SCALB(3C) SCALB(3C)

NAME
scal b, scal bf, scal bl — Computes x * FLT_RADI X" efficiently

SYNOPSIS

CRAY T90 systems with IEEE hardware:
#i nclude <fp.h>

double scalb (double x, long int n);
float scalbf (float x, long int n);
| ong double scalbl (long double x, long int n);

Cray MPP systems:
#i nclude <fp.h>

double scalb (double x, long int ny;

IMPLEMENTATION
Cray MPP systems (implemented as a macro)
CRAY T90 systems with |EEE floating-point arithmetic
STANDARDS
ANSI/IEEE Std 754-1985
X3/TR-17:199x
DESCRIPTION
The scal b functions and macro compute x * FLT_RADI X" efficiently, rather than by computing
FLT_RADI X" explicitly.
RETURN VALUES

All return x * FLT_RADI X" .

The second parameter has type | ong i nt, unlike the corresponding i nt parameter for | dexp(3C),
because the factor required to scale from the smallest positive floating-point value to the largest finite one,
on many implementations, is too large to represent in the minimum-width i nt format allowed by Standard
C.

SEE ALSO

f 1 oat . h(3C) for information on the FLT_RADI X macro
f r exp(3C) for information on | dexp

Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

SR-2080 10.0 579

SCANDIR(3C) SCANDIR(3C)

NAME

scandi r, al phasort — Scans a directory

SYNOPSIS

#i ncl ude <sys/types. h>
#include <dirent.h>

int scandir (const char *dirname, struct dirent ***pamdigt,
int (*select)(struct dirent *),
int (*compar)(const void *, const void *));

int al phasort (const void *dl, const void *d2);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

Function scandi r reads the directory dirname and builds an array of pointers to directory entries using

mal | oc(3C). The namelist argument is a pointer to an array of structure pointers. The select argument is a
pointer to a function that is called with a pointer to a directory entry and should return a nonzero value if the
directory entry should be included in the array. If this pointer is null, all the directory entries will be
included. The compar argument is a pointer to a function that is passed to gsor t (3C) to sort the completed
array. If this pointer is null, the array is not sorted.

Function al phasort sorts the array of pointers to directory entries alphabetically. It returns an integer that
is greater than, equal to, or less than zero according to whether the string pointed to by the d_nane field in
the di r ent structure pointed to by d1 is greater than, equal to, or less than the string pointed to by the
d_nane field in the di r ent structure pointed to by d2.

Function scandi r returns the number of entries in the array and a pointer to the array through namelist.

NOTES

In some other operating systems, namelist is of type st ruct direct, not struct dirent. Therefore,
when code is ported from other systems, all instances of st ruct direct must be changed to st ruct
dirent.

580 SR-2080 10.0

SCANDIR(3C) SCANDIR(3C)

RETURN VALUES

These functions return —1 if the directory cannot be opened for reading or if mal | oc(3C) cannot allocate
enough memory to hold all the data structures.

SEE ALSO

di rect ory(3C), mal | oc(3C), gsort (3C)

di r ent (5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 581

SCANF(3C) SCANF(3C)

NAME

scanf, f scanf, sscanf — Converts formatted input

SYNOPSIS
#i ncl ude <stdio. h>
int scanf (const char *format, ...);
int fscanf (FILE *stream, const char *format, ...);
int sscanf (const char *s const char *format, ...);
IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

582

The scanf function reads from the standard input stream st di n, f scanf reads from the specified input
stream, and sscanf reads from the character string s. Each function reads characters, interprets them
according to a format, and stores the results in its arguments. Each expects, as arguments, a control string
format and a set of arguments that indicates where the converted input should be stored. If insufficient
arguments for the format exist, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are evaluated but are otherwise ignored.

You can apply conversions to the nth argument after the format in the argument list, rather than the next
unused argument. In this case, the conversion character % is replaced with the sequence %n$; n is a decimal
integer in the range 1 to NL_ ARGVAX (defined in | i mi t s. h). This feature provides for the definition of
format strings that select arguments in an order appropriate to specific languages. In format strings that
contain the %n$ from of conversion specifications, it is unspecified whether numbered arguments in the
argument list can be referenced from the format string more than once.

The format can contain either form of a conversion specification, that is % or %n$, but usually the two
forms cannot be mixed within a single format string. The only exception to this is that you can mix %% or
%* with the %n$ form.

Argument format is a multibyte character sequence, beginning and ending in its initial shift state. The
format is composed of zero or more directives: one or more white-space characters, an ordinary multibyte
character (neither %nor a white-space character), or a conversion specification. Each conversion
specification is introduced by the %symbol, or the character sequence %$, after which the following appear
in sequence:

1. An optional assignment-suppressing character [

2. An optional decimal integer that specifies the maximum field width.

SR-2080 10.0

SCANF(3C) SCANF(3C)

3. Anoptiona h, | (dl), 1 (el €l), or L indicating the size of the receiving object. The conversion
specifiers d, i , and n are preceded by h if the corresponding argument is a pointer to short i nt
rather than a pointer to i nt, by | if it isapointer tol ong int,orby || if itisapointer tol ong
| ong int. Similarly, the conversion specifiers o, u, and x are preceded by h if the corresponding
argument is a pointer to unsi gned short i nt rather than a pointer to unsi gned i nt, or by | if
it is a pointer to unsi gned | ong i nt. Finaly, the conversion specifiers e, f, and g are preceded
by | if the corresponding argument is a pointer to doubl e rather than a pointer to f | oat , or by L if it
isapointer tol ong doubl e. If anh, |, or L appears with any other conversion specifier, the
behavior is undefined.

4. A character that specifies the type of conversion to be applied. The valid conversion specifiers are as
specified in this entry.

The f scanf function executes each directive of the format in turn. If a directive fails, as detailed in the
following paragraphs, the f scanf function returns. Failures are described as input failures (due to the
unavailability of input characters) or matching failures (due to inappropriate input).

A directive composed of white-space characters is executed by reading input up to the first nonwhite-space
character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters of the stream.
If one of the characters differs from one comprising the directive, the directive fails, and the differing and
subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as described for each
specifier. A conversion specification is executed in the following steps:

1. Input white-space characters (as specified by function i sspace) are skipped, unless the
specification includes a[, ¢, C, or n specifier. These white-space characters are not counted
against a specified field width.

2. Aninput item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest matching sequence of input characters, unless that exceeds a
specified field width, in which casg, it is the initial subsequence of that length in the sequence.
The first character, if any, after the input item remains unread. If the length of the input item is
0, the execution of the directive fails; this condition is a matching failure, unless an error
prevented input from the stream, in which case, it is an input failure.

3. Except in the case of a %specifier, the input item (or, in the case of a % directive, the count of
input characters) is converted to a type appropriate to the conversion specifier. If the input item
is not a matching sequence, the execution of the directive fails; this condition is a matching
failure. Unless assignment suppression was indicated by a [] the result of the conversion is
placed in the object to which the first argument points following the format argument that has not
aready received a conversion result if the conversion specification is introduced by %, or in the
nth argument if introduced by the character sequence %n$. [f this object does not have an
appropriate type, or if the result of the conversion cannot be represented in the space provided,
the behavior is undefined.

SR-2080 10.0 583

SCANF(3C)

584

SCANF(3C)

The following conversion specifiers are valid:

Code
d

e, f,g

Description

Matches an optionally si gned decimal integer, whose format is the same as expected for the
subject sequence of function st rt ol , with the value 10 for the base argument. The
corresponding argument is a pointer to integer.

Matches an optionally si gned integer, whose format is the same as expected for the subject
sequence of function st rt ol with the value O for the base argument. The corresponding
argument is a pointer to integer.

Matches an optionally si gned octal integer, whose format is the same as expected for the
subject sequence of function st rt oul with the value 8 for the base argument. The
corresponding argument is a pointer to unsi gned integer.

Matches an optionally si gned decimal integer, whose format is the same as expected for the
subject sequence of function st rt oul with the value 10 for the base argument. The
corresponding argument is a pointer to unsi gned integer.

Matches an optionally si gned hexadecimal integer, whose format is the same as expected
for the subject sequence of function st rt oul with the value 16 for the base argument.
The corresponding argument is a pointer to unsi gned integer.

Matches an optionally si gned floating-point number, whose format is the same as expected
for the subject string of the st rt od function. The corresponding argument is a pointer to
float.

Matches a sequence of nonwhite-space characters. The corresponding argument is a pointer to
the initial character of an array large enough to accept the sequence and a terminating null
character, which is added automatically.

Matches a nonempty sequence of characters from a set of expected characters (the scanset).
The corresponding argument is a pointer to the initial character of an array large enough to
accept the sequence and a terminating null character, which is added automatically. The
conversion specifier includes all subsequent characters in the format string, up to and
including the matching right bracket (]). The characters between the brackets (the scanlist)
comprise the scanset, unless the character after the left bracket is a circumflex (), in which
case, the scanset contains all characters that do not appear in the scanlist, between the
circumflex and the right bracket. If the conversion specifier beginswith [] or [*], the right
bracket character is in the scanlist and the next right bracket character is the matching right
bracket that ends the specification; otherwise the first right bracket character is the one that
ends the specification. If a- symbol is in the scanlist and is neither the first character, nor
the second character in which the first character is a”, nor the last character, the behavior is
implementation-defined. On Cray Research systems, this character indicates a range of
characters, starting with the character just before - , and ending with the character just after the

SR-2080 10.0

SCANF(3C)

%

SCANF(3C)

Matches a sequence of characters of the number specified by the field width (1 if no field
width is present in the directive). The corresponding argument is a pointer to the initial
character of an array large enough to accept the sequence. No null character is added.

Matches an implementation-defined set of sequences, which should be the same as the set of
seguences that may be produced by the %p conversion of the f pri nt f (3C) function. The
corresponding argument is a pointer to a pointer to voi d. The interpretation of the input item
is implementation-defined. If the input item is a value converted earlier during the same
program execution, the pointer that results must compare equal to that value; otherwise, the
behavior of the % conversion is undefined. On Cray Research systems, the conversion is the
same as the o conversion.

No input is consumed. The corresponding argument is a pointer to integer into which will be
written the number of characters read from the input stream so far by this call to scanf .
Execution of a % directive does not increment the assignment count returned at the
completion of scanf execution.

Matches an optionally signed binary integer, whose format is the same as expected for the
subject sequence of function st rt oul with the value 2 for the base argument. The
corresponding argument is a pointer to unsi gned integer.

Matches a sequence of characters of the number specified by the field width (1 if no field
width is present in the directive). The sequence is converted to a sequence of wide-character
codes in the same manner as the nbst owcs(3C) function. The corresponding argument must
be a pointer to an array of type wchar _t large enough to accept the sequence that is the
result of the conversion. No null wide-character code is added. In this case, the normal skip
over white-space characters is suppressed.

Matches a sequence of characters that are not white space. The sequence is converted to a
seguence of wide-character codes in the same manner as the nbst owcs(3C) function. The
corresponding argument must be a pointer to an array of type wchar _t large enough to
accept the sequence and a terminating null wide-character code, which will be added
automatically. If the field width is specified, it denoted the maximum number of characters to
accept.

Matches a single % no conversion or assignment occurs. The complete conversion
specification is 986

If a conversion specification is not valid, the behavior is undefined.

The conversion specifiers E, G, and X are valid also and behave the same as, respectively, e, g, and x.

If end-of-file (EOF) is encountered during input, conversion is terminated. |If EOF occurs before any
characters matching the current directive have been read (other than leading white space, where permitted),
execution of the current directive terminates with an input failure; otherwise, unless execution of the current
directive is terminated with a matching failure, execution of the following directive (if any) is terminated
with an input failure.

SR-2080 10.0

585

SCANF(3C) SCANF(3C)

If conversion terminates on a conflicting input character, the offending input character is left unread in the
input stream. Trailing white space (including newline characters) is left unread, unless matched by a
directive. The success of literal matches and suppressed assignments cannot be directly determined, other
than by using the % directive.

The scanf function is equivalent to f scanf with the argument st di n interposed before the arguments to
scanf.

The sscanf function is equivalent to f scanf , except that the argument s specifies a string (rather than a

stream) from which the input will be obtained. Reaching the end of the string is equivalent to encountering

EOF for the f scanf function. If copying occurs between objects that overlap, the behavior is undefined.
NOTES

The success of literal matches and suppressed assignments cannot be determined directly.

RETURN VALUES

Thef scanf, scanf, and sscanf functions return the value of the EOF macro if an input failure occurs
before any conversion. Otherwise, the functions return the number of input items assigned, which can be
fewer than provided for, or even O, if an early matching failure occurs.

SEE ALSO
get ¢(3C), nbst ri ng(3C), pri ntf (3C), strtol (3C)

586 SR-2080 10.0

SDSALLOC(3F) SDSALLOC(3F)

NAME

sdsal | oc, sdsfree, sdsreal | oc, sdsi nf o, SDSALLOC, SDSREALC, SDSFREE, SDSI NFO —
Secondary data segment (SDS) management routines
SYNOPSIS
Calls from C:
#i ncl ude <sdsall oc. h>
int sdsalloc (int sizz [,int *ierr]);
int sdsfree (int oblk [,int *ierr]);
int sdsrealloc (int oblk, int size[,int *ier]);
int sdsinfo (struct sdsinfo *info);
Calls from Fortran:
| NTEGER SDSALLOC, SDSREALC, SDSFREE
| NTEGER NBLK, SIZE, OBLK, |STAT, |ERR |INFQ(10), LEN
nblk SDSALLCC (size [, ierr])
nblk SDSREALC (oblk, size [,ierr])
istat = SDSFREE (oblk [, ierr])
CALL SDSI NFO (istat, info, len)

IMPLEMENTATION
All Cray Research systems except CRAY T3E systems

DESCRIPTION

These routines manage the SDS space that can be associated with a process. The routines allocate and
deallocate space from the system, using the ssbr eak(2) system call, and assign that space to callers as
appropriate. The total SDS space associated with the process containing allocated and unallocated regions is
called the arena.

The following is a list of valid arguments for these routines:

Argument Description

nblk Type integer (output)

Returns zero based block number of allocated SDS space.
size Type integer (input)

Size of SDS allocation request in 4096-byte blocks.
oblk Type integer (input)

Block number of currently alocated SDS space.

SR-2080 10.0 587

SDSALLOC(3F) SDSALLOC(3F)

588

istat Type integer (output)

Return status (0 equals success, and —1 equals error)
ierr Error code (optional parameter, output)
info Array into which SDSI NFO places the output data.
len Number of words in info array.

SDSREAL C and sdsr eal | oc reallocate the number of contiguous 4096-byte blocks requested by size. The
current allocation starting at oblk is expanded if possible. Data is preserved from the old alocation to the
new allocation if it must be moved.

The return value of sdsal | oc, sdsreal | oc, SDSALLCC, and SDSREALC is a zero-based block number
of allocated SDS space.

SDSFREE and sdsf r ee return the allocated SDS space identified by oblk to the arena.

The smallest unit of allocation is one 4096-byte block. Fragmentation is reduced by using a lowest fit
algorithm. When allocating or reallocating, the arena is searched in address order. This order ensures that
the lowest SDS address that fits is always used.

SDSI NFO and sdsi nf o provide detailed information about the state of the SDS arena and allows some
tuning of applications by using SDS. The sdsi nf o structure is found in the header file sdsi nf 0. h, and
contains members, as follows:

struct sdsinfo {

int remain,; [* INFQ(1) */
/* amount of SDS space available fromthe system */
/* that has not yet been requested and added to */
/* the arena */

int curall oc; [* INFQ(2) */
/* Current arena size, in 4096-byte blocks. */

i nt maxbl k; [* INFQ(3) */
/* maxi mum size all ocation request */

i nt maxfree; [* I NFQ(4) */
/* largest free block already in the arena */

i nt maxall oc; /* I NFQ(5) */
/* size of largest allocation in the arena */

int totfree; /* I NFQ(6) */
/* total free space in arena */

int totall oc; [* INFQ(7) */
/* total allocated space */

SR-2080 10.0

SDSALLOC(3F) SDSALLOC(3F)

i nt nunfree; /* I NFQ(8) */
/* nunmber of separate unallocated areas in the arena */

i nt numal | oc; /* INFQ(9) */
/* nunmber of allocations in the arena */

int pad[3];
/* not used. space reserved for future expansion */

b

On the first SDS allocation request, these routines try to determine the maximum amount of SDS space
allowed for the process. The SDS arenais then enlarged (using ssbr eak(2)) to that size, and it is not
shrunk until all space in the arenais freed. At that point, the entire SDS arena is released to the system
(using ssbr eak(2)). Under the Network Queuing System (NQS), the user-declared process and job SDS
limits are used to determine this maximum arena size.

For users who want to modify this behavior, the following three environment variables are provided:

Variable Description

SDSLIM T Maximum size of the arena. This variable does not override the system-imposed limits if
those system-imposed limits are smaller.

SDSI NCR The preferred size ssbr eak(2) request that should be tried to increase the size of the
arena.

SDSMAXFR The maximum amount of free space that is allowed to remain in the high addresses of the

arena before the space is returned to the system by using ssbr eak(2).

To implement the default behavior, set SDSLI M T, SDSI NCR, and SDSMAXFR to the system-imposed SDS
process limit.

CAUTIONS

If these routines detect that the user has executed an ssbr eak(2) directly, the space that is allocated is
considered an allocation. This procedure only partialy allows the mixing of ssbr eak(2) and SDSALLCOC
requests, and it is not recommended. Use of the ssbr eak(2) system call with a negative argument in
conjunction with these routines produces unpredictable results. Because these routines are used in the
system libraries to perform operations on auxiliary arrays, and in flexible file I/O (FFIO) processing, you
should not assume that these routines are not being used.

On CRAY T3D systems, sdsal | oc does not handle allocation of SDS space from more than one
processing element (PE). You should not use these routines from more than one PE.

EXAMPLES

The following example illustrates the use of all of the SDS management routines.

SR-2080 10.0 589

SDSALLOC(3F) SDSALLOC(3F)

program exanpl e

i nt eger BLKS

par anet er (BLKS=10)

i nt eger dat (512*BLKS)

i nteger sdsalloc, sdsrealc, sdsfree, ssread, sswite

external sdsalloc, sdsrealc, sdsfree, ssread, sswite, sdsinfo

i nt eger ssize, base, sdsaddr, iter, iret, info(10)
c
base = sdsalloc(1l) ! allocate dumry area
c
do 100 ssize = 1,20
c
base = sdsreal c(base, ssize * BLKS)
if (base .1t.0) then
print *,"realloc failed on iteration ', ssize
stop 'realc’
endi f
c
do 10 iter = 0,SSIZE-1
print *,"wite ',iter
do 15 j = 1,512 * BLKS
dat(j) = iter*512*BLKS + |
15 conti nue
sdsaddr = base + iter*BLKS
iret = SSWRI TE(dat, sdsaddr, 512*BLKS) ! words, not blocks, to wite
if (iret .ne. 0) print *,’ Cops, returnis ', iret,
+ ' on iteration ’,iter
10 conti nue
c
c Use SDSINFO to inquire about the state of the SDS arena
c
length = 9! get 9 words
call SDSINFQ(istat, info, |ength)
if (istat.ne.0) stop ’'SDSI NFO
print *,"Current size of arena is ',info(2)
print *,” Number of allocations is ',info(9)
c
¢ Read the data back

do 20 iter = 0,SSIZE-1
print *,'read ',iter
sdsaddr = base + iter*BLKS
iret = SSREAD(dat, sdsaddr, 512*BLKS) ! words, not blocks, to read

if (iret .ne. 0) print *,’ Cops, returnis ', iret,

590 SR-2080 10.0

SDSALLOC(3F)

25
20

do 25 j = 1,512*BLKS

on iteration ',iter

if (dat(j) .ne. iter*512*BLKS + j) stop ' BAD

conti nue

conti nue

100 conti nue

iret = sdsfree(base)
if (iret .ne. 0) print *,

"sdsfree failed!’

A sample of the output from this program follows:

SR-2080 10.0

wite O

Current size of arena
Nurmber of all ocations
read O

wite O

wite 1

Current size of arena
Nurmber of all ocations
read O

read 1

wite O

wite 1

wite 2

Current size of arena
Nurmber of all ocations
read O

read 1

read 2

wite O

wite 1

wite 2

wite 3

Current size of arena
Nurmber of all ocations
read O

read 1

wite 17
wite 18
wite 19
Current size of arena

is 2048
is 1

is 2048
is 1

is 2048
is 1

is 2048

is 1

is 2048

SDSALLOC(3F)

591

SDSALLOC(3F) SDSALLOC(3F)

Nunber of allocations is 1

SEE ALSO
mal | oc(3C)
assi gn(1) in the Application Programmer’s 1/O Guide, Cray Research publication SG—2168

ssbreak(2), ssread(2) in the UNICOS System Calls Reference Manual, Cray Research publication
SR-2012

Application Programmer’s 1/O Guide, Cray Research publication SG—2168, for information on FFIO

592 SR-2080 10.0

SECNAMES(3C) SECNAMES(3C)

NAME

sechanes, sechi ts, secnuns, secwor ds — Converts security classification bit patterns or numbers to
strings and vice versa
SYNOPSIS

#i nclude <stdlib. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/secparm h>
#i ncl ude <sys/sectab. h>

i nt secnanes(long bits, char *nameq], int flag);
l ong secbhits(char *namdist, int flag);
int secnuns(char *name, int flag);

int secwords(int num, char *namg], int flag);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The secnanes and secbi t s functions convert security compartment, category, security flag, and
permission names from bit patterns to ASCII strings, and vice versa.

The secnuns and secwor ds functions convert security level and integrity class names from numbers to
ASCII strings, and vice versa. The use of integrity classes is not supported.

For secnames, the caller supplies a permission, category, flag, or compartment bit mask in bits. The caller
must also supply a string array, names, into which the pointers to the ASCII names of the security
compartments, categories, flag, or permissions are stored. The array is terminated with a null pointer.

For secbi t s, the caller supplies a pointer to a string of security compartment, category, flag, or permission
names, separated by commas and null terminated. The function returns a bit mask representing al valid
security compartment, category, flag, or permission bit positions represented by the names in the ASCII
string.

Argument flag causes secnanes to convert the bit mask and secbi t s to convert the comma-separated list
of compartment names, respectively, according to the following values:

Flag value Description

Oorl Returns compartments
2 Returns permissions

SR-2080 10.0 593

SECNAMES(3C) SECNAMES(3C)

3or4 Returns categories
5 Returns flags

For secnurs, the caller supplies a pointer to a security level or integrity class name string. The function
returns a numeric value that corresponds to the supplied name. The use of integrity classes is not supported.

For secwor ds, the caller supplies a numeric value. The caller must also supply a string array, name, into
which a pointer to the ASCII name of that value is stored.

Argument flag causes secnuns and secwor ds to return a numeric value or name, respectively, for a
given security level or class name, according to the following values:

Flag value Description

0,1 0r2 Returns security level
3,4,0r5 Returns integrity class. The use of integrity classes is not supported.

RETURN VALUES

Upon successful completion, secbi t s and secnuns return values as previously described. |If
unsuccessful, secbi t s and secnuns return —1.

For secnames and secwor ds, a0 is returned if the function completes successfully; otherwise, a—1 is
returned.

SEE ALSO

594

get sect ab(2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012
General UNICOS System Administration, Cray Research publication SG—2301

SR-2080 10.0

SECURITY(3C)

NAME

SECURITY(3C)

security — Introduction to security functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

These functions operate the security features.

ASSOCIATED FUNCTIONS

Function
ia failure
i a_m suser
i a_success
i a_user
m dl i st

m dname

m dwal k

ms create

m s_dom nate

m s_equal

m s_export

m s_extract

ms free

ms glb

m s_inport

ms_|ub

priv_clear _file
priv_cl ear_proc
priv_dup_file
priv_dup_proc
priv_free file
priv_free_proc
priv_get fd
priv_get file
priv_get file_ flag
priv_get_proc
priv_get proc_flag
sl gtrust, sl gtrustobj

SR-2080 10.0

Description

Processes identification and authentication (I&A) failures
Determines the user’s mandatory access control (MAC) attributes
Processes identification and authentication (I& A) successes
Performs user identification and authentication (1&A)

Obtains the list of mandatory access control (MAC) labels currently
represented in a multilevel directory

Expands a multilevel symbolic link reference at an arbitrary mandatory access
control (MAC) label

Walks the labeled subdirectories of a multilevel directory (MLD)
Creates an opague security label structure

Performs a security label domination test

Performs a security label equality test

Converts internal security label to text representation

Extracts label from an opague security label structure

Frees security label storage space

Computes the greatest lower bound

Converts text security label to internal representation

Compultes the least upper bound

Clears al privilege sets in afile privilege state

Clears al privilege sets in a process privilege state

Creates a copy of afile privilege state

Creates a copy of a process privilege state

Deallocates file privilege state space

Deallocates process privilege state space

Gets the privilege state of afile

Gets the privilege state of afile

Indicates the existence of a privilege in afile privilege set

Gets the privilege state of the calling process

Indicates the existence of a privilege in a process privilege state
Writes trusted process security log record

595

SECURITY(3C) SECURITY(3C)

SEE ALSO
General UNICOS System Administration, Cray Research publication SG—2301

596 SR-2080 10.0

SETBUF(3C) SETBUF(3C)

set buf , set vbuf — Assigns buffering to a stream

SYNOPSIS

#i ncl ude <stdio. h>
void setbuf (FILE *streem, char *buf);

int setvbuf (FILE *stream, char *buf, int mode size t size);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANS

DESCRIPTION

You can use the set vbuf function after a stream has been opened but before any other operation is
performed on the stream. The mode argument determines how stream is buffered. Legal values for mode
(defined in the header file st di 0. h) are as follows:

Type Description

_| OFBF Input/output is fully buffered.

_1 OLBF Output is line-buffered; the buffer is flushed when a newline character is written, the
buffer is full, or input is requested.

_ | ONBF Input/output is completely unbuffered.

If the stream is unbuffered, buf and size are ignored.

If buf is not a null pointer, the array to which it points is used for buffering. Argument size specifies the
size (in bytes) of the array to be used. The standard 1/0 functions do not use al of the size bytes as an I/O
buffer; some bytes are currently required for use as a pad, beyond the buffer’s end and before its beginning.
If buf is anull pointer, a buffer of length size plus the bytes required for padding is allocated automatically
by set buf and later deallocated by close processing. Therefore, for optimal 1/0 performance, let buf be a
null pointer and choose si ze =n* sector_size for some integer n (sector_size is the number of bytesin a
disk sector).

The contents of the buffer at any time are indeterminate.

Except that it returns no value, the set buf function called with a nonnull buf argument is equivalent to the
set vbuf function invoked with the arguments _| OFBF for mode, a nonnull pointer buf, and BUFSI Z for

size. The set buf function called with a null buf argument is equivalent to the set vbuf function invoked
with the argument _| ONBF for mode.

SR-2080 10.0 597

SETBUF(3C) SETBUF(3C)

NOTES
By default, output to a terminal is line-buffered, and all other 1/O is fully buffered.

If buf is anull pointer, computation of an appropriate buffer size is easier. In that case, the library
automatically allocates a buffer with the necessary pad space added to the end.

A common source of error is alocating buffer space as an automatic variable in a code block, and then
failing to close the stream in the same block.

RETURN VALUES
If you provide an illegal value for mode or size, or if the request cannot be honored, set vbuf returns a
nonzero value; otherwise, it returns 0 on success. The set buf function returns no value.

SEE ALSO
f open(3C), get ¢(3C), mal | oc(3C), put c(3C)

dsk(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014, for your system

598 SR-2080 10.0

SETENV/(3C) SETENV/(3C)

NAME

set env, unset env — Sets or removes the value of an environment variable

SYNOPSIS
#i nclude <stdlib. h>
int setenv (char *name char *value, int rewrite);

void unsetenv (char *name);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The set env function sets the value of the environment variable name to value. If argument rewrite is O,
the new value is put into the environment list only if name is not currently in the environment list. If
argument rewrite is nonzero, and if name already exists in the environment list, its value is replaced by
value.

The unset env function removes all references to name from the environment list.

WARNINGS

On Cray MPP systems, each processing element (PE) gets a separate copy of the environment; therefore,
alterations to the environment using set env or unset env on one PE are not reflected on other PEs.

RETURN VALUES

If the value is placed into the environment, or if rewrite is O and name is already in the environment, the
set env function returns 0; otherwise, —1 is returned, and the new value is not placed into the environment
list.

SEE ALSO
get env(3C), put env(3C)

SR-2080 10.0 599

SET_JMP(3C) SET_JMP(3C)

NAME

set _j nmp — Introduction to nonlocal jump functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The nonlocal jump functions provide a mechanism for bypassing the normal function call and return when an
unusual condition is encountered in a program. These functions provide a capability similar to the
signal-handling functions and may be used instead of or in conjunction with them.

ASSOCIATED HEADERS
<setj np. h>

ASSOCIATED FUNCTIONS

Function Description
setj np(3C) Saves stack environment before nonlocal got o
| ongj np Restores stack environment after nonlocal got o (see set j np)

sigsetjnmp Saves stack environment before nonlocal got o and saves signal mask (see set j np)
si gl ongj mp Restores stack environment after nonlocal got o and restores signal mask (see set j np)

SEE ALSO
si g_han(3C)
si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

600 SR-2080 10.0

SETIMP(3C) SETIMP(3C)

NAME
setj np, | ongj np, si gsetj np, si gl ongj np — Executes nonlocal got o

SYNOPSIS
#i ncl ude <setjnp. h>
int setjnmp (jnp_buf env);
void longjnp (jnp_buf env, int val);
int sigsetjnp (sigjnmp_buf env, int savemask);
void siglongjnp (sigjnp_buf env, int val);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANSI (functions set j mp and | ongj np)
POSIX (functions si gset j np and si gl ongj np)
DESCRIPTION

The set j np macro and the | ongj np function are useful for dealing with errors and interrupts encountered
in a low-level function of a program.

The set j np macro saves its stack environment in env (whose type, jmp_buf, is defined in the include file
setj np. h), for later use by | ongj np. It returns the value O.

An invocation of the set j np macro can appear only in one of the following contexts:

* The entire controlling expression of a selection or iteration statement (i f, f or, whi | e, do,
Swi t ch)

* One operand of arelational or equality operator with the other operand an integral constant
expression, and with the resulting expression being the entire controlling expression of a selection
or iteration statement

* The operand of aunary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement

* The entire expression of an expression statement (possibly cast to voi d)

* The sole expression as the right operand of the ‘=" operator, with the left operand being a simple
variable (available only in extended mode)

SR-2080 10.0 601

SETIMP(3C) SETIMP(3C)

The | ongj np function restores the environment saved by the most recent invocation of the set j mp macro,
with the corresponding j mp_buf argument. If there has been no such invocation, or if the function
containing the invocation of the set j np macro has terminated execution in the interim, the behavior is
undefined.

All accessible objects have values as of the time | ongj nmp was called, except that the values of objects of
automatic storage duration that are local to the function containing the invocation of the corresponding
set j np macro that do not have volatile-qualified type, and have been changed between the set j nmp
invocation and | ongj np call, are indeterminate.

