as its
arguments. If the file to which path points is a multilevel symbolic link, m dname computes the labeled
subdirectory name based on the MAC label provided in label and appends it to the contents of the multilevel
symbolic link file. If the file to which path points is not a multilevel symbolic link, but is either a directory
or a symbolic link to a directory, m dnane simply returns the path name path.

This routine allocates space for the path name it returns by using mal | oc and copies the result into that
space. It then returns a pointer to the newly composed path name. The allocated space can be freed by
using fr ee.

WARNINGS

This routine calls st at (2), | st at (2), and r eadl i nk(2), among other system calls. As aresult, the
routine can sleep or hang if a needed file system resource is unavailable.

RETURN VALUES

This routine returns a pointer to a path name. If an error occurs, it returns a null pointer.

SEE ALSO

free(3C), mal I oc(3C), M dl i st (3C), m dwal k(3C), M s_creat e(3C), M s_free(3C),
opendi r (3C), pat hnane(3C)

SR-2080 10.0 421

MLDWALK (3C) MLDWALK (3C)

NAME

m dwal k — Walks the labeled subdirectories of a multilevel directory (MLD)

SYNOPSIS

#include <ftw h>

#i ncl ude <sys/stat.h>

#i ncl ude <sys/secstat. h>
#i ncl ude <sys/nac. h>

int mdwal k(char *path, int(*fn)(char*, struct stat*, struct secstat?*,
int));

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

422

The m dwal k routine traverses the labeled subdirectories of the multilevel directory specified by the
multilevel symbolic link file, path. For each entry found in a label subdirectory, m dwal k calls the
user-supplied function fn with a character pointer that points to the full path name of the entry, a st at
structure that contains the status of the file corresponding to the entry, a secst at structure that contains the
security status of the file corresponding to the entry, and an integer with the following possible values (found
inftw h):

Value Description

FTW F Nondirectory

FTW D Directory

FTW NS Object for which st at (2) or secst at (2) system call could not be successfully
executed

Unlike the f t wroutine, M dwal k does not walk down the directory tree, but walks across the labeled
subdirectories and visits each entry in each labeled subdirectory. Therefore, it does not concern itself with
the FTW _DNR value (which is a directory that can not be read).

When walking a multilevel directory, m dwal k silently skips all labeled subdirectories it cannot open for
reading.

If the file specified in path is a directory or a normal symbolic link to a directory rather than a multilevel
symbolic link, mM dwal k visits each file in the directory and returns.

SR-2080 10.0

MLDWALK (3C) MLDWALK (3C)

WARNINGS

This routine calls st at (2), | st at (2), and r eadl i nk(2), among other system calls. As aresult, the
routine can sleep or hang if a needed file system resource is unavailable.

RETURN VALUES

If M dwal k exhausts its traversal, it returns a 0. If fn returns a nonzero value, M dwal k stops its traversal
and returns whatever value was returned from fn. If an error occurs, m dwal k returns —1.

SEE ALSO
ftw3C) m dl i st (3C), M dnanme(3C), pat hnane(3C)
secst at (2), st at (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 423

MLS_CREATE(3C) MLS_CREATE(3C)

NAME
m s_creat e — Creates an opaque security label structure

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nac. h>

ms t ms_create(int leve, | ong comparts);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them s_cr eat e routine alocates and creates an opaque security label for use with the security 1abel
comparison routines (for example, mac_equal). level is the desired level and comparts is the desired
compartment bit mask.

RETURN VALUES

On successful completion, the routine allocates space for and returns the desired security label. Otherwise,
no space is alocated, a null pointer is returned, and errno is set to indicate the error.

ERRORS
m s_cr eat e failsif the following error condition occurs:
Error Code Description
ENOVEM The label to be returned required more memory than was allowed for the calling
process.
SEE ALSO

m s_extract (3C), M s_free(3C)

424 SR-2080 10.0

MLS_DOMINATE(3C) MLS_DOMINATE(3C)

NAME

m s_dom nat e — Performs a security label domination test

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nmac. h>

int ms_create(ms_t macpl, ms_t mac p2);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The m s_dom nat e routine determines whether mac_pl dominates mac_p2.

NOTES

Dominance includes equivalence. Therefore, if one label equals another, each shall dominate the other. The
two labels may not dominate each other (that is, the labels are digoint).

RETURN VALUES

A value of —1 isreturned and errno is set to indicate the error. Otherwise, the M s_dom nat e function
returns a 1 if mac_pl dominates mac _p2, or a0 if mac_pl does not dominate mac_p2.

ERRORS
The m s_dom nat e routine fails if the following error condition occurs:
Error Code Description
El NVAL At least one of the labels, mac_pl or mac_p2, is not a valid security label.

SEE ALSO
ms_create,n s_equal (3C), M s_free(3C), M s_gl b(3C), M s_I| ub(3C)

SR-2080 10.0 425

MLS_EQUAL (3C) MLS_EQUAL (3C)

NAME
m s_equal — Performs a security label equality test

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nac. h>

int ms_equal (mMs_t mac pl, ms_t mac p2);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them s_equal routine determines whether mac_pl equals mac_p2.

RETURN VALUES

Them s_equal routinereturnsa 1 if mac_pl is equal to mac_p2, or O if mac_pl1 does not equal mac_p2.
If an error occurs, a value of —1 is returned, and errno is set to indicate the error.

ERRORS

m s_equal failsif the following error condition occurs:

Error Code Description

El NVAL At least one of the labels, mac_pl or mac _p2, is not a valid security label.
SEE ALSO

m s_creat e(3C), m s_dom nat e(3C), M s_free(3C), M s_gl b(3C), M s_I ub(3C)

426 SR-2080 10.0

MLS_EXPORT(3C) MLS_EXPORT(3C)

NAME

m s_export — Convertsinternal security label to text representation

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nmac. h>

char *m s_export(ms_t mac pl);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them s_export routine converts the internal representation of the security label stored in mac_pl into its
text representation. The routine allocates space for the text representation, copies the text representation into
that space, and returns a character pointer to that space.

The format of the text security label is as follows:

level, compartment| , compartment] . . .]]

level is the name that represents the appropriate level; compartment is the name that represents the
appropriate compartment. If the label does not have any compartments specified, the text none is used.

RETURN VALUES

On successful completion, the m s_expor t routine allocates storage for and returns the text representation
of the label. Otherwise, no storage space is allocated, a null pointer is returned, and errno is set to indicate

the error.
ERRORS
m s_export falsif the following error condition occurs:
Error Code Description
ENOVEM The label to be returned required more memory than was allowed for the calling
process.
SEE ALSO

m s_i nport (3C)

SR-2080 10.0 427

MLS_EXTRACT(3C) MLS_EXTRACT(3C)

NAME

m s_extract — Extracts label from an opaque security label structure

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nac. h>

void ms_extract(ms_t macpl, int *level, | ong *comparts);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them s_extract routine extracts the level and compartment information from the opague security |abel
specified by macpl; the label information is stored in level and comparts.

RETURN VALUES

Then s_extract routine does not return a value.

SEE ALSO
m s_creat e(3C), Ms_free(3C)

428 SR-2080 10.0

MLS_FREE(3C) MLS_FREE(3C)

NAME
m s_free — Frees security label storage space

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nmac. h>

void ms free(ms_t mac pl);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The m s_f r ee routine frees memory previously allocated by calls made to any security label function that
allocates memory on the caller’s behalf (for example M s_cr eat e). The mac_pl argument is the security
label to be freed.

RETURN VALUES

Them s_free function does not return a value.

SEE ALSO
m s_creat e(3C), M s_extract (3C)

SR-2080 10.0 429

MLS_GLB(3C) MLS_GLB(3C)

NAME
m s_gl b — Computes the greatest lower bound

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nac. h>

ms t ms_glb(mMs_t mac pl, ms_t mac p2);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The m s_gl b routine allocates space for and returns the security label (if it exists) that is dominated by
both the labels specified by mac _pl and mac_p2, and dominates all other security labels that are dominated
by both mac_pl and mac_p2.

RETURN VALUES

On successful completion, this routine allocates space for and returns the newly allocated bounding security
label. Otherwise, no space is alocated, a null pointer is returned, and errno is set to indicate the error.

ERRORS
m s_gl b failsif the following error conditions occur:
Error Code Description
ENOVEM The label to be returned required more memory than was allowed for the calling
process.
El NVAL The bounding security label does not exist, or mac_pl and/or mac_p2 has a wildcard
label.
SEE ALSO

m s_creat e(3C), M s_dom nat e(3C), M s_free(3C), M s_I ub(3C)

430 SR-2080 10.0

MLS_IMPORT(3C) MLS_IMPORT(3C)

NAME

m s_i nport — Converts text security label to internal representation

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nmac. h>

ms t ms_inport(char *text);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Them s_i nport routine converts the text representation of the security label specified by text into its
internal representation. When m s_i nport is called, the routine allocates storage space for the security
label, that may be freed with a call to M s_f r ee(3C).

The format of the text security label is as follows:
level[, compartment][, compartment[. . .]]]

Where level is the name or numeric value that represents the appropriate level; compartment is the name or
numeric value that represents the appropriate compartment. If no compartments are specified or the text
string none or 0 is used, and the compartment bit mask is set to 0.

RETURN VALUES

On successful completion, the m s_i nmport routine allocates storage for and returns the security label.
Otherwise, no storage space is alocated, a null pointer is returned, and errno is set to indicate the error.

ERRORS
m s_i nport falsif the following error conditions occur:
Error Code Description
ENOVEM The label to be returned required more memory than was allowed for the calling
process.
El NVAL The string text is not a valid text representation of a security label.
SEE ALSO

m s_export (3C), M s_extract (3C), M s_free(3C)

SR-2080 10.0 431

MLS_LUB(3C) MLS_LUB(3C)

NAME
m s_| ub — Computes the least upper bound

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/nac. h>

ms t ms_ lub(mMs_t mac pl, ms_t mac p2);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The m s_I ub routine allocates space for and returns the security label (if it exists) that is dominated by
both the security labels specified by mac pl and mac p2, and is dominated by all other security labels that
dominate both mac_pl and mac_p2.

RETURN VALUES

On successful completion, this function allocates space for and returns the newly allocated bounding security
label. Otherwise, no space is alocated, a null pointer is returned, and errno is set to indicate the error.

Error Code Description
ENOVEM The label to be returned required more memory than was allowed for the calling
process.
El NVAL The bounding security label does not exist, or mac_pl and/or mac_p2 has a wildcard
label.
SEE ALSO

m s_creat e(3C), M s_dom nat e(3C), M s_free(3C), M s_gl b(3C),

432 SR-2080 10.0

MTIMESX (3F) MTIMESX (3F)

NAME
MTI MESX, MT'I MESCN, MI'l MESUP — Returns multitasking overlap time

SYNOPSIS

CALL MrI MESX(overlap)
ncpus = MI1 MESCN()
irtc = MT1 MESUP()

IMPLEMENTATION

Cray PVP systems
SPARC systems

DESCRIPTION

MTI MESX, MTI'I MESCN, and MT'I MESUP dll return fields in the structure that is made known to the system
by the mt i nes(2) system call. The structure contains execution timing information about multitasking
programs.

The following is alist of valid arguments:

Argument Description

ncpus Integer that specifies the number of physical CPUs connected at that instant.

irtc Integer real-time clock value when nt i nes structure was last updated by the operating
system.

rarray Real array to hold the timing values returned by MTT MESX.

overlap Address of the real array to hold the overlap time array of the nt i mes structure. The

length of this array must be the number of CPUs on the target machine. The elements of
the array denote how much CPU time was accumulated by the program with a particular
number of CPUs executing. For example, overlap(3) denotes the amount of CPU time
accumulated when three CPUs were executing in the program, overlap(8) the amount
accumulated when eight CPUs were executing in the program, and so on.

MTI MESX fills the array whose address is passed with the overlap time array of the nt i nes structure.
Summing the elements of the array filled in by MI'l MESX yields total execution time for a multitasking
program.

MTI MESCN returns the field of the nt i mes structure that denotes how many physica CPUs are connected
to the program at that point. The contents of the field may change at any time.

MTI MESUP returns the field of the nt i mes structure that denotes the real-time clock value at which the
nt i mes structure was last updated by the operating system. The contents of the field may change at any
time.

SR-2080 10.0 433

MTIMESX (3F) MTIMESX (3F)

M MESCN and MT'T MESUP are useful for getting accurate timings of small multitasking codes. By using
them together, as shown in the following example, you can ensure that your program has as many CPUs as
it requires and that none of the CPUs you are using is interrupted by the operating system during the
execution of the loop.

NOTES
This routine is available on SPARC systems, so that user codes do not need to be rewritten, but it has no
effect.

EXAMPLES

886 CONTI NUE
CPUS = MII MESCN()

C if (not all CPUs here) |oop
IF (CPUS. NE. 8) GO TO 886
BEFOREUP = MII MESUP()

C ...(work to be tinmed)...
AFTERUP = MTI MESUP()

C if (interrupted) |oop
| F (AFTERUP . NE. BEFOREUP) GO TO 886

SEE ALSO
SECOND(3F), TSECND(3F)
nt i mes(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

434 SR-2080 10.0

MTTIMES (3F)

NAME

MTTIMES (3F)

MITI MES — Prints CPU timing information to st dout

SYNOPSIS

CALL MITI MES

IMPLEMENTATION

Cray PVP systems

SPARC systems

DESCRIPTION

The MI'TI MES subroutine prints CPU timing information to st dout . MI'TI MES can tell you how long
multiple CPUs were concurrently active on the job. The average is not a speedup factor, but rather an
indication of average overlap. If the amount of time busy-waiting is small relative to the total job time, the
average may be close to the actual speedup. This information is the same as that available from the j a(1)

command.

The following is a sample of the output from MI'TI MVES:

CPU Utilization

CPUS | Tinme(sec)| Tot al
1x | 0.551= | 0.551
2x | 14.203= | 28.407
3x | 35.926= | 107.778
4x | 3.342= | 13.368

I I
2.78x| 54.022= | 150.103

NOTES

This routine is available on SPARC systems, so that user codes do not need to be rewritten, but it has no

effect.

NOTES

j a(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2080 10.0

435

MULTIC(3C) MULTIC(3C)

NAME

mul ti ¢ — Introduction to multitasking functions in C

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

These C functions provide means for accessing basic system resources affecting multitasking.

ASSOCIATED HEADERS
<tfork. h>

ASSOCIATED FUNCTIONS

Function Description
t_exit Exits a multitasking process
tfork Creates a multitasking sibling
t_fork Creates a multitasking sibling (see't f or k)
t_gettid Returns the TID for specified process (seet i d)
t_id Returns the PID of the caller (seet i d)
t_lock Blocks until the lock is free (see t | ock)
t _nl ock Sets a nested lock (seet | ock)
t _nunl ock Releases a nested lock (seet | ock)
t _testlock Teststhelock and locks it if necessary (seetl ock)
t_tid Returns the TID of the called function (seet i d)
t _unl ock Releases the lock (seet | ock)

SEE ALSO

file(3C), nessage(3C), passwor d(3C), t er m nal (3C), mul ti f (3F), (al introductory pages to other
operating system service functions)

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014, for more
complete descriptions of UNICOS header files

CF77 Optimization Guide, Cray Research publication SG—3773

436 SR-2080 10.0

MULTIF(3F)

NAME

MULTIF(3F)

mul tif — Introduction to multitasking routines

IMPLEMENTATION

Cray PVP systems

SPARC systems

DESCRIPTION

Multitasking routines create and synchronize parallel tasks within programs. The information in this man
page describes these routines on Cray PVP systems and SPARC systems.

Macrotasking Environment Variables
The following environment variables are available to tune macrotasked applications on Cray PVP systems.
These environment variables control TSKTUNE tuning keywords, which alow you to tune an application for
macrotasking without recompiling or relinking your code. For more information about these keywords, see
the TSKTUNE man page.

Variable
MP_DBACTI VE

MP_DBRELEAS

MP_MAXCPU

MP_PRI ORI TY

Description

Specifies the number of additional macrotasks that can be readied for execution before an
additional logical CPU is acquired; this is called the activation deadband value. The value
of MP_DBACTI VE can be any positive integer value. The initial value is 0.

Specifies the number of logical CPUs retained by the job if there are more CPUs than
macrotasks; this is called the release deadband value. Any CPUs in excess of this number
are released to the system. The initial value is set to 1 less than the number of physical
CPUs available on the system. Setting MP_DBRELEAS to less than this value may cause
an excessive number of CPUs to be deleted and acquired, and a correspondingly long list
of CPUs in the log file. The value of MP_DBRELEAS can be any positive integer value.
Specifies the maximum number of logical CPUs allowed for macrotasking. The default is
the number of physical CPUs on the system. The maximum value is 63.

Specifies the scheduling priority for macrotasks. Legal values are O to 63, 0 being the
lowest priority. The default is 31.

MP_STACKSZW Specifies the initial stack size (in words) for macrotasks.
MP_STACKI NW Specifies the stack increment (in words) for macrotasks.

The MP_STACKSZWhvariable is supported on SPARC systems. The other environment variables have no

effect.

Task Subroutines

The following are the task routines:

Routine
TSKSTART
TSKTEST
TSKTUNE

SR-2080 10.0

Description

Initiates a task

Indicates if atask exists

Modifies tuning parameters within the library scheduler

437

MULTIF(3F) MULTIF(3F)

TSKWAI T Waits for a task to complete execution
TSKVALUE Retrieves the user identifier specified in the task control array
TSKLI ST Lists the status of each existing task

Lock Routines

Lock routines protect critical regions of code and shared memory. The following are the lock routines:

Routine Description

L OCKASGN Identifies an integer variable to be used as a lock

L OCKREL Releases the identifier assigned to a lock

LOCKON Sets a lock

LOCKOFF Clears a lock

LOCKTEST Returns the state of a lock

NLOCKON Sets a nested lock and returns control to the calling task
NL OCKOFF Clears a nested lock and returns control to the calling task

| SELFADD, | CRI TADD

Perform ivar=ivar+ivalue under protection of | SELFADD hardware semaphore
| SELFMUL, | CRI TMUL

Perform ivar=ivar*ivalue under protection of hardware semaphore
| SELFSCH Performs ivar=ivar+1 under protection of hardware semaphore
XSELFADD, XCRI ADD

Performs xvar=xvar+xvalue under protection of hardware semaphore
XSELFMUL, XCRI TMUL

Perform xvar=xvar+xvalue under protection of hardware semaphore

Event Routines

Event routines signal and synchronize between tasks. The following are the event routines:

Routine Description

EVASGN Identifies a variable to be used as an event
EVCLEAR Clears an event

EVREL Releases the identifier assigned to a task
EVPOST Posts an event

EVTEST Returns the state of an event

EVWAI T Suspends task execution until an event is posted

Multitasking History Trace Buffer Routines

438

The user-level routines for the multitasking history trace buffer can be called from a user program to control
what is recorded in the buffer and to dump the contents of the buffer to afile. The following are the
multitasking history trace buffer routines:

Routine Description

BUFTUNE Modifies parameters used to control which multitasking actions are recorded in the history
trace buffer

BUFPRI NT Writes a formatted dump of the history trace buffer to a dataset

BUFDUMP Writes an unformatted dump of the history trace buffer to afile

SR-2080 10.0

MULTIF(3F) MULTIF(3F)

BUFUSER Adds entries to the history trace buffer
These routines are present on SPARC systems, but they have no effect.

Barrier Routines
A barrier is a synchronization point in an application, beyond which no task will proceed until a specified
number of tasks have reached the barrier. The following are the barrier routines:

Routine Description

BARASGN Identifies an integer variable to use as a barrier
BARREL Releases the identifier assigned to a barrier
BARSYNC Registers the arrival of atask at the barrier

Timing Routines
Timing routines return a variety of timing information that is helpful when evaluating and tuning multitasked
programs. The following are the timing routines:

Routine Description
MT1 MESX, Ml MESUP, MTI MESCN

Return multitasked overlap time
TSECND Returns user CPU time in seconds
MITI MES Prints CPU timing information

The TSECND routine is available for use on SPARC systems. The other routines are available on SPARC
platforms so that user codes do not need to be rewritten, but they have no effect.

SR-2080 10.0 439

NDBM(3C) NDBM(3C)

NAME

ndbm dbm open, dbm cl ose, dbm f et ch, dbm st or e, dbm del et e, dbm fi r st key,
dbm next key, dbm error, dbm cl ear err — Database subroutines

SYNOPSIS

#i ncl ude <ndbm h>

typedef struct {
void *dptr;
size_ t desize;
} datum

DBM *dbm open(const char *file, int flags, node_t node);
void dbm cl ose(DBM *db);

datum dbm fetch(DBM *db, datum key);

int dbmstore(DBM *db, datum key);

int dbmstore(DBM *db, datum key, datum content, int flags);
int dbmdel ete(DBM *db, datum key);

dat um dbm firstkey(DBM *db);

dat um dbm next key(DBM *db);

int dbmerror(DBM *db);

int dbmerror(DBM *db);

int dbmclearerr(DBM *db);

IMPLEMENTATION

All Cray Research systems

STANDARDS

XPG4

DESCRIPTION

440

These functions maintain key/content pairs in a database. The ndbmfunctions will handle very large (a
billion blocks) databases and will access a keyed item in one or two file system accesses. This package
supercedes the dbm(3c) library, which managed only a single database.

Keys and contents are described by the datum typedef:

SR-2080 10.0

NDBM(3C) NDBM(3C)

typedef struct {
void *dptr;
size_t dsize;
} datum

A datum specifies data of dsize bytes pointed to by dpt r . Arbitrary binary data, as well as normal ASCII
strings, are allowed.

The database is stored in two files. One file is a directory that contains a bit map and has . di r asits
suffix. The second file contains al data and has . pag as its suffix.

Before a database can be accessed, it must be opened by dbm open. This will open and/or create the
file.dir andfil e. pag files, depending on the flags parameter (see the open(2) man page). The mode
argument is the same as the third argument in open(2).

Once open, the data stored under a key is accessed by dbm f et ch and data is placed under a key by

dbm st ore. The flags field can be either DBM | NSERT or DBM _REPLACE. DBM | NSERT will insert
only new entries into the database and will not change an existing entry with the same key. DBM REPLACE
will replace an existing entry if it has the same key. A key (and its associated contents) is deleted by

dbm del et e. A linear pass through al keys in a a database may be made in a random order by use of
dbm firstkey and dbom next key. dbm fi r st key will return the first key in the database.
dbm_next key will return the next key in the database. The following code will traverse the database:

for (key = dbmfirstkey(db);
key.dptr !'= NULL;
key = dbm nextkey(db))

dbm _er r or returns nonzero when an error has occurred while reading or writing the database.
dbm cl ear err resets the error condition on the named database.

NOTES

The . pag file is designed to contain holes in files. Holes will make this file appear larger than its actual
contents.

dpt r pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
All key/content pairs that hash together must fit on a single block. dbm st or e will return an error in the
event that a disk block fills with inseparable data.

dbm del et e does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by dbm fi r st key() and dbm next key() rely on the ndbmhashing
function.

SR-2080 10.0 441

NDBM(3C) NDBM(3C)

The ndbmfunctions, except dbm_er r or , provide interlocks per database to provide a level of thread safe

use. Although concurrent updating and reading of a database may lead to unpredictable or unexpected
behavior.

RETURN VALUES
All functions that return an i nt indicate errors with negative values. A zero return indicates that there are

no errors. Routines that return a datum indicate errors with a null (0) dptr. If dbm st or e caled with a
flags value of DBM | NSERT and finds an existing entry with the sanme key, it

returns 1.
SEE ALSO
dbm(3C)
442

SR-2080 10.0

NETWORK (3C)

NAME

NETWORK (3C)

net wor k — Introduction to the network access functions

IMPLEMENTATION

All Cray PVP systems

DESCRIPTION

This subsection describes the functions that make up the network library, the UNICOS network information
service facility (NIS), the remote procedure call (RPC) library, and the external data representation (XDR)

library.

Associated Headers
Some of the following header files are documented in the UNICOS File Formats and Special Files Reference
Manual, Cray Research publication SR—2014:

Associated Functions

<sys/socket. h>

<sys/types. h>

<rpcsvc/ ypcl nt. h>

<net db. h>

<netinet/in. h>

<net/route. h>
<net/if.h>

Function

aut hker b_get ucred

aut hkerb_seccreate

bi ndr esvport
dn_comp
dn_expand
dn_ski pnane
endhost ent
endnet ent
endnetinfo
endpr ot oent
endr pcent
endser vent
endt osent

get domai nname
get host byaddr

SR-2080 10.0

Description

Converts a Kerberos encryption-based authentication received in a Remote
Procedure Call (RPC) request into a traditional UNIX-style authentication
(see ker ber os_r pc(3C)). Server routine.

Returns an authentication handle that enables the use of the Kerberos
authentication system (see ker ber os_r pc(3C)). Client routine.