As it bypasses the usual function call and return mechanisms, the | ongj np function executes correctly in

contexts of interrupts, signals, and any of their associated functions. However, if the | ongj np function is
invoked from a nested signal handler (that is, from a function invoked as a result of a signal raised during

the handling of another signal), the behavior is undefined.

Macro si gset j np works in the same manner as set j np, but saves the signal mask. If the value of the
savemask argument is not 0, si gset j np saves the process's current signal mask as a part of the calling
environment.

Function si gl ongj nmp works in the same manner as | ongj np, but restores the signal mask if and only if
the env argument was initialized by a call to si gset j np with a nonzero savemask argument.

NOTES

setj np and si gset j np are macros. If the macro definition is suppressed in order to access an actua
function, or if a program defines an external identifier with the name set j np or si gset j np, the behavior
is undefined.

Use of these functions and macros may invalidate the results of using Flowtrace, Perftrace, or Watchword.
The space for variable length arrays declared at block scope (that is, not parameters), and the space obtained
using calls to the mal | oc function can be lost if their storage is active across al ongj np cal.

RETURN VALUES

The set j np and si gl ongj np macros return the value 0 if the return is from a direct invocation; they
return a nonzero value if the return is from a call to the | ongj np or si gl ongj np function.

After | ongj np or si gl ongj np is completed, program execution continues as if the corresponding
invocation of the set j np or si gset j np macro had just returned the value specified by val. The

| ongj np or si gl ongj mp functions cannot cause the set j np or si gset j np macros to return the value
0; if val is 0, it is changed to the value 1.

SEE ALSO

si gnal (2), si gpr ocmask(2), si gsuspend(2) in the UNICOS System Calls Reference Manual, Cray
Research publication SR—2012

flowtrace(7), perftrace(7)

602 SR-2080 10.0

setjimp.h(3C) setjmp.h(3C)

NAME
setj np. h — Library header for nonlocal jump functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

TYPES
The type defined in set j np. h is as follows:

Type Standards Description

j mp_buf ISO/ANSI An array type suitable for holding the information needed to restore a
calling environment.

si gj np_buf POSIX An array type suitable for holding the information needed to restore a

calling environment and signal mask.

FUNCTION DECLARATIONS
Functions declared in header set j np. h are as follows:
| ongj np setjnp sigsetjnpt si gl ongj mpt

T Available only in extended mode

SR-2080 10.0 603

SETLOCALE(3C)

NAME

set | ocal e — Selects program’s locale

SYNOPSIS

#i ncl ude <l ocal e. h>

char *setlocale (int category, const

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANS
POSIX

DESCRIPTION

SETLOCALE(3C)

char *locale) ;

The set | ocal e function can be used to change or query the program’s entire current locale or portions
thereof. The set | ocal e function selects the appropriate portion of the program’s locale as specified by

the arguments category and locale.

The following values can be used for category:

Affects the decimal-point character for the formatted input/output functions and the string

conversion functions, as well as the nonmonetary formatting information returned by the

Value Description
LC ALL Names the program'’s entire locale.
LC COLLATE Affects the behavior of the st r col | (3C) and st r xf r m(3C) functions.
LC _CTYPE Affects the behavior of the character-handling functions and the multibyte functions.
LC_MONETARY Affects the behavior of the st r f non(3C) function.
LC_NUMERI C
| ocal econv(3C) function.
LC TI ME Affects the behavior of the st rfti me(3C) and st r pti me(3C) functions.
LC_MESSAGES

program messages.

This currently does not affect the behavior of any functions but is intended for use in

Some environment variables correspond to the preceding category values and have the same spellings.

The locale argument is a pointer to a character string that can be an explicit string, a null pointer, or a null

string.

If locale is an explicit string, a value of "C" for locale specifies the minimal environment for C trandation;

the value "PCOSI X" is a synonym for "C".

604

SR-2080 10.0

SETLOCALE(3C) SETLOCALE(3C)

If locale is a null pointer, the locale of the process is queried according to the value of category and a string
is returned that describes the current locale, which can be used on a subsequent call to set | ocal e.

If localeis anull string ("), the set | ocal e function takes the name of the new locale for the specified
category from the environment as determined by the first condition met below:
1. If LC_ALL is defined in the environment and is not null, its value is used.

2. If there is a variable defined in the environment with the same name as the category value and it is not
null, its value is used.

3. If the LANG environment variable is defined and it is not null, its value is used.

If the resulting value is a supported locale, set | ocal e sets the specified category of the locale of the
process to that value and returns the value as specified in the RETURN VALUES section. If the value does
not name a supported locale, set | ocal e returns a null pointer, and the locale of the process is unchanged.
If no nonnull environment variable is present to supply a value, set | ocal e sets the specified category of
the locale to the systemwide default value of "C'.

At program startup, the equivalent of the following is executed:
setlocal e(LC ALL, "C");

RETURN VALUES

If a pointer to a string is given for locale, and the selection can be honored, the set | ocal e function
returns a pointer to the string associated with the specified category for the new locale. If the selection
cannot be honored, the set | ocal e function returns a null pointer, and the program’s locale is not changed.

The pointer to string returned by the set | ocal e function is such that a subsequent call with that string
value and its associated category restores that part of the program’s locale. The string pointed to cannot be
modified by the program, but may be overwritten by a subsequent call to set | ocal e.

SEE ALSO
| ocal e(3C), | ocal e. h(3C), | ocal econv(3C), strfti me(3C), string(3C)

SR-2080 10.0 605

SHMALLOC(3C) SHMALLOC(3C)

NAME

shmal | oc, shfree, shreal | oc, shnal | oc_nb, shfree_nb, shreal | oc_nb,

shmal | oc_check, shmal | oc_st at s — Shared heap memory management functions
SYNOPSIS

#i nclude <malloc. h>

void [Bhnalloc(size_t size);

void shfree(void [ptr);

void [Bhrealloc(void [ptr, size_t size);

void [Bhmall oc_nb(size t size);

void shfree_nb(void [ptr);

void [Bhrealloc_nb(void [ptr, size t size);

int shmall oc_check(int level);

void shmalloc_stats(int leve);

extern long malloc_error;

IMPLEMENTATION
Cray MPP systems

STANDARDS

CRI extension

DESCRIPTION

The shmal | oc function returns a pointer to a block of at least size bytes suitably aligned for any use. This
space is allocated from the shared heap (in contrast to mal | oc(3C), which alocates from the private heap),
and the same address is returned on all programming elements (PE). The space returned is left uninitialized.

The shf r ee function causes the block to which ptr points to be deallocated, that is, made available for
further allocation. If ptr is anull pointer, no action occurs; otherwise, if the argument does not match a
pointer earlier returned by a shared heap function, or if the space has already been deallocated,

mal | oc_error isset to indicate the error, and shf r ee returns.

606 SR-2080 10.0

SHMALLOC(3C) SHMALLOC(3C)

The shr eal | oc function changes the size of the block to which ptr points to the size (in bytes) specified
by size. The contents of the block are unchanged up to the lesser of the new and old sizes. If the new size
is larger, the value of the newly allocated portion of the block is indeterminate. If ptr is a null pointer, the
shreal | oc function behaves like the shmal | oc function for the specified size. If sizeis 0 and ptr is not
a null pointer, the block to which it points is freed. Otherwise, if ptr does not match a pointer earlier
returned by a shared heap function, or if the space has aready been deallocated, the mal | oc_er r or
variable is set to indicate the error, and shr eal | oc returns a null pointer. If the space cannot be allocated,
the block to which ptr points is unchanged.

The shmal | oc, shf ree, and shr eal | oc functions are provided so that multiple PEs in an application
can alocate memory blocks with the same address on al PEs; these memory blocks can then be used with
the shared memory (shrem library. Each of these functions call the bar r i er (3C) function before
returning; this ensures that all PEs participate in the memory alocation, and that the memory on other PEs
can be used as soon as the local PE returns. The user is responsible for calling these functions with identical
argument(s) on all PEs; if differing size arguments are used, subsequent calls may not return the same shared
heap address on all PEs.

Theshnal | oc_nb, shfree_nb, shreal | oc_nb functions work the same as shnal | oc, shfree,
and shr eal | oc, respectively, except that they contain no call to the bar ri er (3C) function. These
functions can be used in applications where not all PEs participate in shared memory allocation; their use is
discouraged for most programs. Note that calls to shmal | oc, shf ree, and shreal | oc should not be
attempted after calling shmal | oc_nb, shf ree_nb, or shreal | oc_nb, as the shared heap may become
inconsistent between the PES participating in the shared memory allocation, and those not participating.

The shmal | oc_check function checks the consistency of shrmal | oc’s memory structure. If level is less
than 0, shmal | oc_check silently performs validation of the shared heap, and returns O if the heap is
consistent, or nonzero if the heap has been corrupted. If level equals O, shimal | oc_check prints a
message to st der r that describes the first inconsistency found. If level is greater than O,

shmal | oc_check printsalineto st der r that describes each shared heap block in addition to checking
the shared heap.

The shmal | oc_st at s function prints out memory manager statistics and heap block information to
stdout . If level equals 0, shrmal | oc_st at s reports the number of calls to each shared heap function, as
well as summary statistics on the number and total size of the busy blocks, free blocks, and "spec” blocks
(that is, blocks that are created by user calls to shsbr eak) in the shared heap. If level equals 1,

shmal | oc_st at s prints a line with a Ofor each busy block, a. for each free block, and a @for each
"spec" block, in addition to the level O statistics. If level equals 2, shmal | oc_st at s prints a line that
describes each shared heap block, in addition to the level O statistics. The number of calls for each function
are available only by linking with the | i bmal | oc library; all of the other information is available in the
default memory manager.

SR-2080 10.0 607

SHMALLOC(3C) SHMALLOC(3C)

CAUTIONS

The shmal | oc, shf ree, and shr eal | oc functions differ from the private heap allocation functions in
that all PEs in a partition must call them (a barrier is used to ensure this). The shmal | oc_nb,
shfree_nb, and shreal | oc_nb functions do not use a barrier, and can be used by a subset of all PEs.
None of these functions should be called within a master region; if this is done, they print out an error

message and abort. The shmal | oc_check and shimal | oc_st at s functions do not have any of these
limitations.

RETURN VALUES

The shmal | oc and shmal | oc_nb functions return a pointer to the allocated space (which should be
identical on all PEs); otherwise, they return a null pointer (with mal | oc_err or set).

Theshfree, shf ree_nb, and shnmal | oc_st at s functions return no value.

The shreal | oc and shr eal | oc_nb functions return a pointer to the allocated space (which may have
moved); otherwise, they return a null pointer (with mal | oc_error set).

If the shared heap has been corrupted, the shimal | oc_check function returns nonzero; otherwise, it returns
0.

SEE ALSO
mal | oc(3C), mal | oc. h(3C)
br k(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

608 SR-2080 10.0

SHMALLOC(3F) SHMALLOC(3F)

NAME
SHMALLOC, SHFREE, SHLOC — Shared pointer intrinsics

SYNOPSIS
I NTRINSI C SHMALLOC, SHFREE, SHLCC
CALL SHMALLOC(pointer, alloc stat [, length])
CALL SHFREE(pointer)
CALL SHLOC(pointer, array)

IMPLEMENTATION
Cray MPP systems

DESCRIPTION

The SHMVALLQOC, SHFREE, and SHLOC intrinsics are the only allowable operations on shared pointers,
whose pointee arrays are declared in a SHARED directive (see EXAMPLES section). A shared pointer can,
during execution, point to different arrays, but all of the arrays must have identical distributions and extents.

The SHMALLQOC intrinsic allocates shared heap memory. SHVALLOC gets the size of the space it alocates
from the size of the pointee array associated with pointer, unless you include a length argument. When the
pointee and the allocated array are the same size, passing two arguments (pointer and alloc_stat) to
SHMALLCC is sufficient. If the allocated size differs from the pointee array’s size, you must use the length
(in words) argument. The alloc_stat argument indicates whether shared memory was successfully allocated;
0 indicates success, and nonzero indicates an error. Error conditions are identical to those of HPALLOC(3F).

The SHFREE intrinsic frees a shared memory block previously allocated by using SHVALLCC.

To maintain shared heap consistency, all processing elements (PEs) in a program must call SHVALLCOC or
SHFREE; otherwise, the program hangs.

The SHLOC intrinsic assigns to pointer the address of the shared array. You must use either SHLCC or
SHMAL L OC to associate a pointer with a shared array before using the pointer. Its functionality is like that
of LOC on other systems, but SHLOC operates on shared data.

EXAMPLES
Example 1: The following example shows using SHLOC to associate a shared pointer with a shared array:

SR-2080 10.0 609

SHMALLOC (3F) SHMALLOC(3F)

PO NTER (Q X)

REAL X(128, 128)

REAL Y(128, 128)

I NTRI NSI C SHLOC
CDI R$ SHARED X(: BLOCK, : BLOCK)
CDI R$ SHARED Y(: BLOCK, :

CALL SHLOC(Q X) I associate pointer Qwith array X
CALL SHLOC(Q YY) I error: distribution msmatch

Example 2: The following example shows using SHMALL OC to allocate shared memory of the same size as
the pointee array:

PO NTER (P, PA)

REAL PA(1024)

I NTRI NSI C SHVALLCC
CDI R$ SHARED PA(: BLOCK(2))

CALL SHMALLOC(P, |STAT) ! allocate shared nenory

Example 3: The following example shows using SHMALL OC to alocate shared memory of a different size
from the pointee array, and using SHFREE to free the memory:

PO NTER (R, W

REAL W 128, 10000000)

| NTRI NSI C SHVALLOC, SHFREE
CDI R$ SHARED W : BLOCK, :)

CALL SHVALLOC(R, |STAT, 128*100) ! only part of array all ocated
IF (I STAT .EQ 0) THEN

CALL FRED(R)

CALL SHFREE(R) I free menory
ENDI F

SEE ALSO

610

hpal | oc(3F), shpal | oc(3F), shpdeal | ¢c(3F), shpcl nove(3F)

SR-2080 10.0

SHPALLOC(3F) SHPALLOC(3F)

NAME
SHPALLQOC — Allocates a block of memory from the shared heap

SYNOPSIS
CALL SHPALLOC(addr, length, errcode, abort)

IMPLEMENTATION
Cray MPP systems

DESCRIPTION

SHPALLCOC alocates a block of memory from the program’s shared heap that is greater than or egqual to the
size requested. If the request cannot be satisfied from the free blocks currently in the heap, it will try to
allocate more memory from the system. To maintain shared heap consistency, all PEsin an program must
call SHPALLCOC with the same value of length; if any processing elements (PES) are missing, the program
will hang.

The SHPALL OC function accepts the following arguments:

Argument Description

addr First word address of the allocated block (output).

length Number of words of memory requested (input).

errcode Error code is 0 if no error was detected; otherwisg, it is a negative integer code for the
type of error (output).

abort Abort code; nonzero requests abort on error; O requests an error code (input).

By using the Fortran PO NTER mechanism in the following manner, you can use array A to refer to the
block allocated by SHPALLCC:

PO NTER (addr, A(1))

RETURN VALUES

Error conditions are as follows:

Error Code Condition
-1 Length is not an integer greater than 0.
-2 No more memory is available from the system (checked if the request cannot be satisfied

from the available blocks on the shared heap).

SEE ALSO
hpal | oc(3F), shmal | oc(3F), shpcl move(3F), shpdeal | c(3F)

SR-2080 10.0 611

SHPCLMOVE (3F) SHPCLMOVE (3F)

NAME
SHPCLMOVE — Extends a shared heap block or copies the contents of the block into a larger block

SYNOPSIS
CALL SHPCLMOVE (addr, length, status, abort)

IMPLEMENTATION
Cray MPP systems

DESCRIPTION

The SHPCLMOVE function either extends a shared heap block if the block is followed by a large enough free
block or copies the contents of the existing block to a larger block and returns a status code indicating that
the block was moved. This function also can reduce the size of a block if the new length is less than the old
length. All processing elements (PESs) in a program must call SHPCLMOVE with the same value of addr to
maintain shared heap consistency; if any PEs are missing, the program hangs.

The SHPCLMOVE function accepts the following arguments:

Argument Description

addr On entry, first word address of the block to change; on exit, the new address of the block
if it was moved.

length Requested new total length (input).

status Status is O if the block was extended in place, 1 if it was moved, and a negative integer
for the type of error detected (output).

abort Abort code. Nonzero requests abort on error; O requests an error code (input).

RETURN VALUES

Error conditions are as follows:

Code Condition
-1 Length is not an integer greater than 0.
-2 No more memory is available from the system (checked if the block cannot be extended
and the free space list does not include a large enough block).
-3 Address is outside the bounds of the shared heap.
-4 Block is aready free.
-5 Address is not at the beginning of a block.
SEE ALSO

hpal | oc(3F), shmal | oc(3F), shpal | oc(3F), shpdeal | c(3F)

612 SR-2080 10.0

SHPDEALLC(3F) SHPDEALLC(3F)

NAME
SHPDEALLC — Returns a shared memory block of memory to the shared heap

SYNOPSIS
CALL SHPDEALLC(addr, errcode, abort)

IMPLEMENTATION
Cray MPP systems

DESCRIPTION

SHPDEAL L C returns a block of memory (allocated using SHPALLOC) to the list of available space in the
shared heap. To maintain shared heap consistency, al processing el ements (PES) in a program must call
SHPDEAL L C with the same value of addr; if any PES are missing, the program hangs.

The SHPDEALL C function accepts the following arguments:

Argument Description

addr First word address of the block to deallocate (input).

errcode Error code is 0 if no error was detected; otherwise, it is a negative integer code for the
type of error (output).

abort Abort code. Nonzero requests abort on error; O requests an error code (input).

Error conditions are as follows:

Code Condition

-3 Address is outside the bounds of the shared heap.

-4 Block is aready free.

-5 Address is not at the beginning of the block.
SEE ALSO

hpal I oc(3F), shmal | oc(3F), shpal | oc(3F), shpcl nove(3F)

SR-2080 10.0

613

SHUTDSAV/(3C) SHUTDSAV/(3C)

NAME
shut dsav — Sets up calling program to be checkpointed on system shutdown

SYNOPSIS
#include <stdlib. h>
int shutdsav (char *path, int flags);

IMPLEMENTATION
Cray PVP systems

STANDARDS

CRI extension

DESCRIPTION

The shut dsav function establishes a signal handler that catches the SI GSHUTDN signal (defined in

si gnal . h(3C)), indicating that the system will shut down soon. When the signal handler receives the

SI GSHUTDN signal, it checkpoints the program by using the chkpnt (2) system call, creating a restart file
with the specified name.

The shut dsav function accepts the following arguments:

Argument Description

path Path name of the file to be created as the restart file. The path argument must not refer to
afile that already exists, because the chkpnt (2) system call, which performs the actual
checkpoint work, will not overwrite an existing file. If path does not designate an
absolute path name, the restart file is created relative to the current working directory of
the calling program at the time the SI GSHUTDN signal is received. Finaly, for the
checkpoint to be successful, the caller must be able to write to the directory in which the
restart file will be created.

flags (Control flags) If the least significant bit of flags is 0, the calling program does not
checkpoint itself on a system shutdown if it is running as part of an NQS batch job. This
is important because, by default, NQS checkpoints all of the jobs under its control when a
system shutdown occurs, making any additional checkpoint work by the program
unnecessary. Alternatively, if the least significant bit of flags is set, the calling program
tries to checkpoint itself, even when running as part of an NQS batch job. In al other
cases, the calling program tries to checkpoint itself when it receives a SI GSHUTDN signal.
Finally, all bits other than the least significant bit of flags are reserved for future use, and
should be set to 0.

614 SR-2080 10.0

SHUTDSAV/(3C) SHUTDSAV/(3C)

NOTES

For a process to be checkpointed successfully, certain conditions must be satisfied. For a discussion of the
restrictions placed upon a process that is to be checkpointed, see chkpnt (2).

SEE ALSO
si gnal . h(3C)

chkpnt (1), rest art (1) in the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011

chkpnt (2), rest art (2), si gctl (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

SHUTDSAV(3F) in the , for details of the Fortran interface.

SR-2080 10.0 615

SIG_HAN(3C) SIG_HAN(3C)

NAME

si g_han — Introduction to signal-handling functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The signal handling functions provide various means for handling signals, which are events that may occur
during program execution and be reported to the executing program. The signals may occur because of

hardware error detection, because of external events, or because of events generated by the program. When
the signal occurs, the action taken depends on what action, if any, the program has specified for that signal.

Because computer systems and system environments vary greatly, the set of signals that may occur is system
dependent. The set that applies to a CRI system environment is described in the header <si gnal . h>.

ASSOCIATED HEADERS

<si gnal . h>

ASSOCIATED FUNCTIONS

gsi ghal — Raises a software signal (see ssi gnal)

kil | pg — Sends signa to process group

rai se — Sends a signal to an executing program

shut dsav — Sets up calling program to be checkpointed on system shutdown

si gaddset — Adds asignal to asignal set (see si gset ops)

si gdel set — Deletes a signal from a signal set (see si gset ops)

si genpt yset — Initializes a signal set to exclude all POSIX signals (see si gset ops)
sigfillset — Initializes a signal set that includes all POSIX signals (see si gset ops)
si gi smenber — Tests asignal to seeif it is a member of a specified set (see si gset ops)
si gnal — Handles signals

si gof f — Allows signal catching to be postponed without a system call

si gon — Reenables signal catching after a si gof f call (see si gof f)

ssi gnal — Associates a function with a software signal

SEE ALSO
si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

616 SR-2080 10.0

SIGNAL (3C) SIGNAL (3C)

NAME

si gnal — Handles signals

SYNOPSIS
#i ncl ude <signal.h>

void (*signal (int sig void (*func)(int)))(int);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The si gnal function chooses one of three ways to handle the receipt of signal number sig.

If the value of func is SI G_DFL, default handling for that signal occurs. If the value of func is SI G_|I GN,
the signal is ignored; otherwise, func points to a function to be called when that signal occurs. Such a
function is called a signal handler.

When a signal occurs, if func points to a function, first the equivalent of the following is executed (except if
sigis SI G LL, SI GTRAP, or SI GPVR):
signal (sig, SIGDFL);
Next, the equivalent of the following is executed:
(*func)(sig);
The func function may terminate by executing ar et ur n statement or by calling the abort, exi t, or
| ongj np function. The program resumes execution at the point at which it was interrupted.

If the signal occurs other than as the result of calling the abort or r ai se function, the behavior is
undefined if the signal handler calls any function in the standard library other than the si gnal function
itself (with afirst argument of the signal number corresponding to the signal that caused the invocation of
the handler) or refers to any object with static storage duration other than by assigning a value to a static
storage duration variable of typevol atil e si g_atom c_t. Furthermore, if such acall to si gnal
results in a SI G_ERR return, the value of er r no is indeterminate.

NOTES

Under UNICOS, si gnal (2) is implemented as a system call, but the si gnal function is defined also to be
a part of the standard C library. For this reason, this documentation appears both here and in the UNICOS
System Calls Reference Manual, Cray Research publication SR—2012.

SR-2080 10.0 617

SIGNAL (3C) SIGNAL (3C)

RETURN VALUES

If the request can be honored, the si gnal function returns the value of func for the most recent call to
si gnal for the specified signal sig. Otherwise, a value of SI G_ERR is returned, and a positive value is
stored in er r no.

SEE ALSO
abort (3C), exi t (3C), setj mp(3C), si gnal . h(3C), si gon(3C)
ki |l (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

kill (2), pause(2), pt race(?2), si gnal (2), wai t (2) in the UNICOS System Calls Reference Manual,
Cray Research publication SR—2012

618 SR-2080 10.0

signal.h(3C) signal.h(3C)

NAME
si gnal . h — Library header for signal-handling functions

IMPLEMENTATION
All Cray Research systems

TYPES
The following type is defined in the standard header si gnal . h:

Type Standards ~ Description

sig _atomc_t ISO/ANSI Theintegra type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts.

MACROS

The following macros are defined as signals in the standard header si gnal . h:

Signal Standards Description

S| GABRT, ISO/ANSI Expands to a positive integral constant expression that is the signal

Sl d or, number corresponding to abnormal termination, such as is initiated

S| GHVE by the abort function. (SI GHVE is used only on CRAY Y-MP
systems.)

S| GALRM POSIX Expands to a positive integral constant expression that is the signal
number corresponding to an alarm clock.

SI GBUFI O CRI Reserved for CRI-library usage on Cray MPP systems.

SI GCLD, POSIX Expands to a positive integral constant expression that is the signal

SI GCHLD number corresponding to the death of a child process.

SI GCONT POSIX Expands to a positive integral constant expression that is the signal
number corresponding to continuing a stopped process.

SI GCPULI M CRI Expands to a positive integral constant expression that is the signal
number corresponding to CPU limit exceeded.

SI GDLK CRI Expands to a positive integral constant expression that is the signal
number corresponding to a true deadlock detected.

SI GERR, CRI Expands to a positive integral constant expression that is the signal

SI GEMT number corresponding to an error exit.

SR-2080 10.0 619

signal.h(3C) signal.h(3C)

Signal Standards Description

S| GFPE ISO/ANSI Expands to a positive integral constant expression that is the signa
number corresponding to an erroneous arithmetic operation, such as
zero divide, an operation resulting in overflow, or a floating-point
exception.

SI GHUP POSIX Expands to a positive integral constant expression that is the signal
number corresponding to a hangup.

SIG LL ISO/ANSI Expands to a positive integral constant expression that is the signal
number corresponding to detection of an invalid function image, such
as an illegal instruction (not reset when caught).

SI G NFO CRI Expands to a positive integral constant expression that is the signal
number corresponding to a quota warning or limit reached.

SI G NT ISO/ANSI Expands to a positive integral constant expression that is the signal
number corresponding to receipt of an interactive attention signal; for
example, an interrupt.

SId o BSD Expands to a positive integral constant expression that is the signal
number corresponding to an input/output possible signal.

SI &I LL POSIX Expands to a positive integral constant expression that is the signal
number corresponding to a kill (cannot be caught or ignored).

SI GVITKI LL CRI Reserved for use by the Cray multitasking library.

SI GvIT CRI Reserved for use by the Cray multitasking library.

S| GORE, CRI Expands to a positive integral constant expression that is the signal

S| GSEGV number corresponding to an operand range error.

SI GPI PE POSIX Expands to a positive integral constant expression that is the signal
number corresponding to a write on a pipe and no one to read it.

S| GARBKPT CRI Expands to a positive integral constant expression that is the signal
number corresponding to a breakpoint on the CRAY C90 series.

S| GPRE, CRI Expands to a positive integral constant expression that is the signal

SI GBBUS number corresponding to a program range error.

SI GPWR AT&T Expands to a positive integral constant expression that is the signal
number corresponding to a power failure.

SIGQUI T POSIX Expands to a positive integral constant expression that is the signal

620

number corresponding to quit
(ASCII FS).

SR-2080 10.0

signal.h(3C)

signal.h(3C)

Signal

Standards

Description

SI GRECOVERY

SI GRPE

SI GSEGV

SI GSHUTDN

SI GSTOP

SI GSYS

S| GTERM

S| GTRAP

SI GTSTP

SIGITIN

SI GTTQU

SI GURG

SI GUMVE

SI GUSR1

SI GUSR2

CRI

CRI

ISO/ANS

CRI

POSIX

AT&T

ISO/ANS

AT&T

POSIX

POSIX

POSIX

BSD

CRI

POSIX

POSIX

Expands to a positive integral constant expression that is the signal
number corresponding to a recovery signal.

Expands to a positive integral constant expression that is the signal
number corresponding to a register parity on CRAY Y-MP systems.

Expands to a positive integral constant expression that is the signal
number corresponding to invalid access to storage. (Also known as
S| GORE.)

Expands to a positive integral constant expression that is the signal
number corresponding to system shutdown imminent (advisory).

Expands to a positive integral constant expression that is the signal
number corresponding to sendable stop signal, not from tty.

Expands to a positive integral constant expression that is the signal
number corresponding to a bad argument to system call.

Expands to a positive integral constant expression that is the signal
number corresponding to a software termination request (from ki | 1)
sent to the program.

Expands to a positive integral constant expression that is the signal
number corresponding to a trace trap (not reset when caught).

Expands to a positive integral constant expression that is the signal
number corresponding to stop signal from tty.

Expands to a positive integral constant expression that is the signal
number corresponding to a reader’s process group upon background
tty read.

Expands to a positive integral constant expression that is the signal
number corresponding to a writer's process group upon background
tty write.

Expands to a positive integral constant expression that is the signal
number corresponding to an urgent condition on an I/O channel.

Expands to a positive integral constant expression that is the signal
number corresponding to an uncorrectable memory error.

Expands to a positive integral constant expression that is the signal
number corresponding to user-defined signal 1.

Expands to a positive integral constant expression that is the signal
number corresponding to user-defined signal 2.

SR-2080 10.0

621

signhal.h(3C) signal.h(3C)
Signal Standards Description
SI GW NCH AT&T Expands to a positive integral constant expression that is the signal

number corresponding to window size changes.

The following macros are defined as signal actions in the standard header si gnal . h:

Macro

Standards

Description

SI G DFL

SI G ERR

SI G HOLD

SIG I GN

ISO/ANS

ISO/ANS

AT&T

ISO/ANS

Expands to a constant expression with a distinct value that is type
compatible with the second argument to and the return value of the
si gnal function, and whose value compares unequal to the address
of any declarable function.

Expands to a constant expression with a distinct value that is type
compatible with the second argument to and the return value of the
si gnal function, and whose value compares unequal to the address
of any declarable function.

Expands to a constant expression with a distinct value that is type
compatible with the second argument to and the return value of the
si gset function, and whose value compares unequal to the address
of any declarable function.

Expands to a constant expression with a distinct value that is type
compatible with the second argument to and the return value of the
si gnal function, and whose value compares unequal to the address
of any declarable function.

FUNCTION DECLARATIONS

_Iwp kil (2t
Iwp kil m2)t
bsdsi gnal (2)1
bsdsi gpause(2)t
gsi gnal (3C)t

kill (@2t
killm2)t
kil pg(30)t

622

r ai se(3C) si ghol d(2)t si gprocmask(2)t
si gaction(2)t si gi gnor e(2)t sigrel se(2)t

si gaddset (3C)t si gi smenber (3C)t si gset (2)t

si gbl ock(2)t si gnal (3C) si gset mask(2)t
sigetl (2t sigofft si gvec(2)t

si gdel set (3C)t si gon(3C)t ssignal T

si genptyset (3C)t si gpause(2)t
sigfillset(3C)t si gpendi ng(2)t

T Available only in extended mode.

SR-2080 10.0

signal.h(3C) signal.h(3C)

NOTES

When compiling in extended mode, the header <sys/ t ypes. h> isincluded in <si gnal . h>. Thus, all
of the types, macros, etc. defined in <sys/ t ypes. h> are available in addition to those mentioned above.
Refer to sys/ t ypes. h> for information.

SR-2080 10.0 623

SIGNBIT(3C)

NAME
si gnbi t — Determines if the sign of its argument is negative
SYNOPSIS

#i ncl ude <fp. h>
int signbit (floating-type X) ;

IMPLEMENTATION

Cray MPP systems
CRAY T90 systems with |EEE floating-point arithmetic

STANDARDS

ANSI/IEEE Std 754-1985
X3/TR-17:199x

DESCRIPTION

SIGNBIT(3C)

The si gnbi t macro determines if the argument value (including infinity, zero, or NaN) is negative. On
Cray MPP systems, floating-type is a parameter of type doubl e. On CRAY T90 systems with IEEE
hardware, floating-type x is a parameter of any floating type. If the argument is not a floating type, the

behavior is undefined.

If the si gnbi t macro definition is suppressed in order to access an actual function, or if a program defines

an external identifier with the name of this macro, the behavior is undefined.

RETURN VALUES

The macro returns a nonzero value if the sign of its argument value is negative.

SEE ALSO

Migrating to the CRAY T90 Series IEEE Floating Point, Cray Research publication SN—2194

624

SR-2080 10.0

SIGOFF(3C) SIGOFF(3C)

NAME
si gof f, si gon — Controls signal-catching status

SYNOPSIS
#i ncl ude <signal.h>
int sigoff(void);

int sigon(void);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

The si gof f function allows signal catching to be postponed without issuing a system call. However,
signals that are not currently registered to be caught are not affected; that is, they would still kill the process
or be ignored. Signals are not queued, so only one instance of each signa type is remembered while

si gof f isin effect.

The si gon function reenables signal catching. Any signals that were postponed are delivered immediately.

Both si gof f and si gon return the previous status; a nonzero return value indicates that signal catching
had been postponed.

When executing a signal handler, the initial signal-catching status differs depending upon which function was
used to register for the signal (see si gct | (2), si gnal (2), or si gact i on(2) for further information).
Both si gof f and si gon can be issued inside a signa handler to change status.

SEE ALSO

si gaction(2), sigctl (2), si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

SR-2080 10.0 625

SIGSETOPS(3C) SIGSETOPS(3C)

NAME

sigenptyset,sigfillset, sigaddset, si gdel set, si gi smenber — Manipulates signal sets

SYNOPSIS

#i ncl ude <signal.h>

int sigenptyset (sigset_t *seb);

int sigfillset (sigset_t *sab);

int sigaddset (sigset_t *set, int signo);
int sigdelset (sigset_t *set, int signo);

int sigismenber (const sigset_t *set, int signo);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX

DESCRIPTION

626

These functions manipulate sets of signals. They operate on data objects addressable by the application, not
on any set of signals known to the system, such as the set blocked from delivery by a process or the set
pending for a process.

Function si genpt yset initializes the signal set pointed to by argument set, such that all signals defined in
the Posix standard are excluded.

Function si gf i | | set initializes the signal set pointed to by argument set, such that all signals defined in
the Posix standard are included.

Applications must call either si genpt yset or si gfill set a least once for each object of type
si gset _t prior to any other use of that object. If such an object is not initialized in this way, but is
supplied as an argument to functions si gaddset , si gdel set, si gi smenber, si gpr ocnmask,
si gpendi ng, or si gsuspend, the results are undefined.

Functions si gaddset and si gdel set respectively add and delete the individual signal specified by the
argument signo from the signal set pointed to by the argument set.

Function si gi smenber tests whether the signal specified by the value of the argument signo is a member
of the signal set pointed to by the argument set.

SR-2080 10.0

SIGSETOPS(3C) SIGSETOPS(3C)

RETURN VALUES

Upon successful completion, function si gi smenber returns a value of 1 if the specified signal is a
member of the specified set; otherwise, a value of zero is returned. Upon successful completion, the other
functions return a value of zero. For all of these functions, if an error is detected, a value of —1 is returned
and er r no is set to indicate the error. Values for er r no can be the following:

EFAULT The set argument points outside the allocated address space.
El NVAL Invalid signo.

SEE ALSO

si gpendi ng(2), si gpr ocrmask(2), si gsuspend(2) in the UNICOS System Calls Reference Manual,
Cray Research publication SR—2012

SR-2080 10.0 627

SIGWAIT(3C)

NAME

si gwai t — Synchronous signa handling

SYNOPSIS
#i ncl ude <signal.h>

int sigwait (const sigset_t *se,
IMPLEMENTATION

All Cray Research systems

STANDARDS
PThreads

DESCRIPTION

i nt

*sig) ;

SIGWAIT(3C)

The si gwai t function waits for the reception of any of the signals in the specified set and returns that

signal number to the caller.

The signals defined by set should be blocked at the time of the call to si gwai t ; otherwise si gwai t may
not behave in the manner described here. During the execution of si gwai t , the registration for the signals
in set is changed. The original registration is restored when si gwai t returns, but the execution of a signal
handler for a signal not in set may be affected by this if it or any function called by that handler is sensitive

to the registration of the signalsin set.

RETURN VALUES

Upon successful completion, si gwai t stores the signal number of the received signal at the location

referenced by sig and returns 0. Otherwise, an error number is returned to indicate the error.

MESSAGES
The si gwai t function fails if one of the following error conditions occurs:
Error Code Description
El NVAL The set argument contains an invalid or unsupported signal number.

628

SR-2080 10.0

SIN(3C) SIN(3C)

NAME
sin, sinf,sinl,csin,cos, cosf, cosl, ccos, tan,tanf,tanl — Determines the sine, cosine, or
tangent of a value

SYNOPSIS

#i ncl ude <math. h>
#i ncl ude <conpl ex. h> (for functions csi n and ccos only)

double sin (double x);

float sinf (float X);

long double sinl (long double X);

doubl e conplex csin (double conplex x);
doubl e cos (double x);

float cosf (float X);

l ong double cosl (long double X);

doubl e conplex ccos (double conplex x);
double tan (double x);

float tanf (float X);

long double tanl (long double X);

IMPLEMENTATION

All Cray Research systems (si n, csi n, cos, ccos, t an only)
Cray MPP systems (si nf, cosf, t anf only)
Cray PVP systems (si nl , cosl , t anl only)
STANDARDS
ISO/ANSI (si n, cos, t an only)
CRI extension (all others)
DESCRIPTION

Functions si n, si nf, si nl , and csi n return, respectively, the sine of adoubl e, f| oat, | ong
doubl e, or doubl e conpl ex value x in radians.

Functions cos, cosf, cosl , and ccos return, respectively, the cosine of adoubl e, f1 oat, | ong
doubl e, or doubl e conpl ex value x in radians.

SR-2080 10.0 629

SIN(3C)

SIN(3C)

Functions t an, t anf , and t anl return, respectively, the tangent of adoubl e, f | oat, or | ong doubl e
value x in radians.

In strict conformance mode, vectorization is inhibited for loops containing calls to any of these functions.
Vectorization is not inhibited in extended mode.

RETURN VALUES

When a program is compiled with - hst dc or - hrmat her r or =er r no on Cray MPP systems and
CRAY T90 systems with |EEE arithmetic, under certain error conditions the functions perform as follows:

si n(NaN) returns NaN, and er r no is set to EDOM

si nl (NaN) returns NaN, and er r no is set to EDOM

si n(+/-Inf) returns NaN, and er r no is set to EDOM

si nl (+/-Inf) returns NaN, and er r no is set to EDOM

cos(NaN) returns NaN, and er r no is set to EDOM

cosl (NaN) returns NaN, and er r no is set to EDOM

cos(+/-Inf) returns NaN, and er r no is set to EDOM

cosl (+/-Inf) returns NaN, and er r no is set to EDOM

t an(NaN) returns NaN, and er r no is set to EDOM

t anl (NaN) returns NaN, and er r no is set to EDOM

csi n(x+NaN*1.0i) returns NaN+Nan*1.0i, and er r no is set to EDOM

csi nl (x+y*1. 0i) , where x is NaN or +/- infinity, returns NaN+Nan*1.0i, and er r no is set to EDOM
ccos(x+NaN*1.0i) returns NaN+Nan*1.0i, and er r no is set to EDOM

ccos(x+y*1. 0i), where x is NaN or +/- infinity, returns NaN+Nan*1.0i, and er r no is set to EDOM

SEE ALSO

COS(3M), SI N(3M), TAN(3M) in the Intrinsic Procedures Reference Manual, Cray Research publication
SR-2138

630

SR-2080 10.0

SINH(3C)

NAME

SINH(3C)

si nh, si nhf, si nhl , cosh, coshf, coshl, tanh, t anhf,t anhl — Determines hyperbolic sine,
cosine, or tangent of value

SYNOPSIS

#i ncl ude <math. h>

doubl e sinh
fl oat sinhf
| ong doubl e
doubl e cosh
fl oat coshf
| ong doubl e
doubl e tanh
float tanhf

| ong doubl e

IMPLEMENTATION

(doubl e x);

(float x);

sinhl (long double x);
(doubl e x);

(float x);

coshl (long double x);
(doubl e x);

(float x);

tanhl (long double x);

All Cray Research systems (si nh, cosh, t anh only)
Cray MPP systems (si nhf , coshf , t anhf only)
Cray PVP systems (si nhl , coshl , t anhl only)

STANDARDS

ISO/ANSI (si nh, cosh, t anh only)
CRI extension (all others)

DESCRIPTION

Functions si nh, si nhf , and si nhl return, respectively, the hyperbolic sine of adoubl e, f | oat, or
| ong doubl e value, x. A range error occurs if they are called with an argument that would cause

overflow.

Functions cosh, coshf , and coshl return, respectively, the hyperbolic cosine of adoubl e, f | oat, or
| ong doubl e value, x. A range error occurs if they are called with an argument that would cause

overflow.

Functions t anh, t anhf , and t anhl return, respectively, the hyperbolic tangent of adoubl e, f | oat, or
| ong doubl e vaue, x.

SR-2080 10.0

631

SINH(3C) SINH(3C)

When code containing calls to these functions is compiled by the Cray Standard C compiler in extended
mode, domain checking is not done, er r no is not set on error, and the functions do not return to the caller
on error. If an error occurs, the program aborts, giving a traceback and a core file. Specifying the cc(1)
command-line option - h st dc (signifying strict conformance mode) or - h mat her r =err no causes al
of these functions to perform domain and range checking, set er r no on error, and return to the caller on
error. On CRAY T90 systems with |EEE floating-point arithmetic only, in extended mode, er r no is not
set, but the functions do return to the caller on error. For more information, see the corresponding | i bm
man page (for example, SI NH(3M)).

Also, in strict conformance mode, vectorization is inhibited for loops containing calls to any of these
functions. Vectorization is not inhibited in extended mode.
RETURN VALUES

cosh(NaN), coshl (NaN), si nh(NaN), si nhl (NaN), t anh(NaN) , and t anhl (NaN) return NaN
and errno is set to EDOMon Cray MPP systems and CRAY T90 systems with IEEE arithmetic when the
program is compiled with - hst dc or - hrmat her r or =er r no.

SEE ALSO

errno. h(3C)

SI NH(3M), COSH(3M), TANH(3M) in the Intrinsic Procedures Reference Manual, Cray Research publication
SR-2138

cc(1) in the Cray Sandard C Reference Manual, Cray Research publication SR—2074

632 SR-2080 10.0

SLEEP(3C) SLEEP(3C)

NAME

sl eep — Suspends execution for a specified interval

SYNOPSIS
#i ncl ude <uni std. h>

unsigned int sleep (unsigned int seconds);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

The sl eep function suspends the current process from execution for at least the number of seconds
specified by the argument seconds. The suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system.

FORTRAN EXTENSION

Function sl eep can aso be caled from Fortran programs, as follows:
| NTEGER*8 SLEEP, seconds, |
| = SLEEP(seconds)

SEE ALSO

SR-2080 10.0 633

SLGTRUST(3C) SLGTRUST(3C)

NAME

sl gtrust, sl gt rust obj — Writes trusted process security log record

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/param h>
#i ncl ude <sys/secparm h>
#i nclude <sys/priv.h>

#i ncl ude <sys/utsnane. h>
#i nclude <sys/slrec. h>
#i ncl ude <errno. h>

int slgtrust(char *tpname, char *tpaction);

int slgtrustobj(char *tpname, char *tpaction, int olvl, long ocomp);
IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The sl gt r ust routine formats trusted process security log records and requests the kernel to write the
records to the security log. The sl gt r ust obj routine formats trusted process security log records, which
contain an object label.

RETURN VALUES
If successful, a0 is returned. If unsuccessful, a—1 is returned and er r no is set to the appropriate value.

SEE ALSO
sl gent r y(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

634 SR-2080 10.0

SORT(3F)

NAME

SORT(3F)

sort — Introduction to sort/merge routines

IMPLEMENTATION

Cray PVP systems

DESCRIPTION

The sort/merge routines let you sort records; the records can be acquired from input files, or they can be
generated from within the program. User-supplied routines can be added at various stages of the processing
to provide for error messages, end-of-file processing, or other specialized record processing functions.

To use the sort/merge routines, you must include the | i bsort library through the - | sort option on the
segl dr (1) command.

The following routines are used to define or set the parameters in a sort/merge session:
SAMSORT, SAMVERGE

SAMPATH
SAMFI LE
SAMKEY

SAMOPT

SAVSI ZE
SAMVEQU
SANMSEQ
SAMTUNE

SAMS0O

SR-2080 10.0

Begins a sort/merge specification; after this call you must call SAMKEY at least once, call either
SAMFI LE or SAMPATH at least once, and call any other subroutines as needed.

Defines the input and output files, as well as other user-supplied routines.
Defines input sources and output sinks.

Defines the sort keys used; there must be at least one call to SAMKEY between a call to
SAMSORT or SAMVERGE and the call to SAM30 which initiates the operation.

Specifies sort options, such as verification during the sort/merge session. This routine can aso
be used to retain the original order of records with equal keys.

Specifies the word and character sizes used for character comparisons.
Specifies equivalent characters in sort/merge sessions.
Specifies and defines a collating sequence (ascending or descending order).

Used to modify selected parameters such as average record length, maximum record length, and
the number of sort buffers to be allocated to each temporary dataset.

Initiates a sort/merge session. This call must be last chronologically in a series of calls that start
with either SAMSORT or SAMVERGE. There must be at least one intervening call to SAMKEY, at
least one call to SAMFI LE or SAMPATH to specify input sources, as well as at least one call to
SAMFI LE or SAMPATH to specify output sinks.

635

SQRT(3C) SQRT(3C)

NAME

sqgrt,sqrtf,sqrtl,csqrt, hypot — Determines the square root or hypotenuse of a value

SYNOPSIS

#i ncl ude <math. h>
#i ncl ude <conpl ex. h> (function csqrt only)

double sqrt (double x);

float sqrtf (float X);

long double sqgrtl (long double x);

doubl e conplex csqrt (double conplex X ;

doubl e hypot (double x, double vy);

IMPLEMENTATION

All Cray Research systems (sqrt, csqrt, hypot only)
Cray MPP systems (sqrt f only)
Cray PVP systems (sqrt | only)

STANDARDS

ISO/ANSI (sqgrt only)
XPG4 (hypot only)
CRI extension (all others)

DESCRIPTION

636

Thesqrt,sqrtf,sqrtl, and csqrt functions compute the nonnegative square root of x for doubl e,
fl oat,l ong doubl e, and doubl e conpl ex numbers, respectively. For these functions, a domain
error occurs if the argument is negative.

The hypot function returns the hypotenuse (Euclidean distance) sgrt(xCk + y[yy), taking precautions against
unwarranted overflows.

When code containing calls to these functions is compiled by Cray Standard C in extended mode, domain
checking is not done, er r no is not set on error, and the functions do not return to the caller on error. If an
error occurs, the program aborts, producing a traceback and a core file. On CRAY T90 systems with IEEE
floating-point arithmetic only, in extended mode, er r no is not set, but the functions do return on error. For
more information, see the corresponding | i bmman page (for example, SQRT(3M)).

Specifying the cc(1) command-line option - h st dc (signifying strict conformance mode) or
-h mat herr=errno causes the sqrt functions to perform domain and range checking, set er r no on

error, and return to the caller on error. Domain and range checking is always performed by hypot ,
regardless of the compilation mode.

SR-2080 10.0

SQRT(3C) SQRT(3C)

Also, in strict conformance mode, vectorization is inhibited for loops containing calls to these functions.
Vectorization is not inhibited in extended mode for loops containing calls to functions sqrt , sqrtf,
sqgrtl,and csqgrt. Vectorization is aways inhibited for loops containing calls to the hypot routine.

RETURN VALUES

Thesqrt,sqrtf,sqrtl,and csqrt functionsreturn the doubl e, fl oat, | ong doubl e, and
doubl e conpl ex value of the square root, respectively.

When a program is compiled with - hst dc or - hrmat her r or =er r no on Cray MPP systems and
CRAY T90 systems with |EEE arithmetic, under certain error conditions the functions perform as follows:

e sqgrt(NaN) returns NaN, and er r no is set to EDOM no exception is raised.

e sqgrtl (NaN) returns NaN, and err no is set to EDOM no exception is raised.

* hypot (NaN, y) returns NaN, and er r no is set to EDOM regardless of the compilation mode.
* hypot (x, NaN) returns NaN, and er r no is set to EDOM regardless of the compilation mode.

On Cray MPP systems and CRAY T90 systems with |EEE arithmetic, the value returned by these functions
when a domain error occurs can be selected by the environment variable CRI _| EEE_LI BM The second
column in the following table describes what is returned when CRI _| EEE LI BMis not set, or is set to a
value other than 1. The third column describes what is returned when CRI _| EEE LI Bissetto 1. For
both columns, er r no is set to EDOM

Error CRI _IEEE LIB=0 CRI _IEEE LIB=1
sqrt (X), where x is less than zero 0.0 NaN
sqgrtl (X), where x is less than zero 0.0 NaN

SEE ALSO

errno. h(3C)
SQRT(3M) in the Intrinsic Procedures Reference Manual, Cray Research publication SR—2138
cc(2) (online only)

SR-2080 10.0 637

SSIGNAL(3C) SSIGNAL(3C)

NAME

ssi gnal , gsi gnal — Generates software signals

SYNOPSIS

#i ncl ude <signal.h>
int (*ssignal (int sig, int (*action)(int)));

int gsignal (int sig);

IMPLEMENTATION

All Cray Research systems

STANDARDS

AT&T extension

DESCRIPTION

638

The ssi gnal and gsi gnal functions implement a software facility similar to si gnal (2). The C library
uses this facility to enable you to indicate the disposition of error conditions, and it is also made available to
you for your own purposes.

Software signals made available to users are associated with integers in the inclusive range 1 through 15. A
call to ssi gnal associates a procedure, action, with the software signal sig; the software signal, sig, is
raised by a cal to gsi gnal . Raising a software signal causes the action established for the specified signal
to be taken.

The first argument to ssi gnal is anumber identifying the type of signal for which an action is to be
established. The second argument defines the action; it is either the user-defined name of an action function
or one of the manifest constants SI G_DFL (default) or SI G_| GN (ignore). The ssi gnal function returns
the action previously established for that signal type; if no action has been established or the signal number
isillegal, ssi gnal returns SI G_DFL.

The gsi gnal function raises the signal identified by its argument, sig:

¢ |f an action function has been established for sig, that action is reset to SI G_DFL, and the action function
is entered with argument sig. The gsi gnal function returns the value returned to it by the action
function.

¢ |f the action for sig is SI G_|I G\, gsi gnal returns the value 1 and takes no other action.
¢ |f the action for sig is SI G_DFL, gsi gnal returns the value O and takes no other action.

e |f sig has anillegal value or no action was ever specified for sig, gsi gnal returns the value 0 and takes
no other action.

SR-2080 10.0

SSIGNAL(3C) SSIGNAL(3C)

SEE ALSO
si gnal (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 639

START(3C) START(3C)

NAME

start,sitel ocal _start — Common start-up routine for programs, user exit for start-up

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

Two modules comprise the start-up code for al programs: $START and $START$. Thefirst is an
assembly language module to which the kernel passes information in registers. On non-MPP systems, the

st art function does executable expansion, presets nonzero BSS space in the program (if requested by using
the - f option to segl dr (1)), determines the size of the initial heap and stack segments, and jumps to
$STARTS (this call creates an initial stack segment and heap area for the program). On MPP systems,
$START simply stores the registers that the kernel passes to it, and jumps to $STARTS.

The $STARTS$ routine is written in C, and it does the rest of the initialization necessary for the program,
including calling t ar get (2) to get machine-specific information, calling the _si gi ni t (2) system call to
register an initial signal save area with the kernel, and calling various initialization routines if they happen to
be loaded into the program. On MPP systems, $START$ also initializes the private and shared heap
segments, and presets nonzero BSS space if requested.

As the last step before calling the main routine of the program, $START$ checks for the existence of the
sitel ocal _start routine; if this routine is linked into the program, it will be called. This step allows
site-specific "user exit" code to be run before the main routine is called. If the main routine of the program
returns, $STARTS calls exi t (2) with the return value from the main routine as its argument.

MESSAGES

640

ERROR: fixed heap space too small to copy argunents. ..
An expandable blank common block is being used, and the initial heap space specified on the
segl dr command line is too small. Set the initial heap size to a larger value.

ERROR: program executing at word zero
Some routine has done a jump to address 0, because of a bug in the program or library code.

$STARTS: target() syscall failed, programexiting
Thet ar get (2) system call in $STARTS$ returned —1; contact your system administrator or site
analyst.

$STARTS: _siginit() call failed, programexiting
The _si gi ni t (2) system cal in $STARTS returned —1; contact your system administrator or site
analyst.

$STARTS: heap initialization failed, programexiting
The MPP private heap initialization routine failed, either from bad heap values specified to
segl dr, or from too small a memory limit; contact your system administrator or site analyst.

SR-2080 10.0

START(3C) START(3C)

$STARTS: shared heap initialization failed, programexiting
The MPP shared heap initialization routine failed, either from bad heap values specified to segl dr,
or from too small a memory limit; contact your system administrator or site analyst.
EXAMPLES

The following example shows how to define a routine called si t el ocal _st art that will be run before
the main program:

$ cat main.c

mai n()
{
printf("hello world\n");
}
$ cat sl.c
voi d
sitelocal _start(void)
{
printf("in sitelocal _start\n");
}
$ cc -c min.c sl.c
mai n. c:
sl.c:

$ # using cc to link the program

$ cc -o minmmin.o sl.o

$ # OR using segldr to link the program

$ segldr -o main main.o sl.o -Dhardref=sitel ocal _start
$./main

in sitelocal start

hello world

$

SEE ALSO
segl dr (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

SR-2080 10.0 641

stdarg.h(3C)

NAME

IMPLEMENTATION

stdarg.h(3C)

st dar g. h — Library header for variable arguments

All Cray Research systems

STANDARDS

TYPES

ISO/ANS

The type declared in st dar g. h, which conforms to the ISO/ANSI standard, is as follows:

va_list

MACROS

642

A type suitable for holding information needed by the macrosva_start, va_ar g, and
va_end. If accessto the varying arguments is desired, the called function declares an object
(referred to as ap in this description) having typeva_l i st. The object ap can be passed as
an argument to another function; if that function invokes the va_ar g macro with parameter
ap, the value of ap in the calling function is indeterminate; it is passed to the va_end macro
prior to any further reference to ap.

The macros declared in st dar g. h, which all conform to the ISO/ANSI standard, are as follows:

va_start

Invoke va_st art before any access to the unnamed arguments, as follows:
va_start (ap, parmN);
Theva_st art macro initializes ap for subsequent use by va_ar g and va_end .

The parameter parmN is the identifier of the rightmost parameter in the variable parameter list
in the function definition (the one just before the, . . .). If the parameter parmN is
declared with the r egi st er storage class, with a function or array type, or with a type that
is not compatible with the type that results after application of the default argument
promotions, the behavior is undefined.

va_start isamacro, not afunction. If the macro definition is suppressed in order to
access an actual function, the behavior is undefined.

Theva_st art macro returns no value.

SR-2080 10.0

stdarg.h(3C)

va_arg

va_end

stdarg.h(3C)

The va_ar g macro expands to an expression that has the type and value of the next
argument in the call. It isinvoked as follows:

va_arg (ap, type);

The parameter ap is the same astheva_| i st ap initialized by va_st art . Each invocation
of va_ar g modifies ap so that the values of successive arguments are returned in turn. The
parameter type is a type name specified such that the type of a pointer to an object that has
the specified type can be obtained simply by postfixing a (0to type. If there is no actual next
argument, or if type is not compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined.

va_ar g isamacro, not a function. If the macro definition is suppressed in order to access
an actual function, the behavior is undefined.

The first invocation of the va_ar g macro after invocation of the va_st art macro returns
the value of the argument after that specified by parmN. Successive invocations return the
values of the remaining arguments in succession.

The va_end macro facilitates a normal return from the function whose variable argument list
was referred to by the expansion of macro va_st art that initialized theva_| i st ap. Itis
invoked as follows:

void va_end (va_list ap);

The va_end macro can modify ap so that it is no longer usable (without an intervening
invocation of va_st art). If thereis no corresponding invocation of the va_st art macro,
or if the va_end macro is not invoked before the return, the behavior is undefined.

va_end is a macro, not a function. If the macro definition is suppressed in order to access
an actual function, the behavior is undefined.

The va_end macro returns no value.

FUNCTION DECLARATIONS

None

NOTES

The preceding describes the Cray Standard C (and ISO/ANSI) approach to variable-length argument list
processing. The SVID approach is defined in var ar gs. h. (Seevar ar gs(3).) The two approaches are
not compatible; if both headers are included in the same compilation unit, the compiler issues redefinition
error messages.

SR-2080 10.0

643

stdarg.h(3C) stdarg.h(3C)

A typical function definition for a function with variable argument list that uses st dar g. h is as follows:

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

f(FILE *iop, char *format, ...)
{

va_list ap;
va_start(ap, format);

}

To use the Cray Standard C compiler without function prototype and elipses notation, change the code as
follows:

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

f(iop, format, ap)
FI LE *i op;
char *format;
va_list ap;

va_start(ap, format);

SEE ALSO
var ar gs. h(3C)

644 SR-2080 10.0

stddef.h(3C)

NAME

stddef.h(3C)

st ddef . h — Library header for common definitions

IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANS

TYPES

The following types are defined in the standard header st ddef . h. Unless noted as a CRI extension, each
item conforms to the ISO/ANSI standard.

Type
ptrdiff_t
size_t
wchar t

MACROS

Description

The signed integral type of the result of subtracting two pointers.

The unsigned integral type of the result of the si zeof operator.

An integral type whose range of values can represent distinct codes for all members of the
largest extended character set specified among the supported locales; the null character shall
have the code value zero and each member of the basic character set shall have a code value
equal to its value when used as the lone character in an integer character constant.

The following macros are defined in the standard header st ddef . h. Each item conforms to the ISO/ANSI

standard.

Type
NULL

Description
An implementation-defined null pointer constant, equal to zero on CRI systems. Also
defined in headers | ocal e. h, stdi 0. h,stdlib. h,string.h,andtine.h.

of f set of (type, member-designator)

An integral constant expression that has type si ze_t , the value of which is the offset in
bytes, to the structure member (designated by member-designator), from the beginning of its
structure (designated by type). The member-designator shall be such that given "st ati c
type t; ", then the expression &(t . member-designator) evaluates to an address constant.
(If the specified member is a bit-field, the behavior is undefined.)

FUNCTION DECLARATIONS

None

SR-2080 10.0

645

stddef.h(3C) stddef.h(3C)

NOTES

wechar _t is defined in header files st dl i b. h and st ddef . h to be of typei nt. In releases before
UNICOS 8.0, it was type char .

646 SR-2080 10.0

stdio.h(3C) stdio.h(3C)

NAME
st di 0. h — Library header for input and output functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION
The st di 0. h header file describes input and output functions.
Types
The types defined in st di 0. h are as follows. All types conform to the ISO/ANSI standard.
Type Description
size_t The unsigned integral type of the result of the si zeof operator.
FI LE An object type that can record all of the information needed to control a stream, including its

file position indicator, a pointer to its associated buffer (if any), an error indicator that records
whether a read/write error has occurred, and an end-of-file indicator that records whether the
end of the file has been reached.

fpos_t An object type that can record all of the information needed to specify every position within a

file uniquely.
Macros

The macros defined in st di 0. h are as follows. Unless noted, all macros conform to the ISO/ANS

standard.

Macro Description

BUFSI Z Expands to an integral constant expression the size of the buffer used by the set buf (3C)
function.

ECF Expands to a negative integral constant expression that is returned by several functions to
indicate end-of-file, that is, no more input from a stream. On Cray Research systems, ECF is
-1.

FI LENAVE_MAX

Expands to an integral st di 0. h constant expression that is the size needed for an array of
char large enough to hold the longest filename string that can be opened (1024 on Cray
Research systems, which includes the terminating null character).

FOPEN_MAX Expands to an integral constant expression that is the minimum number of files that are
guaranteed to be open simultaneously (at least 100 on Cray Research systems).

_I OFBF, _I OLBF, _| ONBF
Expands to integral constant expressions with distinct values, suitable for use as the third
argument to the set vbuf (3C) function.

L cterm d (XPG4) Expandsto an integral constant expression that is the size needed for an array of
char large enough to hold a string that contains the path name of the controlling terminal for
the current process.

SR-2080 10.0 647

stdio.h(3C)

stdio.h(3C)

L_cuserid (XPG4) Expandsto an integral constant expression that is the size needed for an array of

L_t mpnam

NULL

char large enough to hold a a character-string representation of the login name of the owner
of the current process.

Expands to an integral constant expression that is the size needed for an array of char large
enough to hold a temporary file name string generated by the t npnam(3C) function.

A null pointer constant equal to O.

SEEK_CUR, SEEK_END, SEEK_SET

Expands to integral constant expressions with distinct values, suitable for use as the third
argument to the f seek(3C) function.

stderr, stdin, stdout

TVP_MAX

P_tmpdir

Expressions of type "pointer to FI LE" that point to the FI LE objects associated with the
standard error, input, and output streams, respectively.

Expands to an integral constant expression that is the minimum number of unique file names
that can be generated by the t npnam(3C) function.

(XPG4) Expands to an integral constant expression that is the size needed for an array of
char large enough to hold a string that contains the path prefix for used by the

t emmpnam(3C) function.

Function Declarations
Functions declared in the header file st di 0. h are as follows:

clearerr
ctermd
cuserid
fwite
fcl ose
f dopen
f eof
ferror
fflush
fgetc

f get pos

648

fgets ftell put c sscanf
fileno fwite put char t empnam
f open getc put s tnpfile
fprintf get char put w t npnam
fputc gets renove unget ¢
fputs getw rew nd vfprintf
fread mkt enp scanf vprintf
freopen pcl ose set buf vsprintf
f scanf perror set | i nebuf
f seek popen set vbuf
f set pos printf sprintf

SR-2080 10.0

STDIPC(3C) STDIPC(3C)

NAME

st di pc, ft ok — Standard interprocess communication (IPC) package

SYNOPSIS
#i ncl ude <sys/ipc. h>

key t ftok (const char *path, int id);

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

DESCRIPTION

Certain interprocess communication (IPC) facilities require the user to supply a key to be used by the
nmsgget (2), senget (2), and shiget (2) functions to obtain interprocess communication identifiers. One
suggested method for forming a key is to use the f t ok subroutine described below. Another way to
compose keys is to include the project 1D in the most significant byte and to use the remaining portion as a
sequence number. There are many other ways to form keys, but it is necessary for each system to define
standards for forming them. If some standard is not adhered to, it will be possible for unrelated processes to
unintentionally interfere with each other’s operation. It is still possible to interfere intentionally. Therefore,
it is strongly suggested that the most significant byte of a key in some sense refer to a project so that keys
do not conflict across a given system.

f t ok returns a key based on path and id that is usable in subsequent nsgget (2), senget (2), and
shmget (2) functions. path must be the path name of an existing file that is accessible to the process. id is
a character that uniquely identifies a project. Note that f t ok returns the same key for linked files when
called with the same id and that it returns different keys when called with the same file name but different
ids.