Binds a socket to a prvileged IP port

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Closes/ et ¢/ host s file (see get host)

Closes / et ¢/ net wor ks file (see get net)

Closes / et ¢/ net wor ks file (see get net i nf 0)

Closes/ et c/ pr ot ocol s file (see get prot)

Closes/ et c/ r pc file (see get r pcent)

Closes/ et c/ servi ces file (see get serv)

Closes/ et c/i pt os file (seegett 0s)

Gets or sets name of current domain (see get domai n)

Searches for host address (see get host)

443

NETWORK (3C)

444

get host byname
get host ent

get hostinfo
get hostinfo
get host | ookup
get net byaddr
get net bynane
get net ent

get net i byaddr
get net i byname
getnetinfo
get pr ot obynane
get pr ot obynunber
get pr ot oent
get r pchynane
get r pcbynunber
get r pcent

get ser vbyname
get servbyport
get servent

get t oshynane
get t osent
herror
hostal i as

ht onl

ht onl

ht ons

ht ons

i net _addr

net addr
net | naof

net | naof

net makeaddr

net net of

net net of

net network

net network

net _ntoa

net _ntoa

net subnet maskof
net subnet of

NETWORK (3C)

Searches for host name (see get host)

Gets network host entry (see get host)

Gets network host and service entry by host name or host address

Gets network host and service entry by host name or host address

Gets network host entry (see get host)

Searches for network entry by address (see get net)

Searches for network entry by name (see get net)

Gets network entry (see get net)

Searches for network entry by address (see get net i nf 0)

Searches for network entry by name (see get net i nf 0)

Gets network entry

Searches for protocol name (see get pr ot)

Searches for protocol number (see get pr ot)

Reads entry in / et ¢/ pr ot ocol file (see get prot)

Gets remote procedure call entry

Gets remote procedure call entry

Gets remote procedure call entry

Searches for service name (see get ser v)

Searches for port number (see get ser v)

Gets service entry (see get serv)

Searches for Type Of Service name (see get t 0s)

Reads next entry in Type Of Service database (see get t 0S)

Produces host lookup error messages

Domain name service resolver functions (see r esol ver)

Converts values between host and network byte order (see byt eor der)
Converts values between host and network byte order (see byt eor der)
Converts values between host and network byte order (see byt eor der)
Converts values between host and network byte order (see byt eor der)
Interprets dot notation and returns Internet address (see i net)

Interprets dot notation and returns Internet address (see i net)

Separates Internet host addresses and returns local network address (see

i net)
Separates Internet host addresses and returns local network address (see
i net)

Constructs Internet address (seei net)

Separates Internet host addresses and returns network number (seei net)
Separates Internet host addresses and returns network number (see i net)
Interprets dot notation and returns Internet number (see i net)

Interprets dot notation and returns Internet number (see i net)

Interprets Internet address and returns dot notation (seei net)

Interprets Internet address and returns dot notation (seei net)

Returns subnet of the Internet address (see i net)

Returns subnet mask of the Internet address (see i net)

SR-2080 10.0

NETWORK (3C)

i so_addr

i so_ntoa

ker beros_r pc(3C)

ngeapi (3)

nge_get _policy_list(3)

nge_get _request _i ds(3)

NETWORK (3C)

Manipulates 1SO/OSI address

Manipulates 1SO/OSI| address (seei so_addr)

Make remote procedure calls using Kerberos authentication.

General Network Queuing Environment (NQE) functions for formatted lists
Queries the Network Load Balancer(NLB) to retrieve a formatted list of
hosts that match a specified policy

Returns a list of all Network Queuing System (NQS) request 1Ds known to
a specified NLB server

nge_get request _i nf o(3) Returns a list of all information known about a specific NQS request ID

nt ohl

nt ohl

nt ohs

nt ohs

par set os
rcmd
rcrdexec
res_init
res_nkquery
res_query
res_querydomain
res_search
res_send
resol ver
rexec

rpc
rresvport
ruser ok

set donmai nnane
set host ent
set net ent
setnetinfo
set pr ot oent
setrpcent
set servent
settosent
svc_kerb_reg

xdr

yp_all
yp_bi nd

ypcl nt

SR-2080 10.0

from a specified NLB server

Converts values between host and network byte order (see byt eor der)
Converts values between host and network byte order (see byt eor der)
Converts values between host and network byte order (see byt eor der)
Converts values between host and network byte order (see byt eor der)
Gets network Type Of Service information (see get t 0s)

Returns a stream to a remote command

Returns a stream to a remote command

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions (see r esol ver)

Domain name service resolver functions

Returns a stream to a remote command

Makes a remote procedure call

Returns a descriptor to a socket (see r crd)

Authenticates remote users (see r cnd)

Gets or sets name of current domain (see get domai n)

Opens/rewinds / et ¢/ host s file (see get host)

Opens/rewinds / et ¢/ net wor ks file (see get net)

Opens/rewinds / et ¢/ net wor ks file (see get net i nf 0)
Opens/rewinds / et c/ pr ot ocol s file (see get prot)

Gets remote procedure call entry

Opens/rewinds / et c/ ser vi ces file (see get serv)

Opens/rewinds / et c/ i pt os file (see get t 0s)

Performs registration tasks that are required before Kerberos
encryption-based authentication requests are processed (see

ker ber os_r pc(3C)). Server routine.

Achieves machine-independent data transformation

Network information service (NIS) client interface (see ypcl nt)

NIS client interface (see ypcl nt)

NIS client interface

445

NETWORK (3C)

yperr_string
yperr_string

yp_first

yp_get defaul t _domain
yp_get defaul t _domain
yp_nast er

yp_mat ch

yp_next

yp_order

ypprot _err

yp_unbi nd

SEE ALSO
errno. h(3C), i nt ro(3C), perr or (3C)
dup(2), i ntro(2), open(2), pi pe(2), read(2), recv(2), send(2), socket (2), wi te(2) in the

446

UNICOS System Calls Reference Manual, Cray Research publication SR—2012

NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)
NIS client interface (see ypcl nt)

NETWORK (3C)

host s(5), i cnp(4P), i net (4P), i p(4P), i pt 0s(5), net wor ks(5), pr ot ocol s(5), servi ces(5),
t cp(4P), udp(4P) in the UNICOS File Formats and Special Files Reference Manual, Cray Research

publication SR—2014

SR-2080 10.0

NEXTAFTER(3C) NEXTAFTER(3C)

NAME
nextafter, nextafterf, nextafterl — Returnsthe next value in the direction of the second
argument
SYNOPSIS
CRAY T90 systems with IEEE hardware:
#i nclude <fp.h>

doubl e nextafter (double x, doublevy);
float nextafterf (float x, float y);
long double nextafterl (long double x, long double vy);

Cray MPP systems:
#i nclude <fp.h>

doubl e nextafter (double x, doublevy);

IMPLEMENTATION

Cray MPP systems (implemented as a macro)

CRAY T90 systems with |EEE floating-point arithmetic
STANDARDS

ANSI/IEEE Std 754-1985

X3/TR-17:199x
DESCRIPTION

The next af t er function and macro and the next af t er f and next af t er| functions determine the
next representable value, in the type of the function, after x in the direction of y. If x==y, the functions
return y.

RETURN VALUES
These functions return the next representable value after x in the direction of y.

It is sometimes desirable to find the next representation after a value in the direction of a previously
computed value, either smaller or larger. The next af t er functions have a second floating-point argument
so that the program will not have to include floating-point tests for determining the direction in such
situations.

For the case x==y, the |EEE standard recommends that x be returned. This specification differs so that
next after (-0.0, +0. 0) returns +0. 0, and next af t er (+0. 0, - 0. 0) returns- 0. O.

SR-2080 10.0 447

NEXTAFTER(3C) NEXTAFTER(3C)

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

448 SR-2080 10.0

NLIMIT(3C) NLIMIT(3C)

NAME

nlimt — Provides an interface to setting or obtaining resource limit values

SYNOPSIS

#i ncl ude <errno. h>
#i ncl ude <sys/category. h>
#i ncl ude <sys/resource. h>

int nlimt (int id, struct resclim*rptr);
IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

Thenl i mt library interface provides a means to establish or view resource limit information from the
kernel based on the following arguments:

Argument Description

id The pid, sid, or uid corresponding to ther escl i mfieldresc_cat egory. A0
indicates the current pid, sid, or uid.

rptr A pointer to ther escl i mstructure. Ther escl i mstructure to which rptr points

includes the following members (for a complete list, see
[usr/include/ sys/resource. h):

struct resclim{

i nt resc_resource; /* One of: L _CPU */
i nt resc_category; /* One of: C PROC, C SESS, C U D, C SESSPROCS */
i nt resc_type; /* One of: L. T HARD, L T SOFT */

i nt resc_action; /* One of: L_A TERM NATE, L_A CHECKPO NT */
i nt resc_used; /* Current amount of resource used */
[

nt resc_val ue[R_NLI MTYPES] ;
/* Current resource |limt value for */
/* LT HARD AND L_T SOFT */
}s

Ther escl i mstructure contains fields used to establish or view resource limits. Thenl i mi t function sets
up the structure according to the parameters passed to it and calls set | i m{(2) to change limit values, or
get |l i m 2) to aobtain information about limit values.

SR-2080 10.0 449

NLIMIT(3C) NLIMIT(3C)

Obtaining Resource Limits

You must set the r escl i mstructure fieldsr esc_r esource, resc_cat egory, andresc_t ype to
return limit values. Ther esc_r esour ce field represents the resource to be queried. Currently, only CPU
resources are supported; therefore, the value of resc_r esource must be L_CPU. Theresc_cat egory
identifies the category of resource that will be queried. Acceptable values are C_PROC, C_SESS, C_Ul D,
and C_SESSPRCCS, as follows:

Value Description

C _PRCC Returns process limits
C SESS Returns session limits
C uUubD Returns user limits

C _SESSPRCCS Returns default process limits for the session

Therescl i mfield r esc_cat egory determines whether the id argument is a pid, sid, or uid. The
resc_cat egory of C_SESSPROCS requires a sid.

You must set theresc_t ype field to NULL to return its limits.

If the call succeeds, nl i mt fillsin the missing information in the r escl i mstructure, including the
following fields:

Field Description

resc_action Returnsavaueof L_A TERM NATE or L_A CHECKPO NT. When a hard limit is
reached, this value determines whether the process is checkpointed before termination.

resc_used Returns the amount of resource currently accumulated at the time of the call. For L_CPU,
this value is the amount of CPU seconds accumulated.

resc_val ue[R_NLI MTYPES]
Returns two values. Theresc_val ue[L_T_HARD] field is the hard resource limit, and
resc_val ue[L_T_SOFT] is the soft resource limit.

Setting Resource Limits

450

To set alimit value, adl r escl i mfields must be set to either avalue or anull. To set a value to be
unlimited, use CPUUNLI M To set a value to be null, use NULL.

The following list describes each of the fields in the r escl i mstructure and their acceptable values:

Field Description

resc_resour ce Represents the resource for which alimit will be established. Currently, only CPU
resources are supported; therefore, the value of r esc_r esour ce must be L_CPU.

resc_cat egory ldentifies the category of resource that will be set. Ther esc_cat egory determines
whether the id argument is a pid, sid, or uid. Acceptable values are C_PROC, C_SESS,
C U D, and C_SESSPRCCS. Theresc_cat egory of C_SESSPROCS requires a
sid. A short description follows:

C _PRCC Sets process limits

C SESS Sets session limits

C uUub Sets user limits

C_SESSPRCCS Sets default process limits for the session

SR-2080 10.0

NLIMIT(3C)

resc_type

resc_action

resc_used

NLIMIT(3C)

I dentifies the type of limit that will be set. Acceptable values are: L_T_HARD and
L_T_ SOFT.

When a hard limit is reached, this value determines whether the process is checkpointed
before termination. Acceptable values are NULL, L_A TERM NATE, or

L_A CHECKPO NT. If you set theresc_acti on fieldto L_A TERM NATE or
L_A CHECKPQO NT, theresc_t ype must be L_T_HARD.

Not used with the nl i mi t call when setting limits; the only acceptable value is NULL.

resc_val ue[R_NLI MI'YPES]

To set hard limits, set the field resc_t ype to L_T_HARD and place avalue in
resc_val ue[L_T_HARD] . To set soft limits, set the field r esc_t ype to

L_T SOFT and place avaueinresc_val ue[L_T_SOFT]. The valuesin
resc_val ue[R_NLI MTYPES] for resc_resource L_CPUmust bein seconds.
You can set only one of resc_val ue[L_T_HARD] orresc_val ue[L_T_SOFT]
witheachnlimt cal.

Thenl i m t function fails and no information is updated in the r escl i mstructure or no resource limits
are set if one or more of the following error conditions occur:

Error Code
EFAULT

El NVAL
EPERM
EPERM
ESRCH

NOTES

Description

The address specified for rptr was invalid.

One of the arguments contains a value that is not valid.

The user ID of the requesting process is not that of a super user.

An attempt was made to change a limit on a system process; this is not allowed.

No processes were found that matched the request.

A functional descriptionof nlim t isinnlim t ().

RETURN VALUES

On successful completion, a value of O indicates that the call succeeded, and the r escl i mstructure was
filled in with appropriate returned values. Otherwise, a value of —1 is returned, and er r no is set to indicate

the error.

EXAMPLES

The following example shows the execution of the nl i mi t function:

#i ncl ude <stdio. h>
#i ncl ude <errno. h>
#i ncl ude <sys/resource. h>
#i ncl ude <sys/category. h>

int retn;

SR-2080 10.0

451

NLIMIT(3C)

SEE ALSO

struct resclimr;
struct resclim*rptr;
rptr = &r;

/*

* Set up fields to return current process limts

*/
rptr->resc_resource
rptr->resc_category
rptr->resc_type
retn = nlimt(0, rptr);
if (retn == -1) {

fprintf(stderr,"nlimt

}

/*

* Set current process hard
* to checkpoint.

*/

rptr->resc_resource
rptr->resc_category
rptr->resc_type
rptr->resc_action
rptr->resc_val ue[L_T_HARD|
retn = nlimt(0, rptr);

if (retn == -1) {

L_CPU;
C_PRCC;
NULL;

NLIMIT(3C)

failed with errno %\ n", errno);

limt to 400 seconds and the hard action

L_CPU;
C_PRCC;
L_T_HARD;
L_A_CHECKPO NT;
400;

fprintf(stderr,"nlimt failed with errno %\ n", errno);

}

nlimt (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

get i m2), setli m?2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

NLI M T(3F) in the

452

SR-2080 10.0

NLIST(3C) NLIST(3C)

NAME

nli st — Gets entries from name list

SYNOPSIS

#i ncl ude <nlist. h>

int nlist (char *filename, struct nlist *nl);

IMPLEMENTATION
Cray PVP systems

STANDARDS
AT&T extension

DESCRIPTION

Thenl i st function examines the name list in the executable file whose name is pointed to by filename,
selectively extracts alist of values, and puts them in the array of nl i st structures to which nl points. The
name list nl consists of an array of structures that contains names of variables, types, and values. The list is
terminated with a null name; that is, a null pointer is in the name position of the structure. Each variable
name is looked up in the name list of the file. If the name is found, the remaining fields initsnl i st are
filled with the corresponding values from the symbol table. If the name is not found, the fields are set to 0.
For a discussion of the symbol table structure, see r el o(5).

This function is useful for examining the system name list kept in the / uni cos file. In this way, programs
can obtain system addresses that are current.

NOTES

Thenl i st structure in header nl i st . h does not correspond exactly to the actual symbol table structure
(compare the nl i st structure with the gse structure in header synbol . h). Thenl i st structure is used
primarily for convenience and compatibility.

RETURN VALUES
If the file cannot be read or if it does not contain a valid name list, al type entries are set to 0.
On error, nl i st returns —1; otherwise, it returns 0.

SEE ALSO

r el o(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 453

NL_LANGINFO(3C)

NAME

nl _| angi nf o — Points to language information

SYNOPSIS

#i ncl ude <l angi nfo. h>

char *nl _l angi nfo (nl _itemitem);

IMPLEMENTATION

All Cray Research systems

STANDARDS

XPG4

DESCRIPTION

454

NL_LANGINFO(3C)

The nl _| angi nf o function returns a pointer to a string containing information relevant to the particular
language or cultural area defined in the program’s locale. The manifest constant names and values of the
item argument are defined in the | angi nf 0. h header file. For example, the following returns a pointer to
the string Domif the identified language is Portuguese, and Sun if the identified language is English:

nl _langi nfo (ABDAY_1)

Following are the currently defined constants. Unless otherwise noted, all are in the LC_TI ME category.

Constant
CODESET
DT FMI
D FMT

T _FMr

T _FMI_AVMPM
AM STR
PM STR
DAY 1
DAY 2
DAY_3
DAY 4
DAY _5
DAY_6
DAY 7
ABDAY 1
ABDAY 2
ABDAY _3
ABDAY 4

M eaning

Codeset name. LC_TI ME category.

String for formatting date and time

Date format string

Time format string

am. or p.m. time format string

Ante meridian affix

Post meridian affix

Name of the first day of the week (for example, Sunday)
Name of the second day of the week

Name of the third day of the week

Name of the fourth day of the week

Name of the fifth day of the week

Name of the sixth day of the week

Name of the seventh day of the week
Abbreviated name of the first day of the week
Abbreviated name of the second day of the week
Abbreviated name of the third day of the week
Abbreviated name of the fourth day of the week

SR-2080 10.0

NL_LANGINFO(3C)

ABDAY_5
ABDAY_6
ABDAY_7
MON_1
MON_2
MON_3
MON_4
MON_5
MON_6
MON_7
MON_8
MON_9
MON_10
MON_11
MON_12
ABMON_1
ABMON_2
ABMON_3
ABMON_4
ABMON_5
ABMON_6
ABMON_7
ABMON_8
ABMON_9
ABMON_10
ABMON_11
ABMON_12
ERA
ERA D _FMI
ERA D T_FMI
ERA T_FMI
ALT DIG TS
RADI XCHAR
THOUSEP
YESEXPR
NOEXPR
YESSTR
NOSTR
CRNCYSTR

SR-2080 10.0

Abbreviated name of the fifth day of the week
Abbreviated name of the sixth day of the week
Abbreviated name of the seventh day of the week

Name of the first month of the year

Name of the second month

Name of the third month

Name of the fourth month

Name of the fifth month

Name of the sixth month

Name of the seventh month

Name of the eighth month

Name of the ninth month

Name of the tenth month

Name of the eleventh month

Name of the twelfth month

Abbreviated name of the first month

Abbreviated name of the second month

Abbreviated name of the third month

Abbreviated name of the fourth month

Abbreviated name of the fifth month

Abbreviated name of the sixth month

Abbreviated name of the seventh month

Abbreviated name of the eighth month

Abbreviated name of the ninth month

Abbreviated name of the tenth month

Abbreviated name of the eleventh month

Abbreviated name of the twelfth month

Era description segment

Era date format string

Era date and time format string

Era time format string

Alternative symbols for digits

Radix character. LC_NUMERI C category.

Separator for thousands. LC_NUMERI C category.
Affirmative response expression. LC_MESSAGES category.
Negative response expression. LC_MESSAGES category.
Affirmative response for yes/no queries. LC_MESSAGES category.
Negative response for yes/no queries. LC_MESSAGES category.

NL_LANGINFO(3C)

Currency symbol, preceded by — if the symbol should appear before the value, + if the
symbol should appear after the value, or . if the symbol should replace the radix

character. LC_MONETARY category.

455

NL_LANGINFO(3C) NL_LANGINFO(3C)

RETURN VALUES

In a locale where language information data is not defined, nl _| angi nf o returns a pointer to the
corresponding string in the POSIX locale. In all locales, nl _I angi nf o returns a pointer to an empty
string if item contains a setting that is not valid.

SEE ALSO

| ocal econv(3C), set | ocal e(3C)

nl _types. h(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

456 SR-2080 10.0

NLOCKOFF(3F) NLOCKOFF(3F)

NAME
NLOCKOFF — Clears a nested lock and returns control to the calling task

SYNOPSIS
CALL NLOCKOFF(name)

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

NLOCKOFF clears a nested lock and returns control to the calling task. When NLOCKOFF is called, the
nesting level is decremented. If this is the last active nest level, the task clears the lock. Clearing the lock
may allow another task to resume execution, but this is transparent to the task calling NL OCKOFF.
NLOCKOFF must always be called to clear a lock that has been set by NL OCKON(3F).

The following is a valid argument for this routine:

Argument Description
name Name of a 2-word integer array; the first word is the lock, and the second word is the
nesting level.
SEE ALSO
NL OCKON(3F)

SR-2080 10.0 457

NLOCKON (3F) NLOCKON (3F)

NAME
NLOCKON — Sets a nested lock and returns control to the calling task

SYNOPSIS
CALL NLOCKON(name)

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

NLOCKON sets a nested lock and returns control to the calling task. If the lock is already set when
NLOCKON is called, the task ID is checked. If this task already holds the lock, the nesting level is
incremented, and control returns to the calling task. If this task does not hold the lock, the task is suspended
until another task clears the lock. This task then sets the lock when it next resumes execution of user code.
This means that placing NLOCKON before a critical region ensures that the code in the region is executed
only when the task has unique access to the lock. NLOCKON should be used instead of LOCKON(3F) for
codes where critical regions may be nested, usually across subroutine boundaries. NLOCKOFF(3F) must
always be called to clear alock that has been set by the NLOCKON routine.

The following is a valid argument for this routine:

Argument Description
name Name of a 2-word integer array; the first word is the lock, and the second word is the
nesting level.
CAUTIONS

The LOCKTEST(3F) routine cannot be used on nested locks. The same lock cannot be used for calls to the
L OCKON(3F) and NLOCKON(3F) routines. These situations result in job aborts.

458 SR-2080 10.0

NLOCKON (3F) NLOCKON (3F)

EXAMPLES
PROOGRAM MULTI
| NTEGER LOCKWD(2)
| NTEGER REALDATA(1000)
COVMMON / MULTI TST/ LOCKWD, REALDATA
C .
CALL LOCKASGN(LOCK\WD)
C

CALL NLOCKON(LOCKWD)
DO 100 |=1, 1000
| F(REALDATA(1) . GE. 0)
CALL FIXI T(I)
ELSE
REALDATA(|) =0
ENDI F
100 CONTI NUE
CALL NLOCKOFF(LOCKWD)

DO 200 |=1, 1000
CALL FIXIT(1)
200 CONTI NUE

END

SUBROUTI NE FI XI T(X)

| NTEGER X

CALL NLOCKON(LOCKWD)

REALDATA(X) =MAX(REALDATA(X) , 50)
CALL NLOCKOFF(LOCKWD)

RETURN
END

SEE ALSO
LOCKON(3F), NLOCKOFF(3F)

SR-2080 10.0 459

NUMERIC_LIM(3C) NUMERIC_LIM(3C)

NAME

numneri c_| i m— Introduction to numerical limits headers

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The numerical limits headers provide simple macros that expand to numerical limits and parameters, many of
which are machine-specific values. Many of the macros specify maximum and minimum values for data
types. Using these macros gives you the correct values. You do not need to know the specific value. Use
of these macros aso greatly increases the portability of your program.

ASSOCIATED HEADERS

<limts. h>
<f| oat. h>
<val ues. h>

ASSOCIATED FUNCTIONS

Functions that use the values in these headers are primarily in the Mathematics and the General Utility
sections. Seemat h(3C) and uti | i ti es(3C) for alist of functions.

SEE ALSO
mat h(3C), utilities(3C)

460 SR-2080 10.0

_PACK(3C) _PACK(3C)

NAME
_pack, _unpack — Packs or unpacks 8-hit bytes to/from Cray 64-bit words

SYNOPSIS
#i ncl ude <stdlib. h>
l ong _pack (const long *up, char *cp, long bc, | ong tc);

 ong _unpack (const char *cp, long *up, | ong bc, |ong tc);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

These vectorized functions pack or unpack 8-bit bytes to/from Cray 64-bit words. They can be used, for
example, to pack lines from a line buffer to a packed buffer, or unpack lines from a packed buffer to a line
buffer. A line buffer contains one byte per word, and a packed buffer contains 8 bytes per word.
Arguments are as follows:

up Pointer to unpacked data. When packing, bytes are retrieved from this buffer, one right-justified
byte per word. When unpacking, bytes are placed in this buffer, one right-justified byte per word.

cp Pointer to packed data. When packing, bytes are placed in this buffer, 8 bytes per word. When
unpacking, bytes are retrieved from this buffer, 8 bytes per word. Packing and unpacking need not
start or end on a word boundary.

bc Byte count. When packing, this is the number of bytes to pack from up to cp, excluding a
termination character, if specified. When unpacking, this is the maximum number of bytes to
unpack from cp to up. A termination character, if specified and if encountered, terminates
unpacking before the byte count is exhausted.

tc Termination character (an integer). Integer value corresponding to a termination character that will
terminate unpacking or which will be appended to the end of the packed bytes. Thisis an optiona
parameter. If it is omitted or if its value is —1, unpacking will be terminated only after bc bytes are
unpacked and packing will not append any characters.

RETURN VALUES

No processing takes place and a—1 is returned if any of the following conditions are true:

* Dbcislessthan 0.

¢ tcisinvalid (it must be in the range O through UCHAR_MAX or 1).

SR-2080 10.0 461

_PACK(3C) _PACK(3C)

* Theroutine is called with fewer than three arguments.

If the preceding conditions are not true, processing takes place and the number of bytes packed or unpacked
is returned. When unpacking, the termination character, if specified and if encountered, is not unpacked nor
is it counted as a unpacked byte. When packing, the termination character, if specified, is packed and is
counted as a packed byte.

EXAMPLES

462

Example 1: This example unpacks bytes from char _buf fer toli ne_buffer. The _unpack()
routine unpacks 80 bytes or until a new-line character (' 0) is encountered, whichever occurs first. The
new-line character, if it is encountered, will not be unpacked. The variable nb will contain the number of
bytes actually unpacked

int nb;
long *line_buffer;
unsi gned char *char_buffer;

nb = _unpack(char_buffer, line_buffer, 80, "\n’);

Example 2: This example packs 80 bytes from wor ds to char s. No termination character is appended to
the end of the bytes.

int nb;
| ong wor ds[80] ;
unsi gned char chars[80];

nb = _pack(words, chars, 80, -1);

SR-2080 10.0

PASSWORD (3C) PASSWORD(3C)

NAME

passwor d — Introduction to password and security functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The password and security functions provide means for accessing basic system resources affecting passwords
and system security.