NOTES

If the file whose path is passed to f t ok is removed when keys still refer to the file, future callsto f t ok
with the same path and id return an error. If the same file is recreated, then f t ok is likely to return a
different key from the original call.

RETURN VALUES

ftok returns (key_t) -1 if path does not exist or if it is not accessible to the process.

SR-2080 10.0 649

STDIPC(3C) STDIPC(3C)

SEE ALSO
nmsgget (2), senget (2), shnget (2)

i pc(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

i pc(7) Online only

650 SR-2080 10.0

stdlib.h (3C)

NAME

stdlib.h (3C)

stdlib.h — Library header for general utility functions

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

TYPES

The types defined in the header file st dl i b. h are as follows:

Type Standards

Description

div_t ISO/ANSI

| div_t ISO/ANSI

size_t ISO/ANS
wchar _t ISO/ANSI

Structure type that is the type of the value returned by the di v
function. It consists of membersi nt quot (quotient) and i nt
r em(remainder), in either order.

Structure type that is the type of the value returned by the | di v
function.

The unsigned integral type of the result of the si zeof operator.

An integral type whose range of values can represent distinct codes
for al members of the largest extended character set specified among
the supported locales; the null character shall have the code value
zero and each member of the basic character set shall have a code
value equal to its value when used as the lone character in an integer
character constant.

MACROS

The macros defined in the header file st dl i b. h are as follows:

Macros Standards

Description

EXI T_FAI LURE ISO/ANSI
EXI T_SUCCESS

Both of these macros expand to integral expressions that can be used
as the argument to the exi t function to return unsuccessful or
successful termination status, respectively, to the host environment.
On Cray Research systems, the values are 1 and 0O, respectively.

SR-2080 10.0

651

stdlib.h (3C) stdlib.h (3C)

Macros Standards Description

MB_CUR_MAX ISO/ANSI Expands to a positive integer expression whose value is the
maximum number of bytes in a multibyte character for the extended
character set specified by the current locale (category LC_CTYPE),
and whose value is never greater than MB_LEN MAX. The standard
guarantees the value of MB_ CUR_MAX to be at least 1. On Cray
Research systems, MB_CUR_MAX is defined as 1.

NULL ISO/ANSI An implementation-defined null pointer constant, equal to zero on
Cray Research systems.
RAND MAX ISO/ANSI Expands to an integral constant expression, the value of which is the

maximum value returned by the r and function; The ISO/ANSI C
standard guarantees the value of RAND _MAX to be at least 32767.
On Cray Research systems, RAND MAX is defined as 32767.

FUNCTION DECLARATIONS

Functions declared in the header file st dl i b. h are as follows:

abort div | abs nr and48+t srand48t
abs dr and48+t | cong48t nr and48+t strtod
atexit erand48ft | div put envt strtol

at of exit | rand48t gsort strtold
at oi free mal | oc rand strtoul
at ol get env nbl en real |l oc system
bsear ch getopt t nmbst owcs seed48t west onbs
cal |l oc j rand48t bt owe srand wet onb

T Available only in extended mode

SEE ALSO
st ddef . h(30)

652 SR-2080 10.0

STKSTAT(3C) STKSTAT(3C)

NAME
STKSTAT, STACKSZ — Reports stack statistics

SYNOPSIS
#i nclude <stkstat.h>
void STKSTAT(struct stkstat *ptr);
void STACKSZ(void);

IMPLEMENTATION
Cray PVP systems

STANDARDS

CRI extension

DESCRIPTION

The STKSTAT function fills the structure pointed to by ptr with statistics from the stack manager.
STACKSZ calls STKSTAT, then prints the statistics (on st dout) in the format shown below.

EXAMPLES

This is sample output from STACKSZ on Cray parallel vector systems:

04357 Total size of all stacks (2287)
04000 Highest stack hi-water mark (2048)
2 Current nunber of stacks
2 Total nunber of stacks
2 Mst stacks at one tine
1 Number of stacks that grew
2 Number of times stacks grew

FORTRAN EXTENSIONS

These functions can also be called from Fortran, as shown below. The | STAT array is declared as 20 words
long to allow for future growth of the st kst at structure.

DI MENSI ON | STAT(20)
CALL STKSTAT(I| STAT)

or
CALL STACKSZ

SR-2080 10.0 653

STRCASECMP(3C) STRCASECMP(3C)

NAME

st rcasecnp, st rncasecnp — Performs case-insensitive string comparison

SYNOPSIS
#i ncl ude <string. h>
int strcasecnp (const char *sl, const char *s2);

int strncasecnp (const char *sl, const char *s2, size_t n);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The st r casecnp function performs a case-insensitive comparison on the strings (arrays of characters
terminated by null characters) pointed to by its arguments, mapping uppercase alphabetic characters to
lowercase for comparison. It returns an integer less than, equal to, or greater than 0, depending on whether
sl is lexicographically less than, equal to, or greater than s2, respectively.

The st r ncasecnp function performs the same comparison, but compares a maximum of n characters.

SEE ALSO
st ring(3C)

654 SR-2080 10.0

STRFMON(3C) STRFMON(3C)

NAME

st r f non — Converts a monetary value to a string

SYNOPSIS

#i ncl ude <nonetary. h>

ssize_t strfrmon (char *s size_ t maxsizee const char *format, ...);
IMPLEMENTATION

All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The st r f non function places characters into the array pointed to by s, as controlled by the string pointed to
by format. No more than maxsize bytes are placed into the array.

The format is a character string that contains two types of objects: plain characters, which are ssimply copied
to the output stream, and conversion specifications, each of which results in the fetching of zero or more
arguments that are converted and formatted. If there are insufficient arguments for the format, the results are
undefined. If the format is exhausted while arguments remain, the excess arguments are ssimply ignored.

A conversion specification consists of the following sequence:

* A %character

¢ Optional flags

¢ Optiona field width

¢ Optional left precision

¢ Optional right precision

* A required conversion character that determines the conversion to be performed

Flags
One or more of the following optional flags can be specified to control the conversion:

=f The f is used as the numeric fill character. The fill character must be representable in a single byte
in order to work with precision and width counts. The default numeric fill character is the space
character. This flag does not affect field width filling, which always uses the space character. This
flag is ignored unless left precision (see the Left Precision subsection) is specified.

n Do not format the currency amount with grouping characters. The default is to insert the grouping
characters if defined for the current locale.

SR-2080 10.0 655

STRFMON(3C) STRFMON(3C)

+ or (Specify the style of representing positive and negative currency amounts. Only one of + or (may
be specified. If + is specified, the locale’s equivalent of + and - are used (for example, in the
United States: the empty string if positive and - is negative). If the (character is specified,
negative amounts are enclosed within parentheses. If neither flag is specified, the + style is used.

! Suppress the currency symbol from the output conversion.

- Specify the alignment. If this flag is present, all fields are left-justified (padded to the right) rather
than right-justified.

Field Width

w Decimal number specifying a minimum field width in bytes in which the result of the conversion is
right-justified (or left-justified if the - flag is specified). The default is zero.

Left Precision

#n The n is a decimal number specifying the maximum digits to be formatted to the left of the radix
character. This option can be used to keep the formatted output from multiple calls to the
st r f non aligned in the same columns. It can also be used to fill unused positions with a special
character, asin $***123. 45. This option causes an amount to be formatted as if it has the
number of digits specified by n. If more than n digit positions are required, this conversion
specification is ignore. Digit positions in excess of those actually required are filled with the
numeric fill character (see the =f flag description).

If grouping has not been suppressed by using the * flag, and it is defined for the current locale, grouping
separators are inserted before the fill characters (if any) are added. Grouping separators are not applied to
fill characters, even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the formatted output, such as
currency or sign symbols, are padded as necessary with space characters to make their positive and negative
formats an equal length.

Right Precision

.p The p is a decimal number specifying how many digits follow the radix character. If the value of
the right precision p is 0, no radix character appears. If aright precision value is not included, a
default specified by the current locale is used. The amount being formatted is rounded to the
specified number of digits prior to formatting.

Conversion Characters
The conversion characters and their meanings are as follows:

[The doubl e argument is formatted according to the local€'s international currency format (for
example, in the United States: USD 1, 234. 56).

n The doubl e argument is formatted according to the local€' s national currency format (for example,
in the United States: $1, 234. 56).
% Convert to a % no argument is converted. The entire conversion specification must be %846

656 SR-2080 10.0

STRFMON(3C) STRFMON(3C)

Locale Information
The LC_MONETARY category of the program’s locale affects the behavior of this function including the
monetary radix character (which may be different from the numeric radix character affected by the
LC_NUMERI C category), the grouping separator, the currency symbols and formats. The international
currency symbol should be conformant with the 1SO 4217:1987 standard.
RETURN VALUES

If the total number of resulting bytes including the terminating null byte is not more than maxsize, the

st r f non function returns the number of bytes placed into the array pointed to by s, not including the
terminating null byte. Otherwise, —1 is returned, the contents of the array are indeterminate, and er r no is
set to indicate the error.

ERRORS
The st r f non function fails if:
[ENOSYS] The function is not supported.
[E2BI G Conversion stopped due to lack of space in the buffer.

EXAMPLES
The following example shows a locale for the United States and the values 123.45, —123.34, and 3456.781:

Conversion
specification Output Comments

) 123. 45 Default formatting
-$123. 45
$3, 456. 78

% 1in $123. 45 Right align within an 11-character field
-$123. 45
$3, 456. 78

$#5n $ 123.45 Aligned columns for values up to 99,999
-$ 123.45
$ 3,456.78

%=* #5n $***123.45 Specify afill character
-$***123. 45
$*3, 456. 78

%=0#5n $000123. 45 Fill characters do not use grouping even if the fill character is a
-$000123. 45 digit
$03, 456. 78

SR-2080 10.0 657

STRFMON(3C) STRFMON(3C)
Conversion
specification Output Comments
%\ #5n $ 123. 45 Disable the grouping separator
-$ 123.45
$ 3456.78
% #5. 0n $ 123 Round off to whole units
-$ 123
$ 3457
% #5. 4n $ 123.4500 Increase the precision
-$ 123.4500
$ 3456. 7810
% #5n 123. 45 Use an dternative positive/negative style
($ 123.45)
$3, 456. 78
% (#5n 123.45 Disable the currency symbol
(123. 45)
3, 456. 78
SEE ALSO

658

| ocal econv(3C)

SR-2080 10.0

STRFTIME(3C) STRFTIME(3C)

NAME

strftinme,cftime,ascftime,wsftine — Formats time information in a character string

SYNOPSIS
#i ncl ude <tine. h>

size_t strftinme (char *s size_t maxsizee const char *format,
const struct tm *timeptr);

int cftime (char *s, char *format, const tine_t *clock);

int ascftime (char *s, const char *format, const struct tm *timeptr);
#i ncl ude <wchar. h>

size_t wesftine (wchar_t *wcs, size t maxsize const char *format,
const struct tm *timeptr);

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (strftime only)
XPG4 (wesftime only)

AT&T extension (cftinme and ascfti me only)

DESCRIPTION

Thestrftine,cftime, andascfti me functions place characters into the array pointed to by s, as
controlled by the string pointed to by format.

Thewcsft i nme function places wide characters into the array pointed to by wcs, as controlled by the string
pointed to by format. This function behaves as if the character string generated by the st r f t i me function
is passed to the nbst owcs function as the character string argument, and that function places the result in
the wide character string argument of the wesf t i nme function up to a limit of maxsize wide characters.

The format is a multibyte character sequence, beginning and ending in its initial shift state. The format
string consists of zero or more conversion specifiers and ordinary multibyte characters. A conversion
specifier consists of a %character followed by a character that determines the behavior of the conversion
specifier. All ordinary multibyte characters (including the terminating null character) are copied unchanged
into the array. If copying takes place between objects that overlap, the behavior is undefined. For functions
strftinme andwesftime, no more than maxsize characters or wide characters are placed into the array.

SR-2080 10.0 659

STRFTIME(3C)

660

STRFTIME(3C)

If format is (char [) 0, the locale's default format isused. For strfti me and wesfti ne, the default
format is the same as % ; for cf ti me and ascft i me, the default format is the same as %-. Functions
cftinme andascftime first try to use the value of the environment variable CFTI ME, and if that is
undefined or empty, the default format is used.

Each conversion specifier is replaced by appropriate characters, as described in the following list. The
appropriate characters are determined by the LC_TI ME category of the current locale and by the values
contained in the structure pointed to by timeptr for st rfti ne, ascfti nme, and wesfti nme, and by the
time represented by clock for cf ti nme.

Conversion specifiers are as follows:

%a
oA
%
B
%
uC T
%l
%D T
% T
o T
% T
oH
%
%
%n
L2
% T
%

% T
mR T
7
% T
o T
% t
%)

v
oW

U
"X
n

Replaced by the locale’' s abbreviated weekday name.

Replaced by the locale’s full weekday name.

Replaced by the local€e’ s abbreviated month name.

Replaced by the locale’s full month name.

Replaced by the locale’' s appropriate date and time representation.

Century (the year divided by 100 and truncated to an integer) as a decima number (00—99).
Replaced by the day of the month as a decimal number (01-31).

Replaced by the date as %nm/%d/%oy.

Replaced by the day of month (01—31; single digits are preceded by a blank).

Replaced by the date and time as produced by dat e(1) (formerly %C).

A synonym for %b.

Replaced by the hour (24-hour clock) as a decimal humber (00-23).

Replaced by the hour (12-hour clock) as a decimal humber (01-12).

Replaced by the day of the year as a decima number (001—366).

Replaced by the month as a decima number (01-12).

Replaced by the minute as a decimal number (00—59).

Replaced by a <newline> character.

Replaced by the locale’' s equivalent of the AM/PM designations associated with a 12-hour
clock.

Replaced by the time as %I:%M:%S %p.

Replaced by the time as %H:%M.

Replaced by the second as a decimal number (00—61).

Replaced by a <tab> character.

Replaced by the time as %H:%M:%S.

Replaced by the weekday as a decimal number (1(Monday)-7).

Replaced by the week number of the year (Sunday as the first day of week 1) as a decimal
number (00-53).

Replaced by the weekday as a decimal number (O(Sunday)—6).

Replaced by the week number of the year (Monday as the first day of week 1) as a decimal
number (00-53).

Replaced by the locale’' s appropriate date representation.

Replaced by the locale’' s appropriate time representation.

Replaced by the year without century as a decimal number (00—99).

SR-2080 10.0

STRFTIME(3C)

%y
w

Wo

STRFTIME(3C)

Replaced by the year with century as a decimal number.

Replaced by the time zone name or abbreviation, or by no characters if no time-zone is
determinable.

Replaced by %

t Conversion specifier is not part of the ISO/ANSI Standard.

If a conversion specifier is not one of the above, the behavior is undefined.

The difference between %J and %WVlies in which day is counted as the first of the week. Week number 01 is
the first week in January starting with a Sunday for %J or a Monday for 94V Week number 00 contains
those days before the first Sunday or Monday in January for %4J and %4\ respectively.

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an alternative
format or specification should be used rather than the one normally used by the unmodified conversion
specifier. If the alternative format or specification does not exist for the current locale, the behavior will be
as if the unmodified conversion specifier were used.

Modified conversion specifiers are as follows:

UEC
o%ue=C
%EX
ouEX
=
ouEY
%0d

%0e
%oH
%
%0m
Y%OM
%S
%u
%o
YOV
YN

YOW

SR-2080 10.0

Replaced by the local€'s alternate appropriate date and time representation.

Replaced by the name of the base year (period) in the locale' s aternative representation.
Replaced by the local€e's alternate date representation.

Replaced by the locale's alternate time representation.

Replaced by the offset from %EC (year only) in the locale' s aternative representation.
Replaced by the full aternative year representation.

Replaced by the day of the month, using the local€e’s alternative numeric symbols, filled as
needed with leading zeros if there is any aternative symbol for zero, otherwise with leading
spaces.

Replaced by the day of the month, using the local€e’s alternative numeric symbols, filled as
needed with leading spaces.

Replaced by the hour (24-hour clock), using the locale's alternative numeric symbols.
Replaced by the hour (12-hour clock), using the locale's alternative numeric symbols.
Replaced by the month using the local€’ s alternative numeric symbols.

Replaced by the minutes using the locale's alternative numeric symbols.

Replaced by the seconds using the local€'s alternative numeric symbols.

Replaced by the weekday as a number in the local€' s alternative representation (Monday=1).
Replaced by the week number of the year (Sunday as the first day of the week, rules
corresponding to %4J), using the locale's aternative numeric symbols.

Replaced by the week number of the year (Monday as the first day of the week, rules
corresponding to %/), using the locale's aternative numeric symbols.

Replaced by the number of the weekday (Sunday=0) using the local€’s aternative numeric
symbols.

Replaced by the week number of the year (Monday as the first day of the week), using the
local€' s alternative numeric symbols.

661

STRFTIME(3C) STRFTIME(3C)

%y Replaced by the year (offset from %C) in the local€’ s alternative representation and using the
local€e' s aternative numeric symbols.
NOTES

By default, the output of strftime,cftine,ascftime, andwscftime appearsin U.S. English. The
user can request that the output of strftine, cftime, ascftime, orwscftine bein a specific
language by setting the locale for category LC TI ME in set | ocal e.

The time zone is taken from the environment variable TZ (see ct i me(3C) for a description of TZ).

RETURN VALUES

If the total number of resulting characters (including the terminating null character) is not more than maxsize,
strftinme,cftime, andascfti me return the number of characters placed into the array pointed to by s.
Thewcsft i ne function returns the number of wide characters rather than characters. The terminating null
character is not included in the count. Otherwise, O is returned, and the contents of the array are
indeterminate.

EXAMPLES

The following example illustrates the use of function strfti me. It shows what the string in st r would
look like if the structure pointed to by t npt r contains the values corresponding to Thursday, August 28,
1986.

strftime (str, strsize, "%A % % %", tnptr)
With this call, st r would contain "Thur sday Aug 28 240".
FILES
/fusr/1ib/local e/ language/ LC Tl ME Contains locale specific date and time information.

SEE ALSO
cti me(3C), get env(3C), set | ocal e(3C)

envi r on(7) (available only online)

662 SR-2080 10.0

STR_HAN(3C) STR_HAN(3C)

NAME

st r _han — Introduction to string-handling functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The string-handling functions provide various means for manipulating arrays of characters or for
manipulating other objects treated as arrays of characters. Also included in this section are routines that
work similarly to the string routines, but operate on arrays of words instead of characters. In the CRI
implementation, characters are 8-bit bytes, with 8 bytes per word of memory. The start of a string may or
may not be at the start of a word, but all the string-handling functions take this into account.

Various methods are used for determining the lengths of the arrays, but in all casesachar Oor voi d O
argument points to the initial (lowest addressed) character of the array. If an array is accessed beyond the
end of an object, the behavior is undefined.

ASSOCIATED HEADERS

<menory. h> Contains prototypes for string-handling functions.
<string. h> Contains prototypes for string-handling functions.

<strings. h> Contains prototypes for string-handling functions.
ASSOCIATED FUNCTIONS

Copying Functions
bcopy — Copies bytes from one byte array to another byte array (see bst ri ng)
menctpy — Copies object in memory (See menory)
menmove — Moves object in memory (see nenor y)
memacpy — Copies words from one common memory address to another (see memaor d)
st rcpy — Copies astring into an array (see stri ng)
st rncpy — Copies n characters of string into an array (see st ri ng)
swab — Swaps bytes

Concatenation Functions
st rcat — Appends copy of string to another string (see st ri ng)
st rncat — Appends characters from array to string (see st ri ng)

SR-2080 10.0 663

STR_HAN(3C) STR_HAN(3C)

Comparison Functions
bcnp — Compares byte arrays (see bst ri ng)
mencnp — Compares two objects in memory (See menor y)
st rcasecnp — Performs case-insensitive string comparison
st rcnp — Compares strings (see st ri ng)
strcol | — Compares strings as interpreted by LC_COLLATE (see st ri ng)
st rncasecnp — Performs case-insensitive string comparison (see st r casecnp)
st rncnp — Compares characters in arrays (see st ri ng)

Search Functions:
i ndex — Locates first occurrence of charactersin string
menchr — Locates a character in memory (See menor y)
ri ndex — Locates last occurrence of charactersin string (seei ndex)
st rchr — Locates charactersin string (see st ri ng)
st rcspn — Computes length of substring (see st ri ng)
st r pbr k — Locates any character of a string in another string (see st ri ng)
strrchr — Locates last occurrence of ¢ in string (see st ri ng)
st r spn — Computes length of substring (see st ri ng)
strstr — Locates first occurrence of characters in null-terminated string (see st ri ng)
strrstr — Locates last occurrence of charactersin null-terminated string (see st ri ng)
strnstrn — Locates first occurrence of charactersin string (see st ri ng)
st rnstrn — Locates last occurrence of charactersin string (see st ri ng)

Miscellaneous Functions:
bzer o — Places bytes of 0's in a byte array (see bstri ng)
f f s — Finds the first bit set in the argument, passes it, and returns the index of that bit (see bst ri ng)
menset — Copies a value to memory (See menory)
memwset — Copies a word value to a word array (see memaor d)
st rdup — Returns a copy of a string (see st ri ng)
strerror — Maps error number to error message string (see stri ng)
st rl en — Computes length of string (see stri ng)
st rt ok — Breaks string into tokens (see st ri ng)
st rxf r m— Transforms strings (see st ri nQ)

SEE ALSO

utilities(3C) for functions that convert strings to numbers or numbers to strings

664 SR-2080 10.0

STRING(3C) STRING(3C)

NAME
strcat, strncat, strcnp, strncnp, strcpy, strncpy, strlen,strchr,strrchr, strpbrk,
strspn,strcspn,strtok,strtok_r,strcoll,strerror,strstr,strrstr,strnstrn,
strnrstrn,strxfrmstrdup — Performs string operations

SYNOPSIS

#i ncl ude <string. h>

char *strcat (char *sl, const char *s2);

char *strncat (char *sl, const char *s2, size t n);

int strcmp (const char *sl, const char *s2);

int strncnp (const char *sl, const char *s2, size_ t n);
char *strcpy (char *sl, const char *s2);

char *strncpy (char *sl, const char *s2, size t n);
size_t strlen (const char *g9);

char *strchr (const char *s int ¢);

char *strrchr (const char *s int c);

char *strpbrk (const char *sl, const char *<2);

size_t strspn (const char *sl, const char *s2);

size_t strcspn (const char *sl, const char *s2);

char *strtok (char *sl, const char *s2);

char *strtok_r (char *sl, const char *s2, char **lasts);
int strcoll (const char *sl, const char *<2);

char *strerror (int errnum);

char *strstr (const char *sl, const char *s2);

char *strrstr (const char *sl, const char *<2);

char *strnstrn (const char *sl, size_t nl, const char *s2, size t *s2);

char *strnrstrn (const char *sl, size_t nl, const char *s2
size t *2);

size_t strxfrm (const char *sl, const char *s2, size_t n);

char *strdup (const char *sl);

SR-2080 10.0 665

STRING(3C) STRING(3C)

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANSI (except strdup, strrstr,strnstrn,strnrstrn,andstrtok_r)
PThreads (st rt ok_r only)

AT&T extension (st r dup only)

CRI extension (strrstr, strnstrn, strnrstrn only)

DESCRIPTION

666

With any of the string functions, if copying takes place between objects that overlap, the behavior is
undefined.

The st r cat function appends a copy of the string pointed to by s2 (including the terminating null
character) to the end of the string pointed to by s1. The st rncat function appends not more than n
characters (a null character and characters that follow it are not appended) from the array pointed to by s2 to
the end of the string pointed to by s1. With both functions, the initial character of s2 overwrites the null
character at the end of s1. Function st rncat aways appends a terminating null character to the result.

The st r cnp function returns an integer that is greater than, equal to, or less than O, according to whether
the string pointed to by sl is greater than, equal to, or less than the string pointed to by s2. The st r ncnp
function compares not more than n characters (characters that follow a null character are not compared) from
the array pointed to by sl to the array pointed to by 2.

The st r cpy function copies the string pointed to by s2 (including the terminating null character) into the
array pointed to by s1. The st r ncpy function copies not more than n characters (characters that follow a
null character are not copied) from the array pointed to by s2 to the array pointed to by s1. If the array
pointed to by s2 is a string that is shorter than n characters, null characters are appended to the copy in the
array pointed to by s1, until n charactersin all have been written.

The st r | en function computes the length of the string pointed to by s.

The st r chr function locates the first occurrence of ¢ (converted to a char) in the string pointed to by s.
The st rrchr function locates the last occurrence of ¢ (converted to a char) in the string pointed to by s.
With both functions, the terminating null character is considered to be part of the string.

The st r pbr k function locates the first occurrence in the string pointed to by sl of any character from the
string pointed to by s2.

The st r spn function computes the length of the maximum initial segment of the string pointed to by sl
that consists entirely of characters from the string pointed to by s2. The st r cspn function computes the
length of the maximum initial segment of the string pointed to by sl that consists entirely of characters not
from the string pointed to by s2.

SR-2080 10.0

STRING(3C) STRING(3C)

A sequence of calls to the st rt ok function breaks the string pointed to by sl into a sequence of tokens,
each of which is delimited by a character from the string pointed to by s2. The first call in the sequence has
sl asits first argument, and is followed by calls with a null pointer as their first argument. The separator
string pointed to by s2 may be different from call to call. The first call in the sequence searches the string
pointed to by sl for the first character that is not contained in the current separator string pointed to by s2.

If no such character is found, then there are no tokens in the string pointed to by s1, and the st rt ok
function returns a null pointer. If such a character is found, it is the start of the first token.

The st rt ok function then searches for a character that is contained in the current separator string (s2). If
no such character is found, the current token extends to the end of the string pointed to by s1, and
subsequent searches for a token will return a null pointer. If such a character is found, it is overwritten by a
null character, which terminates the current token. The st rt ok function saves a pointer to the following
character, from which the next search for a token starts. Each subsequent call, with a null pointer as the
value of the first argument, starts searching from the saved pointer and behaves as previously described.

The st rt ok_r function provides functionality equivalent to the st rt ok function but with an interface that
is safe for multitasked applications. Only an additional argument, lasts, is needed to keep track of the search
through the string in order to alow for overlapped execution under multitasking.

The st rcol | function compares the string pointed to by sl to the string pointed to by s2, both interpreted
as appropriate to the LC_COLLATE category of the current locale.

The st r error function maps the error number in errnum to an error message string.

The st r st r function locates the first occurrence in the string pointed to by sl of the sequence of characters
in the string pointed to by s2. The st r nst r n function operates identically except that the lengths of the
strings are passed as arguments.

The st rrstr function locates the last occurrence in the string pointed to by sl of the sequence of
characters in the string pointed to by s2. The st r nr st r n function operates identically except that the
lengths of the strings are passed as arguments.

The st r xf r mfunction transforms the string pointed to by s2 and places the resulting string into the array
pointed to by s1. The transformation is such that if the st r cnp function is applied to two transformed
strings, it returns a value greater than, equal to, or less than 0, corresponding to the result of the strcol |
function applied to the same two original strings. No more than n characters, including the terminating null
character, are placed into the resulting array pointed to by s1. If nis zero, sl is permitted to be a null
pointer.

The st r dup function duplicates string sl in newly alocated space and returns either a pointer to the new
string or null if the required space cannot be allocated. The space is alocated by a cal to mal | oc(3C), so
it can later be freed by acall to f r ee, if desired.

SR-2080 10.0 667

STRING(3C) STRING(3C)

NOTES

The st r dup function is the only string function that allocates storage. All of the other string functions use
space provided by the caller.

The st r cnp and st r ncnp functions use native character comparison, which is unsigned on Cray Research
computer systems and signed on some other machines. Thus, the sign of the value returned when one of the
characters has its high-order bit set is implementation dependent.

RETURN VALUES

668

Thestrcat, strncat, strcpy, strncpy functions return the value of sl.

The st r ncnp function returns an integer that is greater than, equal to, or less than 0, according to whether
the possibly null-terminated array pointed to by sl is greater than, equal to, or less than the possibly
null-terminated array pointed to by 2.

The st r | en function returns the number of characters that precede the terminating null character.

The st rchr and strrchr functions return a pointer to the located character, or a null pointer if the
character does not occur in the string.

The st r pbr k function returns a pointer to the character, or a null pointer if no character from s2 occurs in
sl.

The st r spn function returns the length of the maximum initial segment of the string pointed to by sl that
consists entirely of characters from the string pointed to by s2. The st r cspn function returns the length of
the maximum initial segment of the string pointed to by sl that consists entirely of characters not from the
string pointed to by s2.

The st rt ok and strt ok_r functions return a pointer to the first character of a token, or a null pointer if
there is no token.

The st rcol | function returns an integer that is greater than, equal to, or less than 0, according to whether
the string pointed to by sl is greater than, equal to, or less than the string pointed to by s2 when both are
interpreted as appropriate to the current locale.

The st rerror function returns a pointer to the string, the contents of which are implementation-defined.
The array pointed to cannot be modified by the program, but can be overwritten by a subsequent call to the
strerror function.

The st rstr and strnst rn functions return a pointer to the located string, or a null pointer if the string is
not found. If s2 points to a string with zero length, string, or a null pointer if the string is not found. 1f s2
points to a string with zero length, the function returns s1.

Thestrrstr and strnrstrn functions return a pointer to the located string, or a null pointer if the
string is not found. If s2 points to a string with zero length, the function returns a pointer to the end of sl.

SR-2080 10.0

STRING(3C) STRING(3C)

The st r xf r mfunction returns the length of the transformed string (not including the terminating null
character). If the value returned is n or more, the contents of the array pointed to by sl are indeterminate.

SEE ALSO
| ocal e(3C), mal | oc(3C)

SR-2080 10.0 669

string.h (3C)

NAME

string. h — Library header file for string-handling functions

IMPLEMENTATION

All Cray Research systems

STANDARDS

TYPES

ISO/ANS

string.h (3C)

The following types are defined in header st ri ng. h. Unless noted, these are CRI extensions and do not

conform to the ISO/ANSI standard.

Type Description
size_t The unsigned integral type of the result of the si zeof operator. 1SO/ANS| standard.
_GPTR Thist ypedef is provided as a migration aid. It is defined to be a generic pointer; when

used with the Cray Standard C compiler, _GPTR is defined as a pointer to voi d. Also
defined in headers mal | oc. h, stddef . h, stdl i b. h, and st di 0. h.

_GPTR2CONST Thist ypedef is provided as a migration aid. It is defined to be a generic pointer; when
used with the Cray Standard C compiler, _GPTR2CONST is equivalent to a pointer to
const voi d. Also defined in headersmal | oc. h, stdl i b. h, stdi o. h, and

MACROS

st ddef . h.
The macro defined in header st ri ng. h is as follows:
Type Description
NULL A null pointer constant equal to zero. ISO/ANSI standard.

FUNCTION DECLARATIONS

670

Functions declared in header st ri ng. h are as follows:

menccpy memAC py strcpy strncnp
menchr nmem\s et strcspn strncpy
mencnp strcat strdup strnrstrn
nmencpy strchr strerror strnstrn
menmove strcnp strlen strpbrk
nmemnset strcol | strncat strrchr

strrstr
strspn
strstr
strtok
strxfrm

SR-2080 10.0

strings.h(3C) strings.h(3C)

NAME
st rings. h — Library header file for string-handling functions

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension
DESCRIPTION

Header stri ngs. h isidentical to header st ri ng. h; it isincluded only for BSD compatibility.

SR-2080 10.0 671

STRPTIME(3C) STRPTIME(3C)

NAME

st rpti me — Date and time conversion

SYNOPSIS
#i ncl ude <tine. h>

char *strptime (const char *buf, const char *format, struct tm *tm);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The st r pt i me function converts the character string pointed to by buf to values that are stored in thet m
structure pointed to by tm, using the format specified by format.

The format is composed of zero or more directives. Each directive is composed of one of the following:

one or more white-space characters (as specified by the i sspace function), an ordinary character (neither %
nor a white-space character), or a conversion specification. Each conversion specification is composed of a %
character followed by a conversion character that specifies the replacement required. There must be white-
space or other nonalphanumeric characters between any two conversion specifications. The following
conversion specifications are supported:

%a The day of week, using the locale’ s weekday names; either the abbreviated or full name may
be specified.

YA The same as %a.

% The month, using the locale’' s month names; either the abbreviated or full name may be
specified.

9B The same as %b.

% The date and time, using locale's date and time format (for example, as ¥&%X).

9 The century: a number from O through 99; leading zeros are permitted but not required.

%l The day of the month: a number from 1 through 31; leading zeros are permitted but not
required.

%D The date as %1 Y&/ %y.

% The same as %d.

% The same as %b.

9% The hour (24-hour clock): a number from 0 through 23; leading zeros are permitted but not
required.

% The hour (12-hour clock): a number from 1 through 12; leading zeros are permitted but not
required.

672 SR-2080 10.0

STRPTIME(3C)

%

o%m
oM
)
%
o
R
L)
%
oo
o)

%V
oV
X

9
%

%y
Wo

STRPTIME(3C)

The day of the year: a number from 1 through 366; leading zeros are permitted but not
required.

The month: a number from 1 through 12; leading zeros are permitted but not required.

The minute: a number from O through 59; leading zeros are permitted but not required.
Any white space.

The locale’s equivalent of A.M. or P.M.

The time as %: %VI: ¥S%p.

The time as %1 %M.

The seconds: a number from O through 61; leading zeros are permitted but not required.
Any white space.

The time as %: 9YM: %S

The week number of the year (Sunday as the first day of the week) as a decimal number
from 00 through 53; leading zeros are permitted but not required.

The weekday: a number from 0 through 6, with O representing Sunday; leading zeros are
permitted but not required.

The week of the year: a number from 00 through 53 (Monday as the first day of the week);
leading zeros are permitted but not required.

The date, using the local€’ s date format.

The time, using the local€’'s time format.

The year within the century: a number from O through 99; leading zeros are permitted but
not required. Two digit years 69 through 99, inclusive, are interpreted as 1900 plus the two
digit year, whereas two digit years 0 through 68, inclusive, are interprested as 2000 plus the
two digit year.

The year, including the century (for example, 1988).

Replaced by %

Modified Directives
Some directives can be modified by the E and O modifier characters to indicate that an alternative format or
specification should be used rather than the one normally used by the unmodified directive. If the alternative
format or specification does not exist in the current locale, the behavior will be as if the unmodified directive

were used.

S =0
o%E=C
%EX
ouEX
=
ouEY
%0d

%0e
%oH
%
%0m

SR-2080 10.0

The locale's dternative appropriate date and time representation.

The name of the base year (period) in the local€e's alternative representation.
The locale's aternative date representation.

The locale's aternative time representation.

The offset from %EC (year only) in the local€' s aternative representation.
The full alternative year representation.

The day of the month using the local€e's aternative numeric symbols; leading zeros are
permitted but not required.

The same as %d.

The hour (24-hour clock) using the local€' s alternative numeric symbols.
The hour (12-hour clock) using the local€' s alternative numeric symbols.
The month using the local€’ s alternative numeric symbols.

673

STRPTIME(3C) STRPTIME(3C)

%S The seconds using the local€’ s aternative numeric symbols.

9%OU The week number of the year (Sunday as the first day of the week) using the locale’s
aternative numeric symbols.

%EOw The number of the weekday (Sunday=0) using the local€’' s alternative numeric symbols.

YO The week number of the year (Monday as the first day of the week) using the locale's
aternative numeric symbols.

9y The year (offset from %C) in the local€’s aternative representation and using the locale's
aternative numeric symbols.

A directive composed of white-space characters is executed by scanning input up to the first character
that is not white space (which remains unscanned), or until no more characters can be scanned.

A directive that is an ordinary character is executed by scanning the next character from the buffer. If
the character scanned from the buffer differs from the one comprising the directive, the directive fails,
and the differing and subsequent characters remain unscanned.

A series of directives composed of %, % , white-space characters or any combination is executed by
scanning up to the first character that is not white space (which remains unscanned), or until no more
characters can be scanned.

Any other conversion specification is executed by scanning characters until a character matching the
next directive is scanned, or until no more characters can be scanned. These characters, except the one
matching the next directive, are ten compared to the locale values associated with the conversion
specifier. 1f a match is found, values for the appropriate t mstructure members are set to values
corresponding to the locale information. Case is ignored when matching items in buf such as month or
weekday names. If no match is found, st r pt i ne fails and no more characters are scanned.

RETURN VALUES

Upon successful completion, st r pti me returns a pointer to the character following the last character
parsed. Otherwise, a null pointer is returned.

SEE ALSO
scanf (3C), strfti me(3C), ti me. h(3C)

674 SR-2080 10.0

STRTOD(3C) STRTOD(3C)

NAME

strtod,strtold, strtof, at of, wcst od — Converts string to doubl e, | ong doubl e, or f | oat

SYNOPSIS
#i nclude <stdlib. h>
double strtod (const char *nptr, char **endptr);
long double strtold (const char *nptr, char **endptr);
float strtof (const char *nptr, char **endptr);

doubl e atof (const char *nptr);

#i ncl ude <wchar. h>

doubl e wcstod (const wchar_t *nptr, wchar_t **endptr);

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (st rt od and at of only)
XPG4 (west od only)

CRI extension (strtol d and strt of)

DESCRIPTION

Thestrtod, strtol d, and st rtof functions convert the initial portion of the string to which nptr points
to doubl e, | ong doubl e, or f | oat representation, respectively. The wcst od function is similar to the
st rt od function, except that it converts a wide character string rather than a character string. First, each
function breaks the input string into three parts. an initial, possibly empty, sequence of white-space
characters (as specified by the i sspace or i swspace macros); a subject sequence that resembles a
floating-point constant; and a final string of one or more unrecognized characters, including the terminating
null character of the input string. Then they try to convert the subject sequence to a floating-point number
and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty sequence of
digits optionally containing a decimal-point character, then an optional exponent part, but no floating suffix.
The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
nonwhite-space character that is of the expected form. The subject sequence contains no characters if the
input string is empty or consists entirely of white space, or if the first nonwhite-space character is other than
a sign, a digit, or a decimal-point character.

SR-2080 10.0 675

STRTOD(3C) STRTOD(3C)

If the subject sequence has the expected form, the sequence of characters starting with the first digit or the
decimal-point character (whichever occurs first) is interpreted as a floating constant, except that the decimal-
point character is used in place of a period, and if neither an exponent part nor a decimal-point character
appears, a decimal point is assumed to follow the last digit in the string. If the subject sequence begins with
a minus sign, the value resulting from the conversion is negated. A pointer to the final string is stored in the
object to which endptr points, provided that endptr is not a null pointer.

In a locale other than the "C" locale, additional implementation-defined subject sequence forms may be
accepted. (Seel ocal e. h(3C).)

If the subject sequence is empty or does not have the expected form, no conversion is performed; the value
of nptr is stored in the object to which endptr points, provided that endptr is not a null pointer.

The at of function converts the initial portion of the string to which nptr points to doubl e representation.
It is equivalent to the following:

strtod(nptr, (char OO NULL)

RETURN VALUES

These functions return the converted value, if any. If no conversion could be performed, O is returned. If
the correct value is outside the range of representable values, plus or minus HUGE_VAL (HUGE_VALL for
strtol d, and HUGE_VALF for st rt of) is returned (according to the sign of the value), and the value of
the ERANGE macro is stored in er r no. HUGE VAL, HUGE VALF, and HUGE _VALL are defined in

mat h. h. If the correct value would cause underflow, O is returned, and the value of the ERANGE macro is
stored in er r no.

SEE ALSO

ecvt (3C), errno. h(3C), f | oat . h(3C), mat h. h(3C), i sspace (see ct ype(3C)), i swspace (see
wet ype(3C)), | ocal e. h(3C), strt ol (3C)

676 SR-2080 10.0

STRTOL (3C) STRTOL (3C)

NAME
strtol ,strtoll,strtoul,strtoull,atol,atoll,atoi,wstol,wstoll,wstoul,
west oul | — Converts string to integer

SYNOPSIS
#i nclude <stdlib. h>
long int strtol (const char *nptr, char **endptr, int base);
long long int strtoll (const char * restrict nptr, char ** restrict
endptr, int base);
unsigned long int strtoul (const char *nptr, char **endptr, int base);
unsigned long long int strtoull (const char * restrict nptr, char **
restrict endptr, int base);

long int atol (const char *nptr);
long long int atol (const char *nptr);

int atoi (const char *nptr);

#i ncl ude <wchar. h>

long int westol (const wchar_t *nptr, wchar_t **endptr, int base);
long long int westoll (const wchar_t * restrict nptr, wchar_t **
restrict endptr, int base);
unsigned long int westoul (const wchar_t *nptr, wchar_t **endptr, int
base) ;
unsigned long long int westoull (const wchar_t * restrict nptr, wchar _t
** restrict endptr, int base);

IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANSI (all except west ol and west oul)
XPG4 (west ol and west oul only)

SR-2080 10.0 677

STRTOL (3C) STRTOL (3C)

DESCRIPTION

678

Thestrtol,strtoul,strtoll,andstrtoul | functions convert the initial portion of the string to
which nptr pointsto | ong i nt,unsigned long int,long |ong int,andunsi gned | ong

| ong i nt representation, respectively. Thewcst ol , wecst oul , west ol |, and west oul | functions
operate similarly tostrtol ,strtoul ,strtoll,andstrtoul |, respectively; however, they operate on
wide character strings rather than character strings. First they break the input string into three parts: an
initial, possibly empty, sequence of white-space characters (as specified by thei sspace or i swspace
macros); a subject sequence that resembles an integer represented in some radix determined by the value of
base; and a final string of one or more unrecognized characters, including the terminating null character of
the input string. Then they try to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of an integer constant, optionally
preceded by a plus or minus sign, but not including an integer suffix. If the value of base is between 2 and
36, the expected form of the subject sequence is a sequence of letters and digits representing an integer with
the radix specified by base, optionally preceded by a plus or minus sign, but not including an integer suffix.
The letters from a (or A) through z (or Z) are ascribed the values 10 through 35; only letters whose ascribed
values are less than that of base are permitted. If the value of base is 16, the characters Ox or OX may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
nonwhite-space character, that is of the expected form. The subject sequence contains no characters if the
input string is empty or consists entirely of white space, or if the first nonwhite-space character is other than
a sign or a permissible letter or digit.

If the subject sequence has the expected form, and the value of base is O, the sequence of characters starting
with the first digit is interpreted as an integer constant. The base is determined by the string itself, as
follows: After an optional leading sign, a leading O indicates octal conversion, and a leading Ox or 0X
hexadecimal conversion. Otherwise, decimal conversion is used.

If the subject sequence has the expected form, and the value of base is between 2 and 36, it is used as the
base for conversion, assigning to each letter its value. If the subject sequence begins with a minus sign, the
value resulting from the conversion is negated. A pointer to the final string is stored in the object to which
endptr points, provided that endptr is not a null pointer.

In a locale other than the C locale, additional implementation-defined subject sequence forms may be
accepted. (Seel ocal e. h(3C).)

If the subject sequence is empty or does not have the expected form, no conversion is performed; in that
case, the value of nptr is stored in the object to which endptr points, provided that endptr is not a null
pointer.

The at ol function converts the initial portion of the string to which nptr pointsto | ong i nt
representation. Except for the behavior on error, it is equivalent to the following:

strtol (nptr, (char OO NULL, 10)

SR-2080 10.0

STRTOL (3C) STRTOL (3C)

The at ol | function converts the initial portion of the string to which nptr pointsto | ong | ong i nt
representation. Except for the behavior on error, it is equivalent to the following:

strtol |l (nptr, (char OO NULL, 10)

The at oi function converts the initial portion of the string to which nptr points to i nt representation.
Except for the behavior on error, it is equivalent to the following:

(int)strtol (nptr, (char OO NULL, 10)
(Unlike st rt ol , functions at oi , at ol , and at ol | ignore overflow conditions and do not set er r no.)
RETURN VALUES

These functions return the converted value, if any. If no conversion can be performed, O is returned. If the
correct value is outside the range of representable values, st rt ol and west ol return LONG_MAX or
LONG_M N, according to the sign of the value, and st rt oul and west oul return ULONG_MAX. For all
functions, the value of the macro ERANGE is stored in er r no.

SEE ALSO

at of (3C), errno. h(3C), i sspace (see ct ype(3C)), i swspace (seewct ype(3C)), | ocal e. h(3C),
scanf (3C), strt od(3C)

SR-2080 10.0 679

SWAB (3C) SWAB (3C)

NAME
swab — Swaps bytes

SYNOPSIS

#i ncl ude <unistd. h>

void swab (const void *from, void *to, ssize_t nbytes);
IMPLEMENTATION

All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The swab function copies nbytes bytes pointed to by from to the array pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between machines. The nbytes argument should be
even and positive. If nbytes is odd and positive, swab uses nbytes —1 instead. If nbytes is negative, swab
does nothing.

680 SR-2080 10.0

SYSCTL(3C) SYSCTL(3C)

NAME
sysct| — Gets or sets system information

SYNOPSIS
#i ncl ude <sys/sysctl.h>

int sysctl (int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
size_t newlen

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The sysct | function retrieves system information and allows processes with appropriate privileges to set
system information. The information available from sysct | consists of integers, strings, and tables.
Information may be retrieved and set from the command interface using the sysct | (8) utility.

Unless explicitly noted below, sysct | returns a consistent snapshot of the data requested. Consistency is
obtained by locking the destination buffer into memory so that the data may be copied out without blocking.
Callstosysct| are seridized to avoid deadlock.

The state is described using a Management Information Base (MIB) style name, listed in name, which is a
namelen length array of integers.

The information is copied into the buffer specified by oldp. The size of the buffer is given by the location
specified by oldlenp before the call, and that location gives the amount of data copied after a successful call.
If the amount of data available is greater than the size of the buffer supplied, the call supplies as much data
as fits in the buffer provided and returns with the error code ENOVEM If the old value is not desired, oldp
and oldlenp should be set to NULL.

The size of the available data can be determined by calling sysct | with a NULL parameter for oldp. The
size of the available data will be returned in the location pointed to by oldlenp. For some operations, the
amount of space may change often. For these operations, the system attempts to round up so that the
returned size is large enough for a call to return the data shortly thereafter.

To set a new value, newp is set to point to a buffer of length newlen from which the requested value is to be
taken. If a new value is not to be set, newp should be set to NULL and newlen set to O.

The top level names are defined with a CTL__ prefix in <sys/ sysct| . h>, and are as follows. The next
and subsequent levels down are found in the include files listed here, and described in separate sections
below.

SR-2080 10.0 681

SYSCTL(3C)

SYSCTL(3C)

Name Next level names Description

CTL_MBUF sys/ nbuf . h Network Memory Management
CTL_NSEC sys/sysctl.h Network Security

CTL_NET sys/ socket. h Networking

CTL_USER sys/sysctl.h User-level

CTL_MBUF

The table and integer information available for the CTL_MBUF level is detailed below. The
changeable column shows whether a process with appropriate privilege may change the value.

Second level name Type Changeable
MBUFCTL_STAT struct no
MBUFCTL_MBREQ struct no
VBUFCTL__MBDENI ED struct no
MBUFCTL_SLEEPS struct no
VBUFCTL_HEADER struct no
MBUFCTL_DATA struct no
MBUFCTL_ N\VBSPACE i nt eger no
VBUFCTL_MHBASE i nt eger no
MBUFCTL_MDBASE i nt eger no

The second level of the CTL_MBUF level is used mainly by net st at (1B) to display information about

nbuf allocation.
CTL_NSEC

The table and integer information available for the CTL_NSEC level is detailed below. The
changeable column shows whether a process with appropriate privileges may change the value.

Second level name Type Changeable
NSEC NAL struct no
NSEC WAL struct no
NSEC MAP struct no
NSEC _ENABLED i nt eger no

NSEC_NAL

Returns a copy of the Network Access List (NAL)

682

SR-2080 10.0

SYSCTL(3C) SYSCTL(3C)

NSEC_ WAL
Returns a copy of the Workstation Access List (WAL)

NSEC_MAP
Returns a copy of the IP Security Option (IPSO) map

NSEC_ENABLED
Returns a value of 1 if Network Security is enabled (otherwise 0)

CTL_NET The second level for the CTL_NET leve is the following protocol families: PF_| NET,
PF_LI NK, PF_ROUTE, PF_SOCK, PF_TRACE, and PF_UNI X.

PF_I NET The third level name for the PF_I NET level are the following internet protocols:
| PPROTO I P, | PPROTO _| CVP, | PPROTO_| GWP, | PPROTO_TCP, and | PPROTO_UDP

| PPROTO I P
The table and integer information for the | PPROTO | P level is detailed below.
The changeable column shows whether a process with appropriate privilege may

change the value.
Fourth level name Type Changeable
| PCTL_FORWARDI NG i nteger yes
| PCTL_SENDREDI RECTS i nt eger yes
| PCTL_STAT struct no
| PCTL_QVAXLEN i nt eger yes
| PCTL_SUBNETSAREL OCAL i nt eger yes
| PCTL_MRTPROTO i nt eger no
| PCTL_MRTSTAT struct no
| PCTL_VI FTABLE struct no
| PCTL_MRTTABLE struct no
| PCTL_MRTDEBUG i nt eger yes
| PCTL_I PQ struct no
| PCTL_I PI NTRQ struct no
| PCTL_DYNAM C_MrU i nt eger yes
| PCTL_ADM N _OVERRI DE_MIU i nt eger yes
| PCTL_I PMAXPKTS i nteger yes
| PCTL_I PLOADLEVELI NG i nt eger yes

| PCTL_FORWARDI NG
Returns a value of 1 when IP forwarding is enabled for the host,
meaning that the host is acting as a router.

| PCTL_SENDREDI RECTS
Returns a value of 1 when ICMP redirects may be sent by the host.

SR-2080 10.0 683

SYSCTL(3C)

684

SYSCTL(3C)

| PCTL_STAT
Returns a copy of the i pst at structure. See
/fusr/include/ netinet/ip_var. h for greater detail.

| PCTL_QVAXLEN
Returns the ipgmaxien kernel variable. This is the maximum size
of the IP input queue.

| PCTL_SUBNETSAREL OCAL
Returns the value of 1 when the system is treating subnets as local
networks.

| PCTL_MRTPROTO
Returns the ip_mrtproto kernel variable. This variable is used by
net st at (1B) to determine if the kernel is performing multicast
routing.

| PCTL_MRTSTAT
Returns a copy of the nt t st at structure. See
/fusr/include/ netinet/ip_nroute.h for greater detail.

| PCTL_VI FTABLE
Returns a copy of the multicast virtual interface table

| PCTL_MRTTABLE
Returns a copy of the multicast routing tables

| PCTL_MRTDEBUG
Returns a value of 1 if nt out ed kernel debugging is enabled

| PCTL_I PQ
Returns a copy of the IP reassembly queue structure.

| PCTL_I PI NTRQ
Returns a copy of the IP input queue (i pi ntr q)

| PCTL_DYNAM C_MIU
Returns a value of 1 if dynamic network mt u discovery is enabled

| PCTL_ADM N _OVERRI DE_MTU
Returns a value of 1 if the administrator maximum transmission
unit (nm u) override option is enabled

| PCTL_| PMAXPKTS
Returns the maximum number of packetsi pi ntr will process on
a single pseudo interrupt.

| PCTL_| PLOADLEVELI NG
Returns a non-zero if IP load leveling is enabled for ATM.

SR-2080 10.0

SYSCTL(3C) SYSCTL(3C)

| PPROTO_I QWP
The table and integer information for the | PPROTO _| CVP level is detailed
below. The changeable column indicates whether a process with appropriate
privilege may change the value.

Fourth level name Type Changeable
| CMPCTL_ MASKREPL i nteger yes
| CMPCTL_STAT struct no

| CMPCTL_ MASKREPL
Returns a value of 1 if ICMP network mask requests are to be
answered

| CVPCTL_STAT
Returns a copy of the i cnpst at structure. See
/usr/include/ netinet/icnp_var. h for greater detail.

| PPROTO_I| GWP
The table and integer information for the | PPROTO | GVP level is detailed
below. The changeable column indicates whether a process with appropriate
privilege may change the value.

Fourth level name Type Changeable
| GWPCTL_STAT struct no
| GWPCTL_STAT

Returns a copy of the i gnpst at structure. See
usr/incl ude/ netinet/ignp_var. h for greater detail.

| PPROTO_TCP
The table and integer information for the | PPROTO_TCP level is detailed below.
The changeable column indicates whether a process with appropriate privilege
may change the value.

Fourth level name Type Changeable
TCPCTL_STAT struct no
TCPCTL_PRI NTFS i nt eger yes
TCPCTL_ REXMI THRESH i nt eger yes
TCPCTL_DEFTTL i nt eger yes
TCPCTL_SENDSPACE i nt eger yes

SR-2080 10.0 685

SYSCTL(3C)

686

SYSCTL (3C)

Fourth level name Type Changeable
TCPCTL_RECVSPACE i nteger yes
TCPCTL_KEEPI DLE i nteger yes

TCPCTL_PCB struct no
TCPCTL_DEBUG struct no

TCPCTL_DEBX i nteger no
TCPCTL_NDEBUG i nteger no
TCPCTL_AUTOW NSHFT i nteger yes
TCPCTL_STAT

Returns a copy of thet cpst at structure. See
/usr/include/ netinet/tcp_var. h for greater detail.

TCPCTL_PRI NTFS

Returns avalue of 1 if TCP pri nt f debugging is enabled

TCPCTL_REXMI THRESH

Returns the value of the retransmission threshold

TCPCTL_DEFTTL

Returns the default IP time-to-live for TCP sockets

TCPCTL_SENDSPACE

Returns the default TCP send space for socket output buffering

TCPCTL_RECVSPACE

Returns the default TCP receive space for socket input buffering

TCPCTL_KEEPI DLE

Returns the default IP time-to-live for TCP sockets

TCPCTL_PCB

Returns a copy of the TCP transmission control blocks

TCPCTL_DEBUG

Returns the TCP trace records when a socket is marked for

debugging
TCPCTL_BEBX

Returns the actual number of TCP trace records collected

TCPCTL_NDEBUG

Returns the maximum number of TCP trace records that can be

collected

SR-2080 10.0

SYSCTL(3C)

SR-2080 10.0

SYSCTL(3C)

TCPCTL_AUTON NSHFT
Returns a value of 1 if the system is allowed to calculate the
windowshift based on the r ecv socket buffer size

| PPROTO_UDP

The table and integer information for the | PPROTO_UDP level is detailed below.
The changeable column indicates whether a process with appropriate privilege
may change the value.

Fourth level name Type Changeable
UDPCTL_ CHECKSUM i nt eger yes
UDPCTL_STAT struct no

UDPCTL_ SENDSPACE i nt eger yes

UDPCTL_ RECVSPACE i nt eger yes
UDPCTL_DEFTTL i nt eger yes
UDPCTL_PCB struct no

UDPCTL_ CHECKSUM
Returns a value of 1 if UDP checksums are being performed

UDPCTL_STAT
Returns a copy of the udpst at structure. See
/usr/include/ netinet/udp_var. h for greater detail.

UDPCTL_ SENDSPACE
Returns the default UDP send space for socket output buffering

UDPCTL_RECVSPACE
Returns the default UDP receive space for socket input buffering

UDPCTL_DEFTTL
Returns the default IP time-to-live for UDP sockets

UDPCTL_PCB
Returns a copy of the UDP transmission control blocks

PF_LI NK The third level is an index into the "array" of i f net structures or a pointer to a

specific i f net structure. The fourth level integer information for the PF_LI NK level
is detailed below. The changeable column indicates whether a process with
appropriate privilege may change the value.

Fourth level name Type Changeable
| FCTL_I FQVAXLEN i nt eger yes
| FCTL_METRI C i nt eger no

687

SYSCTL(3C) SYSCTL(3C)

Fourth level name Type Changeable
| FCTL_Mru i nt eger no
| FCTL_FLAGS i nteger no
| FCTL_I F struct no
| FCTL_I FADDR struct no
| FCTL_BUFSTATLEN i nteger no
| FCTL_BUFSTATSI ZE i nteger no
| FCTL_I BUFSTAT struct no
| FCTL_OBUFSTAT struct no
| FCTL_BBAd NFO struct no

| FCTL_I| FQVAXLEN
Returns the interface’s maximum size of the send queue

| FCTL_METRI C
Returns the interface’s metric value

| FCTL_Mru
Returns the size of the interface’ s MTU

| FCTL_FLAGS
Returns the interface’'s flag values

| FCTL_I F
Returns a particular interface’si f net structure. See
[usr/include/ net/if.h for greater detail.

| FCTL_I| FADDR
Returns a particular interface’si f addr structure. See
[usr/include/ net/if.h for greater detail.

| FCTL_BUFSTATLEN
Returns the i f ¢_buf st at | en kernel variable

| FCTL_BUFSTATSI ZE
Returns the i f ¢_buf st at si ze kernel variable.

| F_CTL_I BUFSTAT
Returns an array of integers that contains statistics about the number of input
packets for a given size

| FCTL_OBUFSTAT
Returns an array of integers that contains statistics about the number of
output packets for a given size

688 SR-2080 10.0

SYSCTL(3C)

SR-2080 10.0

| FCTL_BBG NFO

SYSCTL(3C)

Returns a copy of the bbg_i nf o structure. See
[usr/include/crayif/if_bbg. h for greater detail.

PF_ROUTE

Returns the entire routing table or a subset of it. The data is returned as a sequence of
routing messages (see r out e(4P) for the header file, format, and meaning). The
length of each message is contained in the message header. The third level name is a
protocol number, which is currently always zero. The fourth level name is an address
family, which may be set to zero to select all address families. The fifth level names

are as follows:

Fifth level name Type Changeable
NET_RT_DUMP struct no
NET_RT_FLAGS struct no
NET_RT_I FLI ST struct no
NET_RT_STATS struct no
NET_RT_DUWP

Returns a copy of thert entry structures. See
[usr/include/ net/route. h for greater detail.

NET_RT_FLAGS

Returns a copy of thert ent ry structures. See
[usr/includel/ net/route. h for greater detail.

NET_RT | FLI ST

Returns a copy of the routing information from the interface structures

(i fnet).
NET_RT_STATS

Returns a copy of ther st at structure. See
[usr/includel/ net.route. h for greater detail.

PF_SOCK The integer information for the PF_SOCK level is detailed below. The changeable
column indicates whether a process with appropriate privilege may change the value.

Third level name Type Changeable
SOCKCTL_MAXSOCK i nt eger yes
SOCKCTL_SBMAX i nt eger yes
SOCKCTL_PRI NTDELAY i nteger yes

689

SYSCTL(3C) SYSCTL(3C)

SOCKCTL_ MAXSOCK
Returns the maximum number of sockets the system will allow to be opened

SOCKCTL_SBMAX
Returns the system-wide maximum send and receive space for socket
buffering. This value is the maximum number of bytes that can be set on the
SO _SNDBUF and SORECVBUF socket options.

SOCKCTL_PRI NTDELAY
Returns the default minimum interval between operator messages of the same
type
PF_TRACE

The table and integer information for the PF_TRACE level is detailed below. The
changeable column indicates whether a process with appropriate privilege may change

the value.
Third level name Type Changeable
TRCTL_TCPWAI TQ i nteger no
TRCTL_UDPWAI TQ i nt eger no
TRCTL_PCB struct no
TRCTL_RECVSPACE i nt eger yes

TRCTL_TCPWAI TQ
Returns the kernel variablet cpwai t g. This value is used by
net st at (1B) to display trace information.

TRCTL_UDPWAI TQ
Returns the kernel variable udpwai t g. This value is used by
net st at (1B) to display trace information.

TRCTL_PCB
Returns a copy of the TRACE transmission control blocks

TRCTL_RECVSPACE
Returns the default TRACE receive space for socket input buffering

PF_UNI X The third level name for the PF_UNI X level is SOCK_STREAMor SOCK DGRAM
The table and integer information for the PF_UNI X level is detailed below. The
changeable column indicates whether a process with appropriate privilege may change
the value.

690 SR-2080 10.0

SYSCTL(3C)

SYSCTL (3C)
Fourth level name Type Changeable
UNPCTL_ SENDSPACE i nt eger yes
UNPCTL_ RECVSPACE i nteger yes
UNPCTL_PCB struct no

UNPCTL_SENDSPACE

Returns the default Unix-domain send space for stream or datagram
socket output buffering

UNPCTL_RECVSPACE

Returns the default Unix-domain receive space for stream or datagram

socket input buffering

UNPCTL_PCB

Returns a copy of the UNIX transmission control blocks

CTL_USER

SR-2080 10.0

The string and integer information available for the CTL_USER level is detailed below.

The changeable column shows whether a process with appropriate privilege may change the

value.
Second level name Type Changeable
USER BC BASE MAX i nt eger no
USER BC DI M MAX i nt eger no
USER BC SCALE MAX i nt eger no
USER BC STRI NG MAX i nt eger no
USER COLL_WEI GHTS MAX i nt eger no
USER CS_PATH string no
USER_EXPR _NEST_MAX i nt eger no
USER LI NE_MAX i nt eger no
USER _PGSI X2_CHAR TERM i nt eger no
USER _PGSI X2_C Bl ND i nt eger no
USER PCSI X2_C DEV i nt eger no
USER PCSI X2_FORT_DEV i nt eger no
USER PGCSI X2_FORT_RUN i nt eger no
USER _PGOSI X2_L OCALEDEF i nt eger no
USER _PGSI X2_SW DEV i nt eger no
USER PGCSI X2_UPE i nt eger no
USER PGCSI X2_VERSI ON i nt eger no
USER _RE DUP_MAX i nt eger no
USER STREAM MAX i nt eger no

691

SYSCTL(3C)

692

SYSCTL(3C)

Second level name Type Changeable

USER TZNAME NMAX i nteger no

USER_BC_BASE_MAX
The maximum ibase/obase values in the bc (1) utility.