ASSOCIATED HEADERS
<gr p. h>
<pwd. h>
<r pc/ net db. h>
<stdlib. h>
<sys/sitesec. h>
<sys/types. h> (seesys_t ypes. h)
<udb. h>

ASSOCIATED FUNCTIONS

aci d2nam
Maps IDs to names (see i d2namn)

aci dnanfree
Maps IDs to names (see i d2namn)

addudb
Library of user database access functions (see | i budb)

del et eudb
Library of user database access functions (see | i budb)

endgr ent
Gets group file entry (see get gr ent)

endpwent
Gets password file entry (see get pwent)

endr pcent
Gets remote procedure call (RPC) entry (see get r pcent)

endudb
Library of user database access functions (see | i budb)

SR-2080 10.0 463

PASSWORD (3C) PASSWORD(3C)

464

f get grent
Gets group file entry (see get gr ent)

f get pwent
Gets password file entry (see get pwent)

get grent
Gets group file entry

getgrgid
Gets group file entry (see get gr ent)

get gr nam
Gets group file entry (see get gr ent)

get pass
Reads a password

get pwent
Gets password file entry

get pw Gets name from UID

get pwnam

Gets password file entry (see get pwent)
get pwui d

Gets password file entry (see get pwent)

get r pchynane
Gets remote procedure call (RPC) entry (see get r pcent)

get r pcbynunber
Gets remote procedure call (RPC) entry (see get r pcent)

get sysudb
Library of user database access functions (see | i budb)

gettrust edudb
Library of user database access functions (see | i budb) get udbchai n Library of user database
access functions (see | i budb) get udb Library of user database access functions (see | i budb)

get udbnam
Library of user database access functions (see | i budb)

get udbst at
Library of user database access functions (see | i budb)

get udbui d
Library of user database access functions (see | i budb)

gi d2nam
Maps IDs to names (seei d2nam)

SR-2080 10.0

PASSWORD(3C) PASSWORD(3C)

gi dnanfree
Maps IDs to names (see i d2namn)
i nitgroups
Initializes group access list
| ockudb
Library of user database access functions (see | i budb)
nanRaci d
Maps IDs to names (see i d2namn)
nanfgi d

Maps IDs to names (see i d2nan) nanui d Maps IDs to names (see i d2nam

put pwent
Writes password file entry

rewiteudb
Library of user database access functions (see | i budb) secbi t s Returns a bit pattern
representing names of security compartments, categories, flags, or permission names (see
sechanes)

secnhanes
Returns a list of security compartments, categories, flags, or permission names

sechuns
Returns numeric value of given security level or class (see secnanes)

secwor ds
Returns security level or class given its corresponding numeric value (see sechanes)

set donmai nnamne
Sets name of current domain (see get domai nnane)

set grent
Gets group file entry (see get gr ent)

set pwent
Gets password file entry (see get pwent)

setrpcent
Gets remote procedure call (RPC) entry (see get r pcent)

set udb
Library of user database access functions (see | i budb)

set udbpat h
Library of user database access functions (see | i budb)

udbi sopen
Library of user database access functions (see | i budb)

SR-2080 10.0 465

PASSWORD(3C) PASSWORD(3C)

ui d2nam
Maps IDs to names (seei d2nam)

unl ockudb
Library of user database access functions (see | i budb)

zer oudbst at
Library of user database access functions (see | i budb(3C))
SEE ALSO

file(3C),|ibudb(3C), nessage(3C), net wor k(3C), mul ti ¢(3C), t er mi nal (3C) (al introductory
pages to other operating system service functions)

UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014

466 SR-2080 10.0

PATHNAME(3C) PATHNAME(3C)

NAME

pat hname — Computes a true path name from a specified path

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <pathlib. h>
#i ncl ude <errno. h>

char *pat hnane(char *path, m s_t label, unsi gned flags, unsi gned * pathinfo)

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The pat hnane routine translates a path name specified in path that may contain symbolic link references,
multilevel directory (MLD) references, and . or . . referencesinto atrue path to the specified file.

The label argument alows the caller to specify the security label to be used when resolving MLD references.
If a null security label is passed (that is, (m s_t) 0), the security label of the current processis used. If a
nonnull security label is passed, the specified security label is used instead of the current process security
label. This can be useful when the caller must handle requests at a different security label.

The flags argument allows the caller to control the nature of the expansion. The following flags can be
combined in any call to pat hnarme:

Flag Description

PN_ABSOLUTE If this flag is ON, pat hname aways resolves the specified path to an absolute path,
regardless of whether the specified path is absolute or relative. If this flag is OFF,
pat hname does not try to produce an absolute path.

If the path passed in is absolute or some component of the path is a symbolic link that
causes the path to become absolute, pat hnane produces an absolute path even if
PN_ABSCOLUTE is OFF. If the result of the trandation is relative, pat hname produces
arelative path if PN_ABSOLUTE is OFF.

PN_FULLM_D If this flag is ON and the final component of the resulting path is a multilevel symbolic
link, pat hnanme expands the last component out to the labeled subdirectory. If this
flag is OFF under the same conditions, pat hnane only resolves the path to the root of
the MLD.

For example, if / t mp is a multilevel symbolic link to/t mp. m d and pat hname is
called to resolve / t np with the PN_FULLM_D flag and a label with a zero
compartment set and zero level, pat hnane returns/ t np. ml d/ 000. Under the same
circumstances, if the PN_FULLM_D flag is not used, the path returned is/ t np. nl d.

SR-2080 10.0 467

PATHNAME (3C) PATHNAME(3C)

PN_NOFOLLOW If this flag is ON and the final component of the resulting path is a symbolic link or a
multilevel symbolic link, pat hname does not expand the final component. If this flag
is OFF, pat hname follows al symbolic links and multilevel symbolic links it
encounters when resolving path.

For example, if / usr/ symi i nk isasymbolic link to / usr/t ar get and pat hname
is called to resolve / usr/ sym i nk with the PN_NOFOLLOWflag, the path returned is
/usr/sym i nk. Without the PN_NOFOLLOWflag, the path returned is
[usr/target.

PN_KEEPERR If this flag is ON and pat hnane encounters some kind of error while resolving path,
pat hname returns a buffer containing the path that produced the error. If thisflag is
OFF, pat hnan®e returns a null pointer on error.

It is possible for pat hnane to return a null pointer even if this flag is ON. This can
result from dynamic memory exhaustion or corruption within the calling program. The
caller must handle a null return even when the PN_KEEPERR flag is specified.

The pathinfo argument provides a pointer to a space into which pat hnane can place flags that describe
conditions encountered while trandating path. If a null pointer is passed for pathinfo, these flags are not
returned to the caller. The following flags can be set in the location pointed to by pathinfo on return from
pat hname:

Flag Description

Pl _M_SLI NK The final component of path resolves to a multilevel symbolic link.

Pl _NOTTHERE The file specified by the final component of path does not actually exist, but the path
translation was successful up to the last component.

Pl _ERROR An error occurred during translation of path. The value of er r no describes the error.

WARNINGS

The pat hnane routine calls st at (2), | st at (2), and r eadl i nk(2), among other system calls. Asa
result, it may sleep or hang if a needed file system resource is unavailable.

RETURN VALUES

If pat hname succeeds in trandlating the provided path, it returns a pointer to a buffer that is allocated by
pat hname using mal | oc(3C) and contains the translated path. This buffer can be released by the caller
using f r ee(3C). Each call to pat hnane allocates a new buffer and does not affect the contents of any
previously returned buffer.

If pat hname fails to trandate the specified path, it normally returns a null pointer. If the PN_KEEPERR
flag is specified and pat hnane fails to trandate the specified path, pat hname returns a pointer to a buffer
containing the name of the file that caused the trandation to fail.

If pat hname is unable to allocate a buffer, it returns a null pointer even if PN_KEEPERR is set, so a null
return must be handled by al callers.

468 SR-2080 10.0

PATHNAME (3C) PATHNAME(3C)

Regardless of the setting of the PN_KEEPERR flag, if pat hnane fails, it sets the PI _ERROR flag in the
location specified by pathinfo and sets the global variable er r no to indicate the error.
FORTRAN EXTENSIONS

None.

EXAMPLES

The following example shows several different ways that pat hname can be called to resolve paths. The
program runs through al arguments on the command line, resolving each as a pathname in three different
ways and printing each result. Failures fall through to the next example to demonstrate the different ways
that failure may be handled by pat hnane.

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <pathlib. h>
#i ncl ude <errno. h>

mai n(argc, ar gv)

i nt argc;
char *argv[];
{
char *resul t;
unsi gned i nfo;
i nt errs;
i nt i;
for (i 1; i < argc; ++i) {

/*
* Cbtain the transl ated pathname as a relative path
* with full MD expansion and print it.

*/

printf("Relative resolution with full MDs\n");

fflush(stdout);

result = pathnanme(argv[i], (mMs_t)0, PN _FULLM.D, & nfo);
if (result == (char *)0) {
fprintf(stderr, "pathnane failed for '%’
perror("");
errs = 1;
} else {
printf("%\n", result);
free(result);

argv[i]);

SR-2080 10.0 469

PATHNAME (3C) PATHNAME(3C)

/*
* Cbtain the pathnane as an absolute path with full
* MLD expansion and print it.
*/

printf("Absolute resolution with full MDs\n");
fflush(stdout);

result = pathname(argv[i], (mMs_t)0, PN _ABSOLUTE | PN _FULLMLD, & nfo);
if (result == (char *)0) {
fprintf(stderr, "pathnane failed for '%’
perror("");
errs = 1;
1} else {
printf("%\n", result);
free(result);

argv[i]);

}
/*
* Cbtain the pathnane as an absolute path with full
* MLD expansion, preserving the failed pathname on failure
* and print the result.
*

/
printf("Absolute resolution, full MDs, keeping error path\n");
result = pathnanme(argv[i], (mMs_t)O0
PN_KEEPERR | PN_ABSOLUTE | PN_FULLM.D, & nfo);
/*
* First check for a null return, in case pathname(3) had
* trouble allocating its return buffer

*/
if (result == (char *)0) {
fprintf(stderr, "pathnane failed for "%’ ", argv[i]);
perror("");
errs = 1,
conti nue;
}
/*
* Now check for an error indication in the "info flags.
*/

if ((info & PI_ERROR) != 0) {
fprintf(stderr, "pathnane failed for '%’
perror("");
errs = 1,

argv[i]);

470 SR-2080 10.0

PATHNAME (3C) PATHNAME(3C)

} else {
printf("%\n", result);
}
free(result);
}
exit(errs);
}
SEE ALSO

errno. h(3C), free(3C), mal | oc(3C), M dnanme(3C), nl s_creat e(3C), M s_free(3C)

| st at (2), readl i nk(2), and st at (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

SR-2080 10.0 471

PERROR(3C) PERROR(3C)

NAME

perror,sys_errlist,sys_nerr — Generates system error messages

SYNOPSIS
#i ncl ude <stdio. h>
void perror (const char *s);
#i ncl ude <errno. h>
extern char *sys_errlist]];

extern int sys_nerr;

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANSI (perror only)
AT&T extension (sys_errlist andsys_nerr)

DESCRIPTION

The per r or function produces on the standard error output a message that describes the last error
encountered during a call to a system or library function. The argument string s is printed first, then a colon
and a blank, followed by the message and a newline character. To be of most use, the argument string
should include the name of the program incurring the error. The error number is taken from er r no, which
is set when errors occur but not cleared when error-free cals are made.

To simplify variant formatting of messages, sys_errl i st, an array of message strings, is provided; you
can use er r no as an index in this table to get the message string without the newline character.

Argument sys_nerr is the largest message number provided for in the table plus 1; it should be checked,
because new error codes may be added to the system before they are added to the table.

SEE ALSO

i ntro(2) inthe UNICOS System Calls Reference Manual, Cray Research publication SR—2012
Cray Message System Programmer’s Guide, Cray Research publication SG—2121

472 SR-2080 10.0

POPEN(3C) POPEN(3C)

NAME

popen, pcl ose — Initiates a pipe to or from a process

SYNOPSIS
#i ncl ude <stdio. h>
FI LE *popen (const char *command, const char *mode);

i nt pcl ose (FILE *stream) ;

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

The arguments to popen are pointers to null-terminated strings that contain, respectively, a shell command
line and an I/O mode, either "r " for reading or "w' for writing. The popen function creates a pipe between
the calling program and the command to be executed. The value returned is a stream pointer. If the 1/0
mode is "W', you can write to the standard input of the command by writing to the file stream; if the 1/O
mode is "r ", you can read from the standard output of the command by reading from the file stream.

A stream opened by popen should be closed by pcl ose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, you can use a mode "r " command as an input filter and a mode "w' command
as an output filter.

If the shell cannot be executed, the status returned by pcl ose is the same as if the shell terminated using
_exit(127).

CAUTIONS

If the original process, and the process opened with popen, concurrently read or write a common file,
neither should use buffered 1/0, because the buffering gets all mixed up. To forestall problems with an
output filter, flush the buffer carefully (that is, with f f | ush(3C)).

RETURN VALUES

If files or processes cannot be created, or if the shell cannot be accessed. the popen function returns a null
pointer. Otherwise, it returns a stream pointer as described previously.

SR-2080 10.0 473

POPEN(3C) POPEN(3C)

On successful return, pcl ose returns the termination status of the shell that ran the command; otherwise,
pcl ose returns - 1, and sets er r no to indicate the error.

SEE ALSO
fcl ose(3C), f f1 ush(3C), f open(3C), syst em3C)

pi pe(2), vfor k(2), wai t pi d(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

474 SR-2080 10.0

POW(3C) POW(3C)

NAME

pow, powf , powl , cpow — Raises the specified value to a given power

SYNOPSIS
#i ncl ude <mat h. h>
#i ncl ude <conpl ex. h> (for function cpow only)
doubl e pow (doubl e x, doubl e vy);
float powf (float x, float y);
| ong doubl e pow (Ilong double x, |ong double vy);

doubl e conpl ex cpow (doubl e conpl ex x, doubl e conpl ex y);

IMPLEMENTATION

All Cray Research systems (pow, cpow only)
Cray MPP systems (powf only)
Cray PVP systems (pow only)

STANDARDS

ISO/ANSI (pow only)
CRI extension (all others)

DESCRIPTION

The pow, powf , pow , and cpow functions compute x raised to the power y for doubl e, f1 oat, | ong
doubl e, and doubl e conpl ex numbers, respectively. A domain error occurs if X is negative and y is
not an integral value. A domain error also occurs if the result cannot be represented when xisO and y is
less than or equal to 0. A range error may occur.

When code containing calls to these functions is compiled by the Cray Standard C compiler in extended
mode, domain checking is not done, er r no is not set on error, and the functions do not return to the caller
on error. If an error occurs, the program aborts, producing a traceback and a core file. On CRAY T90
systems with 1EEE floating-point arithmetic only, in extended mode, er r no is not set, but the functions do
return to the caller on error. For more information, see the corresponding | i bmman page (for example,
POA(3M)).

Specifying the cc (1) command-line option - h st dc (signifying strict conformance mode) or

-h mat herr=er r no causes these functions to perform domain and range checking, set er r no on error,
and return to the caller on error.

In strict conformance mode, vectorization is inhibited for loops containing calls to any of these functions.
Vectorization is not inhibited in extended mode.

SR-2080 10.0 475

POW(3C) POW(3C)

RETURN VALUES

The pow, powf , pow , and cpow functions return the value of x raised to the power y.

When a program is compiled with - hst dc or - hrmat her r or =er r no on Cray MPP systems and
CRAY T90 systems with |EEE arithmetic, under certain error conditions the functions perform as follows:

¢ pow(X, NaN) returns NaN, and er r no is set to EDOM
¢ pow(NaN, y) returns NaN, and er r no is set to EDOM
* pow (%, NaN) returns NaN, and er r no is set to EDOM
¢ pow (NaN, y) returns NaN, and er r no is set to EDOM
* cpow X Y), where either the real or imaginary part of x or y is NaN, returns NaN+NaN*1.0i, and
errno is set to EDOM
SEE ALSO
errno. h(3C)
cc(1) in the Cray Sandard C Reference Manual, Cray Research publication SR—2074
power (3M) in the Intrinsic Procedures Reference Manual, Cray Research publication SR—2138

476 SR-2080 10.0

PRINTF(3C) PRINTF(3C)

NAME
printf,fprintf,sprintf,snprintf — Printsformatted output

SYNOPSIS
#i ncl ude <stdio. h>
int printf (const char *format, ...);
int fprintf (FILE *stream, const char *format, ...);
int sprintf (char *s, const char *format, ...);
int snprintf (char * restrict s, size_t nconst char * restrict format,
)
IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The pri nt f function places output on the standard output stream st dout and returns the number of
characters transmitted or a negative value if an output error was encountered. Thef pri nt f function is
equivalent to pri nt f (3C) with output written to the stream to which stream points instead of st dout .

The sprintf functionis equivalent to pri nt f, except that the argument s specifies an array into which
the generated output is written, rather than to st dout . You must ensure enough storage space is available.
A null character is written at the end of the characters written; it is not counted as part of the returned sum.
If copying occurs between objects that overlap, the behavior is undefined.

The snpri ntf function is equivalent to f pri nt f , except that argument s specifies an array into which the
generated output is to be written, rather than to a stream. If n is zero, nothing is written, and s may be a
null pointer. Otherwise, output characters beyond the n-1st are discarded rather than being written to the
array, and a null character is written at the end of the characters actually written into the array. |If copying
takes place between objects that overlap, the behavior is undefined.

Function pri nt f converts, formats, and prints its arguments under the control of format. The format is a
multibyte character string that begins and ends in its initial shift state. It contains two types of objects:
ordinary multibyte characters (not %), which are simply copied to the output stream; conversion
specifications, each of which results in the fetch of 0 or more arguments. The results are undefined if
insufficient arguments for the format exist. If the format is exhausted while arguments remain, the excess
arguments are evaluated, but otherwise ignored.

SR-2080 10.0 477

PRINTF(3C) PRINTF(3C)

478

Conversions can be applied to the nth argument after the format in the argument list, rather than to the next
unused argument. In this case, the %symbol is replaced by the %m$ symbol, where n is a decimal integer in
therange [1, NL_ARGVAX], giving the position of the argument in the argument list. This feature provides
for the definition of format strings that select arguments in an order appropriate to specific languages.

In format strings containing the %m$ symbol, numbered arguments in the argument list can be referenced
from the format string as many times as required.

Each conversion specification is introduced by either the %or the %m$ symbol. After the %or %n$, the
following appear in sequence:

1. Zero or more flags, which modify the meaning of the conversion specification.

2. Anoptional decimal digit string that specifies a minimum field width. If the converted value has
fewer characters than the field width, it is padded on the left (or right, if the left-adjustment flag
(-) has been given) to the field width. The field width takes the form of an asterisk * (described
later) or a decimal integer.

3. A precision that gives the minimum number of digits to appear for thed, i, o, u, x, or X
conversions; the number of digits to appear after the decimal point for the e and f conversions;
the maximum number of significant digits for the g conversion; or the maximum number of
characters to be printed from a string in the s conversion. The precision takes the form of a
period (.), followed by either an asterisk * (described later) or an optional decimal integer; if you
specify only the period, the precision is taken as 0. If a precision appears with any other
conversion specifier, the behavior is undefined.

4. Anoptiona h specifying that a following d, i , 0, u, X, or X conversion specifier applies to a
short int orunsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value is converted to short i nt or unsi gned
short i nt before printing); an optional h specifying that a following n conversion specifier
appliesto a pointer to ashort i nt argument; an optional | (ell) specifying that a following d,
i,0,u,X,or X conversion specifier appliesto al ong i nt or unsi gned | ong i nt
argument; an optional | | (ell el) specifying that the following d, i , 0, u, X, or X conversion
specifier appliesto al ong |1 ong i nt orunsigned | ong | ong i nt argument; an optional
I'1, specifying that a following n conversion specifier applies to a pointer or al ong i nt
argument; an optional | specifying that a following n conversion specifier applies to a pointer to
al ong i nt argument; or an optional L specifying that a following e, E, f, g, or G conversion
specifier appliesto al ong doubl e argument. If an h, | , or L appears with any other
conversion specifier, the behavior is undefined.

5. A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (0) instead of a digit string. In this case, an
integer argument supplies the field width or precision. The argument that is actually converted is not fetched
until the conversion letter is seen, so the argument specifying field width or precision must appear (in that
order) before the argument (if any) to be converted. A negative field width argument is taken as a - flag
followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

SR-2080 10.0

PRINTF(3C) PRINTF(3C)

In format strings containing the ¥m$ symbol, a field width or precision may be indicated by the sequence
%$, where mis a decimal integer in the range [1, NL_ARGVAX] giving the position in the argument list
(efter the format argument) of an integer argument containing the field width or precision. The following is
an example:

printf ("%l$d: 9%2%. *$d: %4$. *3$d0, hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, 9m$, and * n$, or unnumbered
argument specifications, that is, %and *), but usually not both. The only exception to this is that %®%6can be
mixed with the %m$ form. The results of mixing numbered and unnumbered argument specifications in a
format string are undefined. When numbered argument specifications are used, specifyng the nth argument
requires that all the leading arguments, from the first to the (n—1th), are specified in the format string.

The flag characters and their meanings are as follows:

Flag Description

' The integer portion of the result of a decimal conversion (% , %d, Yu, % , %@, or %) are
formatted with thousands' grouping characters. For other conversions, the behavior is
undefined. The nonmonetary grouping character is used.

- Conversion result is left-justified within the field.

+ A signed conversion result always begins with a+ or - sign.

space If the first character of a signed conversion is not a sign, a space is prefixed to the result.
This implies that if the space and + flags both appear, the space flag is ignored.

Specifies that the value will be converted to an aternative form. For o conversion, it

increases the precision to force the first digit of the result to be a 0. For x (X) conversion, a
nonzero result has Ox (0X) prefixed to it. For e, E, f, g, and G conversions, the result
always contains a decimal point, even if no digits follow the point (usualy, a decimal point
appears in the result of these conversions only if a digit follows it). For g and G conversions,
trailing O’'s are not removed from the result. For other conversions, the behavior is undefined.

Ford,i,o,u,x, X e, Ef,g, and Gconversions, leading 0's (following any indication of sign or base) are
used to pad to the field width; no space padding is performed. If the 0 and - flags both appear, the O flag is
ignored. For d, i, 0, u, x, and X conversions, if a precision is specified, the O flag is ignored. For other
conversions, the behavior is undefined.

The conversion characters and their meanings are as follows:

Character Description

d, The integer argument is converted to signed decimal in the style [-]Jdddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading 0's. The default precision is 1.
The result of converting a 0 value with a precision of 0 is no characters.

SR-2080 10.0 479

PRINTF(3C) PRINTF(3C)

0, U, X, X, B Theunsi gned i nt argument is converted to unsigned octal (0), unsigned decimal (u),
unsigned hexadecimal notation (x or X), or unsigned binary notation (B) in the style dddd; the
letters abcdef are used for x conversion, and the letters ABCDEF are used for X conversion.
The precision specifies the minimum number of digits to appear; if the value being converted
can be represented in fewer digits, it is expanded with leading 0's. The default precision is 1.
The result of converting a 0 value with a precision of 0 is no characters.

f The doubl e argument is converted to decimal notation in the style [- Jddd. ddd, in which the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are output; if the precision is explicitly 0 and the # flag is not specified,
no decimal point appears. If a decimal point character appears, at least 1 digit appears before
it. The value is rounded to be the appropriate number of digits.

e E The doubl e argument is converted in the style [-]d. ddde+dd, in which a 1 digit is before
the decimal point, and the number of digits after it is equal to the precision; when the
precision is missing, it is assumed to be 6; if the precision is 0 and the # flag is not specified,
no decimal point appears. The value is rounded to the appropriate number of digits. The E
format code produces a number with E instead of e introducing the exponent. The exponent
always contains at least 2 digits. If the value is O, the exponent is 0.

0,G The doubl e argument is printed in stylef or e (or in style E in the case of a G format
code), with the precision specifying the number of significant digits. If the precisionisQ, it is
taken as 1. The style used depends on the value converted: style e is used only if the
exponent resulting from the conversion is less than —4 or greater than or equal to the
precision. Trailing 0's are removed from the fractional portion of the result; a decimal point
appears only if it is followed by a digit.

c Thei nt argument is converted to an unsi gned char, and the resulting character is
written.
S The argument is taken to be a string (character pointer), and characters from the string are

printed until a null character (\ 0) is encountered or the number of characters indicated by the
precision specification is reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed.

p The argument is a pointer to voi d. The value of the pointer is converted to a sequence of
printable characters, in an implementation-defined manner. On Cray Research systems, the
conversion is the same as the o conversion.

n The argument is a pointer to an integer into which is written the number of characters written
to the output stream so far by thiscall to f pri nt f. No argument is converted.
C Thewchar _t argument is converted to an array of bytes representing a character, and the

resulting character is written. If the precision is specified, its effect is undefined. The
conversion is the same as the expected the wct onb() function.

480 SR-2080 10.0

PRINTF(3C) PRINTF(3C)

S The argument must be a pointer to an array of type wchar _t . Wide character codes from
the array up to, but not including any terminating null wide-character code, are converted to a
seguence of bytes, and the resulting bytes written. If the precision is specified no more than
that, many bytes are written and only complete characters are written. If the precision is not
specified, or is greater than the size of the array of converted bytes, the array of wide
characters must be terminated by a null wide character. The conversion is the same as that
expected from the west onbs() function.