USER _BC_DI M_MAX
The maximum array size in the bc(1) utility.

USER_BC_SCALE_NMAX
The maximum scale value in the bc (1) utility.

USER_BC_STRI NG_MAX
The maximum string length in the bc (1) utility.

USER_COLL_WEI GHTS_MAX
The maximum number of weights that can be assigned to any entry of the
LC COLLATE order keyword in the locale definition file.

USER CS _PATH
Return a value for the PATH environment variable that finds all the standard utilities.

USER_EXPR_NEST_MAX
The maximum number of expressions that can be nested within parenthesis by the
expr (1) utility.

USER LI NE_MAX
The maximum length in bytes of a text-processing utility’s input line.

USER_PCSI X2_CHAR_TERM
Return 1 if the system supports at least one terminal type capable of all operations
described in POSIX 1003.2, otherwise 0.

USER _PCSI X2_C _BI ND
Return 1 if the system’s C-language development facilities support the C-Language
Bindings Option, otherwise 0.

USER_PCSI X2_C_DEV

Return 1 if the system supports the C-Language Development Utilities Option,
otherwise 0.

USER_PCSI X2_FORT_DEV
Return 1 if the system supports the FORTRAN Development Utilities Option,
otherwise 0.

USER_PCSI X2_FORT_RUN
Return 1 if the system supports the FORTRAN Runtime Ultilities Option, otherwise 0.

SR-2080 10.0

SYSCTL(3C) SYSCTL(3C)

USER_POSI X2_ L OCALEDEF
Return 1 if the system supports the creation of locales, otherwise O.

USER_POSI X2_SW DEV
Return 1 if the system supports the Software Development Utilities Option, otherwise
0.

USER_POSI X2_UPE
Return 1 if the system supports the User Portability Utilities Option, otherwise O.

USER_PCSI X2_VERSI ON
The version of POSIX 1003.2 with which the system attempts to comply.

USER_RE_DUP_MAX
The maximum number of repeated occurrences of a regular expression permitted when
using interval notation.

USER_STREAM MAX
The minimum maximum number of streams that a process may have open at any one
time.

USER_TZNAME_MAX
The minimum maximum number of types supported for the name of a timezone.
NOTES

If the executable using this library routine is installed with a privilege assignment list (PAL), a user with one
of the following active categories is allowed to perform the actions shown:

Active Category Action
system secadm sysadm Allowed to change the "changeable’ MIBs.
If the PRI V_SU configuration option is enabled, the super user is allowed to change the "changeable’ MIBs.

ERRORS
The following errors may be reported:
[EFAULT] The buffer name, oldp, newp, or length pointer oldienp contains an invalid address.
[El NVAL] The name array is less than two or greater than CTL_ MAXNAME.
[El NVAL] A non-null newp is given and its specified length in newlen is too large or too small.
[ENOVEM The length pointed to by oldlenp is too short to hold the requested value.
[ENOTDI R] The name array specifies an intermediate rather than terminal name.
[ECPNOTSUPP] The name array specifies a value that is unknown.
[EPERM An attempt is made to set a read-only value.
[EPERM A process without appropriate privilege attempts to set a value.

SR-2080 10.0 693

SYSCTL(3C)

RETURN VALUES
If the call to sysct | is successful, the number of bytes copied out is returned.
and errno is set appropriately.
EXAMPLES
Example 1:
To retrieve the standard search path for the system utilities, use the following:

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/sysctl. h>

mai n() {
i nt m b[2] ;
size t len;
char *p;
m b[0] = CTL_USER;
m b[1] = USER _CS_PATH;

if (sysctl(mb, 2, NULL, & en, NULL, 0) < 0)
perror ("sysctl");

p = (char *)mall oc(len);

if (sysctl(mb, 2, p, &en, NULL, 0) < 0)
perror ("sysctl");

printf("Standard Search Path = < % >0, p);
}

Example 2:

To retrieve the size of the kernel’s networking IP input queue, use the following:

694

SYSCTL(3C)

Otherwise —1 is returned

SR-2080 10.0

SYSCTL(3C)

#i ncl ude
#i ncl ude

<stdi o. h>
<sys/types. h>

len = sizeof (i pintrqg_size);

m b[4] ;

#i ncl ude <sys/sysctl. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
mai n() {
i nt i pi ntrg_size,
size_t
m b[0] = CTL_NET;
m b[1] = PF_I NET;
m b[2] = | PPROTO I P;
m b[3] = | PCTL_QVAXLEN;

if (sysctl(mb, 4, & pintrqg_size,

perror ("sysctl");

printf("IP input

FILES

queue size is %0,

&l en,

<sys/sysctl . h>

<sys/ socket . h>
<sys/un. h>
<sys/tr_pch. h>
<net/if.h>

<netinet/in.h>

i pintrg_size);

NULL, 0) < 0)

SYSCTL(3C)

Definitions for top level identifiers, second level kernel and hardware identifiers, and

user level identifiers

Definitions for second level network identifiers

Definitions for fourth level UNIX domain identifiers
Definitions of fourth level TRACE domain identifiers

Definitions of fourth level IF identifiers

Definitions for third level Internet identifiers and fourth level IP identifiers

<netinet/icnp_var. h>
Definitions for fourth level ICMP identifiers

<netinet/ignp_var. h>
Definitions for fourth level IGMP identifiers

<netinet/tcp_var. h>
Definitions for fourth level TCP identifiers

<neti net/udp_var. h>
Definitions for fourth level UDP identifiers

SEE ALSO

sysct | (8)

SR-2080 10.0

695

SYSLOG(3C) SYSLOG(3C)

NAME

sysl og, setl oghost, setl ogport, openl og, cl osel og, set| ogmask — Controls system log

SYNOPSIS
#i ncl ude <sysl og. h>
int syslog (int priority, char *message, ...);
int setloghost (char *host);
int setlogport (int port);
int openlog (char *ident, int logopt, int facility);
int closelog (void);
int setlogmask (int maskpri);
IMPLEMENTATION

STANDARDS

All Cray Research systems

BSD extension

DESCRIPTION

696

The sysl| og function arranges to write message onto the system log maintained by sysl ogd(8). The
message is tagged with priority. The message looks like a pri nt f (3C) string except that %mnis replaced by
the current error message (collected from er r no). Up to five parameters are supported. A trailing newline
character is added if needed. This message is read by sysl ogd(8). It is then written to the system console
or log files, or it is forwarded to sysl ogd on another host as appropriate.

The priority arguments are encoded as a facility and a level. The facility describes the part of the system
generating the message, as follows:

Facility Description

LOG_AUTH Messages generated by the authorization system, such as | ogi n(1), su(l), or get t y(8).
LOG DAEMON Messages generated by system daemons, such asft pd(8) or r out e(8).

LOG_KERN Messages generated by the kernel. These messages cannot be generated by any user

processes.

LOG LOCALO Reserved for local use. (Similarly for LOG_LOCAL1 through LOG _LOCAL7.)
LOG _MAI L Messages generated by the mail system.
LOG_USER Messages generated by random user processes. If none is specified, this is the default

facility identifier.

SR-2080 10.0

SYSLOG(3C) SYSLOG(3C)

The level is selected from the following ordered list:

Facility Level
LOG _ALERT A condition that should be corrected immediately (such as a corrupted system database).
LOG CRIT Critical conditions (for example, hard device errors).

LOG_DEBUG Messages that contain information typically useful only when debugging a program.
LOG_EMERG A panic condition, which usually is broadcast to all users.

LOG ERR Errors.

LOG | NFO Informational messages.

LOG _NOTI CE Conditions that are not error conditions, but they may need to be handled specially.
LOG WARNI NG Warning messages.

If sysl og cannot pass the message to sysl ogd(8), it tries to write the message on / dev/ consol e if the
LOG_CONS option is set (see below).

If the log messages will be sent to another system on the network, call set | oghost (host) . If the system
log daemon, on either the local or remote host, is waiting on a port other than the one specified in

[etc/services, cal setl ogport (port). You must call both set | oghost (host) and

set | ogport (port) before you call either openl og or sysl og.

If special processing is heeded, you can call openl 0g(3C) to initialize the log file. The ident argument is a
string that is prepended to every message. The logopt argument is a bit field that indicates logging options.
Current values for logopt are as follows:

Value Description

LOG_CONS If openl og cannot send the message to sysl og, LOG_CONS forces messages to be
written to the console. This option is safe to use in daemon processes that have no
controlling terminal because sys| og forks before opening the console.

LOG _DELAY Opens the pipe to sysl ogd(8) without the O_NDELAY flag.

LOG NOMAI T Indicates not to wait for child processes forked to log messages on the console. This
option should be used by processes that enable notification of child termination using
SI GCHLD, because sys! og can otherwise block waiting for a child process whose exit
status has aready been collected.

LOG PID Logs the process ID with each message; this is useful for identifying instantiations of
daemons.

LOG USETCP Forces messages to be sent to the local syslog daemon by using the TCP/IP socket
interface.

The facility argument encodes a default facility to be assigned to all messages that do not have an explicit
facility encoded, as previously described.

You can use the cl osel og function to close the log file.

The set | ognmask function sets the log priority mask to maskpri and returns the previous mask. Calls to
sysl og with a priority not set in maskpri are rejected. The mask for an individua priority pri is calculated
by macro LOG_MASK(pri) ; the mask for all priorities up to and including toppri is given by macro
LOG_UPTQ(toppri) . The default allows al priorities to be logged.

SR-2080 10.0 697

SYSLOG(3C)

NOTES

SYSLOG(3C)

The named pipe interface, / dev/ | og, is not available when FORCED_SOCKET configuration option is ON.

In this case, the LOG_USETCP option is forced by the sysl og routine.

RETURN VALUES

The sysl og and openl og functions return O after successful completion. Otherwise, -1 is returned, which

indicates that an error occurred.

EXAMPLES

The following example shows execution of the sysl og function:

#i ncl ude <sysl og. h>
sysl og(LOG_ALERT, "who: internal error 23")

openl og("ftpd", LOG Pl D, LOG DAEMON)
set | ogmask(LOG _UPTQ(LOG _ERR))

sysl og(LOG | NFO, "Connection from host %", CallingHost)

set | oghost ("secure_|l og_systent')
openl og("l ogi n", LOG PID, LOG AUTH)
sysl og(LOG WARNI NG, "% | ogged in with a null

sysl og(LOG | NFO LOG LOCAL2, "error: %)

SEE ALSO

| ogger (1) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011
I 0g(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication

698

SR-2014

password. ",

User Nane)

ft pd(8), getty(8), r out e(8), and sysl ogd(8) in the UNICOS Administrator Commands Reference

Manual, Cray Research publication SR—2022

SR-2080 10.0

SYSTEM(3C) SYSTEM(3C)

NAME

syst em— Passes string to host for execution

SYNOPSIS
#i ncl ude <stdlib. h>

int system (const char *sdtring);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

The syst emfunction passes the string to which string points to the host environment to be executed by a
"command processor” (sh(1)) as input, as if string had been typed as a command at a terminal. The current
process then performs awai t pi d(2) system call, and it waits until the shell terminates. The syst em
function then returns the exit status returned by the wai t pi d(2) system call. Unless the shell was
interrupted by a signal, its termination status is contained in the 8 bits higher up from the low-order 8 bits of
the value returned by the wai t pi d(2) system call. The syst emfunction ignores the SI G NT and

SI &I LL signals, and it blocks the SI GCHLD signal while waiting for the command to terminate.

To inquire whether a command processor exists, use a null pointer for string.

RETURN VALUES

If the argument is a null pointer, the syst emfunction returns a nonzero value only if a command processor
is available. If the argument is not a null pointer, the syst emfunction does a vf or k(2) system call to
create a child process that, in turn, executes / bi n/ sh to execute string. If the vf or k(2) or exec(2)
system calls fail, syst emreturns —1 and sets er r no.

SEE ALSO
errno. h(3C)
sh(2) in the UNICOS User Commands Reference Manual, Cray Research publication SR—2011

exec(2), vfork(2), wai t pi d(2) in the UNICOS System Calls Reference Manual, Cray Research
publication SR—2012

SR-2080 10.0 699

sys_types.h(3C) sys_types.h(3C)

NAME

sys_types. h — Library header for system type definitions
IMPLEMENTATION

All Cray Research systems

STANDARDS

CRI extension

TYPES
Header sys/ t ypes. h defines the following types. Unless noted as ISO/ANSI, al items are CRI
extensions.
Type Description
wor d The integral type that represents a machine word. Equivaent to | ong on CRI systems.
ul ong Shorthand notation for unsi gned | ong.
ui nt Shorthand notation for unsi gned i nt.

ushort Shorthand notation for unsi gned short.

size_t Theunsigned integra type of the result of the si zeof operator. 1SO/ANSI.
time_t Arithmetic type capable of representing time. 1SO/ANSI.

cl ock_t Arithmetic type capable of representing time. ISO/ANSI.

MACROS

None

FUNCTION DECLARATIONS

None

SEE ALSO
st ddef . h(3C), ti me. h(3C)

700 SR-2080 10.0

TCGETATTR(3C) TCGETATTR(3C)

NAME
tcgetattr,tcsetattr — Getsor sets terminal attributes

SYNOPSIS
#i nclude <ternios. h>
int tcgetattr (int fildess struct term os *termios p);
int tcsetattr (int fildes, int optional_actions, const struct term os
*termios_p) ;
IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX

DESCRIPTION

Thet cget attr function gets the parameters associated with the object referred to by fildes and stores
them in thet er m os structure referenced int er m os_p.

Thet csetattr function sets the parameters associated with the terminal (unless the necessary support
from the underlying hardware is not available) from the t er m os structure referenced byt er m os_p, as
follows:

¢ |f optional_actions is TCSANOW the changes occur immediately.

¢ |f optional_actions is TCSADRAI N, the change occurs after all output written to fildes has been
transmitted. This function should be used when changing parameters that affect output.

¢ |f optional_actions is TCSAFLUSH, the change occurs after al output written to the object referred to by
fildes has been transmitted, and all input that has been received but not read is discarded before the
change is made.

The symbolic constants for the values of optional_actions are defined in header t er mi 0s. h.
NOTES

This function is allowed from a background process; however, the terminal attributes may subsequently be
changed by a foreground process.

SEE ALSO
t er mi nal (3C), cf get ospeed(3C)

t er mi 0(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 701

TCGETPGRP(3C) TCGETPGRP(3C)

NAME

t cget pgrp, tcset pgr p — Gets or sets terminal foreground process group I1D

SYNOPSIS

#i ncl ude <sys/types. h>
#i nclude <ternios. h>

pid_t tcgetpgrp(int fildes);
int tcsetpgrp(int fildes, pid_t pgid);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX

DESCRIPTION

Thet cget pgr p routine returns the foreground process group ID of the terminal specified by fildes.
t cget pgr p is allowed from a process that is a member of a background process group; however, the
information may be subsequently changed by a process that is a member of a foreground process group.

Thet cset pgr p routine sets the foreground process group ID of the terminal specified by fildes to pgid.
The file associated with fildes must be the controlling terminal of the calling process and the controlling
terminal must be currently associated with the session of the calling process. pgid must match a process
group ID of a process in the same session as the calling process.

MESSAGES

702

On success, t cget pgr p returns the process group ID of the foreground process group associated with the
specified terminal. Otherwise, it returns —1 and sets er r no to indicate the error.

On success, t cset pgr p returns a value of 0. Otherwise, it returns —1 and sets er r no to indicate the
error.

These functions fail if one of more of the following is true:
EBADF The fildes argument is not a valid file descriptor.
ENOTTY The file associated with fildes is not a terminal.
t cget pgr p aso falsif the following is true:

ENOTTY The calling process does not have a controlling terminal, or fildes does not refer to the
controlling terminal.

SR-2080 10.0

TCGETPGRP(3C) TCGETPGRP(3C)

t cset pgr p aso failsif the following is true:
El NVAL pgid is not a valid process group ID.

ENOTTY The calling process does not have a controlling terminal, or fildes does not refer to the
controlling terminal, or the controlling terminal is no longer associated with the session of
the calling process.

EPERM pgid does not match the process group of an existing process in the same session as the
calling process.
SEE ALSO
t er mi nal (3C)
set pgi d(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

t er mi 0(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

SR-2080 10.0 703

TCSENDBREAK(3C) TCSENDBREAK(3C)

NAME

t csendbr eak, tcdrai n, tcfl ush, t cf| ow— Performs terminal control functions

SYNOPSIS

#i nclude <ternios. h>

int tcsendbreak (int fildes, int duration);
int tcdrain (int fildes);

int tcflush (int fildes, int queue selector);
int tcflow (int fildes, int action);

IMPLEMENTATION

All Cray Research systems

STANDARDS

POSIX

DESCRIPTION

704

Function t csendbr eak transmits a continuous stream of zero-valued bits for a specific duration, if the
terminal is using asynchronous serial data transmission. If duration is 0, zero-valued bits are transmitted for
at least 0.25 seconds, and not more than 0.5 seconds. If duration is not O, zero-valued bits are transmitted
for an implementation-defined period of time.

If the terminal is not using asynchronous serial data transmission, it is implementation-defined whether the
t csendbr eak function sends data to generate a break condition (as defined by the implementation) or
returns without taking any action.

Thet cdr ai n function waits until all output written to the object referred to by the fildes has been
transmitted.

Thet cf | ush function discards data written to the object referred to by fildes but not transmitted, or data
received but not read, depending on the value of queue_selector, as follows:

¢ |f queue selector is TCl FLUSH, t cf | ush flushes data received but not read.
¢ |f queue selector is TCOFLUSH, t cf | ush flushes data written but not transmitted.

¢ |f queue selector is TCl OFLUSH, t cf | ush flushes both data received but not read, and data written but
not transmitted.

Thet cf | ow function suspends transmission or reception of data on the object referred to by fildes,
depending on the value of action, as follows:

e |f action is TCOOFF, t cf | ow suspends output.
e |f action is TCOON, t cf | ow restarts suspended output.

SR-2080 10.0

TCSENDBREAK(3C) TCSENDBREAK(3C)

¢ |f action is TCl OFF, the system transmits a STOP character, which is intended to cause the terminal
device to stop transmitting data to the system.

¢ |f action is TCl ON, the system transmits a START character, which is intended to cause the terminal
device to start transmitting data to the system.

The symbolic constants for the values of queue_selector and action are defined in <t er m o0s. h>.

The default on open of a terminal file is that neither its input nor its output is suspended.

SR-2080 10.0 705

TERMINAL (3C) TERMINAL (3C)

NAME

t erm nal — Introduction to termina screen functions

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

This section describes the terminal screen functions. These functions describe a general terminal interface
that is provided to control asynchronous communications ports. A more detailed overview of the terminal
interface can be found on the t er m o(4) man page, which also describes an i oct | (2) interface that can be
used to access the same functionality. However, the function interface described here is the preferred user
interface.

Many of the functions described here have at er mi os_p argument that is a pointer to at er m os
structure. This structure contains the following members:

tcflag_t c_iflag; /* input nodes */
tcflag_t c_ofl ag; /* out put nodes */
tcflag_t c_cflag; /* control mnodes */
tcflag_t c_Iflag; /* local nodes */
cc_t c_cc[NCCs]; /* control chars */

These structure members are described in detail in t er ni o(4).

ASSOCIATED HEADERS

<term os. h>
<X/ Xl'ib. h>

ASSOCIATED FUNCTIONS

706

cf geti speed — Gets terminal input baud rates (see cf get ospeed)

cf get ospeed — Gets terminal output baud rates

cfseti speed — Setstermina input baud rates (see cf get ospeed)

cf set ospeed — Sets termina output baud rates (see cf get ospeed)

t cdr ai n — Waits until all output written has been transmitted (see t csendbr eak)
t cf | ow— Suspends transmission or reception of data (seet csendbr eak)

t cf | ush — Discards data written but not transmitted, or data received but not read (seet csendbr eak)
tcgetattr — Getstermina attributes

t csendbr eak — Sends data to generate a break condition

tcsetattr — Setsterminal attributes (seet cgetattr)

t cget pgr p — Gets terminal foreground process group 1D

t cset pgr p — Sets terminal foreground process group ID (seet cget pgr p)

Xl'i b — C language X Window System interface library (see x| i b)

SR-2080 10.0

TERMINAL (3C) TERMINAL (3C)

SEE ALSO

cf get ospeed(3C) t cget att r (3C), t csendbr eak(3C), t cget pgr p(3C) for descriptions of
individual terminal screen functions

file(3C), nessage(3C), mul ti c(3C), passwor d(3C) (al introductory pages to other operating system
service functions)

t er mi o(4) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014, for a more detailed overview of the termina interface

SR-2080 10.0 707

T_EXIT(3C)

NAME
t _exit — Exits multitasking process

SYNOPSIS
#i ncl ude <tfork. h>

void t_exit (int value);
IMPLEMENTATION
Cray PVP systems

STANDARDS

CRI extension

DESCRIPTION

T_EXIT(3C)

Functiont _exi t isused to exit a process created by t _f or k(3C). This function frees the stack associated

with the process. t _exit does not release any locks held by that task.

The value is returned using the wai t (2) system call, but, as this will change in future releases, it is not

vauable at this time.

SEE ALSO
tf or k(3C), ti d(3C), t | ock(3C)

_tfork(2),wait (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

708

SR-2080 10.0

TFORK (3C)

NAME
tfork,t _fork — Creates a multitasking sibling

SYNOPSIS
#i nclude <tfork. h>
int t_fork (int nframes);
int tfork (void);

IMPLEMENTATION
Cray PVP systems

STANDARDS

CRI extension

DESCRIPTION

TFORK (3C)

Thet _f or k function uses the _t f or k(2) system call to create a new multitasking sibling. It allocates a
stack for the new sibling, as well as assigning it atask ID. The stack is created with nframes frame
packages copied from the elder stack. When the new sibling returns from its base stack frame, an implicit

t _exit iscaled.

Thet f or k macro expandsto acal tot _f or k with nframes set to 1. If #undef is used to remove the

macro definition from t f or k, the behavior is undefined.

NOTES

Currently, nframes must be set to 1.

This method of multitasking does not work correctly with the Flowtrace (see f | owt r ace(7)) performance

tool.

RETURN VALUES

On failure, —1 is returned. On success, the elder sibling is returned a nonzero value, and the younger sibling

is returned a 0.

SEE ALSO
t_exit(3C), ti d(3C), t1 ock(3C)

_tfork(2) in UNICOS System Calls Reference Manual, Cray Research publication SR—2012
f1 owt race(7) (available only online) for information about Flowtrace
CF77 Optimization Guide, Cray Research publication SG—3773

SR-2080 10.0

709

TID(3C)

NAME
t_id,t_tid,t_gettid— Return task IDs

SYNOPSIS

#i nclude <tfork. h>

int t_id (void);

int t_tid (void);

int t_gettid (int pid);
IMPLEMENTATION

Cray PVP systems
STANDARDS

CRI extension

DESCRIPTION

TID(3C)

Function t _i d returns the process identification number (PID) of the caller. It isvalid only after a
t _fork(3C) cal has been placed. Becauset _i d is not a system call, it is much faster than get pi d(2).

Functiont _t i d returns the task identification number (TID) of the called function. Currently, this value is
a small integer and can be used as an index into an array for task-specific data. This value should be used

instead of the PID to reference the task.

Functiont _getti d returns the TID for the process specified by pid. Argument pid must reference a task

within the current multiprocessing group.

RETURN VALUES

These functions return —1 if the task is not the result of at _f or k call.

SEE ALSO
t_exit(3C),tfork(3C),tl ock(3C)

_tfork(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

710

SR-2080 10.0

TIME(3C) TIME(3C)

NAME

t i me — Determines the current calendar time

SYNOPSIS

#i nclude <tine.h>

time_t time (tine_t *timer);
IMPLEMENTATION

All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

Thet i me function determines the current calendar time. The encoding of the value is unspecified.

NOTES

In general, the specific value returned should not be of concern to you; you should use it only for passing to
other time functions.

Under UNICOS, ti me(2) is implemented as a system call, but the t i me function is also defined to be a
part of the ANSI Standard C library. For this reason, this documentation appears both here and in the
UNICOS System Calls Reference Manual, Cray Research publication SR—2012.

RETURN VALUES

The t i me function returns the implementation’s best approximation to the current calendar time. The value
(time_t)-1isreturned if the calendar time is not available. If ti mer is not a null pointer, the return
value is also assigned to the object to which it points.

SEE ALSO
ti me(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 711

time.h (3C)

NAME

time.h(3C)

ti me. h — Library header for date and time functions

IMPLEMENTATION

All Cray Research systems

TYPES

The types defined int i ne. h are as follows:

Type Standards Description

size_t ISO/ANSI The unsigned integral type of the result of the si zeof operator.

cl ock _t ISO/ANSI Arithmetic type capable of representing time.

al tzone ISO/ANSI Difference in seconds between universa coordinated time (UTC)
and local daylight saving time.

ti mezone XPG4 Difference, in seconds, between UTC and the local standard time.
The function t zset uses the contents of the environment variable
TZ to override the default value of t i mezone.

dayl i ght XPG4 Indicates whether time should reflect daylight savings time. The
function t zset uses the contents of the environment variable TZ
to override the default value of daylight.

t znane POSIX Contains time zone names. The function tzset uses the contents of
the environment variable TZ to override the default value of
t znane.

time_t ISO/ANSI Arithmetic type capable of representing time.

struct tm ISO/ANS Structure that holds the components of a calendar time, called the

broken-down time. The structure contains at least the members
shown in the following structure, in any order. The semantics of
the members and their normal ranges are expressed in the
comments. The value of t m i sdst is positive if daylight saving
time isin effect, zero if daylight saving time is not in effect, and
negative if the information is not available.

712

SR-2080 10.0

time.h (3C)

The members of structure struct tm are as follows:

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt

MACROS

time.h (3C)

tm sec; /* seconds after the mnute [0, 61] */

tmmn; /* mnutes after

t he hour

[0, 59] */

tm hour; /* hours since nmidnight [0, 23] */

tmnday; /* day of the nmonth [1,

31] */

t m nmon; /* months since January [0, 11] */

tmyear; [/* years since 1900 */

tmwday; [/* days since Sunday [0, 6] */
tmyday; [/* days since January 1 [0, 365] */
tm.isdst; /* Daylight Saving Tine flag */

The macros defined in header t i ne. h are as follows:

Macro Standards Description

NULL ISO/ANSI An implementation-defined null pointer constant, equal to zero on
CRI systems.

CLK_TCK POSIX Clock ticks / second

CLOCKS_PER_SEC ISO/ANS

Number per second of the value returned by the cl ock function.
On Cray Research systems, this macro expands to 1,000,000
because the CPU time is reported in microseconds.

FUNCTION DECLARATIONS

Functions declared in header t i me. h are as follows:

ascftinme
cpused

gntine_r
strftinme

SEE ALSO

ascftime_r
ctine

| ocal tine
strptine

asctime
ctime_r
localtime_r
time

ctime(3C),strfti me(3C), strptinme(3C)

SR-2080 10.0

cftinme cl ock

difftinme gntine
nkti nme rtcl ock
tzset

713

TLOCK(3C) TLOCK (3C)

NAME

t _lock,t_unlock,t_testlock,t_nlock,t_nunl ock — Lock routines for multitasking

SYNOPSIS
#i nclude <tfork. h>
t _lock (lock_ t *lock);
t _unlock (lock_t *lock);
long t_testlock (lock_ t *lock);
t_nlock (nlock_t *lock);

t _nunlock (nlock_t *lock);

IMPLEMENTATION
Cray PVP systems

STANDARDS

CRI extension

DESCRIPTION

Lock routines protect critical regions of code and shared memory. A lock is a statically allocated word in
memory. When the word is O, the lock is clear; when the word is nonzero, the lock is set. The following
paragraphs describe each lock routine.

Routinet | ock setsalock. If thelock is already set whent _| ock is caled, the task is suspended until
another task clears the lock. Callstot | ock do not nest. The lock word must be O beforet | ock is
called the first time; otherwise the program may crash.

Routinet _unl ock clearsalock. There must be one call tot _unl ock for every cal tot _| ock.

Functiont _t est| ock tests alock and locksiit if it is not already locked. t _t est| ock returns the
original value of the lock (O if the lock was clear, nonzero if the lock was set). Functiont _t estl ock
cannot be used on nested locks.

Routinet _nl ock sets a nested lock. If the lock is already set whent _nl ock is called, the task ID is
checked. If this task holds the lock, the nesting level is incremented. If this task does not hold the lock, the
task is suspended until the task that holds the lock has cleared it.

Routinet _nunl ock clears a nested lock. Whent _nunl ock is called, the nesting level is decremented.
If this is the last active nest level, the lock is cleared. There must be one call tot _nunl ock for every call
tot _nl ock.

714 SR-2080 10.0

TLOCK(3C) TLOCK (3C)
SEE ALSO

t_exit(3C), tfork(3C),tid(3C)
_tfork(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

SR-2080 10.0 715

TMPFILE(3C)

NAME
t mpfi | e — Creates a temporary binary file

SYNOPSIS
#i ncl ude <stdio. h>
FILE *tnpfile (void);

IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

TMPFILE(3C)

Thet npfi | e function creates a temporary binary file (using a name generated by t mpnan(3C)) and it
returns a corresponding FI LE pointer. If the file cannot be opened, a null pointer is returned. The file is
removed automatically when it is closed or at program termination. If the program terminates abnormally,
whether an open temporary file is removed is implementation-defined. In the Cray Research implementation,
the file is removed if the program terminates abnormally. The file is opened for update ("wb+").

FORTRAN EXTENSIONS

You also can cal thet npfi | e function from Fortran programs, as follows:

| NTEGER*8 TMPFI LE, |
| = TMPFILE()

SEE ALSO

f open(3C), nkt enp(3C), per r or (3C), t mpnam(3C)

creat (2), unl i nk(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

716

SR-2080 10.0

TMPNAM(3C)

NAME
t npnam t enpnam— Creates a name for a temporary file

SYNOPSIS

#i ncl ude <stdio. h>

char *tnpnam (char *sg);

char *tenmpnam (const char *dir, const char
IMPLEMENTATION

All Cray Research systems

STANDARDS

ISO/ANSI (t npnamonly)
XPG4 (t enpnamonly)

DESCRIPTION

TMPNAM(3C)

* pfx) ;

Functions t npnamand t enpnamgenerate valid file names that are not the same as the name of an existing
file and that can be used safely for the name of a temporary file.