% This flag prints a % no argument is converted.

If any argument is, or points to, a union or an aggregate (except for an array of character type using %s
conversion, or a pointer using % conversion), the behavior is undefined.

If a conversion specification is not valid, the behavior is undefined. In no case does a nonexistent or small
field width cause truncation of a field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated by printf and f printf are
printed as if put ¢(3C) had been called.

For machines with |EEE arithmetic, the e, E, f, g, and G formats print infinity as | nf and "not-a-number"
as NaN.

RETURN VALUES

Theprintf andfprintf functions return the number of characters transmitted, or a negative value if an
output error occurred.

The sprintf function returns the number of characters written in the array, not counting the terminating
null character.

EXAMPLES

To print a date and time in the form ** Sunday, July 3, 10:02"’, where weekday and month are pointers to
null-terminated strings, enter the following command line:

printf ("%, % %, % 2d: % 2d", weekday, nonth, day, hour, nmnin);
To print pi to 5 decimal places, enter the following command line:
printf("pi = %5f", 4*atan(1.0));

SEE ALSO
ecvt (3C), put c(3C), scanf (3C), st di 0. h(3C), vpri nt f (3C)

SR-2080 10.0 481

PRIV_CLEAR_FILE(3C) PRIV_CLEAR_FILE(3C)

NAME
priv_clear_file— Clearsall privilege sets in afile privilege state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_clear file(priv_file_t *privstate);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_cl ear _fil e routine clears al privilege sets in the file privilege state to which privstate points.

RETURN VALUES

A return value of O indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the contents of the privilege state to which privstate points

is not affected.
ERRORS
priv_clear_fil e falsif the following error condition occurs:
Error Code Description
El NVAL Anillegal or undefined value was supplied for privstate.

482 SR-2080 10.0

PRIV_CLEAR_PROC(3C) PRIV_CLEAR_PROC(3C)

NAME

priv_cl ear_proc — Clears all privilege sets in a process privilege state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_clear_proc(priv_proc_t *privstate);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The priv_cl ear _pr oc routine clears all privilege sets in the process privilege state to which privstate
points.

RETURN VALUES

A return value of O indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the contents of the privilege state to which privstate points

is not affected.
ERRORS

priv_cl ear_proc falsif the following error condition occurs:

Error Code Description

El NVAL An illegal undefined value was supplied for privstate.
SEE ALSO

priv_init_proc(3C)

SR-2080 10.0 483

PRIV_DUP_FILE(3C) PRIV_DUP_FILE(3C)

NAME
priv_dup_fil e — Creates acopy of afile privilege state
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_file_t *priv_dup_file(priv_file_t *source);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_dup_fil e routine creates a copy of the file privilege state to which source points. This routine
allocates any memory necessary to hold the new file privilege state and returns a pointer to that privilege
state. Once duplicated, an operation on either privilege state does not affect the other.

RETURN VALUES

If successful, returns a pointer to the new file privilege state. A return value of null indicates that an error
has occurred, and an error code is stored in errno.

ERRORS
priv_dup_fil e falsif any of the following error conditions occur:
Error Code Description
El NVAL An illegal or undefined value was supplied for source.
ENOVEM Insufficient memory was available to allocate the new file privilege state.

484 SR-2080 10.0

PRIV_DUP_PROC(3C) PRIV_DUP_PROC(3C)

NAME
priv_dup_proc — Creates a copy of a process privilege state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_proc_t *priv_dup_proc(priv_proc_t *source);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The pri v_dup_pr oc routine creates a copy of the process privilege state to which source points. This
routine allocates any memory necessary to hold the new process privilege state and returns a pointer to that
privilege state. Once duplicated, an operation on either privilege state does not affect the other.

RETURN VALUES

If successful, pri v_dup_pr oc returns a pointer to the new process privilege state. A return value of null
indicates that an error has occurred, and an error code is stored in errno.

ERRORS
priv_dup_proc falsif any of the following error conditions occur:
Error Code Description
El NVAL An illegal or undefined value was supplied for source.
ENOVEM Insufficient memory was available to allocate the new process.

SR-2080 10.0 485

PRIV_FREE_FILE(3C) PRIV_FREE_FILE(3C)

NAME
priv_free_fil e — Dealocates file privilege state space

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_free file(priv_file_t *privstate);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_free_fil e routine deallocates space associated with the file privilege state to which privstate
points.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno.

ERRORS

priv_free_fil e falsif the following error condition occurs:

Error Code Description

El NVAL Anillegal or undefined value was supplied for privstate.
SEE ALSO

priv_init_file(3C)

486 SR-2080 10.0

PRIV_FREE_PROC(3C) PRIV_FREE_PROC(3C)

NAME

priv_free_proc — Deallocates process privilege state space

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_free_proc(priv_proc_t *privstate) ;

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_free_proc routine deallocates the space associated with the process privilege state to which
privstate points.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno.

ERRORS

priv_free_proc falsif the following error condition occurs:

Error Code Description

El NVAL An illegal or undefined value was supplied for privstate.
SEE ALSO

priv_init_proc(3C)

SR-2080 10.0 487

PRIV_GET _FD(3C) PRIV_GET_FD(3C)

NAME
priv_get fd — Getsthe privilege state of afile

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_file_t *priv_get _fd(int fdes);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The priv_get _fd routine uses the f get pal (2) system call to get the privilege state of the file identified
by the file descriptor fdes. This function allocates any memory necessary to hold the file privilege state and
returns a pointer to that privilege state.

The caller must have MAC read access to the file or have PRI V_MAC_READ in its effective privilege set.

RETURN VALUES

If successful, pri v_get _fd returns a pointer to the file privilege state. A return value of null indicates
that an error has occurred, and an error code is stored in errno.

ERRORS

priv_get fd failsif any of the following error conditions occur:

Error Code Description

EBADF An illegal or undefined value was specified for fdes.

EACCES The caller does not have MAC read access to the file.

ENOVEM Insufficient memory was available to allocate the file privilege state.
SEE ALSO

priv_get file(3C),priv_set fd(3C), priv_set file(3C)
f get pal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

488 SR-2080 10.0

PRIV_GET_FILE(3C) PRIV_GET_FILE(3C)

NAME
priv_get fil e — Getsthe privilege state of afile

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_file_ t *priv_get file(char *path);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_get _fil e routine uses the get pal (2) system cal to get the privilege state of the file
identified by path. This function allocates any memory necessary to hold the file privilege state and returns
a pointer to that privilege state.

The caller must have MAC read access to the file or have PRI V_MAC_READ in its effective privilege set.

RETURN VALUES

If successful, pri v_get fil e returns a pointer to the file privilege state. A return value of null indicates
that an error has occurred, and an error code is stored in errno.

ERROR
priv_get fil e falsif any of the following error conditions occur:
Error Code Description
EFAULT The path argument points outside the process address space.
EACCES Search permission is denied for a component of the path prefix or the caller does not
have MAC read access to the file.
ENOENT A component of the specified path does not exist.
ENOTDI R A component of the path prefix is not a directory.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or a path name component is
longer than NAME_MAX while POSI X_NO TRUNC is in effect.

ENOVEM Insufficient memory was available to allocate the file privilege state.

SEE ALSO
priv_get fd(3C), priv_set fd(3C),priv_set file(3C)
get pal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 489

PRIV_GET_FILE_FLAG(3C) PRIV_GET_FILE_FLAG(3C)

NAME
priv_get file_flag — Indicates the existence of a privilege in afile privilege set

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv.h>

int priv_get file flag(priv_file_t *privstate, priv_value_t priv,
priv_fflag_t flag, priv_flag value_t *valuep);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_get file_flag routine indicates whether the privilege identified by priv exists in the file
privilege set, identified by flag, of the file privilege state to which privstate points. A value that indicates
whether the privilege exists is placed in the location to which value p points.

If the value placed in the location to which value p points is PRI V_SET, the specified privilege exists in the
privilege set. If the privilege does not exist, the value placed in the location to which value p pointsis
PRI V_CLEAR

The priv argument is the privilege identifier (for example, PRI V_MAC_READ). The flag argument is a
privilege set identifier. PRI V_ALLOWED, PRI V_FORCED, and PRI V_SETEFF identify the file's allowed,
forced, and set-effective privilege sets, respectively.

RETURN VALUES

A return value of O indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the contents of the location to which value points is not

affected.
ERRORS

priv_get file_flag falsif the following error condition occurs:

Error Code Description

El NVAL An illegal or undefined value was supplied for privstate, priv, value p, or flag.
SEE ALSO

priv_set file_flag(3C)

490 SR-2080 10.0

PRIV_GET_PROC(3C) PRIV_GET_PROC(3C)

NAME
priv_get proc — Gets the privilege state of the calling process

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_proc_t *priv_get_proc();
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The priv_get _proc routine uses the get ppri v(2) system call to get the privilege state of the calling
process. This routine allocates any memory necessary to hold the process privilege state and returns a
pointer to that privilege state.

RETURN VALUES

If successful, pri v_get _proc returns a pointer to the process privilege state. A return value of null
indicates that an error has occurred, and an error code is stored in errno.

ERRORS

priv_get proc falsif the following error condition occurs:

Error Code Description

ENOVEM Insufficient memory was available to allocate the privilege state.
SEE ALSO

get ppri v(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 491

PRIV_GET_PROC_FLAG(3C) PRIV_GET_PROC_FLAG(3C)

NAME

priv_get proc_fl ag — Indicates the existence of a privilege in a process privilege state

SYNOPSIS

#i ncl ude <sys/types. h>

#i ncl ude <sys/priv. h>

int priv_get _proc_flag(priv_proc_t *privstate, priv_val ue_t priv,
priv_pflag_t flag, priv_flag_value_t *valuep);

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The priv_proc_fIl ag routine indicates whether the privilege identified by priv exists in the process
privilege set, identified by flag, of the process privilege state to which privstate points. A value that
indicates whether the privilege exists is placed in the location to which value p points.

If the value placed in the location to which value p points is PRI V_SET, then the specified privilege exists
in the privilege set. If the privilege does not exist, the value placed in the location to which value p points
is PRI V_CLEAR

The priv argument is the privilege identifier (for example, PRI V_MAC_READ). The flag argument is a
privilege set identifier. PRI V_PERM TTED and PRI V_EFFECTI VE identify the process permitted and
effective privilege sets, respectively.

RETURN VALUES

A return value of O indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the contents of the location to which value p points is not
modified.

ERRORS

priv_get proc_fl ag falsif the following error condition occurs:

Error Code Description

El NVAL An illegal or undefined value was supplied for privstate, priv, value p, or flag.
SEE ALSO

492

priv_set_proc_fl ag(3C)

SR-2080 10.0

PRIV_INIT_FILE(3C) PRIV_INIT_FILE(3C)

NAME
priv_init_file — Allocates space to hold a file privilege state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_file_t *priv_init_file();

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_init_fil e routine alocates space to hold a file privilege state and returns a pointer to that
privilege state. The allocated space is cleared.

RETURN VALUES

If successful, priv_init_fil e returnsa pointer to the alocated space. A return value of null indicates
that an error has occurred, and an error code is stored in errno.

ERRORS

priv_init_fil e falsif the following error condition occurs:

Error Code Description

ENOVEM Insufficient memory was available to allocate the file privilege state.
SEE ALSO

priv_free fil e(3C)

SR-2080 10.0 493

PRIV_INIT_PROC(3C) PRIV_INIT_PROC(3C)

NAME

priv_init_proc — Allocates space to hold a process privilege state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

priv_proc_t *priv_init_proc();

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_init_proc routine alocates space to hold a process privilege state and returns a pointer to that
privilege state. The allocated space is cleared.

RETURN VALUES

If successful, pri v_i nit_proc returns a pointer to the alocated space. A return value of null indicates
that an error occurred and an error code is stored in errno.

ERRORS

priv_init_proc falsif the following error condition occurs:

Error Code Description

ENOVEM Insufficient memory was available to allocate the process privilege state.
SEE ALSO

priv_free_proc(3C)

494 SR-2080 10.0

PRIV_SET_FD(3C) PRIV_SET_FD(3C)

NAME
priv_set fd — Setsthe privilege state of afile

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_set fd(int fdes, priv_file_t *privstate);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_set _fd routine uses the f set pal (2) system call to set the privilege state of the file identified
by the file descriptor fdes to the file privilege state to which privstate points.

The calling process must have PRI V_SETFPRI V in its effective privilege set, each privilege whose state is
being altered must exist in the permitted privilege set of the calling process, and the caller must either own
the file or have the privilege PRI V_FOMNER in its effective privilege set.

This routine retrieves the file's current privilege assignment list (PAL) records, combines the records with
the supplied privilege state, and passes the result to f set pal (2). This routine does not modify the PAL

records of afile. The caller must have MAC read and write access to the file, or have PRI V_MAC READ
and PRI V_MAC V\RI TE in its effective privilege set.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred and an error
code is stored in errno. If the return value is —1, the privilege state of the file is not affected.

ERRORS
priv_set _fd failsif any of the following error conditions occur:
Error Code Description
El NVAL An illegal or undefined value was supplied for privstate.
EPERM The calling process does not have PRI V_SETFPRI V in its effective privilege set, is

not the file's owner, or is attempting to change the state of a privilege that it does not
have in its permitted privilege set.

EROFS The named file resides on a read-only file system.
EBADF An illegal or undefined value was specified for fdes.
EACCES The caller does not have MAC read or MAC write access to the file.

SR-2080 10.0 495

PRIV_SET_FD(3C) PRIV_SET_FD(3C)
SEE ALSO

priv_get fd(3C),priv_get file(3C),priv_set file(3C)
f set pal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

496 SR-2080 10.0

PRIV_SET_FILE(3C) PRIV_SET_FILE(3C)

NAME
priv_set fil e — Setsthe privilege state of afile

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_set file(char *path, priv_file_t *privstate);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_set fil e routine usesthe set pal system call to set the privilege state of the file identified
by path to the file privilege state to which privstate points.

The calling process must have PRI V_SETFPRI V in its effective privilege set, each privilege whose state is
being altered must exist in the calling process permitted privilege set, and the caller must either own the file
or have the PRI V_FOWNER privilege in its effective privilege set.

This routine retrieves the file's current privilege assignment list (PAL) category records, combines the
records with the supplied privilege state, and passes the result to set pal (2). This routine does not modify
the PAL category records of afile. The caler must have MAC read and write access to the file, or have
PRI V_MAC READ and PRI V_MAC WRI TE in its effective privilege set.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the privilege state of the file is not affected.

ERRORS
priv_set fil e falsif any of the following error conditions occur:
Error Code Description
EFAULT The path argument points outside the process address space.
El NVAL An illegal or undefined value was supplied for privstate.
EACCES Search permission is denied for a component of the path prefix.
ENOENT A component of the specified path does not exist.
ENOTDI R A component of the path prefix is not a directory.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or a path name component is
longer than NAME_MAX while POSI X_NO TRUNC is in effect.

SR-2080 10.0 497

PRIV_SET_FILE(3C) PRIV_SET_FILE(3C)

EPERM The calling process does not have PRI V_SETFPRI V in its effective privilege set, is
not the file's owner, or is attempting to change the state of a privilege that it does not
have in its permitted privilege set.

EROFS The specified file resides on a read-only file system.
EACCES The caller does not have both MAC read and MAC write access to the file.
SEE ALSO

priv_get fd(3C),priv_get file(3C),priv_set fd(3C)
set pal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

498 SR-2080 10.0

PRIV_SET_FILE_FLAG(3C) PRIV_SET_FILE_FLAG(3C)

NAME
priv_set file_flag— Addsor removes privileges of afile privilege set

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_set file flag(priv_file_t *privstate, priv_fflag t flag, i nt npriv,
priv_value_t *privs, priv_flag_ value_t value);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
Thepriv_set file_flag routine adds (or removes) the privileges specified in the privs array to (or
from) the file privilege set, identified by flag, of the file privilege state to which privstate points.

To add the specified privileges, value must be PRI V_SET. To remove the specified privileges, value must
be PRI V_CLEAR.

Each element in the privs array is a privilege identifier (for example, PRI V_MAC_READ). The flag
argument is a privilege set identifier. The PRI V_ALLOWED, PRI V_FORCED, and PRI V_SETEFF flags
identify the file's alowed, forced, and set-effective privilege sets, respectively.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the contents of the specified privilege set is not affected.

ERRORS

priv_set file_flag falsif the following error condition occurs:

Error Code Description

El NVAL An illegal or undefined value was supplied for privstate, flag, npriv, privs, or value.
SEE ALSO

priv_get file_flag(3C)

SR-2080 10.0 499

PRIV_SET_PROC(3C) PRIV_SET_PROC(3C)

NAME
priv_set_proc — Setsthe privilege state of the calling process

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_set_proc(priv_proc_t *privstate);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The priv_set _proc routine uses the set ppri v(2) system call to set the privilege state of the calling
process to the process privilege state to which privstate points. The function returns an error if an attempt is
made to modify the state of any privilege that is not in the calling process permitted privilege set.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the privilege state of the calling process is not affected.

ERRORS
priv_set _proc falsif any of the following error conditions occur:
Error Code Description
El NVAL Anillegal or undefined value was supplied for privstate.
EPERM The calling process attempted to modify the state of a privilege that was not in its

permitted privilege set.

SEE ALSO
priv_get proc(3C)
set ppri v(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

500 SR-2080 10.0

PRIV_SET_PROC_FLAG(3C) PRIV_SET_PROC_FLAG(3C)

NAME
priv_set_proc_fl ag — Adds or removes privileges of a process privilege state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/priv. h>

int priv_set_proc_flag(priv_proc_t *privstate, priv_pflag_t flag, int npriv,
priv_value_t *privs, priv_flag_ value_t value);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

Thepriv_set _proc_fl ag routine adds (or removes) the privileges specified in array privs to (or from)
the process privilege set identified by flag of the process privilege state to which privstate points. The
number of privileges specified in the array is npriv.

To add the specified privileges, value must be PRI V_SET. To remove the specified privileges, value must
be PRI V_CLEAR

Each element in the privs array is a privilege identifier (for example, PRI V_MAC_READ). The flag
argument is a privilege set identifier. PRI V_PERM TTED and PRI V_EFFECTI VE identify the process
permitted and effective privilege sets, respectively.

RETURN VALUES

A return value of 0 indicates success. A return value of —1 indicates that an error has occurred, and an error
code is stored in errno. If the return value is —1, the contents of the specified privilege set is not affected.

ERRORS

priv_set _proc_fl ag falsif the following error condition occurs:

Error Code Description

El NVAL An illegal or undefined value was supplied for privstate, flag, npriv, privs, or value.
SEE ALSO

priv_get _proc_fl ag(3C)

SR-2080 10.0 501

PROG_DIAG(3C) PROG_DIAG(3C)

NAME

prog_di ag — Introduction to program diagnostics and error handling functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The program diagnostics and error handling functions provide various means for aiding the programmer in
diagnosing programming errors; detecting, reporting, and diagnosing run-time errors; and measuring program
performance. These functions differ from other debugging and performance measuring facilities in that these
are executed within the program at run time.

errno
The value of errno is 0 at program startup, but is never set to 0 by any library function. A library function
may set er r no to a positive value to indicate the type of error. All those library functions that set er r no
on error are so documented in that manual entry. If the calling function wishes to check for errors, it is the
caller’'s responsibility to set er r no to O before the call and then check after the call.

errno is amacro that expands to an expression that can be used anywhere a simple variable can be used.
In strict ANSI terminology, it is a modifiable | val ue. If a program defines an identifier with the name
er r no, the behavior is undefined.

By default, Standard C library math functions do not support er r no to provide significantly better
performance. You must specify the - hst dc option or the - h rmat her r =er r no option on the cc
command line to force the math functions to support er r no.

Function sys_errli st provides an array of message strings; function sys_ner r provides the largest
message number in system table (see perror).

Error Messages
If err no has been set, the associated error message can be formatted with either the per r or or the
strerror function.

Program Termination
The exi t (2) system call alows a process to return its error status to its parent process.

ASSOCIATED HEADERS

<assert. h>
<errno. h>

502 SR-2080 10.0

PROG_DIAG(3C) PROG_DIAG(3C)

ASSOCIATED FUNCTIONS

Function Description
assert Verifies program assertion
FLOAWVARK

Provides a more detailed flowtrace
STKSTAT Collects stack statistics
STACKSZ Reports stack statistics (see STKSTAT)
tracebk Prints atraceback

SEE ALSO
cl ock(3C), perror (3C), rtcl ock(3C)
per f or mance(7) (available only online)
Guide to Parallel Vector Applications, Cray Research publication SG—2182

Scientific Libraries Reference Manual, Cray Research publication SR—2081
Intrinsic Procedures Reference Manual, Cray Research publication SR—2138

SR-2080 10.0 503

PTHREAD(3C) PTHREAD(3C)

NAME

pt hr ead_creat e, pt hread_det ach, pt hread_j oi n, pt hread_exi t, pt hread_sel f,
pt hr ead_equal , pt hread_once, pthread_attr_init, pthread_attr_destroy,

pt hread_attr_setdetachstate, pthread_attr_get detachstate,

pt hread_attr_setstacksize, pthread_attr_getstacksi ze,

pt hread_attr_set stackaddr, pthread_attr_get st ackaddr — Thread management

SYNOPSIS

#i ncl ude <pthread. h>

int pthread _create (pthread_t *thread, const pthread_ attr_t *attr, void
*(*dtart_routine) (void *), void *arg);

int pthread_detach (pthread_t thread);

int pthread_join (pthread_t thread, void **value ptr);

void pthread_exit (void *value ptr);

pthread_t pthread_self (void);

int pthread_equal (pthread_t t1, pthread_t t2);

pt hr ead_once_t once control = PTHREAD ONCE I NI T;

int pthread_once (pthread_once_t *once control, void (*init_routine)(void));
int pthread_attr_init (pthread_attr_t *attr);

int pthread_attr_destroy (pthread_attr_t *attr);

int pthread_attr_setdetachstate (pthread_attr_t *attr, int detachstate);

int pthread_attr_getdetachstate (const pthread_ attr_t *attr,
i nt *detachstate) ;

int pthread_attr_setstacksize (pthread_attr_t *attr, size_t stacksize);

int pthread_attr_getstacksize (const pthread attr_t *attr,
size_t *stacksize);

int pthread_attr_setstackaddr (pthread_attr_t *attr, void *stackaddr);

int pthread_attr_getstackaddr (const pthread_attr_t *attr,
voi d **stackaddr) ;

IMPLEMENTATION
Cray PVP systems systems

504 SR-2080 10.0

PTHREAD(3C) PTHREAD(3C)

STANDARDS
PThreads

DESCRIPTION

The pt hr ead_cr eat e function creates a new thread, with attributes (see below) specified by attr, within a
process. If attr is anull value, the default attributes are used. Upon successful completion,
pt hr ead_cr eat e stores the ID of the created thread in the location referenced by thread.

The thread begins execution in start_routine with arg as its sole argument. If start_routine returns, its effect
is as though pt hr ead_exi t had been called using the return value of start_routine as the exit status. The
new thread inherits its signal mask from the creating thread.

The pt hr ead_j oi n function suspends execution of the calling thread until the target thread terminates,
unless the target thread has aready terminated. On return from a successful pt hr ead_j oi n call with a
non-null value ptr argument, the value passed to pt hr ead_exi t by the terminating thread is made
available in the location referenced by value ptr. When a pt hr ead_j oi n function returns successfully,
the target thread has been terminated. An attempt to call pt hr ead_j oi n on a detached target thread
returns an error. Only one thread can call pt hr ead_j oi n for a given thread.

The pt hread_exi t function terminates the calling thread and makes the value value ptr available to any
successful join with the terminating thread. Any cancellation cleanup handlers that have been pushed and
not yet popped shall be popped in the reverse order that they were pushed and then executed. After all
cancellation cleanup handlers have been executed, if the thread has any thread-specific data, any destructor
functions previously specified are called.

The pt hread_exi t function cannot be called from a cancellation cleanup handler or destructor function
that was invoked as a result of either an implicit or explicit call to pt hr ead_exi t.

The pt hread_sel f routine returns the thread ID of the caller.
The pt hr ead_equal function compares the thread IDs t1 and t2.

The pt hr ead_det ach function detaches the calling thread. Storage for the thread thread is reclaimed
when that thread terminates.

Thefirst call to pt hr ead_once by any thread in a process, with a given once_control, calls the
init_routine with no arguments. Subsequent calls to pt hr ead_once with the same once_control do not
call the init_routine. On return from pt hr ead_once, init_routine is guaranteed to be completed. The
once_control parameter determines whether the associated initialization routine has been called.

The behavior of pt hr ead_once is not as described here if once_control has automatic storage duration or
is not initialized by PTHREAD_ONCE | NI T.

Thept hread_attr _init function initializes a thread attributes object attr with the default value for all
of the individual attributes used by a given implementation.

SR-2080 10.0 505

PTHREAD(3C) PTHREAD(3C)

The resulting thread attributes object (possibly modified by setting individual attribute values), when used by
pt hr ead_cr eat e, defines the attributes of the thread created. A single attributes object can be used in
multiple simultaneous calls to pt hr ead_cr eat e.

Once an attributes object is no longer needed, pt hr ead_at t r _dest r oy should be called to ensure that
any system resources are released. A thread attributes object can be destroyed while threads that were
created with that attributes object are executing. After calling pt hr ead_attr _dest r oy, the thread
attributes object cannot be used as an argument to pt hr ead_cr eat e.