The t npnamfunction generates a file name by using the path prefix defined as P_t mpdi r in the header file
st di 0. h unless the TMPDI R environment variable is defined. If TMPDI R is provided, and its length is
lessthan L_t npnam-16, it is used as the path prefix. If s isnull, t npnamleaves its result in an internal
static area and returns a pointer to that area. The next call to t mpnammay destroy the contents of the area.
If sisnot null, it is assumed to be the address of an array of at least L_t npnambytes (L_t npnamis a
constant defined in header file st di 0. h); t npnamplaces its result in that array and returns s.

The t empnamfunction lets you control the choice of a directory. The dir argument points to the name of
the directory in which the file will be created. If dir is null or points to a string that is not a name for an
appropriate directory, the path prefix defined as P_t npdi r in the header file st di 0. h isused. If that
directory is not accessible, / t np is used as alast resort. To override this entire sequence, provide a
TMPDI R environment variable in the user’s environment; the variable’s value is the name of the desired
temporary-file directory, rather than the directory specified on the call to t enpnam (This use of TMPDI R
with the t empnamfunction is a CRI extension; for XPG4 conformance, the TMPDI R environment variable
must not be set.)

Many applications prefer their temporary files to have certain initial letter sequences in their names. Use the
pfx argument for this. This argument may be null or may point to a string of up to 5 characters to be used
as the first few characters of the temporary-file name.

SR-2080 10.0 717

TMPNAM(3C) TMPNAM(3C)

The t empnamfunction uses mal | oc(3C) to get space for the constructed file name, and it returns a pointer

to this area. Thus, any pointer value returned from t enpnammay serve as an argument to f r ee (see

mal | oc(3C)). If t empnamcannot return the expected result for any reason (that is, if mal | oc failed, or

none of the preceding attempts to find an appropriate directory was successful), a null pointer is returned.
NOTES

These functions generate a different file name each time they are called.

Files created using these functions and either f open(3C) or cr eat (2) are temporary only in the sense that
they reside in a directory intended for temporary use, and their names are unique. To remove the file when
its use is ended, you must use r enrove(3C).

The t npnamand t enpnamfunctions generate a different string each time they are called, up to TMP_MAX
times. If they are called more than TMP_MAX times, these functions start recycling previously used names.

CAUTIONS

Between the time a file name is created and the file is opened, some other process can create a file with the
same name. This situation can never happen if that other process is using these functions or nkt enp(3C),
and the file names are chosen so as to render duplication by other means unlikely.

FORTRAN EXTENSIONS

You also can cal the t empnamfunction from Fortran programs, as follows:

CHARACTER dir *m, pfx *n
| NTEGER*8 TEMPNAM |
| = TEMPNAM dir, pfx)

Arguments dir and pfx may be of type integer. In that case, the data must be packed 8 characters per word
and terminated with a null (0) byte.

SEE ALSO
f open(3C), mal | oc(3C), mkt enp(3C), t mpfi | e(3C)
creat (2), unl i nk(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

718 SR-2080 10.0

TRACEBK (3C) TRACEBK (3C)

NAME

t racebk — Prints a traceback

SYNOPSIS
i nclude <stdlib. h>

int tracebk ([int depth[, FILE *optunit]]);

IMPLEMENTATION
All Cray Research systems

STANDARDS

CRI extension

DESCRIPTION

Thet r acebk function prints a traceback (on st dout , or optunit if specified) beginning with its caller and

ending at "Start-up" or when depth is reached. The traceback includes the arguments and their values, and
some data about the run-time stack.

Thet r acebk function has the following optional argument:

depth Trace depth; if no argument is used, or depth is not in the range 3 to 50, 25 is used.

<0 Trace depth = 25

0 Prints one line "Where am |" message

1 Prints one line trace (caller’s name and line number)
2 Prints "Where am 1" message and one line trace

>2 Trace depth (25 if above 50)

NOTES

A maximum of 12 different active recursive functions may be in the traceback. Thet r acebk function fails
(with a message on st dout) if the trace data has been detectably corrupted.

RETURN VALUES

Thet r acebk function returns O if the traceback can be completed; otherwise, it is 1.

FORTRAN EXTENSIONS

The t r acebk function can aso be called from Fortran, as follows:
CALL TRACEBK
or

SR-2080 10.0 719

TRACEBK (3C) TRACEBK (3C)

| NTEGER*8 dept h
CALL TRACEBK(depth)

or

| NTEGER* 8 depth
CHARACTER* n filenm
CALL TRACEBK(depth, filenm)

The optional filenm argument in the call to TRACEBK is a character variable containing the name of afile in
which TRACEBK will write the tracebk. The filenm argument must not be open as a Fortran file when
TRACEBK is called because the results are unpredictable. The filenm argument may be read with standard
Fortran I/O. The depth must be present if filenm is present.

SEE ALSO

STKSTAT(3C)
REPRI EVE(3F), TRACEBK(3F) in the

720 SR-2080 10.0

TSEARCH(3C) TSEARCH(3C)

NAME

tsearch,tfind,tdel ete,twal k — Manages binary search trees

SYNOPSIS
#i ncl ude <search. h>

void *tsearch (const void *key, void **rootp, int (*compar)(const void *,
const void *));

void *tfind (const void *key, void *const *rootp,
int (*compar)(const void *, const void *));

void *tdelete (const void *key, void **rootp, int (*compar)(const void *,
const void *));

void twalk (const void *root, void (*action)(const void *, WVISIT, int));

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

Functionst sear ch, tfi nd, t del et e, and t wal k manipulate binary search trees. All comparisons are
done with a user-supplied function, which is called with two arguments, the pointers to the elements being
compared. It returns an integer less than, equal to, or greater than 0, according to whether the first argument
is considered to be less than, equal to, or greater than the second argument. The comparison function does
not have to compare every byte, therefore arbitrary data may be contained in the elements in addition to the
values being compared.

Thet sear ch function builds and accesses the tree. key is a pointer to data that will be accessed or stored.
If data in the tree is equal to *key (the value to which key points), a pointer to this found data is returned;
otherwise, *key is inserted, and a pointer to it is returned. Only pointers are copied; therefore, the calling
function must store the data.

The rootp argument points to a variable that points to the root of the tree. A null value for the variable to
which rootp points denotes an empty tree; in this case, the variable is set to point to the data that will be at
the root of the new tree.

Liket search, t fi nd searches for data in the tree, returning a pointer to it if found. If it is not found,
however, t f i nd returns a null pointer. The arguments for t f i nd are the same as for t sear ch.

SR-2080 10.0 721

TSEARCH(3C) TSEARCH(3C)

Thet del et e function deletes a node from a binary search tree. The arguments are the same as for

t sear ch. The variable to which rootp points is changed if the deleted node was the root of the tree. The
t del et e function returns a pointer to the parent of the deleted node, or a null pointer if the node is not
found.

The t wal k function traverses a binary search tree. The root argument is the root of the tree to be traversed.
(You can use any node in a tree as the root for a walk below that node.) action is the name of a function to
be invoked at each node. This function, in turn, is called with three arguments. The first argument is a
pointer to the node being visited. The second argument is a value from an enumeration data type, as
follows:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

(defined in the header file sear ch. h), depending on whether this is the first, second, or third time that the
node has been visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf.
The third argument is the level of the node in the tree, with the root being level 0.

The pointers to the key and the root of the tree may be pointers of any type.
The value required should be cast into type pointer-to-element.

CAUTIONS

NOTES

If the calling function alters the pointer to the root, results are unpredictable.

The root argument to t wal k is one level of indirection less than the rootp arguments to t sear ch and
tdel ete.

Two nomenclatures are used to refer to the order in which tree nodes are visited. Thet sear ch function
uses preorder, postorder, and endorder, respectively, to refer to visting a node before any of its child
processes, after its left child process and before its right, and after both its child processes. The alternate
nomenclature uses preorder, inorder, and postorder, respectively, to refer to the same visits, which could
result in some confusion over the meaning of postorder.

RETURN VALUES

722

If not enough space is available to create a new node, t sear ch returns a null pointer.
If rootp is null on entry, t sear ch, tfi nd, and t del et e return a null pointer.

If the data is found, both t sear ch and t f i nd return a pointer to it. If not, t f i nd returns null, and
t sear ch returns a pointer to the inserted item.

SR-2080 10.0

TSEARCH(3C) TSEARCH(3C)

EXAMPLES

The following example reads in strings and stores structures that contains a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in alphabetical
order.

#i ncl ude <search. h>
#i ncl ude <stdio. h>
#i nclude <string. h>

struct node { /* pointers to these are stored in tree */
char *string
int |ength;

}s

char string_space[10000]; /* space to store strings */

struct node nodes[500]; /* nodes to store */

voi d *root = NULL; /* this points to the root */

mai n()

{

char *strptr = string_space;

struct node *nodeptr = nodes;

int i =0;

i nt node_conpare(const void *nodel, const void *node2);
void print_node(void *node, VISIT order, int level);

SR-2080 10.0 723

TSEARCH(3C)

SEE ALSO

while (gets(strptr) !'= NULL && i ++ < 500) {
/* set node */
nodeptr->string strptr
nodeptr->l ength strlien(strptr);
/* put node into the tree */
(void) tsearch((void *)nodeptr, & oot, node_conpare);
/* adjust pointers, so we don't overwite tree */
strptr += nodeptr->length + 1;

nodept r ++;
}
twal k(root, print_node);
}
/*
This function conpares two nodes, based on an
al phabetical ordering of the string field.
*/

i nt node_conpare(const void *nodel, const void *node2);
{
return (strenp(((struct node *)nodel)->string,
((struct node *)node2)->string));

}

/*
This function prints out a node, the first tinme
twal k encounters it.

*/

void print_node(void *node, VISIT order, int level)
{
if (order == postorder || order == leaf) {
(void)printf("string = 9%20s, length = %\n",
(*(struct node **)node)->string,
(*(struct node **)node)->l ength);

bsear ch(3C), hsear ch(3C), | sear ch(3C)

724

TSEARCH(3C)

SR-2080 10.0

TSKLIST(3F) TSKLIST(3F)

NAME
TSKLI ST — Lists the status of each existing task

SYNOPSIS
CALL TSKLI ST

IMPLEMENTATION
Cray PVP systems
SPARC systems
DESCRIPTION

TSKLI ST lists the status of each existing task, indicating whether the task is running, ready to run, or
waiting. TSKLI ST also provides useful information about blocked tasks and lists several timing parameters
for the tasks and the program as a whole.

SR-2080 10.0 725

TSKSTART(3F) TSKSTART (3F)

NAME
TSKSTART - Initiates a task

SYNOPSIS
CALL TSKSTART(task-array, name [, list])

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION
The TSKSTART routine initiates atask. The following is a list of valid arguments for this routine.

Argument Description
task-array =~ Each user-created task is represented by an integer task control array, constructed by the user
program. Words 1 through 3 contain the following information:

LENGTH Length of the array in words. On SPARC systems, the length must be set to a
value of 2 or 3, depending on the optional presence of the task value field. Set
the LENGTH field before creating the task. On Cray PVP systems, the length
must be set to avalue of 2, 3, 5, 7, or 9, depending on the presence of optional
arguments.

TASK | D Task identifier assigned by the multitasking library when a task is created. This
identifier is unique among active tasks. The multitasking library uses this field for
task identification, but the task identifier is of limited use to the user program and
must not be modified.

TASK VALUE (optiona field)

This field can be set to any value before the task is created. The task value can

be used for any purpose. Suggested values include a programmer-generated task
name or identifier or a pointer to a task local-storage area. During execution, a

task can retrieve this value by using the TSKVALUE(3F) subroutine.

Words 4 through 9 are optional and may be used only on Cray PVP systems. They can be

used to specify the initial stack size, the stack increment, and the task priority. Words 4

through 9 must be used in pairs; that is, if a string is used in word 4, word 5 must contain an

integer; if astring is used in word 6, word 7 must contain an integer; and if a string is used
in word 8, word 9 must contain an integer.

Words 4/5, 6/7, and 8/9 can consist of one of the following strings with a corresponding

integer:
String Integer
(words 4, 6, or 8) (words 5, 7, or 9)

726 SR-2080 10.0

TSKSTART (3F) TSKSTART(3F)

"STACKSZ'L Initid stack size in 256-word blocks
"STACKSZWL Initia size in words
"STACKI NL Stack increment in 256-word blocks
"STACKI NWL Stack increment in words
‘PRI ORI TY'L Task priority
If specified, the strings must be left-justified and zero-filled.

name External entry point at which task execution begins. Declare this name EXTERNAL in the
program or subroutine making the call to TSKSTART. (Fortran does not alow a program unit
to use its own name in this parameter.)

list List of arguments being passed to the new task when it is entered. This list can be of any
length.

EXAMPLES

PROGRAM MULTI
| NTEGER TASK1ARY(3), TASK2ARY(3)
EXTERNAL PLLEL

REAL DATA(40000)

C
C LOAD DATA ARRAY FROM SOVE OUTSI DE SOURCE
C
C
C CREATE TASK TO EXECUTE FI RST HALF OF THE DATA
C

TASKLARY(1) =3

TASKLARY(3) =’ TASK 1’
C

CALL TSKSTART(TASK1ARY, PLLEL, DATA(1), 20000)
C
C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA
C

TASK2ARY(1) =3

TASK2ARY(3) =’ TASK 2’
C

CALL TSKSTART(TASK2ARY, PLLEL, DATA(20001) , 20000)
C

END

The following is an example of atask control array:

SR-2080 10.0 727

TSKSTART(3F) TSKSTART(3F)

| NTEGER TASKARY(9)

TSKARY(1) = 9

TSKARY(3) = 1

TSKARY(4) = ' STACKSZW L
TSKARY(5) = 10000
TSKARY(6) = ' STACKI NW L
TSKARY(7) = 1000
TSKARY(8) = 'PRIORITY' L
TSKARY(9) = 45

SEE ALSO
TSKVALUE(3F)

728 SR-2080 10.0

TSKTEST(3F) TSKTEST(3F)

NAME
TSKTEST — Returns a value indicating whether the indicated task exists

SYNOPSIS

LOG CAL TSKTEST

return = TSKTEST(task-array)
IMPLEMENTATION

Cray PVP systems

SPARC systems

DESCRIPTION
TSKTEST returns a value that indicates whether the specified task exists.

The following is alist of valid arguments for this routine.

Argument Description

return A logical . TRUE. if the indicated task exists. A logical . FALSE. if the task was never
created or has completed execution.

task-array ~ Task control array. TSKTEST and return must be declared type LOG CAL in the calling
module.

SR-2080 10.0 729

TSKTUNE(3F) TSKTUNE(3F)

NAME
TSKTUNE — Modifies tuning parameters within the library scheduler

SYNOPSIS
CALL TSKTUNE(keyword,, value,, keyword,, value,, ...)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

The multitasking system software design allows you to perform tuning without the need to rebuild libraries
or other system software. TSKTUNE, which can be called multiple times within a program, performs the
tuning, modifying tuning parameters within the library scheduler. Each of these parameters has a default
setting within the library and can be modified at any time to other valid settings.

Each keyword is an integer variable containing an ASCII string, left-justified, blank-filled, and in uppercase.
Each value is an integer. The parameters must be specified in pairs, but the pairs can occur in any order.
The following subsections describe the legal keywords.

Keyword Description

DBACTI VE Deadband for activation or acquisition of logical CPU. This keyword specifies the number of
additional tasks that must be readied before an additional logical CPU is required. The default
isO.

DBRELEAS Deadband for release of logical CPUs. This keyword specifies the number of logical CPUs
retained by the job if there are more CPUs than tasks. The default is 1 less than the number of
physical CPUs.

HOLDTI ME Number of clock periods to hold a CPU, waiting for tasks to become ready, before releasing it
to the operating system. This parameter lets you hold additional logical CPUs in a program
while executing a nonmultitasked section of code and to have these CPUs quickly available
when the program reenters a multitasked mode.

MAXCPU Maximum number of logical CPUs alowed for the program. The initial value is set to the
number of physical CPUs available on the system. The value of MAXCPU can range from 1 to
a site installation parameter, which limits the number of tasks in the system.

PRI ORI TY Scheduling priority of macrotasks. Legal values are O to 63, with O having the lowest priority.
The default is 31.

SAMPLE Number of clock periods between checks of the ready queue. Use this parameter with the
HOLDTI ME parameter. SAMPLE adjusts the frequency of sampling the ready queue when a
logical CPU is waiting for a task to become ready. If the ready queue is sampled too often,
excess memory contention may result.

STACKI N Stack increment in 256-word blocks.

STACKI NW Stack increment in words.

730 SR-2080 10.0

TSKTUNE(3F) TSKTUNE(3F)

STACKSZ Initial stack size (on SPARC systems, the total stack size in words). Specified in 256-word
blocks. Only the STACKSZ keyword has an effect on SPARC platforms.
STACKSZW Initial stack size in words. Only the STACKSZWkeyword has an effect on SPARC platforms.

NOTES

Because of variability between and during runs, the effects of this routine are not reliably measurable in a
batch environment.

EXAMPLES
CALL TSKTUNE(' DBACTI VE' L, 1, MAXCPU L, 2)
CALL TSKTUNE(' HOLDTI ME' L, 0)

CALL TSKTUNE(' MAXCPU L, 1)

SR-2080 10.0 731

TSKVALUE (3F) TSKVALUE (3F)

NAME
TSKVALUE — Retrieves user identifier specified in task control array

SYNOPSIS
CALL TSKVALUE(return)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION

TSKVAL UE retrieves the user identifier (if any) specified in the task control array used to create the
executing task.

return Integer value that was in word 3 of the task control array when the calling task was created. A
value of O isreturned if the task control array length is less than 3 or if the task is the initial
task.

EXAMPLES

SUBROUTI NE PLLEL(DATA, SI ZE)
REAL DATA(SI ZE)

C
C DETERM NE WH CH QUTPUT FILE TO USE
C
CALL TSKVALUE(| VALUE)
IF (I VALUE . EQ ' TASK 1') THEN
I UNI TNG=3
ELSEI F (I VALUE .EQ ' TASK 2') THEN
| UNI TNC=4
ELSE
STOP ('Error condition; do not continue.)
ENDI F
C C.
END

732 SR-2080 10.0

TSKWAIT(3F)

NAME
TSKWAI T — Waits for the indicated task to complete execution

SYNOPSIS
CALL TSKWAI T(task-array)

IMPLEMENTATION
Cray PVP systems
SPARC systems
DESCRIPTION
TSKWAI T waits for the indicated task to complete execution.
task-array Task control array.
EXAMPLES

PROGRAM MULTI
| NTEGER TASK1ARY(3), TASK2ARY(3)
EXTERNAL PLLEL

REAL DATA(40000)

LOAD DATA ARRAY FROM SOVE OUTSI DE SOURCE

CREATE TASK TO EXECUTE FI RST HALF OF THE DATA

O0O0000

TASKLARY(1) =3
TASKLARY(3) =’ TASK 1’

@

CALL TSKSTART(TASK1ARY, PLLEL, DATA(1), 20000)

CREATE TASK TO EXECUTE SECOND HALF OF THE DATA

ONONP]

TASK2ARY(1) =3
TASK2ARY(3) =’ TASK 2’

CALL TSKSTART(TASK2ARY, PLLEL, DATA(20001), 20000)

NOW WAI T FOR BOTH TO FI NI SH

ONONP]

CALL TSKWAI T(TASK1ARY)
CALL TSKWAI T(TASK2ARY)

SR-2080 10.0

TSKWAIT(3F)

733

TSKWAIT(3F) TSKWAIT(3F)

AND PERFORM SOVE POST- EXECUTI ON CLEANUP

OO0

END

734 SR-2080 10.0

TTYNAME(3C) TTYNAME(3C)

NAME

ttyname, ttyname_r,isatty — Finds the name of aterminal

SYNOPSIS
#i ncl ude <unistd. h>
char *ttyname (int fildes);
int ttyname_r (int fildes, char *ttyname, size_t namesize);

int isatty (int Cfildes);

IMPLEMENTATION
All Cray Research systems

STANDARDS
POSIX (ttynane andi satty)
PThreads (t t ynane_r)
DESCRIPTION

Thet t ynane function returns a pointer to a string that contains the null-terminated path name of the
terminal device associated with file descriptor fildes.

Thett ynanme_r function provides the same functionality but with an interface that is safe for multitasked
applications. It specifies a buffer to store the tty name, and namesize specifies this buffer's size. The
maximum buffer size is determined with the _SC TTYNAME_R_SI ZE_MAX sysconf parameter.

If fildes is associated with a terminal device, i sat t y returns 1; otherwise, it returns 0.

NOTES
The return value of t t ynane points to static data that is overwritten by each call.

RETURN VALUES
If fildes does not describe a terminal device in directory / dev, t t ynane returns a null pointer.

On success, the t t ynanme_r function returns O; otherwise, it returns an error number:

Error Description

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The fildes argument does not refer to a tty.

ERANGE The value of namesize is smaller than the length of the string to be returned, including the

terminating null character.

SR-2080 10.0 735

TTYNAME(3C) TTYNAME(3C)

FILES
/ dev/ *

736 SR-2080 10.0

UNGETC(3C) UNGETC(3C)

NAME

unget c, unget wc — Pushes a character back into the input stream

SYNOPSIS
#i ncl ude <stdio. h>
int ungetc (int ¢, FILE *stream);
#i ncl ude <wchar. h>

wint_t ungetwc (wint_t wc FILE *stream);

IMPLEMENTATION
All Cray Research systems

STANDARDS

ISO/ANSI (unget ¢ only)
XPG4 (unget we only)

DESCRIPTION

The unget ¢ and unget we functions push the character specified by ¢ or wc (converted to an unsi gned
char) back onto the input stream to which stream points. The pushed-back characters are returned by
subsequent reads on that stream in the reverse order of their pushing. unget we is used with wide-character
arguments. A successful intervening call (with the stream to which stream points) to a file positioning
function (f seek, f set pos, or r ewi nd) discards any pushed-back characters for the stream. The external
storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the unget ¢ or unget we function is called too many times on
the same stream without an intervening read or file positioning operation on that stream, the operation may
fail.

If the value of ¢ equals that of macro EOF or if wc equals WEOF, the operation fails and the input stream is
unchanged.

A successful call to the unget ¢ or unget we function clears the end-of-file (EOF) indicator for the stream.
The value of the file position indicator for the stream after reading or discarding al pushed-back characters
shall be the same as it was before the characters were pushed back. For a text stream, the value of its file
position indicator after a successful call to the unget ¢ or unget we function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is decremented
by each successful cal to the unget ¢ or unget we function; if its value was 0 before a call, it is
indeterminate after the call.

SR-2080 10.0 737

UNGETC(3C) UNGETC(3C)

Thef seek, ffl ush, f set pos, and r ewi nd functions erase all memory of inserted characters.

RETURN VALUES

If successful, the unget ¢ and unget we functions return the character pushed back after conversion.
Otherwise, unget c returns EOF and unget wc returns WEOF.

SEE ALSO
f seek(3C), get ¢(3C), set buf (3C)

738 SR-2080 10.0

UTILITIES(3C)

NAME

UTILITIES(3C)

utilities — Introduction to general utility functions

IMPLEMENTATION

All Cray Research systems

DESCRIPTION

The general utility functions provide various means for converting strings to numbers, for converting
numbers to strings, for managing memory, for communicating with the environment, for searching, and so

on.
ASSOCIATED HEADERS

<mal | oc. h>
<nlist.h>

<regexp. h>
<search. h>
<stdlib. h>
<sysl og. h>

ASSOCIATED FUNCTIONS

Communication with the Environment

abort

at abort (3C)
atexit
enduser shel
exit

get env
getlogin
get opt

get opt | st
get user shel
i satty

| ognane
nlimt

nli st

put env

set user shel
set env

sl eep

SR-2080 10.0

Generates an abnormal process termination

Calls specified function on abnormal process termination
Calls specified function on normal termination

Gets legal user shells (see get user shel I')
Terminates a program

Returns value for environment name

Gets login name

Gets option letter from argument vector

Gets option argument list

Gets legal user shells

Finds the name of atermina (seett ynamne)

Returns the login name of the user

Provides an interface to setting or obtaining resource limit values
Gets entries from name list

Changes or adds value to the environment

Gets legal user shells (see get user shel I')

Sets value of an environment variable

Suspends execution for a specified interval

739

UTILITIES(3C)

system
ttyname
unset env

Configuration Values

Database Management

freeconf val
get conf val

dbrtl ose
dbm ni t
del ete
fetch
firstkey
next key
store

Encryption Functions

crypt
encrypt
set key

UTILITIES(3C)

Passes string to host for execution
Finds the name of atermina
Removes value of an environment variable (see set env)

Frees memory allocated for abtaining run-time configuration values
Gets configuration value

Closes a database (see dbm)

Opens a database (see dbm)

Removes a key and its associated contents in a database (see dbn)
Accesses data stored under a key in a database (see dbm)

Returns the first key in a database (see dbm)

Returns the next key in the database (see dbm)

Places data in a database under a key (see dbm)

Generates DES encryption
Generates DES encryption (see cr ypt)
Generates DES encryption (see cr ypt)

Integer Arithmetic Functions

abs
div
| abs
[div

Returns the integer absolute value

Computes quotient and remainder

Returns the long integer absolute value (see abs)
Computes long integer quotient and remainder (see di v)

Memory Management Functions

740

cal |l oc

free

mal | i nfo
mal | oc

mal | oc_check
mal | oc_error
mal | oc_expand
mal | oc_ext end
mal | oc_howbi g
mal | oc_i npl ace
mal |l oc_isvalid
mal | oc_dtrace
mal | oc_etrace
mal | oc_space
malloc limt

Allocates memory space for array (see mal | oc)

Deallocates memory space (see mal | oc)

Provides memory allocation information (see mal | oc)

Allocates memory space

Checks memory arena for corruption (see mal | oc)

Memory manager error value (see mal | oc)

Expands memory block as large as possible without sbr eak (see mal | oc)
Returns words that could be reallocated in memory without copying (see mal | oc)
Returns size of memory block (see mal | oc)

Reallocates memory without copying, or fails (see mal | oc)

Checks validity of memory block (see mal | oc)

Traces calls to the memory manager (see mal | oc)

Traces calls to the memory manager (see mal | oc)

Returns memory to the system (see mal | oc)

Controls f r ee when last memory block in arena is freed (see nal | oc)

SR-2080 10.0

UTILITIES(3C)

mal | oc_stats
mal | oc_troff
mal | oc_tron
mal | opt
real |l oc

UTILITIES(3C)

Prints memory manager statistics (see mal | oc)

Traces call to the memory manager (see mal | oc)

Traces call to the memory manager (see mal | oc)

Sets various options in the memory manager (see nal | oc)
Changes size in memory of a defined object (see mal | oc)

Multibyte Character Functions

nbl en
nbt owc
_pack
_unpack
wet orb

Finds bytes in multibyte character

Determines code for value in multibyte characters

Packs 8-bit bytes to/from Cray 64-bit words

Unpacks 8-bit bytes to/from Cray 64-bit words (see _pack)
Determines bytes needed for multibyte character

Multibyte String Functions

nmbst owcs
west obnbs

Converts array of multibyte characters
Converts codes in array into multibyte character

Numeric String Conversion Functions

a64l

at of

at oi

at ol
ecvt
fcvt
gcvt

| 3t ol
ltol 3

| 64a
strtod
strtol
strtold
strtoul

Converts from base-64 ASCII to long integer

Converts initial part of string to floating-point number (see st rt od)
Converts string to integer (seestrtol)

Converts string to long integer (seestrtol)

Converts a floating-point humber to a string

Converts a floating-point humber to a string rounded for pri nt f (seeecvt)
Converts a floating-point humber to a string (see ecvt)

Converts 3-byte integers to long integers

Converts long integers to 3-byte integers (see |l 3t ol)

Converts from long integer to base-64 ASCII string (see a64l)
Converts string to doubl e

Converts stringto | ong i nt

Converts string to | ong doubl e (seestrt od)

Converts string to unsi gned | ong int (seestrtol)

Pseudo-random Sequence Generation Functions

drand48
er and48

j rand48
| cong48

| rand48
nr and48

SR-2080 10.0

Generates uniformly distributed pseudo-random numbers over the interval (0.0, 1.0)
Generates uniformly distributed pseudo-random numbers over the interval (0.0, 1.0)

(see dr and48)
Generates uniformly distributed pseudo-random numbers (over the interval
(=23, 2%1) (see dr and48)

Provides initialization entry points for dr and48, | r and48, or nr and48 (see

dr and48)

Generates uniformly distributed pseudo-random numbers (see dr and48)
Generates uniformly distributed pseudo-random numbers (over the interval
(=23, 2%1) (see drand48)

741

UTILITIES(3C) UTILITIES(3C)

nrand48 Generates uniformly distributed pseudo-random numbers (see dr and48)

rand Generates pseudo-random integers

seed48 Provides initialization entry points for dr and48, | r and48, or nt and48 (see
dr and48)

srand48 Provides initialization entry points for dr and48, | r and48, or nt and48 (see
dr and48)

srand Generates seed for new sequence of pseudo-random numbers (see r and)

Regular Expression Functions

regcnp Compiles and executes a regular expression

regex Compiles and executes a regular expression (see r egcnp)
re_conp Matches regular expressions

re_exec Matches regular expressions (see r e_conp)

Searching and Sorting Utilities

bsearch Performs a binary search of an array
hcreat e Allocates space for hash search tables (see hsear ch)
hdest r oy Destroys hash search tables (see hsear ch)
hsear ch Manages hash search tables
[find Performs a linear search and update (see | sear ch)
| search Performs a linear search and update
gsort Performs quicker sort
tdel ete Deletes a node from a binary search tree (seet sear ch)
tfind Searches for datum in binary search trees (seet sear ch)
tsearch Builds and accesses binary search trees
t wal k Traverses binary search trees (see t sear ch)
System Log
airlog Logs messages to system log using sysl og
cl osel og Controls system log (see sysl og)
openl og Controls system log (see sysl og)
set | oghost Controls system log (see sysl og)
set | ognmask Controls system log (see sysl og)
set | ogport Controls system log (see sysl og)
sysl og Controls system log

742 SR-2080 10.0

UTILITIES(3C) UTILITIES(3C)

SEE ALSO
st r _han(3C) for more string handling functions
| ocal e(3C) for more functions related to environment

file(3C),term nal (3C), passwor d(3C), message(3C), mul ti c(3C) (al introductory pages to other
operating system service functions)

See the UNICOS File Formats and Special Files Reference Manual, Cray Research publication SR—2014 for
more complete descriptions of UNICOS header files.

SR-2080 10.0 743

UTIMES(3C)

NAME

UTIMES(3C)

uti mes — Sets file times

SYNOPSIS

#i nclude <sys/tine.h>

int utines (char *path, struct tineval *times);

IMPLEMENTATION

All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

The ut i mes call uses the "accessed" and "updated” times, in that order, from the times vector to set the
corresponding recorded times for the file specified by path.

The caller must be the owner of the file or the super user. The "inode-changed” time of the file is set to the

current time.

RETURN VALUES

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and er r no is set
to indicate the error, as follows:

Error Code
ENOTDI R
El NVAL
ENCENT
EPERM
EACCES
ERCFS
EFAULT

El O

SEE ALSO

Decsription

A component of the path prefix is not a directory.

The path name contains a character with the high-order bit set.

The named file path does not exist.

The calling process is not super user and not the owner of the file.

Search permission is denied for a component of the path prefix.

The file system containing the file is mounted read-only.

Argument path or times points outside the process allocated address space.
An 1/O error occurred during the reading or writing of the affected inode.

cut i mes(2), st at (2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

744

SR-2080 10.0

values.h(3C) values.h (3C)

NAME

val ues. h — Library header for machine-dependent values

IMPLEMENTATION
All Cray Research systems

STANDARDS
AT&T extension

TYPES

None

MACROS

The header val ues. h defines a set of manifest constants defined for Cray Research processor architectures.
The model assumed for integers is binary representation (twos complement), where the sign is represented by
the value of the high-order bit. Many of these macros are similar to macrosinfl oat. handlimts. h;
use of these two headers is preferable to the use of macros in val ues. h.

There are a number of macros defined in val ues. h; the most commonly used macros are as follows:

Macro Definition
_BIAS Bias to add to exponent to get bit representation
Bl TSPERBYTE Number of bits in a byte
DEXPLEN The number of bits for the exponent of a type doubl e

DVAXEXP The maximum exponent of a type doubl e

DMAXPOMWO The largest power of two exactly representable as a type doubl e

DM NEXP The minimum exponent of a type doubl e

DSI GNI F Number of significant bits in the mantissa of a double-precision, floating-point humber

_EXPBASE The exponent base
FEXPLEN The number of bits for the exponent of af | oat

FMAXEXP The maximum exponent of af | oat

FMAXPOMWO The largest power of two exactly representable as af | oat

FM NEXP The minimum exponent of af | oat

FSIGNI F Number of significant bits in the mantissa of a single-precision, floating-point number
H BI TI Value of aregular integer with only the high-order bit set

H Bl TL Value of al ong integer with only the high-order bit set

H BI TS Value of ashort integer with only the high-order bit set

_HI DDENBI T Vaueis 1 if high-significance bit of mantissa is implicit
MAXDOUBLE and LN_MAXDOUBLE

Maximum value of a double-precision, floating-point humber and its natural logarithm
MAXFLOAT and LN_MAXFLOAT

Maximum value of a single-precision, floating-point number and its natural logarithm

SR-2080 10.0 745

values.h (3C) values.h (3C)

MAXI NT Maximum value of a signed regular integer (usualy the same as MAXSHORT or
MAXLONG)

MAXLONG Maximum value of asi gned | ong integer

MAXSHORT Maximum value of asi gned short integer

M NDOUBLE and LN_M NDOUBLE
Minimum positive value of a double-precision, floating-point number and its natural
logarithm

M NFLQOAT and LN_M NFLOAT
Minimum positive value of a single-precision, floating-point number and its natural

logarithm

M PI The best machine representation of pi

M _SQRT2 The best machine representation of the square root of 2

NBPD Number of bytesin adoubl e

NBPF Number of bytesin af | oat

NBPI Number of bytesin ani nt

NBPL Number of bytesin al ong

NBPS Number of bytesin ashort

NBPW Number of bytes in a machine word
FUNCTIONS

None
NOTES

Header f | oat . h isincluded in header val ues. h. Thus, all of the macros defined in header f | oat . h
are available in addition to the macros listed here. Seef | oat . h(3C) for alist of macros that are available
in header f | oat . h.

SEE ALSO
float.h(3C), | inits. h(3C)

746 SR-2080 10.0

VAR_ARG(3C) VAR_ARG(3C)

NAME

var _ar g — Introduction to variable argument functions

IMPLEMENTATION
All Cray Research systems

DESCRIPTION

The variable argument functions provide various means for advancing through a list of arguments whose
number and types are not known to the called function when it is trandated.

While most functions have a fixed number of arguments and each argument has a fixed type, there are some
functions that have a fixed number of arguments of specific types followed by a variable number of
arguments (zero or more) of unspecified types. A function can be called with a variable number of
arguments of varying types; its parameter list contains one or more parameters. The rightmost parameter
plays a specia role in the access mechanism; it is designated parmN in this section.

Two variations on the variable argument functions are provided. One method conforms to the ISO/ANSI
standard and the other conforms to the System V Interface standard (SVID).

ASSOCIATED HEADERS

<stdarg. h>
<varargs. h>

ASSOCIATED FUNCTIONS

None

SR-2080 10.0 747

varargs.h(3C) varargs.h(3C)

NAME

var ar gs. h — Library header for variable arguments

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

TYPES
Header var ar gs. h defines the following types:

Type Standards Description

va_ali st AT&T extension Used as the parameter list in a function header.

va_li st AT&T extension Type defined for the variable used to traverse the list.
MACROS

Header var ar gs. h defines the following macros:

Macro Standards Description
va_dcl AT&T extension Declaration for va_al i st. No semicolon should follow
va_dcl .

va_start (pvar) AT&T extension Called to initialize pvar to the beginning of the list.

va_arg (pvar,type) AT&T extension Returns the next argument in the list pointed to by pvar.
Argument type is the type the argument is expected to be.
Different types can be mixed, but it is up to the function
to know what type of argument is expected, as it cannot
be determined at run time.

va_end (pvar) AT&T extension Cleans up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

748 SR-2080 10.0

varargs.h(3C) varargs.h(3C)

FUNCTION DECLARATIONS

None

NOTES

The preceding describes the SVID approach to variable-length argument list processing. The Cray Standard
C (and ISO/ANSI) approach is defined in st dar g. h. The two approaches are not compatible; if both
headers are included in the same compilation unit, the compiler issues redefinition error messages. The Cray
Standard C (and ISO/ANSI) approach defined in st dar g. h is the preferred method of variable-length
argument list processing.

It is up to the calling function to specify how many arguments there are, because it is not aways possible to
determine this from the stack frame. In the following example, execl is passed a zero pointer to signal the
end of the list.

CAUTIONS

It is nonportable to specify a second argument of char , short, or f| oat tova_ar g, since arguments
seen by the called function are not char , short, or f1 oat. C converts char and short arguments to
i nt and converts f | oat arguments to doubl e before passing them to a function. However, the Cray
implementation of the C language treats arguments of type f | oat and doubl e identically.

EXAMPLES

The following example is a possible implementation of system call execl (see exec(2)) using the macros
defined in this header:

SR-2080 10.0 749

varargs.h(3C) varargs.h(3C)

#i ncl ude <varargs. h>

#define MAXARGS 100
/* execl is called in this manner
execl (file, argl, arg2, ...,(char *)0);
*/
execl (va_ali st)
va_dcl
{

va_list ap;

char Oile;

char [ar gs[MAXARGS] ;
i nt argno=0;

va_start (ap);
file=va_arg(ap, char D;
whil e ((args[argno++] =va_arg(ap, char) != (char [)O0)

va_end(ap);
return execv(file, args);

SEE ALSO
st dar g. h(3C)
exec(2) in the UNICOS System Calls Reference Manual, Cray Research publication SR—2012

750 SR-2080 10.0

VPRINTF(3C) VPRINTF(3C)

NAME

vprintf,vfprintf,vsprintf,vsnprintf — Printsformatted output of a var ar gs argument list

SYNOPSIS

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

int vprintf (const char *format, va_list arg);
int vfprintf (FILE *stream, const char *format, va_list arg);
int vsprintf (char *s, const char *format, va_list arg);
int vsnprintf (char * restrict s, const char * restrict format, va list
arg) ;
IMPLEMENTATION
All Cray Research systems

STANDARDS
ISO/ANS

DESCRIPTION

Thevprintf functionis equivaent to pri nt f, with the variable argument list replaced by arg. argis
initialized by the va_st art macro (and possibly subsequent va_ar g calls).

The vf pri ntf function is eguivalent to f pri nt f , with the variable argument list replaced by arg. argis
initialized by the va_st art macro (and possibly subsequent va_ar g calls).

Thevspri ntf function is equivalent to spri nt f, with the variable argument list replaced by arg. argis
initialized by the va_st art macro (and possibly subsequent va_ar g calls). If copying occurs between
objects that overlap, the behavior is undefined.

Thevsnprintf function is equivalent to snpri nt f, with the variable argument list replaced by arg. arg
isinitialized by the va_st art macro (and possibly subsequent va_ar g calls). If copying occurs between
objects that overlap, the behavior is undefined.

None of these functions invokes the va_end macro.

RETURN VALUES

Thevprintf and vfprintf functions return the number of characters transmitted, or a negative value if
an output error occurred.

SR-2080 10.0 751

VPRINTF(3C) VPRINTF(3C)

Thevsprintf and vsnpri ntf functions return the number of characters written in the array, not
counting the terminating null character.

EXAMPLES

The following code shows the use of vpri ntf to print avar ar gs list:

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

void emt_message(int msg_nunber, int |line_nunmber, const char *nmsg_text, ...)
{
va_list arg_ptr;

va_start(arg_ptr, nsg_text);

if (nmsg_nunber < 100)

fprintf(stderr, "* * * ERROR on line %: ", line_nunber);
el se
fprintf(stderr, "* * * WARNING on line %: ", l|ine_nunber);

viprintf(stderr, nmsg_text, arg_ptr);
putc(’ 0, stderr);

va_end(arg_ptr)’
} /* emt_nessage */

#define NUM_ARGS 5

mai n(i nt argc, char *argv[])

{
em t_message(30, _LINE_, "Qut of memory.");
em t_message(120, _LINE , "Name of executable file is
em t_message(150, _LINE_, "Nunmber of arguments is %d; should be %."
argc, NUM_ARGS)
}

sn2024: cc X.cC

sn2024: a.out

* * * FRROR on |line 26: CQut of menory.

* * * WARNING on |ine 27: Nane of executable file is "a.out"

* * * WARNING on |line 28: Number of argunents is 1; should be 5.
sn2024:

752 SR-2080 10.0

VPRINTF(3C) VPRINTF(3C)

SEE ALSO
printf (3C), st darg. h(3C)

SR-2080 10.0 753

WCONV/(3C)

NAME

t owupper, t owl ower — Trandates wide-characters
SYNOPSIS

#i ncl ude <wchar. h>

wint_t towupper (wint_t wc);

wint_t tow ower (wint_t wc);
IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

WCONV(3C)

Thet owmupper and t ow ower functions have as domains atypew nt _t , the value of which must be a
character representable as awchar _t , and must be a wide-character code corresponding to a valid character
in the current locale or the value of WEOF. [f the argument of t owmupper represents a lowercase wide-
character code, and there exists a corresponding uppercase wide-character code in the program’s locale, the
result is the corresponding uppercase wide-character code. |If the argument of t oW ower represents an
uppercase wide-character code, and there exists a corresponding lowercase wide-character code in the
program’s locale, the result is the corresponding lowercase wide-character code. All other arguments in the

domain are returned unchanged.

NOTES

The behavior of functionst owmupper and t owl ower may be affected by the current locale.

SEE ALSO
conv(3C) get wc(3C), | ocal e. h(3C)

754

SR-2080 10.0

WCTYPE(3C)

NAME

WCTYPE(3C)

i swal num i swal pha,iswcntrl,iswdigit,iswgraph,isw ower,iswprint,iswunct,
i swspace, i swupper, i swxdi git,i sphonogram i si deogram i sengli sh,isnumber,

i sspeci al , i swctype, wet ype — Classifies wide characters

sphonogram (w nt_t wc);
si deogram (wi nt_t wc);

senglish (wnt_t wc);

(wint_t wc);

nt
nt
nt
nt
nt
nt
nt
nt
nt

nt

_t
_t
_t
_t
_t
_t
_t
_t
_t
_t

Wwe) ;
Wwe) ;
Wwe) ;
Wwe) ;
Wwe) ;
We) ;
We) ;
We) ;
We) ;

We) ;

(wint_t wc);

(wint_t wc);

swetype (wnt_t wec,

SYNOPSIS
#i ncl ude <wchar. h>
int iswalnum (w
int iswalpha (w
int iswentrl (w
int iswdigit (w
int iswgraph (w
int iswower (w
int iswprint (w
int iswpunct (w
int iswspace (w
int iswupper (w
int iswxdigit
int i
int i
int i
int isnunber
int isspecial
int i
wet ype_t
IMPLEMENTATION

All Cray Research systems

STANDARDS

wctype (const

wet ype_t charclass) ;

char *charclass) ;

XPG4 (All except i sphonogr am i si deogram i sengl i sh, i snunber, i sspeci al)
CRI Extension (i sphonogram i si deogram i sengli sh,i snunber,i sspeci al only)

SR-2080 10.0

755

WCTYPE(3C) WCTYPE(3C)

DESCRIPTION

756

For all of these functions, the wc argument has a domain of type wi nt _t , the value of which must be a
wide character code corresponding to a valid character in the current locale or must equal the value of the
macro VEOF. If the argument wc has any other value, the behavior is undefined.

The i swal numfunction tests whether wc is a wide character representing a character of class al pha or
di gi t in the program’s current locale.

Thei swal pha function tests whether wc is a wide character representing a character of class al pha in the
program’s current locale.

Thei swent rl function tests whether we is a wide character representing a character of classcnt rl in the
program’s current locale.

Thei swdi gi t function tests whether wc is a wide character representing a character of classdi gi t in the
program’s current locale.

The i swgr aph function tests whether wc is a wide character representing a character of class gr aph in the
program’s current locale.

Thei swl ower function tests whether wc is a wide character representing a character of class | ower in the
program’s current locale.

Thei swpri nt function tests whether wc is a wide character representing a character of class pri nt in the
program’s current locale.

Thei swpunct function tests whether wc is a wide character representing a character of class punct in the
program’s current locale.

Thei swspace function tests whether wc is a wide character representing a character of class space in the
program’s current locale.

The i swupper function tests whether wc is a wide character representing a character of class upper in the
program’s current locale.

Thei swxdi gi t function tests whether wc is a wide character representing a character of class xdi gi t in
the program'’s current locale.

The i sphonogr amfunction tests whether wc is a wide character representing a character of class
phonogr amin the program’s current locale.

Thei si deogr amfunction tests whether wc is a wide character representing a character of class
i deogr amin the program’s current locale.

Thei sengl i sh function tests whether wc is a wide character representing a character of classengl i sh
in the program’s current locale.

Thei snunber function tests whether wc is a wide character representing a character of class nunber in
the program'’s current locale.

SR-2080 10.0

WCTYPE(3C) WCTYPE(3C)

Thei sspeci al function tests whether wc is a wide character representing a character of class speci al
in the program’s current locale.

Thei swct ype function determines whether the wide character wc has the character class charclass,
returning true or false.

Thewct ype function is defined for valid character class names as defined in the current locale. The

charclass is a string identifying a generic character class for which codeset-specific type information is
', "blank™, "cntrl",

required. The following character class names are defined in al locales - "alnum", "apha’,

"digit", "graph", "lower", "print", "punct”, "space", "upper”, "xdigit". Additiona character class names
defined in the locale definition file can also be specified. The function returns a value of type wct ype_t,
which can be used as the second argument to subsequent calls of i swt ype. The values returned by

wet ype are valid until acall to set | ocal e that modifies the category LC_CTYPE.

RETURN VALUES

Thei s* functions return nonzero if the value of the argument conforms to that in the description of the
function, and zero otherwise. Thewct ype function returns zero if the given character class name is not
valid for the current locale; otherwise, it returns an object of type wct ype_t that can be used in calls to
i swet ype.

SEE ALSO

ctype(3C), | ocal e. h(3C), | ocal edef (1)

SR-2080 10.0 757

WCWIDTH(3C) WCWIDTH(3C)

NAME

wewi dt h — Number of column positions of a wide-character code

SYNOPSIS

#i ncl ude <wchar. h>

int wew dth(wi nt_t wc);
IMPLEMENTATION

All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

Thewew dt h function determines the number of column positions required for the wide character we. The
value of wc must be a character representable as awchar _t , and must be a wide-character code
corresponding to a valid character in the current locale.

RETURN VALUES

Thewew dt h function either returns zero (if wc is a null wide-character code), or returns the number of
column positions to be occupied by the wide-character code wc, or returns —1 (if wc does not correspond to
a printing wide-character code).

SEE ALSO
conv(3C) get wc(3C), wet ype(3C),

758 SR-2080 10.0

WORDEXP(3C) WORDEXP(3C)

NAME

wor dexp, wor df r ee — Performs word expansions

SYNOPSIS
#i ncl ude <wordexp. h>
int wordexp (const char *words, wordexp_t *pwordexp, int flags);

void wordfree (wordexp_t *pwordexp);

IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

The wor dexp function performs word expansions and places the list of expanded words into pwordexp.
The expansions are the same as the shell would perform on words when used as an argument to a utility
command. Therefore, the newline character and shell special characters can appear in words only when
quoted, or when used in command substitution. An unquoted # symbol at the beginning of atoken is
treated as a comment character.

The header file wor dexp. h defines the wor dexp_t structure type, which includes at least the following
members:

Type Field Description

size t we_wordc Count of words matched by words
char** we_wordv Pointer to list of expanded words
size .t we offs Slots to reserve at the beginning of we_wor dv

The words argument is a pointer to a string that contains one or more words to be expanded. The wor dexp
function stores the number of generated words to we_wor dc and stores a pointer to a list of word pointers
inwe_wor dv. Each field created during field splitting or path name expansion is a separate word in the
we_wor dv list. The first pointer after the last pointer is null.

The caller creates the structure to which pwor dexp points. The wor dexp function allocates other space as
needed, including memory to which we_wor dv points. The wor df r ee function frees memory associated
with pwor dexp from a previous call.

SR-2080 10.0 759

WORDEXP(3C) WORDEXP(3C)

760

The flags argument controls the behavior of wor dexp. The value of flags is the bitwise inclusive OR of
any of the following constants:

Constant Description

VWRDE_APPEND Appends words generated to those from a previous wor dexp.

VRDE_DOCFFS Checks the we_of f s flag; if it is set, it specifies how many null pointers to prepend to
we_wor dv; thus, w_wor dv points to we_of f s null pointers, followed by we_wor dc
word pointers, followed by a null pointer.

VARDE _NOCMD Fails if command subsitution is requested.

VRDE_REUSE The pwordexp argument was passed to a previous successful call to wor dexp and has
not been passed to wor df r ee. The result is the same as if the application had called
wor df r ee and then called wor dexp without WRDE_REUSE.

WRDE _SHOWERR Does not redirect st derr to/ dev/ nul | .

VARDE _UNDEF Reports error on an attempt to expand an undefined shell variable.

You can use the WRDE_ APPEND flag to append a new set of words to those generated by a previous call to
wor dexp. The following rules apply when two or more calls to wor dexp are made with the same value
of pwor dexp and without intervening calls to wor df r ee:

1. Thefirst such call does not set WRDE_APPEND. All subsequent calls set it.

2. All of the calls treat WRDE_DOOFFS the same, either setting or not setting it.

3. After the second and later calls, we_wor dv points to alist that contains the following:
a. Zero or more nulls, specified by WRDE _DOOFFS and we_of f s.
b. Pointers to the words that were in the we_wor dv list before the call, in the same order as before.
c. Pointers to the new words generated by the latest call, in the specified order.

4. The count returned in we_wor dc is the total number of words from all of the calls.

After a call to wor dexp, the application can change any field shown at the beginning of this
DESCRIPTION section, but if it does, it must reset the field to its original value before a subsequent call,
using the same pwordexp value, to wor df r ee or wor dexp with the WRDE_APPEND or WRDE _REUSE
flag.

If words contains an unquoted | , &, ;, <, >, (,),{,}, or newline character in an inappropriate context,
wor dexp fails and returns zero words.

Unless WRDE_SHOWERR is set in flags, wor dexp redirects st derr to/ dev/ nul | for any utilities
executed as a result of command substitution while expanding words. If WRDE_SHOWERR is set, wor dexp
writes messages to st der r concerning any syntax errors detected during the expansion of words.

If WRDE_DOOFFS is set, we_of f s has the same value for each wor dexp call and the wor df r ee call
using a given pglob.

SR-2080 10.0

WORDEXP(3C) WORDEXP(3C)

RETURN VALUES

If no errors are encountered during word expansion, wor dexp returns O; otherwise, it returns a nonzero
value. If it terminates due to an error, it returns one of the following values, defined in the header file
wor dexp. h:

Constant Description

WRDE_BADCHAR Anunquoted |, &,;,<,>,(,),{,}, or newline character appears in an inappropriate
context in words.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.
VRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.
VWRDE_NOSPACE Attempt to allocate memory failed.

VRDE_SYNTAX Shell syntax error, such as unbalanaced parentheses or unterminated string.

If wor dexp returns the value WRDE_NOSPACE, then the we_wor dc and we_wor dv members of the
structure to which pwordexp points are updated to reflect any words that were successfully expanded.
Otherwise, they are left unchanged.

SR-2080 10.0 761

WSTRING(3C) WSTRING (3C)

NAME

wescat , wesncat , wescnp, wesncnp, wescpy, wesncpy, wesl en, weschr, wesr chr, wespbr k,

wesspn, wescspn, west ok, weswes, wescol |, wesxf r m— Performs wide-character string operations
SYNOPSIS

#i ncl ude <wchar. h>

wchar _t *wcscat (wchar_t *wsl, const wchar_t *ws2);

wchar _t *wcsncat (wchar_t *wsl, const wchar_t *ws2, size_t n);

int wescnmp (const wchar _t *wsl, const wchar_t *ws2);

int wesncnp (const wchar_t *wsl, const wchar_t *ws2, size_t n);

wchar _t *wcscpy (wchar_t *wsl, const wchar_t *ws2);

wchar _t *wcsncpy (wchar_t *wsl, const wchar_t *ws2, size_t n);

size_t weslen (const wchar_t *ws);

wchar _t *wcschr (const wchar_t *ws, wint_t wc);

wchar _t *wcsrchr (const wchar_t *ws, wnt_t wc);

wchar _t *wcspbrk (const wchar_t *wsl, const wchar_t *ws2);

size_t wesspn (const wchar_t *wsl, const wchar_t *ws?2);

size_t wcscspn (const wchar_t *wsl, const wchar_t *ws?);

wchar _t *wcstok (wchar_t *wsl, const wchar_t *ws2);

wchar _t *wcswes (const wchar _t *wsl, const wchar_t *ws?2);

int wescoll (const wchar_t *wsl, const wchar_t *ws2);

size_t wesxfrm (wchar_t *wsl, const wchar_t *ws2, size_t n);
IMPLEMENTATION
All Cray Research systems

STANDARDS
XPG4

DESCRIPTION

With any of the wide character string functions, if copying takes place between objects that overlap, the
behavior is undefined.

762 SR-2080 10.0

WSTRING(3C) WSTRING(3C)

Thewcscat function appends a copy of the wide character string pointed to by ws2 (including the
terminating null wide-character) to the end of the wide character string pointed to by wsl. The wcsncat
function appends not more than n wide-characters (a null wide-character and wide-characters that follow it
are not appended) from the wide character string pointed to by ws2 to the end of the wide character string
pointed to by wsl. With both functions, the initial wide-character of ws2 overwrites the null wide-character
at the end of wsl. Function wesncat aways appends a terminating null wide-character to the result.

The wescnp function returns an integer that is greater than, equal to, or less than O, according to whether
the wide character string pointed to by wsl is greater than, equal to, or less than the wide character string
pointed to by ws2. The wcsncnp function compares not more than n wide-characters (wide-characters that
follow a null wide-character are not compared) from the wide character string pointed to by wsl to the wide
character string pointed to by ws2.

Thewcscpy function copies the wide character string pointed to by ws2 (including the terminating null
wide-character) into the array pointed to by wsl. The wcsncpy function copies not more than n wide
characters (wide-characters that follow a null wide-character are not copied) from the array pointed to by ws2
to the array pointed to by wsl. If the array pointed to by ws2 is a string that is shorter than n wide
characters, null wide-characters are appended to the copy in the array pointed to by wsl, until n wide
charactersin all have been written.

Thewcsl en function returns the number of wide-characters in the wide character string pointed to by s, not
including the terminating null wide-character.

Thewcschr function locates the first occurrence of wc in the wide character string pointed to by ws. The
wesr chr function locates the last occurrence of we in the wide character string pointed to by ws. With
both functions, the terminating null wide-character is considered to be part of the string.

The wespbr k function locates the first occurrence in the wide character string pointed to by wsl of any
wide-character from the wide character string pointed to by ws2.

The wecsspn function computes the length of the maximum initial segment of the wide character string
pointed to by wsl that consists entirely of wide characters from the wide character string pointed to by ws2.
Thewcscspn function computes the length of the maximum initial segment of the wide character string
pointed to by wsl that consists entirely of wide characters not from the wide character string pointed to by
ws2.

A sequence of calls to the west ok function breaks the wide character string pointed to by wsl into a
sequence of tokens, each of which is delimited by a wide character from the wide character string pointed to
by ws2. The first call in the sequence has wsl as its first argument, and is followed by calls with a null
pointer as their first argument. The separator string pointed to by ws2 may be different from call to call.
The first call in the sequence searches the wide character string pointed to by wsl for the first wide character
that is not contained in the current separator string pointed to by ws2. If no such wide character is found,
then there are no tokens in the wide character string pointed to by wsl, and the west ok function returns a
null pointer. If such awide character is found, it is the start of the first token.

SR-2080 10.0 763

WSTRING(3C) WSTRING (3C)

The west ok function then searches for a wide character that is contained in the current separator string
(ws2). If no such wide character is found, the current token extends to the end of the wide character string
pointed to by wsl, and subsequent searches for a token will return a null pointer. 1f such a wide character is
found, it is overwritten by a null wide character, which terminates the current token. The wcst ok function
saves a pointer to the following wide character, from which the next search for a token starts. Each
subsequent call, with a null pointer as the value of the first argument, starts searching from the saved pointer
and behaves as previously described.

The weswes function locates the first occurrence in the wide character string pointed to by wsl of the
sequence of wide characters (excluding the terminating null wide character) in the wide character string
pointed to by ws2.

Thewcscol | function compares the wide character string pointed to by wsl to the wide character string
pointed to by ws2, both interpreted as appropriate to the LC_COLLATE category of the current locale.

The wesxf r mfunction transforms the wide character string pointed to by ws2 and places the resulting wide
character string into the array pointed to by wsl. The transformation is such that if the wescnp function is
applied to two transformed strings, it returns a value greater than, equal to, or less than O, corresponding to
the result of the wcscol | function applied to the same two original wide character strings. No more than n
wide characters, including the terminating null wide character, are placed into the resulting array pointed to
by wsl. If nis zero, wsl is permitted to be a null pointer.

RETURN VALUES

764

Thewcscat , wesncat , wescpy, wesncpy functions return the value of wsl.

The wescnp function returns an integer that is greater than, equal to, or less than O, according to whether
the wide character string pointed to by wsl is greater than, equal to, or less than the wide character string
pointed to by ws2.

Thewcsncnp function returns an integer that is greater than, equal to, or less than 0, according to whether
the possibly null-terminated array pointed to by wsl is greater than, equal to, or less than the possibly
null-terminated array pointed to by ws2.

The wesl en function returns the number of wide characters that precede the terminating null wide
character.

Thewcschr and wesr chr functions return a pointer to the located wide character, or a null pointer if wc
does not occur in the wide character string.

The wespbr k function returns a pointer to the wide character, or a null pointer if no wide character from
Ws2 occurs in wsl.

The wesspn function returns the length of the maximum initial segment of the wide character string pointed
to by wsl that consists entirely of wide characters from the wide character string pointed to by ws2. The
wescspn function returns the length of the maximum initial segment of the wide character string pointed to
by wsl that consists entirely of wide characters not from the wide character string pointed to by ws2.

SR-2080 10.0

WSTRING(3C) WSTRING(3C)

The west ok function returns a pointer to the first wide character of a token, or a null pointer if there is no
token.

Thewcscol | function returns an integer that is greater than, equal to, or less than 0, according to whether
the wide character string pointed to by wsl is greater than, equal to, or less than the wide character string
pointed to by ws2, when both are interpreted as appropriate to the current locale.

The weswes function returns a pointer to the located wide character string, or a null pointer if the wide
character string is not found. If ws2 points to a wide character string with zero length, the function returns
wsl.

The wesxf r mfunction returns the length of the transformed wide character string (not including the
terminating null wide character). If the value returned is n or more, the contents of the array pointed to by
wsl are indeterminate.

SEE ALSO
| ocal e(3C), stri ng(3C)

SR-2080 10.0 765

XDR(3C)

NAME

xdr — Achieves machine-independent data transformation

IMPLEMENTATION

All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

766

XDR(3C)

The external data representation (XDR) functions alow C programmers to describe arbitrary data structures
in a machine-independent fashion. These functions transmit data for remote procedure calls.

The XDR library functions are described in the following list:

Function

xdr _array
xdr _boo

xdr _bytes
xdr _char
xdr _destr oy
xdr _doubl e
xdr _enum
xdr _fl oat
xdr _get pos
xdr _inline
xdr _int
xdr _I ong
xdr _opaque
xdr _poi nter
xdr _reference
xdr_set pos
xdr _short
xdr_string
xdr _u_char
xdr _u_int
xdr_u_l ong
xdr _u_short
xdr _uni on
xdr _vector
xdr _void
xdr _wrapstring

Description

Tranglates arrays to/from external representation

Translates Boolean values to/from external representation
Tranglates counted byte strings to/from external representation
Tranglates characters to/from external representation

Destroys an XDR stream and frees the associated memory
Tranglates double-precision values to/from external representation
Tranglates enumerated types to/from external representation
Tranglates floating-point values to/from external representation
Returns the current position in an XDR stream

Invokes the in-line functions associated with an XDR stream
Tranglates integers to/from external representation

Tranglates long integers to/from external representation
Trandlates fixed-size opagque data to/from external representation
Tranglates pointers to/from external representation

Follows pointers within structures

Changes current position in XDR stream

Tranglates short integers to/from external representation
Tranglates counted strings to/from external representation
Tranglates unsigned characters to/from external representation
Tranglates unsigned integers to/from external representation
Tranglates unsigned long integers to/from external representation
Tranglates unsigned short integers to/from external representation
Tranglates discriminated unions to/from external representation
Trangdlates fixed-length arrays to/from external representation
Always returns one (1)

Trangdlates null-terminated strings to/from external representation

SR-2080 10.0

XDR(3C)

xdrmem create
xdrrec_create
xdrrec_endofrecord
xdrrec_eof
xdrrec_ski precord
xdrstdio _create

FILES
/lib/libc.a

SEE ALSO
r pc(3C)

Initializes an XDR stream

Initializes an XDR stream with record boundaries

Marks an XDR record stream with an end-of-record marker
Marks an XDR record stream with an end-of-file marker
Skips the remaining record in an XDR record stream
Initializes an XDR stream as a standard 1/O file stream

Remote Procedure Call (RPC) Reference Manual, Cray Research publication SR—2089
"External Data Representation Protocol Specification™ in Networking on the Sun Workstation,

part #800—1324—03, Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043.

XDR: External Data Representation Standard, RFC 1014

SR-2080 10.0

XDR(3C)

767

XLIB (3C) XLIB (3C)

NAME
Xl'i b — C language X Window System interface library

SYNOPSIS
#include <X/ Xlib.h>

IMPLEMENTATION
All