The detachstate attribute controls whether the thread is created in a detached state. If the thread is created
detached, then the ID of the newly created thread cannot be specified to the pt hr ead_j oi n function.

Thept hread_attr_setdetachstat e and pt hread_attr_get det achst at e functions set and
get the detachstate attribute, respectively, in the attr object. The detachstate attribute is set to either
PTHREAD_ CREATE_DETACHED or PTHREAD CREATE_JO NABLE. A vaue of

PTHREAD CREATE_DETACHED causes all threads created with attr to be in the detached state; using a
value of PTHREAD CREATE_JO NABLE causes al threads created with attr to be in the joinable state.
The default value of the detachstate attribute is PTHREAD CREATE_JO NABLE.

Thept hread_attr_set stacksi ze and pt hread_attr_get st acksi ze functions set and get the
stacksize attribute, respectively, in the attr object. The pt hread_attr _set st ackaddr and

pt hread_at tr _get st ackaddr functions set and get the stackaddr attribute, respectively, in the attr
object. Since neither of these attributes are supported, these functions return ENOSYS if called.

RETURN VALUES

The pt hread_exi t function does not return a value.
The pt hr ead_equal function returns a nonzero value if t1 and t2 are equal; otherwise, O is returned.

If successful, all the other functions return 0. Otherwise, an error number is returned to indicate the error.

ERRORS

506

If any of the following conditions occur, the pt hr ead_cr eat e function returns the corresponding error
numbers:

EAGAI N The system lacked the necessary resources to create another thread, or the system-imposed
limit on the total humber of threads in a process was exceeded.

El NVAL The specified attributes are invalid.

If any of the following conditions occur, the pt hr ead_j oi n and pt hr ead_det ach functions return the
corresponding error number:

El NVAL The specified thread is detached.
ESRCH No thread could be found corresponding to that specified by the given thread ID.

SR-2080 10.0

PTHREAD(3C) PTHREAD(3C)

If any of the following conditions occur, the pt hr ead_j oi n function returns the corresponding error
number:

EDEADLK The value of thread specifies the calling thread.

If any of the following conditions occur, the pt hr ead_at t r _set det achst at e function returns the
corresponding error number:

El NVAL The value of detachstate was invalid.

If any of the following conditions occur, the pt hr ead_at tr _i ni t function returns the corresponding
error number:

ENOVEM Insufficient memory exists to create the thread attributes object.

If any of the following conditions occur, the pt hr ead_at tr _get st acksi ze,
pt hread_attr_set stacksize, pthread_attr_get stackaddr, and
pt hread_attr_set st ackaddr functions return the corresponding error number:

ENOSYS The stacksize or stackaddr attributes are not defined.

SEE ALSO

pt hr ead_at f or k(3C), pt hr ead_cancel (3C), pt hr ead_cond(3C), pt hr ead_ki I | (3C),
pt hr ead_nmut ex(3C), pt hr ead_spec(3C)

SR-2080 10.0 507

PTHREAD_ATFORK(3C) PTHREAD_ATFORK(3C)

NAME
pt hr ead_at f or k — Register fork handlers

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <pthread. h>

int pthread_atfork (void (*prepare) (void), void (*parent) (void), void
(*child) (voi d));

IMPLEMENTATION
Cray PVP systems systems

STANDARDS
PThreads

DESCRIPTION

The pt hr ead_at f or k function shall declare fork handlers to be called before and after f or k, in the
context of the thread that called f or k. The prepare fork handler shall be called before f or k processing
commences. The parent fork handler shall be called after f or k processing completes in the parent process.
The child fork handler shall be called after f or k processing completes in the child process. If no handling
is desired at one or more of these three points, the corresponding fork handler address(es) may be set to null.

The order of callsto pt hread_at f or k is significant. The parent and child fork handlers shall be called
in the order in which they were established by calls to pt hr ead_at f or k. The prepare fork handlers shall
be called in the opposite order.

RETURN VALUES

Upon successful completion, the pt hr ead_at f or k function shall return 0. Otherwise, an error number is
returned to indicate the error.

ERRORS
If any of the following conditions occur, the pt hr ead_at f or k function shall return the corresponding
error number:
ENOVEM Insufficient table space exists to record the fork handler addresses.

SEE ALSO

fork(2) in the

508 SR-2080 10.0

PTHREAD_COND(3C) PTHREAD_COND(3C)

NAME

pt hread_condattr _init, pthread_condattr_destroy, pthread_cond_init,

pt hr ead_cond_dest r oy, pt hr ead_cond_si gnal , pt hread_cond_br oadcast,

pt hr ead_cond_wai t, pt hread_cond_ti medwai t — Condition variables
SYNOPSIS

#i ncl ude <pt hr ead. h>

int pthread _condattr_init (pthread_condattr_t *attr);

int pthread_condattr_destroy (pthread_condattr_t *attr);

int pthread_cond_init (pthread_cond_t *cond,
const pthread_condattr_t *attr);

int pthread_cond_destroy (pthread_cond_t *cond);
pt hread_cond_t cond = PTHREAD COND | NI Tl ALI ZER;
i nt pthread_cond_signal (pthread_cond_t *cond);
i nt pthread_cond_broadcast (pthread_cond_t *cond);
int pthread cond_wait (pthread_cond_t *cond, pthread_nutex t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond, pthread_nutex_t *mutex,
const struct tinespec *abstime);
IMPLEMENTATION
Cray PVP systems systems

STANDARDS
PThreads

DESCRIPTION

The function pt hread_condat tr _i ni t initializes attr, a condition variable attributes object (CVAO),
using the default value for all attributes. Currently there are no supported attributes. Attempting to initialize
an aready initialized CVAO results in undefined behavior.

The pt hread_condat t r _dest r oy function destroys the specified CVAO. This alows the system to
reclaim any resources used by the CVAO.

The pt hread_cond_i ni t function initializes the condition variable referenced by cond with attributes
referenced by attr. If attr is a null value, the default condition variable attributes are used; this is the same
as passing the address of a default CVAO. Upon successful initialization, the state of the condition variable
becomes initialized. Attempting to initialize an already initialized condition variable results in undefined
behavior.

SR-2080 10.0 509

PTHREAD_COND(3C) PTHREAD_COND(3C)

510

After a CVAO initializes one or more condition variables, any function affecting the CVAO (including
destruction) has no effect on any previoudly initialized condition variables.

The pt hr ead_cond_dest r oy function destroys the given condition variable specified by cond; the
object becomes, in effect, uninitialized. A destroyed condition variable object can be reinitialized using
pt hr ead_cond_i ni t ; the results of otherwise referencing the object after it has been destroyed are
undefined.

Attempting to destroy a condition variable upon which other threads are currently blocked results in
undefined behavior.

In cases for which default condition variable attributes are appropriate, the macro

PTHREAD_COND_|I NI Tl ALI ZER can initialize condition variables that are statically allocated. Thisis
equivalent to dynamic initialization by a call to pt hr ead_cond_i ni t with parameter attr specified as a
null value, except that no error checks are performed.

The pt hread_cond_si gnal call unblocks at least one of the threads that are blocked on the specified
condition variable cond (if any threads are blocked on cond).

The pt hread_cond_br oadcast call unblocks all threads currently blocked on the specified condition
variable cond.

If more than one thread is blocked on a condition variable, the scheduling policy determines the order in
which threads are unblocked. When each thread unblocked as a result of a pt hr ead_cond_si gnal or
the pt hr ead_cond_br oadcast cal returns from its call to pt hr ead_cond_wai t or

pt hr ead_cond_t i nedwai t , the thread owns the mutex with which it called pt hr ead_cond_wai t or
pt hr ead_cond_t i nedwai t. The unblocked thread(s) contend for the mutex as if each had called

pt hr ead_nmut ex_| ock.

The pt hread_cond_si gnal or pt hread_cond_br oadcast functions may be caled by a thread,
whether or not it currently owns the mutex that threads calling pt hr ead_cond_wai t or

pt hr ead_cond_t i nedwai t have associated with the condition variable during their waits; however, if
predictable scheduling behavior is required, that mutex is locked by the thread calling

pt hr ead_cond_si gnal or pt hread_cond_br oadcast.

The pt hread_cond_si gnal and pt hr ead_cond_br oadcast functions have no effect if there are no
threads currently blocked on cond.

The pt hread_cond_wai t and pt hread_cond_t i medwai t functions are used to block on a condition
variable. They are called with mutex locked by the thread, or undefined behavior will result.

These functions atomically release mutex and cause the calling thread to block on the condition variable
cond. Atomically here means "atomically with respect to access by another thread to the mutex and then the
condition variable" That is, if another thread can acquire the mutex after it is released by an about-to-block
thread, a subsequent call to pt hr ead_cond_si gnal or pt hr ead_cond_br oadcast in that thread
behaves as if it were issued after the other thread has blocked. Upon successful return, the mutex is locked
and is owned by the calling thread.

SR-2080 10.0

PTHREAD_COND(3C) PTHREAD_COND(3C)

When condition variables are used, there is always a boolean predicate involving a shared variable for each
condition wait, which is true if the pt hr ead_cond_t i nedwai t functions may occur. Since the return
from pt hr ead_cond_wai t or pt hread_cond_t i nedwai t implies nothing about this predicate’s
value, the predicate should be reevaluated upon such return.

More than one mutex should not be used for concurrent pt hr ead_cond_wai t or
pt hr ead_cond_t i nedwai t operations on the same condition variable, as this can result in improper
behavior from these functions.

The pt hread_cond_t i medwai t function is the same as pt hr ead_cond_wai t , except that an error is
returned if the absolute time specified by abstime passes (that is, if system time equals or exceeds abstime)
before the condition cond is signaled or broadcast, or if the absolute time specified by abstime has already
been passed at the time of the call. When such time-outs occur, pt hr ead_cond_t i medwai t nonetheless
releases and reacquires the mutex referenced by mutex.

RETURN VALUES

If successful, all of these functions return 0. Otherwise, an error number is returned to indicate the error.

MESSAGES

If any of the following conditions occur, the pt hr ead_condattr _i ni t function returns the
corresponding error number:

ENOVEM Insufficient memory exists to initialize the condition variable attributes object.

If any of the following conditions occur, the pt hr ead_cond_i ni t function returns the corresponding
error number:

EAGAI N The system lacked the necessary resources (other than memory) to initialize another condition
variable.

ENOVEM Insufficient memory exists to initialize the condition variable.

If any of the following conditions occur, the pt hr ead_cond_t i medwai t function returns the
corresponding error number.

ETI MEDQUT The time specified by abstime to pt hr ead_cond_t i medwai t has passed.

SEE ALSO
pt hr ead(3C), pt hr ead_spec(3C), pt hr ead_rut ex(3C)

SR-2080 10.0 511

PTHREAD_MUTEX(3C) PTHREAD_MUTEX(3C)

NAME

pt hread_nutexattr_init, pthread_nmutexattr_destroy,

pt hr ead_nut exat tr _set ki nd_np, pt hr ead_nut exat t r _get ki nd_np,
pt hr ead_nut ex_i ni t, pt hr ead_nut ex_dest r oy, pt hr ead_nut ex_1 ock,
pt hr ead_nut ex_t ryl ock, pt hr ead_mnut ex_unl ock — Mutua exclusion

SYNOPSIS

#i ncl ude <pt hr ead. h>

int pthread_nmutexattr_init (pthread_nutexattr _t*attr);

int pthread_nmutexattr_destroy (pthread_nutexattr _t*attr);

int pthread _nmutexattr_setkind_np (pthread_nutexattr_t*attr, int kind);
int pthread_nmutexattr_getkind_np (const pthread_mutexattr_t *attr);

int pthread _rmutex_init (pthread_mutex_t*mutex,
const pthread_nutexattr _t*attr);

i nt pthread_mnutex_destroy (pthread_mutex_t*mutex) ;
pt hr ead_nut ex_t mutex = PTHREAD MUTEX | NI Tl ALI ZER;
i nt pthread_mutex_| ock (pthread_mutex_t*mutex) ;

int pthread_mutex_tryl ock (pthread_mutex_t*mutex) ;

i nt pthread_rutex_unl ock (pthread_nutex_t*mutex) ;

IMPLEMENTATION

Cray PVP systems

STANDARDS

PThreads

DESCRIPTION

512

The pt hread_rmut exattr _i ni t function initializes the specified mutex attributes object to the default
values.

The pt hread_mut exat t r _dest r oy function should be called when the attributes object is no longer
needed in order to release any system resources associated with the object. The attributes object can be
destroyed even when there are active mutexes created with that attributes object. Once destroyed, the
attributes object cannot be used.

SR-2080 10.0

PTHREAD_MUTEX(3C) PTHREAD_MUTEX(3C)

The pt hread_mut exattr_set ki nd_np and pt hread_mnut exat t r _get ki nd_np functions set or
get the mutex type. The mutex type can be MUTEX_FAST_NP, MUTEX_NONRECURSI VE_NP, or
MUTEX_RECURSI VE_NP. A mutex with type MUTEX_FAST_NP is a simple mutex lock which does no
error checking. A mutex with type MUTEX_NONRECURSI VE_NP provides additional error checking. Both
of these mutexes will block if the owner of the mutex attempts to lock the mutex a second time. If, instead,
attempts to lock the mutex should be nested, then the mutex can be initialized as a

MUTEX_RECURSI VE_NP mutex. The default mute type is MUTEX_FAST_NP.

The pt hread_mut ex_i ni t function initializes the mutex referenced by mutex with attributes specified by
attr. If attr is a null value, the default mutex attributes are used; the effect is the same as passing the
address of a default mutex attributes object. On successful initialization, the state of the mutex becomes
initialized and unlocked. Attempting to initialize an already initialized mutex results in undefined behavior.

The pt hr ead_mut ex_dest r oy function destroys the mutex object referenced by mutex; the mutex object
becomes effectively uninitialized. A destroyed mutex object can be reinitialized using

pt hr ead_nmut ex_i ni t ; the results of otherwise referencing the object after it has been destroyed are
undefined.

It isinvalid to destroy alocked mutex.

For cases in which default mutex attributes are appropriate, the macro PTHREAD _MUTEX_| NI TI ALI ZER
can be used to initialize mutexes that are statically allocated. This is equivalent to dynamic initialization by
acall to pt hread_mut ex_i ni t, with parameter attr specified as a null value, except that no error checks
are performed.

The mutex object is locked by a call to pt hr ead_nut ex_| ock. If the mutex is already locked, the
calling thread blocks until the mutex becomes available. The operation returns with mutex in the locked
state, with the calling thread as its owner.

The function pt hread_rut ex_t ryl ock isidentical to pt hr ead_nut ex_I| ock except that, if mutex is
currently locked (by any thread including the current thread), the call returns immediately.

The pt hr ead_rmut ex_unl ock function is called by the owner of mutex to release it. It isinvalid to call

pt hr ead_nut ex_unl ock from a thread that is not the owner of the mutex. Calling

pt hr ead_nmut ex_unl ock when mutex is unlocked is also invalid. If there are threads blocked on mutex

when pt hr ead_rmut ex_unl ock is called, the mutex becomes available, and the scheduling policy is used
to determine which thread shall acquire the mutex.

RETURN VALUES

If successful, the pt hread_rmut exattr _init, pt hread_mut exattr_destroy, and
pt hr ead_nut exat tr _set ki nd_np functions return 0. Otherwise, an error number indicates the error.

The pt hread_mut exat t r _get ki nd_np function returns the mutex type of the specified attributes
object.

SR-2080 10.0 513

PTHREAD_MUTEX(3C) PTHREAD_MUTEX(3C)

If successful, the pt hread_rmut ex_i nit and pt hr ead_nut ex_dest r oy functions return O.
Otherwise, an error number indicates the error.

If successful, the pt hr ead_mut ex_| ock and pt hr ead_nut ex_unl ock functions return 0. Otherwise,
an error number is returned to indicate the error.

The function pt hr ead_rut ex_t ryl ock returns 0 if alock on mutex is acquired. Otherwise, an error
number indicates the error.

MESSAGES

If any of the following conditions occur, the pt hr ead_nut exattr _i nit function returns the
corresponding error number:

ENOVEM The system lacked the necessary resources (other than memory) to initialize the mutex
attributes object.

If any of the following conditions occur, the pt hr ead_nut exat t r _set ki nd_np function returns the
corresponding error number:

El NVAL The mutex type specified by kind is invalid.

If any of the following conditions occur, the pt hr ead_nut ex_i ni t function returns the corresponding
error number:

EAGAI N The system lacked the necessary resources (other than memory) to initialize another mutex.
ENOVEM Insufficient memory exists to initialize the mutex.

If the following condition occurs, the pt hr ead_nut ex_t r yl ock function returns the corresponding error
number:

El NVAL The mutex could not be acquired because it was already locked.

SEE ALSO

514

pt hr ead(3C), pt hr ead_cond(3C), pt hr ead_spec(3C)

SR-2080 10.0

PTHREAD_SPEC(3C) PTHREAD_SPEC(3C)

NAME

pt hr ead_key_creat e, pt hread_key_del et e, pt hr ead_set speci fi c,
pt hr ead_get speci fi ¢ — Thread-specific data

SYNOPSIS
#i ncl ude <pt hr ead. h>
int pthread_key create (pthread_key t *key, void (*destructor) (void *));
i nt pthread_key_del ete (pthread_key t key);
int pthread_setspecific (pthread_key_ t key, const void *value);
voi d *pt hread_get speci fic (pthread_key t key);

IMPLEMENTATION
Cray PVP systems systems

STANDARDS
PThreads

DESCRIPTION

The pt hr ead_key_cr eat e function creates a thread-specific data key visible to al threads in the
process. Key values provided by pt hr ead_key_cr eat e are opaque objects used to locate thread-specific
data. Although the same key value may be used by different threads, the values bound to the key by
pt hr ead_set speci fi ¢ are maintained on a per-thread basis and persist for the life of the calling thread.

When a key is created, it is given a null value in all active threads. When a thread is created, all defined
keys in the new thread are given null values.

An optional destructor function may be associated with each key value. At thread exit, if a key value has a
non-null destructor pointer, and the thread has a non-null value associated with that key, the function pointed
to is called with the current associated value as its sole argument. The order of destructor cals is
unspecified if more than one destructor exists for a thread when it exits.

The pt hr ead_key_del et e function deletes a thread-specific data key previously returned by

pt hr ead_key_cr eat e. The thread-specific data values associated with key need not be null when

pt hr ead_key_del et e iscaled. The application must free storage or perform cleanup actions for data
structures related to the deleted key or associated thread-specific data in any threads; this cleanup can be
done either before or after pt hr ead_key_del et e iscalled. The specified key cannot be used following
the call to pt hr ead_key del et e. No destructor functions are invoked by pt hr ead_key_del et e.

SR-2080 10.0 515

PTHREAD_SPEC(3C) PTHREAD_SPEC(3C)

The pt hread_set speci fi ¢ function associates a thread-specific value with a key obtained via a
previous call to pt hr ead_key_cr eat e. Different threads may bind different values to the same key.
The pt hr ead_set speci fi ¢ function cannot be called from a destructor function, as this may result in
lost storage or infinite loops.

The pt hr ead_get speci fi ¢ function returns the value currently bound to the specified key on behalf of
the calling thread.
RETURN VALUES

The function pt hr ead_get speci fi ¢ returns the thread-specific data value for key. If key has no
thread-specific data value, a null value is returned.

If successful, the pt hr ead_set speci fi c, pt hread_key_creat e, and pt hread_key_del et e
functions return 0. Otherwise, an error number indicates the error.
MESSAGES

If any of the following conditions occur, the pt hr ead_key_cr eat e function returns the corresponding
error number:

EAGAI N The system lacked the necessary resources to create another thread-specific data key, or the
system-imposed limit on the total number of keys per process, PTHREAD KEYS_ MAX, has
been exceeded.

ENOVEM Insufficient memory exists to create the key.

If any of the following conditions occur, the pt hr ead_key_del et e function returns the corresponding
error number:

El NVAL The key value is invalid.

If any of the following conditions occur, the pt hr ead_set speci f i ¢ function returns the corresponding
error number:

ENOVEM Insufficient memory exists to associate the value with the key.
El NVAL The key value is invalid.

SEE ALSO
pt hr ead(3C), pt hr ead_cond(3C), pt hr ead_rut ex(3C)

516 SR-2080 10.0

PUTC(3C)

NAME

PUTC(3C)

put c, put char, f put c, put c_unl ocked, put char _unl ocked, put w, f put wc, put wc,
put wehar — Puts a character or word on a stream

SYNOPSIS

#i ncl ude <stdio. h>
int fputc (int ¢, FILE *stream);

i nt
i nt
i nt
i nt

i nt

putc (int ¢, FILE *stream);

put char (int c);

put c_unl ocked (int ¢, FILE *stream);
put char _unl ocked (int ¢);

putw (int w, FILE*stream);

#i ncl ude <wchar. h>

wint_t fputwe (wint_t we, FILE *stream);

wint_t putwe (wint_t wec, FILE *stream);

wi nt _t putwchar (wint_t wc);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANSI (f put c, put c, and put char only)
POSIX (put c_unl ocked and put char _unl ocked only)
XPG4 (put w, f put we, unget we, and put wchar only)

DESCRIPTION

The f put ¢ function writes the character specified by ¢ (converted to an unsi gned char) to the output
stream pointed to by st r eam at the position indicated by the associated file position indicator for the
stream (if defined), and advances the indicator appropriately. If the file cannot support positioning requests,

or if the stream was opened with append mode, the character is appended to the output stream.

The f put ¢ function behaves like put c, but it runs more slowly than put ¢, and it takes less space per
invocation.

The put ¢ function is equivalent to f put ¢, except that if it is implemented as a macro, it may evaluate
st r eammore than once, so the argument should never be an expression with side effects. In particular,

put c(c, *f ++)

does not work as expected; use f put ¢ instead.

SR-2080 10.0

517

PUTC(3C) PUTC(3C)

The put char function is equivalent to put ¢ with the second argument st dout .

The put ¢_unl ocked and put char _unl ocked functions provide functionality equivaent to the put ¢
and put char functions, respectively. However, these interfaces are not guaranteed to be locked with
respect to concurrent standard 1/O operations in a multitasked application. Thus you should use these
functions only within a scope protected by the f | ockfi | e(3C) or ftryl ockfi | e(3C) functions.

The put w function writes the word (that is, type i nt) w to the output stream (at the position at which the
file pointer, if defined, is pointing). The size of aword is the size of atype i nt and varies from machine to
machine. The put w function neither assumes nor causes special alignment in the file.

The f put we function writes the character corresponding to the wide-character code wc to the output stream
to which stream points, at the position indicated by the associated file-position indicator for the stream (if
defined), and it advances the indicator appropriately. If the file cannot support positioning requests, or if the
stream was opened while writing the character, the shift state of the output file is left in an undefined state.
Thest _ctine andst_ntime fields of the file are marked for update between the successful execution of
f put we and the next successful completion of acall tof fl ush(2) or f cl ose(2) on the same stream or a
cal toexit orabort.

The put we function is equivalent to f put we, except that if it is implemented as a macro it may evaluate
stream more than once, so the argument should never be an expression with side effects. Therefore, you
should not use this function; use the f put we() function instead.

The function call put wchar (wc) is equivalent to put we (wc, stdout).

CAUTIONS

Because of possible differences in word length and byte ordering, files written using put w are
machine-dependent, and they may not be read using get w on a different processor; therefore, avoid using
put w.

NOTES

The macro version of the put ¢ function is not multitask protected. To obtain a multitask protected version,
compile your code by using - D MJULTI P_ and link by using /i b/ i bcm a.

RETURN VALUES

If successful, these functions each return the value they have written. If a write error occurs, the error
indicator for the stream is set and the functions return EOF (WECF for f put we). The latter occurs if the file
stream is not open for writing, or if the output file cannot be created. Because EOF is a valid integer, use
the f er r or (3C) function to detect put w errors.

SEE ALSO
fcl ose(3C), ferror (3C), f open(3C), f read(3C), pri nt f (3C), put s(3C), set buf (3C)

518 SR-2080 10.0

PUTENV/(3C) PUTENV/(3C)

NAME

put env — Changes or adds value to the environment

SYNOPSIS
#i ncl ude <stdlib. h>

i nt putenv (const char *string);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The put env function makes the value of the environment variable name equal to value by altering an
existing variable or creating a new one. In either case, the string to which string points becomes part of the
environment, so altering the string changes the environment. The string argument points to a string of the
form " name=val ue" that contains no embedded blanks. The space that string uses is no longer used after
a new string-defining narre is passed to put env.

NOTES

On Cray MPP systems, each processing element (PE) gets a separate copy of the environment; therefore,
alterations to the environment by using put env on a single PE will not be reflected on other PEs.

The put env function manipulates the environment to which sh(1)points, and it can be used in conjunction
with the get env(3C) function; however, envp (the third argument to mai n) is not changed.

This function uses mal | oc(3C) to enlarge the environment.
After put env is called, environmental variables are not necessarily in alphabetical order.
Calling put env with an automatic variable as the argument, then exiting the calling function while string is
gtill part of the environment is a potential error.
RETURN VALUES

If put env could not obtain enough space (using mal | oc(3C)) for an expanded environment, it returns a
nonzero value; otherwise, it returns 0.

SR-2080 10.0 519

PUTENV/(3C) PUTENV/(3C)

FORTRAN EXTENSIONS

You also may call the put env function from Fortran programs, as follows:

| NTEGER*8 PUTENV, |
CHARACTER *n string
| = PUTENV(string)

Argument string can be either a Fortran character variable or an integer variable of the form name=value. If

you use an integer variable, the data must be packed 8 characters per word and terminated with a null (0)
byte.

Fortran function PUTENV allocates space and copies string to that space. Therefore, altering string after
calling PUTENV does not change the environment.

SEE ALSO
get env(3C), mal | oc(3C), set env(3C)

sh(2) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
exec(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

520 SR-2080 10.0

PUTPWENT(3C) PUTPWENT(3C)

NAME

put pwent — Writes password file entry

SYNOPSIS
#i ncl ude <pwd. h>
i nt putpwent (struct passwd *p, FILE *f);

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

The put pwent function is the inverse of get pwent . Given a pointer to a passwd structure created by
get pwent (or get pwui d or get pwnam), put pwent writes a line on the stream f, which must match the
format of / et ¢/ passwd (see passwd(5)).

NOTES

This function is included only for compatibility with previous systems. Writing something in
/ et c/ passwd does not make an entry in the user information database and so is ineffective. The passwd
file is automatically maintained by udbgen(8).

WARNINGS

The preceding function uses the header st di 0. h, which causes it to increase the size of programs more
than otherwise might be expected.

RETURN VALUES

If an error is detected during its operation, put pwent returns nonzero; otherwise, it returns 0.

SEE ALSO
get pwent (3C)

udbgen(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

passwd(5), udb(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

SR-2080 10.0 521

PUTS(3C) PUTS(3C)

NAME

puts, f put s, f put ws — Puts a string on a stream

SYNOPSIS
#i ncl ude <stdio. h>
int puts (const char *s);
int fputs (const char *s, FILE *stream);
#i ncl ude <wchar. h>

int fputws(const wchar _t *ws, FILE *stream);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANSI (put s and f put s only)
XPG4 (f put ws only)

DESCRIPTION

The put s function writes the null-terminated string to which s points, followed by a newline character, to
the standard output stream st dout . The f put s function writes the null-terminated string to which s points
to the specified output stream. Neither function writes the terminating null character.

The f put ws function writes a character string that corresponds to the (null-terminated) wide-character string
to which ws points to the stream to which stream points. No character that corresponds to the terminating
null, wide-character code is written. Thest _cti me and st _nti e fields of the file are marked for
update between execution of f put ws and completion of the next call to f f 1 ush(2) or f cl ose(2) on the
same stream or acall to exi t or abort.

NOTES

The put s function appends a newline character; f put s does not.

RETURN VALUES

These functions return a nonnegative value. The put s and f put s functions return an end of file (ECF) on
error (if they try to write on afile that has not been opened for writing). The f put ws function, on an error,
returns — 1, sets an error indicator for the stream, and sets er r no to indicate the error.

522 SR-2080 10.0

PUTS(3C) PUTS(3C)

FORTRAN EXTENSIONS

You also can cal the f put s function from Fortran programs, as follows:

| NTEGER*8 FPUTS, stream, |
| = FPUTS(s, stream)

Argument s must be left-justified, word-aligned, and terminated by a null byte.

SEE ALSO
ferror (3C), f open(3C), f read(3C), pri nt f (3C), put c(3C)

SR-2080 10.0 523

QSORT(3C) QSORT(3C)

NAME

gsort — Performs sort

SYNOPSIS
#i ncl ude <stdlib. h>
void gsort (void *base, size_t nmemb, size_t size, int (*compar)(const void *,
const void *));
IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The gsort function sorts an array of nmemb objects, the initial element of which is pointed to by base.
The size argument specifies the size of each object.

The contents of the array are sorted into ascending order according to a comparison function to which
compar points, which is called with two arguments that point to the objects being compared. The function
returns an integer that is less than, equa to, or greater than O if the first argument is considered to be
respectively less than, equal to, or greater than the second.

If two elements compare as equal, their order in the sorted array is unspecified.
NOTES

The comparison function’s arguments should be of type voi d* and should be cast back to type
pointer-to-element within the function. The comparison function need not compare every byte; therefore,
arbitrary data may be contained in the elements in addition to the values being compared.

The output order of two items that compare as equal is unpredictable.

RETURN VALUES

The gsort function returns no value.

EXAMPLES

The following example shows how the gsort function executes:
#i ncl ude <stdlib. h>

struct el ement { /* array of elenents to be sorted */
int key; /* key to sort on */

524 SR-2080 10.0

QSORT(3C) QSORT(3C)

} alnel];
struct el ement *base = &q[0];

i nt conpar(const void *a, const void *b)
/* conparsion function for qgsort() */

{
return (((struct elenent *)a)->key - ((struct elenent *)b)->key);
}
mai n() {
gsort(base, nel, sizeof (*base), conpar);
}
SEE ALSO

bsear ch(3C), | sear ch(3C)

SR-2080 10.0 525

RAISE(3C)

NAME

rai se — Sends a signal to the executing program

SYNOPSIS
#i ncl ude <si gnal . h>
int raise (int sg);
IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The r ai se function sends the signal sig to the executing program.

RETURN VALUES

Ther ai se function returns O if successful, nonzero if unsuccessful.

526

RAISE(3C)

SR-2080 10.0

RAND(3C) RAND(3C)

NAME

rand, srand, rand_r — Generates pseudo-random integers

SYNOPSIS
#i ncl ude <stdlib. h>
int rand (void);
voi d srand (unsigned i nt seed);
int rand_r (unsigned int *seedptr);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANSI (r and and sr and)
PThreads (rand_r)
DESCRIPTION

The r and function computes a sequence of pseudo-random integers in the range 0 to RAND_MAX, which is
defined in the header file st dl i b. h.

The sr and function uses the seed argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent callsto r and. If srand is then called with the same seed value, the sequence of
pseudo-random numbers is repeated. If r and is called before any calls to sr and have been made, the
same sequence is generated as when sr and is first called with a seed value of 1.

Therand_r function provides functionality equivalent to the r and function but with an interface that is
safe for multitasked applications. It takes a pointer to the seed value (seedptr) as an argument. This
function allows for easy maintenance of separate random number generators and safe management of random
number sequences for multitasked applications.

RETURN VALUES
Therand and r and_r functions return a pseudo-random integer.

The sr and function returns no value.

SEE ALSO
dr and48(3C)

SR-2080 10.0 527

RCMD(3C) RCMD(3C)

NAME

rcmd, rresvport, ruser ok — Returns a stream to a remote command

SYNOPSIS
#i ncl ude <uni std. h>

int rcmd (char **ahost, unsi gned short inport, char *locuser, char *remuser, char
*cmd, int fd2p);

int rresvport (int *port);

int ruserok (char *rhost, int superuser, char *ruser, char *luser);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The r cd function allows the super user to execute a remote command cmd on a remote machine, using an
authentication scheme based on reserved port numbers. Therresvport function returns a descriptor to a
socket with an address in the privileged port space. Servers on the local host use the r user ok function to
authenticate users on a remote host who request service by means of ther cnd function. All three
functions are present in the same file and are used by the r shd(8) server (among others).

The r cd function uses the get host bynane function (see get host (3C)), to look up the host ahost,
returning —1 if the host does not exist. Otherwise, ahost is set to the official name of the remote host, and a
connection is established to a server residing at the Internet port inport.

If the r crd function succeeds, a socket of type SOCK _STREAMis returned to the caller and given to the
remote command cmd as the file descriptors st di n (for reading from the socket) and st dout (for writing
to the socket). If fd2p is nonzero, an auxiliary channel to a control process is set up, and a descriptor for it
is placed in fd2p. The control process returns diagnostic output from the command (st der r) on this
channel and also accepts bytes on this channel as being UNICOS signal numbers, to be forwarded to the
process group of the command. If fd2p is O, st der r is made the same as st dout . In this case, no
provision is made for sending arbitrary signals to the remote process, although you may be able to establish
contact by using out-of-band data.

The service request protocol and user validation are described in detail in r shd(8).

Therresvport function obtains a socket with a privileged address bound to it. This socket is suitable for
use by r crmd and several other functions. Privileged addresses consist of a port in the range O through 1023.
Only the super user is alowed to bind an address of this sort to a socket.

528 SR-2080 10.0

RCMD(3C) RCMD(3C)

The r user ok function takes a remote host’'s name (rhost), as returned by the get host ent function (see
get host (3C)), the name of the remote user (ruser), the name of the local user (luser) whose account will
be accessed by the remote user, and a flag (either O or 1) indicating if the local user’s name is that of the
super user. It then checks the local host's / et ¢/ host s. equi v file and the . r host s file, if it exists, in

the current directory (normally the local user’s home directory) for authorization for the person regquesting
service.

NOTES
There is no way to specify options to the socket (2) call that r cnd makes.

RETURN VALUES

A Oisreturned if the name of the remote host is listed in the / et ¢/ host s. equi v file, or if the remote
host name and remote user name are listed in the . r host s file. The system configuration can require the
/et c/ hosts. equiv and.rhost s files each to contain a match for the remote host, and aso require the
remote user and local user names to match; otherwise, r user ok returns a—1. If the super user flag is 1,
indicating that the specified local user is the super user, the checking of / et ¢/ host . equi v is bypassed.
(See host s. equi v(5) and r host s(5).) Also, if ther host s file is writable by group or other,

ruser ok returns a—1.

FILES

[etc/ hosts. equiv
$HOWVE/ . r host s

SEE ALSO
get host (3C), r exec(3C)
r ensh(1B) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
socket (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

host s. equi v(5), r host s(5) in the UNICOS File Formats and Special Files Reference Manual, Cray
Research publication SR—2014

r execd(8), r shd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

TCP/IP Network User’s Guide, Cray Research publication SG—2009

SR-2080 10.0 529

RCMDEXEC(3C) RCMDEXEC(3C)

NAME

rcndexec — Returns a stream to a remote command

SYNOPSIS
i nt rcmdexec (char **ahost, unsi gned short rshellp, unsi gned short rexecp, char
*|locuser, char *remuser, char *passwd, char *cmd, int fd2p);

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The r cndexec function is a combination of the r cnd function and the r exec function. (See r cd(3C)
and r exec(3C) for additional argument information.)

Argument rshellp is the inport value for function r crd, and rexecp is the inport value for function r exec.

The r cndexec function first attempts ar cd function call. If the internal connect (2) call fails with
error ECONNREFUSED, r cndexec immediately tries an r exec function call. If the internal connect (2)
call again fails with error ECONNREFUSED, r crmdexec sleeps for a period of time, and goes back and tries
both calls again. The total time out period is about 30 seconds.

SEE ALSO
r cnd(3C), r exec(3C)

connect (2), i nt r o(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

r execd(8), r shd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research
publication SR—2022

530 SR-2080 10.0

RE_COMP(3C) RE_COMP(3C)

NAME

re_conp, re_exec — Matches regular expressions

SYNOPSIS
#i ncl ude <uni std. h>
char *re_conp (char *s);

int re_exec (char *s);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Ther e_conp function compiles a string into an internal form suitable for pattern matching. Ther e_exec
function checks the argument string against the last string passed to r e_conp.

If string s was compiled successfully, function r e_conp returns O; otherwise, a string that contains an error
message is returned. If re_conp is passed 0 or a null string, it returns without changing the currently
compiled regular expression.

If string s matches the last compiled regular expression, function r e_exec returns 1; if string s failed to
match the last compiled regular expression, it returns O; if the compiled regular expression was not valid
(indicating an internal error), it returns —1.

The strings passed to both r e_conp and r e_exec can have trailing or embedded newline characters; they
are terminated by a null character. Taking account of these differences, the regular expressions recognized
are described in the ed(1) man page.

RETURN VALUES
Function r e_exec returns —1 for an internal error.

If an error occurs, function r e_conp returns one of the following strings:

No previous regul ar expression
Regul ar expression too |ong
unmat ched \ (

m ssing |

too many \ (\) pairs

unmat ched \)

SR-2080 10.0 531

RE_COMP(3C) RE_COMP(3C)

SEE ALSO

ed(1), egr ep(l), ex(1), f grep(d), gr ep(2) in the UNICOS User Commands Reference Manual, Cray
Research publication SR—2011

532 SR-2080 10.0

REGCMP(3C) REGCMP(3C)

NAME

regcnp, r egex — Compiles and executes a regular expression

SYNOPSIS
#i ncl ude <stdlib. h>
char *regcnp (char *string, ...);
char *regex (char *re, char *subject, ...);

char *_ | ocl,;

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

The r egcnp function compiles a regular expression and returns a pointer to the compiled form. The

mal | oc(3C) function creates space for the compiled regular expression; to free the allocated space, you
must call the f r ee (see mal | oc(3C)) function; r egcnp returns NULL if if an incorrect argument is
passed. regcnp returns NULL. Ther egcnp(1) command has been written to generally preclude the need
for this function at execution time.

The r egex function executes a compiled pattern against the subject string. Additional arguments are passed
to receive values back. On failure, r egex returns NULL; on success, it returns a pointer to the next
unmatched character.

Functions r egcnp and r egex take a variable number of char * arguments following string and subject,
respectively. The last argument to r egcnp must be (char *) 0. A global character pointer, | oc1,
points to where the match began. Both r egcnp and r egex were mostly borrowed from the editor, ed(1);
however, the syntax and semantics have been changed dlightly. The following are the valid symbols and
their associated meanings:

Symbol Description
[1*.~ These symbols retain their current meaning (as in ed(1)).
$ Matches the end of the string; \ n matches a newline character.

- Within brackets, the minus means through (for example, [a- z] is equivalent to
[abcd. . . xyz]). The- can appear as itself only if used as the first or last character
(for example, the character class expression [] -] matches the characters] and -).

+ A regular expression followed by + means one or more times; for example, [0- 9] + is
equivalentto [0-9] [0-9] O

SR-2080 10.0 533

REGCMP(3C) REGCMP(3C)

{m} {m} {myu} Integer values enclosed in { } indicate the number of times the preceding regular
expression will be applied. The value m is the minimum number, and u is a number, less
than 256, which is the maximum. If only mis present (for example, { m}), it indicates the
exact number of times the regular expression will be applied. Thevalue{m, } is
analogousto {m, i nfi nity}. The plus (+) and star (0) operations are equivalent to
{1,} and {0, }, respectively.

(...)%n The value of the enclosed regular expression is to be returned. The value is stored in the
(n+1)th argument following the subject argument. At most, 10 enclosed regular
expressions are allowed. The r egex function makes its assignments unconditionally.

(... Parentheses are used for grouping. An operator, such as "*", "+", "- ", or "/ ", can work
on a single character or a regular expression enclosed in parentheses; for example,
(al{cb+)D%0.
By necessity, all of the preceding symbols are special; to be used as themselves, you must escape them by
using a.
CAUTIONS

The user program may run out of memory if r egcnp is called iteratively without freeing the compiled
regular expressions no longer required.

EXAMPLES

Example 1: The following example matches a leading newline character in the subject string at which
cur sor points.

#i ncl ude <stdlib. h>

char [kursor, [hewcursor, [Pptr;

newcur sor = regex((ptr = regcnmp("*\'n", (char *)0)), cursor);
free(ptr);

Example 2: The following example matches through the string " Test i ng3" and returns the address of the
character after the last matched character (cur sor +11). The string " Test i ng3" is copied to the
character array r et 0.

534 SR-2080 10.0

REGCMP(3C) REGCMP(3C)

#i ncl ude <stdlib. h>

char ret0[9];
char *newcursor, *nane;

name = regcnp(" ([A-Za-z][A-za-z0-9_]{0,7})%$0", (char *)0);
newcur sor = regex(nanme, "123Testing321", ret0);

Example 3: The following example applies a precompiled regular expression nane infile.i (see
regcnp(l)) against stri ng.

#i ncl ude <stdlib.h>

#include "file.i"

char *string, *newcursor;

newcur sor = regex(name, string);

SEE ALSO
mal | oc(3C)
ed(1), regcnp(l) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2080 10.0 535

REGEXEC(3C) REGEXEC(3C)

NAME

regconp, r egexec, regerror, regf r ee — Regular-expression library

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <regex. h>

int regconp(regex_t *preg, const char *pattern, int cflags);

i nt regexec(const regex_t *preg, const char *string, size_t nmatch,
regmat ch_t pmatch[], int eflags);

size_t regerror(int errcode, const regex_t *preg, char *errbuf,
size_t errbuf size);

void regfree(regex_t *preg);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4
DESCRIPTION
These functions implement regular expressions (RES); see r egex(3C). Functions are used as follows:
Function Description
regconp Compiles an RE written as a string into an internal form
regexec Matches the r egconp value against a string and reports results
regerror Transforms error codes from either r egconp or r egexec into human-readable
messages
regfree Frees any dynamically allocated storage used by the internal form of an RE

The header file r egex. h declares two structure types, r egex_t and r egrmat ch_t , the former for
compiled internal forms and the latter for match reporting. It also declares the four functions, a type
regof f _t, and a number of constants with names that start with REG .

The r egconp function compiles the regular expression contained in the pattern string, subject to the flags
in cflags, and places the results in the r egex_t structure to which preg points. The cf | ags variable is
the bitwise OR of 0 or more of the following flags:

Function Description

REG _EXTENDED Compile modern (extended) REs, rather than the obsolete (basic) REs that are the
default.

REG | CASE Compile for matching that ignores upper/lower case distinctions. Seer egex(7) .

REG_NOSUB Compile for matching that must report only success or failure, not what was matched.

536 SR-2080 10.0

REGEXEC(3C) REGEXEC(3C)

REG NEW.I NE Compile for newline-sensitive matching. By default, newline is a completely ordinary
character with no special meaning in either REs or strings. With this flag, [* bracket
expressions and . never match newline, a” anchor matches the null string after any
newline in the string in addition to its normal function, and the $ anchor matches the
null string before any newline in the string in addition to its normal function.

REG_WORDS Compile for matching that treats < as the beginning of a word and > as the end of a
word.

The r egconp function returns 0 and fills in the structure to which preg points. One member of that
structure is publicized: re_nsub, of type si ze_t, contains the number of parenthesized subexpressions
within the RE (except this member’s value is undefined if the REG_NOSUB flag was used). If r egconp
fails, it returns a nonzero error code; see ERROR CODES.

The r egexec function matches the compiled RE to which preg points against the string, subject to the
flags in eflags, and reports results by using nmatch, pmatch, and the returned value. The RE must have been
compiled by a previous invocation of r egconp. The compiled form is unchanged during execution of

r egexec; therefore, one compiled RE can be used simultaneously by multiple threads.

By default, the null-terminated string to which string points is considered to be the text of an entire line,
minus any terminating newline. The eflags argument is the bitwise OR of 0 or more of the following flags:

Flag Description

REG_NOTBOL The first character of the string is not the beginning of a line, so the * anchor should
not match before it. This condition does not affect the behavior of newlines under
REG_NEW.I NE.

REG _NOTEOL The null terminating the string does not end a line, so the $ anchor should not match
before it. This condition does not affect the behavior of newlines under
REG_NEW.I NE.

REG STARTEND The string is considered to start at string + pmatch[0].rm_so and to have a terminating
NUL located at string + pmatch[0] . rm_eo (NUL is not required at that location),
regardless of the value of nmatch. The pmatch and nmatch variables are defined below.
This is an extension, compatible with but not specified by POSIX 1003.2, and should be
used with caution in software intended to be ported to other systems.

For a discussion of what is matched in cases in which an RE or a portion thereof could match any of severa
substrings of string, see r egex(3C).

Usually, r egexec returns 0 for success and the nonzero code REG_NOMATCH for failure. Other nonzero
error codes may be returned in exceptional situations;, see ERROR CODES.

If REG_NOSUB was specified in the compilation of the RE, or if nmatch is O, r egexec ignores the pmatch
argument. Otherwise, pmatch points to an array of nmatch structures of type regmatch_t. Such a structure
has at |east the members rm_so and rm_eo, both of type regoff t (a signed arithmetic type at least as large as
an off_t and a ssize t), containing respectively the offset of the first character of a substring and the offset of
the first character after the end of the substring. Offsets are measured from the beginning of the string
argument given to r egexec. An empty substring is denoted by equal offsets, both indicating the character
following the empty substring.

SR-2080 10.0 537

REGEXEC(3C) REGEXEC(3C)

The Oth member of the pmatch array is filled in to indicate the substring of string that was matched by the
entire RE. Remaining members report the substring that was matched by parenthesized subexpressions
within the RE; member i reports subexpression i, with subexpressions counted (starting at 1) by the order of
their opening parentheses in the RE, left to right. The rm_so and rm_eo arguments are set to —1 for unused
entries in the array (entries that correspond either to subexpressions not used in the match, or to
subexpressions that are not in the RE (that is, i > preg —> re_nsub). If a subexpression is used in the
match severa times, the reported substring is the last one it matched. When the RE (b*) + matches bbb,
the parenthesized subexpression matches each of the three bs and then an infinite number of empty strings
following the last b, so the reported substring is one of the empty strings.)

Ther eger r or function maps a nonzero errcode from either r egconp or r egexec to a printable
message. If preg is nonnull, the error code should have arisen from use of the r egex_t to which preg
points, and if the error code came from r egconp, it should have been the result from the most recent
regconp using that r egex_t. Theregerror function may be able to supply a more detailed message
by using information from ther egex_t. Ther eger r or function places the null-terminated message into
the buffer to which errbuf points, limiting the length (including the null) to at most errbuf_size bytes. If the
whole message does not fit, as much of it as will fit before the terminating null is supplied. In any case, the
returned value is the size of buffer needed to hold the whole message (including terminating null). If
errbuf_size is O, errbuf is ignored, but the return value is still correct.

The r egf r ee function frees any dynamically allocated storage associated with the compiled RE to which
preg points. The remaining r egex_t isno longer a valid compiled RE, and the effect of supplying it to
regexec or regerror is undefined.

Implementation Choices

538

Many details are optional under POSIX, either explicitly undefined or forbidden by the RE grammar. The
Cray Research implementation treats them as follows. For a discussion of the definition of case-independent
matching, see r egex(3C).

* No particular limit exists on the length of REs, except insofar as memory is limited. Memory usage is
approximately linear in RE size, and largely insensitive to RE complexity, except for bounded repetitions.
See BUGS for one short RE using them that will run almost any system out of memory.

* Any backslashed character other than the ones specifically legitimized by POSIX produces a
REG_EESCAPE error.

¢ Any unmatched [is a REG_EBRACK error.

¢ Equivaence classes cannot begin or end bracket-expression ranges. The endpoint of one range cannot
begin another.

¢ RE _DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.

* A repetition operator (?, *, +, or bounds) cannot follow another repetition operator. A repetition operator
cannot begin an expression, or subexpression, or follow » or | .

e A| cannot appear first or last in a (sub)expression or after another | (for example, an operand of |
cannot be an empty subexpression). An empty parenthesized subexpression, (), is legal and matches an
empty (sub)string. An empty string is not a legal RE.

SR-2080 10.0

REGEXEC(3C) REGEXEC(3C)

* A { followed by a digit is considered the beginning of bounds for a bounded repetition, which must then
follow the syntax for bounds. A { not followed by a digit is considered an ordinary character.

* A" and $ beginning and ending subexpressions in obsolete (basic) REs are anchors, not ordinary
characters.

NOTES

One known functionality bug exists. The implementation of internationalization is incomplete; the locale is
always assumed to be the POSIX default, and only the collating elements and other such elements of that
locale are available.

ERROR CODES

Nonzero error codes from r egconp and r egexec include the following:

Error Code Description

REG BADBR Repetition count(s) in { } not valid
REG _BADPAT Regular expression not valid

REG _BADRPT ?,*, or + operand not valid

REG EBRACE Braces{ } not balanced

REG _EBRACK Brackets[] not balanced

REG ECOLLATE Collating element not valid

REG _ECTYPE Character class not valid

REG EESCAPE A\ applied to unescapable character
REG EFATAL Internal error

REG ENEW.I NE A\ n found before end of pattern
REG_ENOSYS Function not supported
REG_ENSUB More than nine () pairs

REG _EPAREN Parentheses () not balanced

REG ERANGE Character range in [] not valid
REG ESPACE Ran out of memory

REG STACK Backtrack stack overflow

REG ESUBREG Backreference number not valid
REG_NOVATCH regexec() failed to match

SEE ALSO
regex(3C)
grep(1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2080 10.0 539

regexp.h(3C) regexp.h(3C)

NAME

regexp. h — Library header for regular expression compile and match functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

MACROS

None

TYPES

None

FUNCTION DECLARATIONS
The following functions are declared in r egexp. h:
char *conpi |l e (char *instring, char * expbuf, const char *endbuf, i nt eof);
i nt advance (const char *string, const char *expbuf) ;
i nt step (const char *string, char *expbuf) ;
and the following are declared as external variables:

extern char *l ocl, *l oc2, *l ocs;

DESCRIPTION

These general-purpose regular expression matching functions in the form of ed(1), are defined in the header
filer egexp. h. Programs such as ed(1), sed(1), gr ep(1), expr (1), and so on, which perform regular
expression matching, use this source file. In this way, only this file need be changed to maintain regular
expression compatibility.

The interface to the header file r egexp. h is excessively complex. Programs that include this file must
have the following five macros declared before the #i ncl ude <r egexp. h> statement. These macros are
used by the comnpi | e function.

Macro Description

GETC() Returns the value of the next character in the regular expression pattern. Successive
callsto GETC() should return successive characters of the regular expression.

PEEKC() Returns the next character in the regular expression. Successive calls to PEEKC()
should return the same character (which should also be the next character returned by
GET()).

540 SR-2080 10.0

regexp.h(3C)

UNGETC(©)

RETURN(pointer)

ERROR(val)

regexp.h(3C)

Causes the argument ¢ to be returned by the next call to GETC() (and PEEKC()). No
more than one character of pushback is ever needed and this character is guaranteed to
be the last character read by GETC() . The value of the macro UNGETC(¢) is always
ignored.

Used on normal exit of the conpi | e function. The value of the argument pointer is a
pointer to the character after the last character of the compiled regular expression. This
macro is useful to programs that have to manage memory allocation.

Used on abnormal return from the conpi | e function. The argument val is an error
number (see the following table for meanings). This call should never return.

Error M eaning

11 Range endpoint too large

16 Bad number

25 ““\ digit”’ out-of-range

36 Illegal or missing delimiter

41 No remembered search string

42 \'(\) imbalance

43 Too many \ (

44 More than two numbers given in\ { \}
45 } expected after \

46 First number exceeds second in\ { \}
49 [] imbalance

50 Regular expression overflow

Arguments to the conpi | e function are as follows:

Argument
instring

expbuf
endbuf

eof

Description

Never used explicitly by the conpi | e function but is useful for programs that pass down
different pointers to input characters. It is sometimes used in the | NI T declaration (see
following explanation). Programs that call functions to input characters or have characters
in an external array can pass down avaue of ((char *) 0) for this parameter.
Character pointer to the place where the compiled regular expression will be placed.

One more than the highest address where the compiled regular expression may be placed.
If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to ERROR(50) is
made.

Character that marks the end of the regular expression; for example, in ed(1), this
character isusualy a/ .

Each program that includes this file must have a #def i ne statement for | NI T. This definition is placed
right after the declaration for the function conpi | e and the opening brace ({). It is used for dependent
declarations and initializations. Most often it is used to set a register variable to point to the beginning of
the regular expression so that this register variable can be used in the declarations for GETC() , PEEKC() ,

and UNGETC() .

Otherwise, it can be used to declare external variables that might be used by GETC() ,

PEEKC(), and UNGETC() . See the following example of the declarations taken from gr ep(1).

SR-2080 10.0

541

regexp.h(3C) regexp.h(3C)

There are other functions in this file that perform actual regular expression matching, one of which is the
function st ep.

Arguments to the st ep function are as follows:

Argument Description

string Pointer to a string of characters to be checked for a match. This string should be null
terminated.

expbuf Compiled regular expression that was obtained by a call of the function conpi | e.

The st ep function returns 1, if the given string matches the regular expression, and O if the expressions do
not match. If there is a match, two external character pointers are set as a side effect to the call to st ep.
The variable set in st ep islocl. Thisis a pointer to the first character that matched the regular expression.

The variable loc2, which is set by the function advance, points to the character after the last character that
matches the regular expression. Thus, if the regular expression matches the entire line, locl points to the
first character of string and loc2 points to the null at the end of string.

The st ep function uses the external variable circf, which is set by conpi | e if the regular expression
begins with ~. If thisis set, st ep only tries to match the regular expression to the beginning of the string.
If more than one regular expression is to be compiled before the first is executed, the value of circf should
be saved for each compiled expression and circf should be set to that saved value before each call to st ep.

The advance function is called from st ep with the same arguments as st ep. The purpose of st ep isto
step through the string argument and call advance until advance returns 1 indicating a match or until the
end of string is reached. If you want to constrain string to the beginning of the line in all cases, st ep need
not be called, smply call advance.

When advance encountersan * or \ { \} sequencein the regular expression, it advances its pointer to the
string to be matched as far as possible and recursively calls itself trying to match the rest of the string to the
rest of the regular expression. Aslong as there is no match, advance backs up along the string until it
finds a match or reaches the point in the string that initially matched the* or \ { \}. It is sometimes
desirable to stop this backing up before the initial point in the string is reached. If the external character
pointer locs is equal to the point in the string at sometime during the backing up process, advance breaks
out of the loop that backs up and returns 0. Thisis used by ed(1) and sed(1) for substitutions done
globally (not just the first occurrence, but the whole line); so, for example, expressions such ass/ y*// g do
not loop forever.

EXAMPLES

542

The following example shows how the regular expression macros and calls look from gr ep(1):

SR-2080 10.0

regexp.h(3C) regexp.h(3C)

#define INIT regi ster char *sp = instring;
#define GETC() (*spt++)

#defi ne PEEKC() (*sp)

#define UNGETC(c) (--sp)

#define RETURN(cC) return;

#defi ne ERROR(c) regerr ()

#i ncl ude <regexp. h>
compi | e(*argv, expbuf, &expbuf[ESIZE], (int) '\0');

if (step(linebuf, expbuf))
succeed();

NOTES

Because r egexp. h is a header file, no actual | i bc modules exist. This source code is provided for users
wanting to use functions for regular expression work.

SEE ALSO

ed(1), expr (1), grep(1), sed(1) in the UNICOS User Commands Reference Manual, Cray Research
publication SR—2011

SR-2080 10.0 543

REMAINDER(3C) REMAINDER(3C)

NAME

remai nder, rermai nder f, remai nder | — Divides its arguments and returns the remainder

SYNOPSIS
#i ncl ude <fp. h>

doubl e remai nder (doubl e x, double vy);
float remai nderf (float x, float y);
| ong doubl e remai nderl (I ong double x, | ong doubl e vy);

IMPLEMENTATION
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

Ther emai nder, r emai nder f, and r emai nder | functions compute the remainder r = x REMy. If yis
not equal to 0, according to the |EEE floating-point standard, the remainder "is defined regardless of the
rounding mode by the mathematical relation r = x - y * n, where n is the integer nearest the exact value of
X'y, whenever | n- X' y| = 1/2, then nis even. Thus, the remainder is always exact. If r = 0, its sign
shall be that of x."

RETURN VALUES

These functions return the remainder of the first argument divided by the second argument.

SEE ALSO
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

544 SR-2080 10.0

REMOVE (3C) REMOVE (3C)

NAME

renpve — Removes files

SYNOPSIS
#i ncl ude <stdi 0. h>

i nt remove (const char *file);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The r enove function causes the file whose name is the string to which file points to become inaccessible by
that name. A subsequent attempt to open the file by using that name fails, unless you create the file from
scratch. If the file is open, the behavior of r enpve is implementation-defined. On Cray Research systems,
the file remains accessible to the file descriptor (or stream).

If file does not specify a directory, r emove(file) is equivaent to unl i nk(file) . If file specifies a
directory, r emove(file) isequivalent to r ndi r (file) .

RETURN VALUES

If the operation succeeds, the r erove function returns O; if it fails, it returns a nonzero value.

SEE ALSO

rename(2), r mdi r (2), unl i nk(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

SR-2080 10.0 545

RENAME (3C) RENAME (3C)

NAME

r ename — Renames afile

SYNOPSIS

#i ncl ude <stdi 0. h>

i nt renane(const char *old, const char *new);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

546

The r enane function changes the name of afile. The old argument points to the path name of the file to
be renamed. The new argument points to the new path name of the file.

If the old argument and the new argument both refer to links to the same existing file, the r enane function
returns successfully and performs no other action.

If the old argument points to the path name of afile that is not a directory, the new argument does not point
to the path name of a directory. If the link specified by the new argument exists, it is removed and old is
renamed new. In this case, alink named new exists throughout the renaming operation and refers either to
the file referred to by new or old before the operation began. Write access permission is required for both
the directory that contains old and the directory that contains new.

If the old argument points to the path name of a directory, the new argument points to the path name of a
file that is a directory. If the directory specified by the new argument exists, it is removed and old renamed
new. In this case, alink hamed new exists throughout the renaming operation and refers either to the file
referred to by new or old before the operation began. If new specifies an existing directory, it must be an
empty directory.

The new path name does not contain a path prefix that names old. Write access permission is required for
the directory that contains old and the directory that contains new. If the old argument points to the path
name of a directory, write access permission is required for the directory named by old, and, if it exists, the
directory named by new.

If the link specified by the new argument exists and the file's link count becomes 0 when it is removed and
no process has the file open, the space occupied by the file is freed and the file is no longer accessible. If
one or more processes have the file open when the last link is removed, the link is removed before r enane
returns, but the removal of the file contents is postponed until all references to the file are closed.

SR-2080 10.0

RENAME(3C) RENAME (3C)

NOTES

Under UNICOS, r ename(2) is implemented as a system call, but the r enane function aso is defined to be
a part of the ANSI Standard C library. For this reason, this documentation appears both here and in the
UNICOS System Calls Reference Manual, Cray Research publication SR—2012.

RETURN VALUES

The r enane function returns O if the operation succeeds and marks for update the st _ct i me and
st _mt i ne fields of the parent directory of each file. r ename returns a nonzero if it fails; in which case, if
the file existed previoudly, it is still known by its original name.

SEE ALSO

r enove(3C)
r ename(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 547

RESOLVER(3C) RESOLVER(3C)

NAME
dn_conp, dn_expand, dn_ski pnane, hostal i as,res_init,res_nkquery, res_query,
res_querydomai n, res_search, res_send — Provides domain name service resolver functions
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <ar pa/ naneser. h>
#i ncl ude <resol v. h>

int res_init (void);

int res_nkquery (int op, char *name, int class, int type, char *data, i nt datalen,
u_char *newrr, u_char *buf, int buflen);

int res_query (char *name, int class, int type, u_char *answer, int anden);
int res_search (char *name, int class, int type, u_char *answer, int ansen);

int res_querydomai n (char *name, char *domain, int class, int type u_char
*answer, int anden);

char *hostalias (char *name);
int res_send (u_char *buf, int buflen, u_char *answer, i nt anden);

int dn_expand (u_char *msg, u_char *eomorig, u_char *comp dn, char *exp dn, int
length) ;

int dn_conp (char *exp_dn, char *comp_dn, int length, u_char **dnptrs, u_char
** |astdnptr) ;

i nt dn_ski pnane (unsi gned char *comp_dn, unsi gned char *eom);
IMPLEMENTATION
All Cray Research systems

STANDARDS
BSD extension

DESCRIPTION

Theres_init function initializes the resolver functions, consulting / et c/ r esol v. conf (if it exists) for
configuration information. Theres_send(), res_query(), andres_sear ch() routines
automatically call res_i nit () if it has not yet been called.

548 SR-2080 10.0

RESOLVER(3C) RESOLVER(3C)

Ther es_query function creates a standard query for the fully qualified domain hame pointed to by name,
of class class and type type, sends the query to the configured name server, and awaits an answer. The
answer is placed in the buffer, of length anden, pointed to by answer.

Theres_sear ch function callsres_query and r es_quer ydomai n to perform a search for the
domain name name among the domains specified in the resolver configuration.

Ther es_nkquery function creates a query in the buffer, of length buflen, pointed to by buf. The query is
formulated with the following characteristics: op is the opcode of the query; name points to the domain
name to be queried; class is the class of the query; type is the type of query; data points to datalen bytes of
associated data for the query; newrr points to an existing resource record associated with the query. (Legal
values for op, class, and type can be found in the include file ar pa/ nameser . h.) Thisroutine is typically
caled only by res_query().

Theres_quer ydonmai n function callsr es_query to perform alookup of the concatenation of the
domain names pointed to by name and domain, and returns the value returned by r es_query. This routine
istypicaly called only by res_sear ch().

The host al i as function consults the environment variable HOSTALI ASES for the name of afile that
contains a list of domain nhames and aliases, and returns a pointer to the first alias found in such afile for the
domain name pointed to by name.

Ther es_send function sends the query pointed to by buf, of length buflen, to the configured server or
servers. It retrieves the answer in the buffer, of length anslen, pointed to by answer.

The dn_expand function expands the compressed domain name pointed to by comp_dn into the buffer of
length length, pointed to by exp_dn.

The dn_conp function compresses the domain name pointed to by exp_dn into the buffer of length length
pointed to by comp_dn. dnptrs points to a null-terminated list of pointers to previous compressed names;
lastdnptr points to the actual end of the array pointed to by dnptrs.

The dn_ski pnane function skips over a compressed domain name.

RETURN VALUES
Theres_init function returns 0 on successful initialization, or —1 on error.

Ther es_query function returns the length of answer received, or —1 on error, in which case it sets the
external variable h_er r no to reflect the type of error.

Ther es_nkquery function returns the size of the resulting query, or —1 on error.

The host al i as function returns NULL if the environment variable HOSTALI ASES does not exist, the file
referred to by HOSTALI ASES cannot be opened, or no alias is found for name.

Ther es_send function returns the length of the answer received, or —1 on error.

SR-2080 10.0 549

RESOLVER(3C) RESOLVER(3C)

The dn_expand function returns the length of the compressed name, or —1 on error.
The dn_conp function returns the length of the compressed name, or —1 on error.

The dn_ski pnane functions returns the size of the compressed name skipped, or —1 on error.

FILES

ar pa/ naneser. h

/etc/resol v. conf

SEE ALSO

get host (3C), herr or (3C)

resol v. conf (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research
publication SR—2014

550 SR-2080 10.0

REXEC(3C) REXEC(3C)

NAME

r exec — Returns a stream to a remote command

SYNOPSIS
#i ncl ude <uni std. h>
i nt rexec (char **ahost, unsigned short inport, char *user, char *passwd, char
*cmd, int *fd2p);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The r exec function uses get host bynane (see get host (3C)) to look up the remote host ahost; r exec
returns —1 if the remote host does not exist. Otherwise, ahost is set to the official name of the host. If a
user name and password are both specified, these are used to determine whether authorization exists for the
remote host; otherwise, the . net r ¢ file in the user’s home directory is searched for the appropriate
information. If all searches fail, the user is prompted for a login name and password.

The port inport specifies which TCP port to use for the connection; it is normally the value returned from
the function get ser vbyport (see get serv(3C)).

The protocol for the connection is described in detail in r execd(8).

If the r exec function succeeds, a socket of type SOCK_STREAMis returned to the caller and given to the
remote command cmd as the file descriptors st di n (for reading to the socket) and st dout (for writing to
the socket). If fd2p is nonzero, an auxiliary channel to a control process is set up, and a descriptor for it is
placed in fd2p. The control process returns diagnostic output from the command (st der r) on this channel
and also accepts bytes on this channel as being UNICOS signal numbers, to be forwarded to the process
group of the command. If fd2p is O, st derr is made the same as st dout . In this case, no provision is
made for sending arbitrary signals to the remote process, although you may be able to get its attention by
using out-of-band data.

NOTES
There is no way to specify options to the socket (2) call that r exec makes.

SR-2080 10.0 551

REXEC(3C) REXEC(3C)

FILES
$HOVE/ . netrc

SEE ALSO
get host (3C), get ser v(3C), r cnd(3C), st di 0. h(3C)
socket (2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012

host s(5), net r c(5) in the UNICOS File Formats and Secial Files Reference Manual, Cray Research
publication SR—2014

r execd(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

552 SR-2080 10.0

RINT(3C) RINT(3C)

NAME

rint,rintf,rintl — Roundsarguments to an integral value in floating-point format

SYNOPSIS
#i ncl ude <fp. h>

doubl e rint (double x);
float rintf (float X ;
| ong double rintl (long double X);

IMPLEMENTATION
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

Therint,rintf,andrintl functionsround their arguments to an integral value in floating-point format,
using the current rounding direction.

RETURN VALUES

These functions return the rounded integral value of their arguments.

SEE ALSO

rinttol (3C)
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 553

RINTTOL (3C) RINTTOL (3C)

NAME

ri nttol — Rounds a floating-point number to a long integer value

SYNOPSIS
#i ncl ude <fp. h>

long int rinttol (long double x);

IMPLEMENTATION
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

Therinttol functionroundsits| ong doubl e argument to | ong i nt, using the current rounding
direction. If the rounded value is outside the range of | ong i nt, the numeric result is unspecified.

RETURN VALUES

Therinttol function returnsthe rounded | ong i nt value, using the current rounding direction.

SEE ALSO
rint (3C)
Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

554 SR-2080 10.0

RPC(3C)

NAME

RPC(3C)

r pc — Makes a remote procedure call

IMPLEMENTATION

All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The remote procedure call (RPC) functions allow C programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a data packet to the server. On receipt of the
packet, the server calls a dispatch function to perform the requested service and sends back a reply. Finaly,
the procedure call returns to the client.

The RPC library functions follow:

Function

aut hdes_create
aut h_dest roy
aut hnone_create
aut huni x_create

Description

Returns the RPC authentication handle with DES authentication
Destroys the authentication information handle

Returns an RPC null authentication handle

Returns an RPC UNIX authentication handle

aut huni x_creat e_defaul t

cal l rpc

cl nt _broadcast
clnt_cal

clnt _create

cl nt _destroy
clnt _freeres
clnt_geterr

cl nt _pcreateerror
clnt_perrno

cl nt_perror
clntraw create
clnttcp_create
cl ntudp_create
get _nyaddr ess
pmap_get maps
pmap_get port
prmap_r mnt cal
pmap_set

SR-2080 10.0

Returns the default UNIX authentication handle

Calls a remote procedure, given [prognum,ver snum,procnum
Broadcasts the remote procedure call

Calls the remote procedure associated with the client handle

Creates an RPC client when passed a remote host and transport type
Destroys the client’s RPC handle

Frees data allocated by the RPC/XDR system when decoding results
Copies error information from the client handle to an error structure
Prints a message to st der r that indicates why client handle creation failed
Prints a message that corresponds to the condition given to st der r
Prints a message to st der r that indicates why the RPC call failed
Creates a simple RPC client for simulation

Creates an RPC client by using TCP transport

Creates an RPC client by using UDP transport

Gets the machine's IP address

Returns a list of RPC program-to-port mappings

Returns the port number on which the supporting service waits
Instructs the portmapper to make an RPC call

Establishes mapping between [prognum,ver snum,procnum] and port

555

RPC(3C)

NOTES

556

pmap_unset

regi sterrpc
svc_destroy
svc_freeargs
svc_getargs
svc_getcall er
svc_getreq
svc_getreqset
svc_register
svec_run
svc_sendreply
svc_unregi ster
svcerr_auth
svcerr_decode
svcerr_noproc
svcerr_nopr og
svcerr_progvers
svcerr_systenerr
svcerr_weakaut h
svcraw create
svctcp_create
svcudp_create
xdr_accepted_reply
xdr _aut hdes_cred
xdr _aut hdes_verf
xdr _aut huni x_par s
xdr _cal | hdr

xdr _cal | msg
xdr_opaque_aut h
xdr _pmap
xdr_pmapl i st
xdr_rejected_reply
xdr _repl ynsg
xprt_register
Xprt_unregi ster

Destroys mapping between [prognum,ver snum,procnum] and port
Registers a procedure with RPC as the service package
Destroys the RPC service transport handle

Frees data allocated by the RPC/XDR system when decoding arguments

Decodes the arguments of an RPC request

Gets the network address of the caller of a procedure

Returns when all associated sockets have been serviced

Returns when all associated sockets have been serviced
Associates prognum and versnum with a service dispatch procedure
Waits for RPC requests to arrive and calls the appropriate service
Sends back results of a remote procedure call

Removes mapping of [prognum,versnum] to dispatch functions
Refuses service because of an authentication error

Indicates that a service cannot decode its parameters

Indicates that a service has not implemented the desired procedure
Shows that a program is not registered with the RPC package
Shows that a version is not registered with the RPC package
Indicates that a service detects a system error

Refuses service because of insufficient authentication

Creates a simple RPC service transport for testing

Creates an RPC service based on TCP transport

Creates an RPC service based on UDP transport

Generates RPC-style replies without using the RPC package
Sends or receives DES credentials without using the RPC package
Sends or receives DES verifier without using the RPC package
Generates UNIX credentials without using the RPC package
Generates RPC-style headers without using the RPC package
Generates RPC-style messages without using the RPC package
Describes RPC authenticators, externally

Describes parameters for portmap procedures, externally
Describes a list of port mappings, externally

Generates RPC-style rejections without using the RPC package
Generates RPC-style replies without using the RPC package
Registers RPC service transport with the RPC package
Unregisters RPC service transport from the RPC package

Users access these library functions from | i bc.

SR-2080 10.0

RPC(3C) RPC(3C)

FILES

/lib/libc.a File that contains the RPC functions

SEE ALSO
xdr (3C)
Remote Procedure Call (RPC) Reference Manual, Cray Research publication SR—2089

"Remote Procedure Call Programming Guide," "Remote Procedure Call Protocol Specification," and
"External Data Representation Specification" in Networking on the Sun Workstation, part #800—1324—03,
Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043.

RPC: Remote Procedure Cal Version 2 Standard, RFC 1057

SR-2080 10.0 557

RTCLOCK (3C) RTCLOCK(3C)

NAME
rtcl ock — Gets current real-time clock (RTC) reading

SYNOPSIS
#i ncl ude <tine. h>

long rtclock (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION
Thert cl ock function returns the current reading of the RTC.

SEE ALSO
cpused(3C)

558 SR-2080 10.0

SAMEQU(3F) SAMEQU (3F)

NAME
SAMEQU — Specifies equivalent character in Sort/Merge session

SYNOPSIS

| NTEGER init_array(2* * N)
CALL SAMEQU(colseq, chr, init_array)

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

SAMEQU is used to make the characters specified in an array equivalent to one specific character in a
specified collating sequence. The following is a list of valid arguments for this routine.

colseq Hollerith constant of 8 characters or less containing the name of the collating sequence.
chr A right-justified Hollerith character specifying the character that is equivalent to the charactersin
init_array.

init_array An integer array containing a set of characters that are considered equivalent to chr in the
collating sequence colseq after the execution of SAMEQU. Each element of the array holds 1
Hollerith character that is right-justified and padded with zeros on the left. The maximum
number of charactersin init_array is 2" where n is the size in bits of a character. The default
character sizeis 8. The list of charactersin the array is terminated by an array element that
contains the value —1.

After execution, the character values listed in init_array all compare equally to the specified character chr in
the collating sequence colseq.
EXAMPLES

In the following example, the ASCII collating sequence is modified to make digits 1 through 9 equivaent to
digit 0. After the execution of the call, digits 1 through 9 are treated in the same manner as digit O in the
ASCII collating sequence by the Sort/Merge session.

| NTEGER SAMPLE(10)
DATA SAMPLE/'1'R'2’R’'3R’4R'5’R’'6R’'7R’'8 R’ 9R -1/
CALL SAVEQU(’ ASCI |’ H,’ 0’ R, SAMPLE)

SEE ALSO
SAVSI ZE(3F)

SR-2080 10.0 559

SAMFILE(3F) SAMFILE(3F)

NAME
SAMFI LE — Defines subroutines for Sort/Merge operations

SYNOPSIS
CALL SAMFI LE(ftypel[, option, subname] [, option, subname]])

IMPLEMENTATION
Cray PVP systems

DESCRIPTION
SAMFI LE is used to specify subroutines to be used by the Sort/Merge routine. SAMFI LE is used when the
following options are specified:
ftype A Hollerith constant that is left-justified and padded with blanks, or an integer variable
containing a Hollerith constant that specifies the file access type. Allowable values are:

"I NH Specifies an input subroutine; use the option "READ=" followed by a subroutine
name.

"I NN MH Specifies an input subroutine that generates records that are already sorted; use the
option ’ READ=" followed by a subroutine name.

"OQUT'H Specifies an output subroutine; use the option "WRI TE=" followed by a subroutine
name.

option A Hollerith constant that is left-justified and filled with blanks, or an integer variable containing
a Hollerith constant that specifies an action to be performed by a user-supplied subroutine for the
Sort/Merge sessions. Depending on ftype, option can be one of the following:

ftype=" IN Hor ' I NN M H

ftype=" QUT" H
" AFTER=" H " AFTER="H
"EOF="H " =FI RST="H
" READ=" H " =EQUALS="H
"OPEN="H " =LAST="H
" CLOSE="H "EOF="H
" ERROR=" H "WRI TE=' H

" OPEN=" H

" CLOSE="H

" ERROR="H

560 SR-2080 10.0

SAMFILE(3F) SAMFILE(3F)

subname The name of the user-supplied subroutine to be used by the Sort/Merge session for the action
specified by option.

User-supplied Subroutines
The user-supplied subroutines al have a common structure:

SUBROUTI NE MYROUTI NE (| NBUF, | NSZ, RETURN_CODE, OUTBUF, QUTSZ)
| NTEGER | NSZ, OUTSZ, RETURN_CODE
| NTEGER | NBUF(| NSZ) , OUTBUF(OUTSZ)

For an OPEN routine, parameters | NBUF, | NSZ, QUTBUF, and OUTSZ are dummies and must not be
referenced by the subroutine. The RETURN_CODE is undefined on entry; it must be set before return to
either "RETURN or "ABORT". "RETURN' indicates successful initialization and "ABORT" indicates the
opposite and terminates the sorting process.

For a READ routine, the user’s program may fill | NBUF(1) through | NBUF(| NSZ) with data for the input
record. It should set | NSZ to the number of words actualy filled. RETURN_CODE may be set to "ABORT’

in case of error; this terminates the sort process. If there is no more information, RETURN_CODE should be
set to "ECF’. If the routine successfully fills | NBUF with information, RETURN_CODE should be set to

‘I NCLUDE’ (it is initialized by the Sort/Merge routine to this).

The CLOSE routine parameters | NBUF, | NSZ, QUTBUF, and QUTSZ are all dummies and must not be
referenced by the user subroutine. The RETURN_CODE is undefined on entry; it must be set before return to
either "RETURN or "ABORT". "RETURN' indicates successful initialization and "ABORT" indicates the
opposite and terminates the sorting process.

The WRI TE routine words | NBUF(1) through | NBUF(| NSZ) contain the current sorted output record.
The write routine can do whatever it chooses with the contents of this record. The return code defaults to
"RETURN’, which allows the process to proceed. You may also specify "ABORT’ in the event of error,
which terminates the sort. |f you specify "EOF", the Sort/Merge routine closes the current output sink and
advances to the next sink, if any.

An error routine is caled in a different manner:

SUBROUTI NE MYERROR(NUVBER, MESSAGE)
| NTEGER NUVBER
| NTEGER MESSAGE(8)

You can supply values for the error number and the message; if a different error handler is needed for each
file, you can embed knowledge about the source (file or internally generated) in the error handler. When the
error handler returns, the sort terminates. The return codes are Hollerith constants that are left-justified and
blank-filled.

SR-2080 10.0 561

SAMFILE(3F) SAMFILE(3F)

EXAMPLES

In the following example, MYOPEN is called before the first read and MYCLOSE is called after the read
routine declares end-of-file. MYERROR is called in the event of an error.

EXTERNAL MYREAD, MYOPEN, MYCLOSE, MYERR
CALL SAMFI LE(’ I N H,’” READ=" H, MYREAD, ' OPEN=" H, MYOPEN,
$ " CLOSE=" H, MYCLOSE, ' ERROR=" H, M\YERR)

In the following example, whenever Sort/Merge would write an output record it calls MYWRI TE instead.

EXTERNAL MYWRI TE, MY_W OPEN, MY_W CLOSE, M\Y_W ERR
CALL SAMFI LE(’ OUT’ H, * WRI TE=" H, MY_WRI TE, * OPEN="H, MY_W OPEN,
$ ' CLOSE=" H, \/_W CLOSE, ’ ERROR=" H, \Y_W ERR)

SEE ALSO
SANMPATH(3F), SAVBORT(3F)

562 SR-2080 10.0

SAMGO(3F) SAMGO(3F)

NAME
SAMZ0 — Initiate a Sort/Merge session

SYNOPSIS
CALL SAM30O

IMPLEMENTATION
Cray PVP systems

DESCRIPTION

The SAM30 routine starts a Sort/Merge session. This call must be last chronologically in a series of calls
that start with either SAMSORT or SAMVERGE. There must be one or more intervening calls to SAMKEY,
one or more calls to SAMFI LE or SAMPATH specifying input sources, and one or more calls to SAMFI LE or
SAMPATH specifying output sinks. Optional calls can be made to SAMEQU, SAMOPT, SAMSEQ, or

SAMSI ZE.

SEE ALSO

SAVEQU(3F), SAVFI LE(3F), SAVKEY(3F), SAMOPT(3F), SAMPATH(3F), SAVBEQ(3F), SAVSI ZE(3F),
SAMSORT(3F)

SR-2080 10.0 563

SAMKEY (3F) SAMKEY (3F)

NAME

SAMKEY — Defines sort keys for a Sort/Merge session

SYNOPSIS

CALL SAMKEY(typd, order], args, ... arg, [, colseq])

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

564

SAMKEY is one of a sequence of calls that specify the sort or merge operation to be performed. Unless you
provide your own comparison routine (using the "COVMPARE=" argument to SAMSORT or SAMVERGE) there
must be a least one call to SAMKEY between a call to SAMSORT or SAMVERCE and the call to SAMGO,
which initiates the Sort/Merge operation.

A call to SAMKEY must be preceded by a call to either SAMSORT or SAMVERCGE.
There is no limit on the number of calls to SAMKEY.

The order in which you make the calls to SAMKEY determines the significance of the key in the sort. The
first key specified has the most weight in comparisons.

The following is alist of valid arguments to this routine:

type A Hollerith constant or an integer variable containing a Hollerith constant specifying a Sort/Merge
operation. type is a Hollerith constant that is left-justified, blank-filled and can contain the
following values:

‘BINH Sorts afield of arbitrary length as an unsigned integer. The field can be as small as 1
bit; there is no limit on length.

“INT'H Sorts asigned (2's complement) integer field. Thisis usualy applied to a 64-bit Cray
word. The maximum length is 64 bits; the field can be shorter. Such a field will
usualy start on a word boundary.

‘FLT'H Sorts a floating-point number in Cray internal format. The maximum field length is 64
bits. The field can be shorter, but results will not be meaningful with a length less than
18 bits. The numbers should be normalized.

"CHR'H Sorts fields containing characters. The length of the string should be a multiple of the
character size, which defaults to 8 bits (but which can be set with the SAMSI ZE
subroutine call). The default collating sequence is ASCII, but the collating options can
be used or you can provide your own. Thereis no practical limit on the size of the
field.

SR-2080 10.0

SAMKEY (3F) SAMKEY (3F)

‘DEC'H Compares a character field that contains decimal numbers. Results are meaningful only
if the collating sequence is equivalent to ASCII or ASCITUP sequences (an error results
in other cases). The field must contain only decimal digits and at most one decimal
point and at most one leading sign (positive or negative). Exponential notation (for
example, 1. OE+2) cannot be used. Leading and trailing blanks are ignored.
Embedded blanks are treated as zeros.

The type specified determines the file format used by the sorting routines. A type of ' BI N' H,
"I NT" H, or ' FLT" Hindicates UNFORMATTED input/output files. A type of * CHR Hor
" DEC H indicates FORMATTED input/output files.

order A Hollerith constant or an integer variable containing a Hollerith constant specifying the order in
which records should be sorted. Allowable values are "DESCEND H or “ASCEND H (the default
will be sorted in ascending field value). The value must be left-justified and filled with blanks.

arg Argument(s) specifying the starting location of the field. If there is no default length or if the
default length is inappropriate, arg also specifies the length or ending position of the field. All the
arguments associated with the starting location must precede any argument associated with the
ending location or length. Arguments are provided in pairs (one of the key words followed by a
decimal value). The key words are:

' START' H
' LENGTH H
' END' H
' WORD=" H
' CHR=" H
'BI T=" H

colseq An integer variable or Hollerith constant specifying the collating sequence to be used if the key
type is 'CHR. This may be a user-specified collating sequence, or it can be one of the following
built-in collating sequences:

"ASCI | “H Sorts in ASCII sequence
"ASCl | UP'H Sorts in ASCII sequence except lowercase |etters are treated as uppercase
letters

"EBCDI CH Sorts in ASCII sequence according to the EBCDIC sequence

"EBCDI CUP'H Sorts in ASCII sequence according to the EBCDIC sequence except that
lowercase letters are treated as uppercase letters

SR-2080 10.0 565

SAMKEY (3F) SAMKEY (3F)

Values for arg
Hollerith constants are used to specify information about location. The starting location of afield is tracked
as a bit offset within the record. The first (high-order) bit is bit number 1. You can also specify a word
offset or a character offset. The word offset is transformed into a bit offset at the rate of 64 bits per word
(or the value specified in a SAMSI ZE subroutine call). A character offset is transformed into a bit offset at a
rate of 8 bits per character (or the size specified in a SAMSI ZE call).

You can specify one, two, or al three of the parameters for specifying a bit offset. If you are doing a "Bl N
comparison, you might want to start a field at the 5th bit of the 6th character of the 7th word. Any of the
following sets of arguments would work:

,"WORD="H, 7, ' CHR='H, 6, BI T='
,"WORD="H, 6, ' CHR=' H, 14, ’ BI T='
,"WORD="H, 5, ' CHR=" H, 22, "’ BI T='
,"WORD="'H, 4, ' CHR=" H, 30, ’ BI T='
,"WORD="H, 3, ' CHR=' H, 38, ’ BI T='
,"WORD="H, 2, ' CHR=' H, 46, ’ BI T='
,"WORD="H, 1, ' CHR=' H, 54, " BI T='
' CHR=' H, 53, BI T='

' Bl T='

ITITITITTTITITTITT
AP ooootonoo

N W™

If unspecified, the word, character, or bit parameter value is assumed to be 1. The word, character, and bit
parameters values are transformed into a bit offset in the obvious way.

You must first specify the starting position. The arg parameter should be the value "START . It should be
followed by 2, 4, or 6 parameters giving the actual starting position. Following this, you must specify either
an ending bit position or a length. In either case, you combine the keywords in exactly the same way as for
the starting bit position. Use the’ END' H or "LENGTH H keywords.

EXAMPLES

In the following example, the key is a character string that starts with the fourth character of the record and
consists of 10 characters. The example does not specify a ranking order or collating sequence; therefore, the
defaults apply.

CALL SAMKEY(’' CHR H,’ START' H,' CHR="H, 4,’ LENGTH H,’ CHR="H, 10)

In the following example, the key is an integer that starts with the seventh bit position and is 12 bits. The
keys are ranked in ascending order.

CALL SAMKEY(' I NT'H,* START' H,'BI T="H, 7, LENGTH H,’ BI T=" H, 12)

SEE ALSO
SAMGO(3F), SAMKEY(3F), SAMPATH(3F), SAMBORT (3F)

566 SR-2080 10.0

SAMOPT(3F) SAMOPT(3F)

NAME
SAMOPT — Specifies sort options used in a Sort/Merge session

SYNOPSIS
CALL SAMOPT(arg|, arg])

IMPLEMENTATION
Cray PVP systems

DESCRIPTION
SAMOPT is used to specify the sort options available during a Sort/Merge session.

arg A Hollerith constant, or an integer variable containing a Hollerith constant, specifying sort options.
arg is a Hollerith constant that is left-justified and padded with blanks. Specify one or both of the
following values for arg:

"NOVERI FY'H Disables Sort/Merge verification of file order. The Sort/Merge routine will verify
that files exist in the order in which they have been declared. Specify the order
by starting the sort with the SAMVERGE subroutine which affects all input files,
or by caling SAMFI LE or SAMPATH with an ftype of "I N MH for a specific
file

"RETAI N'H Maintains the original input order of a sequence of records with equivalent keys.
If this option is not specified, the Sort/Merge routine does not maintain the
original order.

SEE ALSO
SAVFI LE(3F), SAMPATH(3F), SAMSORT(3F)

SR-2080 10.0 567

SAMPATH(3F)

NAME

SAMPATH(3F)

SAMPATH — Defines input and output files and characteristics for a Sort/Merge session

SYNOPSIS
CALL SAMPATH(ftype, pathname, [, option, subname]...)

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

568

SAMPATH specifies Sort/Merge input and output files to be used during a Sort/Merge session. User-supplied
routines can be added at various stages of processing during the session.

The SAMFI LE routine should be used when an output file is not required during a Sort/Merge session.

The following is alist of valid arguments to this routine:

ftype

pathname

option

subname

A Hollerith constant, or an integer variable containing a Hollerith constant that specifies a file
access type. ftype is a Hollerith constant that must be left-justified and padded with blanks.
Allowable values are;

‘INH Specifies an input file
TN MH Specifies an input file that generates records that are sorted
"OUT'H Specifies an output file

An integer or Hollerith constant specifying the absolute or relative path name of the input or
ouptut file to be used during a Sort/Merge session.

An integer or Hollerith constant specifying when to use a subroutine supplied through subname.
option is a Hollerith constant that must be left-justified and padded with blanks. The allowable
values are;

"AFTER'H Specifies that a subroutine will be called after a record has been selected for either
input or output

"=FI RST="H, "=EQUALS="H, '=LAST="H
Specifies that a subroutine be called to process the first member of a class of

records with equal keys or to process the last member of the class, or to process
the middle records

The name of a subroutine to be called as specified in option.

SR-2080 10.0

SAMPATH(3F) SAMPATH(3F)

User-supplied Routines
The user may supply subroutines to be used by the Sort/Merge routine during a Sort/Merge operation. See
the description of user-supplied subroutines in SAMFI LE. The third parameter in a call to one of these
subroutines may be a STATUS or an ACTI ON variable. The following Hollerith constants can be specified
as STATUS and ACTI ON variables:

STATUS Used to process records in routines. STATUS can have the following values:

“I NCLUDE" Includes the new record during input processing. Y ou must copy the contents
of | NREC(1: | N\\DS) to OUTREC and set QUTWDS to | NDS. You can
modify the record as you copy it, and revise the length of the record.

"REPLACE" Creates a new record during input processing. The new record replaces the
input record. A replacement counter is incremented (this counter appears in the
statistical summary if requested).

‘I NSERT” Inserts a new record during input processing or end-of-file (EOF) processing.
Store the new record in OQUTREC and set OQUTWDS appropriately. An insertion
counter is incremented (this counter appears in the statistical summary if
requested).

‘M T Omits the record during input processing. The Sort/Merge package ignores the

current record and retrieves the next record. An omission counter is
incremented (this counter appears in the statisical summary if requested).

"ECF States that the current input file is finished. The Sort/Merge package proceeds
as if an EOF had been detected. If one has been specified, the next input file is
used.

"ABORT’ States that an error occurred during input processing or EOF processing. |If you
provide an error-processing routine, it is called and the Sort/Merge session
terminates.

"RETURN" Used only in EOF processing. The EOF condition is propagated back to the
Sort/Merge package.

ACTI ON Used in output processing. The following values are available for the ACTI ON variable:
"I NCLUDE" Includes the record presented as | NREC as the output record.
‘M T Discards the current record. An omission counter is incremented.

"REPLACE" Writes the record stored to OQUTREC (the length of which is stored in QUTVDS).
A replacement record counter is incremented. The record offered in | NREC is
discarded.

‘I NSERT” Writes the record stored to OQUTREC (the length of which is stored in QUTVDS).
A replacement record counter is incremented. Sort/Merge immediately calls the
routine presenting the same record.

SR-2080 10.0 569

SAMPATH(3F) SAMPATH(3F)

"EOF Calls a user-supplied EOF routine (if available). If only one output file was
specified, the sort terminates normally. If more than one output file was
specified, the current file is closed.

"ABORT’ Terminates the sort/merge session.

"RETURN" Used only in EOF processing. The EOF condition is propagated back to the
sort/merge package.

Equivalence Class Processing

Equivalence class processing is similar to other output processing. The possible return codes are the same
and operate in the same way. Any records that are inserted do not affect the determination of equivalence
classes. If a user-supplied routine inserts a record, it will be recalled with the original record, even though it
is not first. The Sort/Merge session will call the user-supplied subroutine with the original record until that
record has been processed.

It is not necessary to write routines for al three egquivalence class possibilities. Any user-supplied routine to
handle the EOF condition will be called if the sort runs out of records or if another user-supplied routine has
returned the” ECF’ for STATUS.

The only valid ACTI ON values are "I NSERT” or "RETURN'". Store the record to be inserted in OUTREC and
set its length in OQUTWDS. Sort/Merge writes the record and calls the EOF processing routine again. The
inserted record is not considered in the equivalence processing. |If arecord is supplied in OUTREC, its length
must be less than the maximum record length, which is 20 words (unless changed with the SAMIUNE call).

EXAMPLES

570

The following example gains control after each record is read:

EXTERNAL MYAFTER
C other parts of the program
CALL SAMPATH('IN H, 'the_data_file' H 'AFTER="H, MYAFTER)

After the records are read from t he_dat a_fi | e, the Sort/Merge package calls the MYAFTER subroutine,
which should have the following elements:

SUBROUTI NE MYAFTER(| NREC, | NWDS, STATUS, OUTREC, OUTWDS)
| NTEGER | NWDS, STATUS, OUTWDS
| NTEGER | NREC(1 N\\DS), OUTRED(OUTWDS)

The size of the input and output records are in Cray 64-bit words. When reading character records, the
record size is rounded to an integral number of Cray words. The output record is also an integral number of
Cray words.

The following example gains control after an EOF condition has been detected on an input file:

EXTERNAL MYEOF
C other parts of the program
CALL SAMPATH('IN H,'the_data_file H,’ EOF="H, MYEOF)

SR-2080 10.0

SAMPATH(3F) SAMPATH(3F)

The following example includes both an “AFTER’ routine and an "EOF” routine:

EXTERNAL MYAFTER, MYECF
C other parts of the program
CALL SAMPATH(' IN H,'the_data_fil e H,’ AFTER=" H, MYAFTER, ' EOF=" H, MYECF

When the EOF condition occurs in the file, the subroutine is called. It should have the following elements:

SUBROUTI NE MYECF (| NREC, | NWDS, STATUS, OUTREC, OUT\ADS)
| NTEGER | NWDS, STATUS, OUTWDS
| NTEGER | NREC(| N\\DS), OUTREC(OUTWDS)

The following example captures records before they are written during output:

EXTERNAL OUTAFTER
C other program parts
CALL SAMPATH(’ OQUT’ H, pat h_nane, ' AFTER=" H, OUTAFTER)

Before the output record is written, the Sort/Merge package calls the subroutine, which should have the
following elements:

SUBROUTI NE OUTAFTER(| NREC, | NWDS, ACTI ON, OQUTREC, OUTV\DS)
| NTEGER | NWDS, ACTI ON, QUTWDS
| NTEGER | NREC(| N\\DS), OUTREC(OUTWDS)

SEE ALSO
SANMSORT(3F), SAMVFI LE(3F)

SR-2080 10.0 571

SAMSEQ(3F) SAMSEQ(3F)

NAME
SAMSEQ — Specifies and defines a collating sequence

SYNOPSIS

| NTEGER init_array (2**N)
CALL SAMSEQ colseq, init_array)

IMPLEMENTATION
Cray PVP systems

DESCRIPTION
SAMSEQ s used to define a collating sequence used in Sort/Merge sessions.

The following is a valid list of arguments to this routine:

colseq A Hollerith constant or an integer variable containing a Hollerith constant specifying a collating
sequence. colseq is a Hollerith constant with a maximum of 8 characters and is left-justified and
filled with blanks. This can be specified in subsequent SAMKEY calls.

init_array An integer array containing the collating sequence. It can have a maximum size of 2* * N, where
N is the character size (by default 8 bits; this can be set using the SAMSI ZE routine). Each
element in the array holds 1 Hollerith character that is right-justified and padded with zeros on
the left. The character used in the low-order bits of the first element of the array is used as the
low value in the collating sequence. The value used for the second element becomes the next
lowest value in the collating sequence, and so on. The value —1 terminates the array entries.

EXAMPLES

In the following example, a user-specified collating sequence contains the default character set in reverse
order. A fileis sorted in reverse order by an ASCII key; the "DESCEND H keyword is not used in the
SAMKEY call. The following program fragment defines a collating sequence in which X'FF~ compares low
with respect to other elements. X'42” (the 'B” character) compares low with respect to X'41" (the A’
character). You can then use the "I | CSA'H collating sequence in a SAMKEY call, achieving a descending
sort.

| NTEGER REVERSED(256)
DO 100 | = 1,256
REVERSED(|) = 256 - |
100 CONTI NUE
CALL SAMSEQ(’ | | CSA' H, REVERSED)

572 SR-2080 10.0

SAMSEQ(3F) SAMSEQ(3F)

In the following example, the SAMPLE collating sequence will consider 999 to be smaller than 000. In
addition, any unspecified characters compare larger than any specified character and are equal to each other.
Therefore 997 is larger than 999, but is equal to 99A. The nonstandard notation “* "R indicates that the
character value is to be right-justified in the word and that unused character positions are to be set to 0.

| NTEGER SAMPLE(11)
DATA SAMPLE/’9'R, '8'R '7’R '6'R '5'R '4'R '3R '2’R '1'R -1/
CALL SAVSEQ' SAMPLE H, SAMPLE)

SEE ALSO
SANVKEY(3F), SAVBI ZE(3F)

SR-2080 10.0

573

SAMSIZE (3F) SAMSIZE (3F)

NAME

SAMSI ZE — Specifies word and character sizes for Sort/Merge session

SYNOPSIS
CALL SAMSI ZE(keyword, value)

IMPLEMENTATION
Cray PVP systems

DESCRIPTION
SAMSI ZE specifies a character size or word size for character comparisons.

keyword A Hollerith constant, or an integer variable containing a Hollerith constant, specifying either
character or word size. keyword is a Hollerith constant, containing either "CHR="H or
"WORD="H.

value An integer variable, expression, or constant specifying the number of keyword items.

To specify a character size for use in character comparisons, specify “CHR="H for keyword, followed by an
integer between 1 and 12 for value.

To specify a word size for character comparison, specify "WORD="H for keyword and an integer for value.
The default value is 64; there is no maximum. This value is used to interpret the "WORD="H keyword in the
SAMKEY subroutines.

Both options can be specified in the same call.

SEE ALSO
SANMKEY(3F)

574 SR-2080 10.0

SAMSORT (3F)

NAME

SAMSORT (3F)

SANMSORT, SAMMERGE — Begins a Sort/Merge specification

SYNOPSIS

CALL SAMSORT(errflag [, "STAT'H] [, "STATF="H, dsname] [, "ERRORF="H, dsname]
[, "ERROR="H, errsub] [, "COMPARE="H, compsub])

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

SAMSORT starts the specification of a Sort/Merge session. After this call, you must call SAMKEY one or
more times, call either SAMFI LE or SAMPATH one or more times, and call other subroutines as needed.

SAMSORT must not be called a second time until the sort you are specifying has been executed by a call to
SAMZ0. If no error is encountered by SAMSORT, errflag is set to 0. If an error is detected by SAMSORT,
errflag is set to 1. If an error is detected by a user-supplied routine, errflag is set to 2.

The following is alist of valid arguments for this routine:

errflag
"STAT'H
'STATF'H

dsname

"ERRORF'H

"ERROR'H

errsub
"COVPARE'H

compsub

SR-2080 10.0

An integer variable that is a member of a common block.
Used to generate statistics on the Sort/Merge operation. Use either this option or “"STATF H.
Used to generate statistics; use either this option or “STAT H.

An integer variable, expression, or constant containing the path name of the file (a total of 8
characters or less) to which statistics generated by “STATF H should be written or to which
error messages should be saved. If more than 8 characters are needed for a path name, use
the SAMPATH subroutine. The Hollerith constant is left-justified and blank-filled.

Used to specify a file to receive error messages. If more than 8 characters are needed for a
path name, use the SAMPATH subroutine instead.

Used to specify an error routine. This routine cannot assist in error recovery; it can,
however, do final cleanup such as closing files, writing error messages, and so on.

The name of the error subroutine.

Used to specify an optional user-supplied comparison routine. See the CAUTIONS section
for information about including a user-supplied comparison routine.

The name of the comparison subroutine.

575

SAMSORT (3F) SAMSORT (3F)

CAUTIONS

It is recommended that you do not supply your own comparison routine to be used during the sorting or
merging process. This prevents the Sort/Merge routine from storing key information compactly and from
using the ORDERS(3F) routine from the scientific libraries.

SEE ALSO

SAVEQU(3F), SAMFI LE(3F), SAMGO(3F), SAVKEY(3F), SAMPATH(3F), SAMOPT(3F), SAVBEQ(3F),
SAVSI ZE(3F)

576 SR-2080 10.0

SAMTUNE (3F) SAMTUNE (3F)

NAME
SAMIUNE — Modifies selected parameters used in a Sort/Merge session

SYNOPSIS
CALL SAMIUNE(keyword, value, . . .)

IMPLEMENTATION
Cray PVP systems

DESCRIPTION
SAMIUNE is used to alter the parameters used in a Sort/Merge session.

Performance in a Sort/Merge session is determined by the amount of available central memory. Sort/Merge
uses half of a megaword of memory by default; the magjority of the memory is used for buffers for
intermediate files used during the merge phase. During the first phase all of the memory is used to form
runs of greatest length.

keyword A Hollerith constant or integer variable containing a Hollerith constant specifying tuning
keywords. keyword is a Hollerith constant that is left-justified and blank-filled.

value An integer constant or variable, depending on the keyword.

Initial runs are formed using the ORDERS(3F) routinein | i bsci unless a user-supplied comparison routine
is specified. The ORDERS routine is vectorized; the later merge stage sorts the records using a tournament
sort method. The merge phase sorts are scalar.

The following are valid keywords. Any keywords must be used as is, with equal signs and single quotation
marks.

"AVRL="H Specifies the average record length. The default is the maximum record length. This
value is used to allocate interna tables. It is recommended that you use an average record
length that is too small rather than one that is too large.

"MXRL="H Specifies the maximum record length. The default is 20 Cray words (160 bytes). If the
maximum record length is too short, the sort aborts during the input phase.

"NRECEST="H An estimate of the number of records in the input files. The default is 1,000,000 records.
This value is no longer used.

‘DI SK="H No longer used in this implementation. Instead, you may specify a colon-separated list of
directories in the CSORTDI R environment variable.
‘DSLO="H No longer used in this implementation.

"NAVEBME"H No longer used in this implementation.
"NAMESSD="H No longer used in this implementation.

SR-2080 10.0 577

SAMTUNE (3F)

"NDS="H

"NDSSD="H
"NBSSD="H
"NDBM="H
"NBBM="H
"NBDSK="H

"MNBL="H

"MXBL="H

SEE ALSO

578

SAMSORT(3F)

SAMTUNE (3F)

Specifies the number of temporary datasets to be used during the merge phase. The
default is 10; minimum is 4. Change this parameter only if you must run a Sort/Merge
routine in minimum memory. A large value is recommended, but many temporary
datasets are assigned smaller buffers and buffers should be large to maximize 1/0O
efficiency. This makes it difficult to assign an efficient number for this keyword.

No longer used in this implementation.
No longer used in this implementation.
No longer used in this implementation.
No longer used in this implementation.

Specifies the number of sort buffers to be allocated to each temporary dataset. The size of
the buffer is specified by the "MNBL="H and "MXBL="H parameters. The default vaue is
2.

Specifies the number of word blocks in each sort buffer. The default is 42 (the track size
of a DD-49). If you supply both a minimum and a maximum, the minimum must be the
smaller of the two numbers.

Specifies the number of word blocks in each sort buffer. The default is 42. If you supply
both a minimum and a maximum, the minimum must be the smaller of the two numbers.

SR-2080 10.0

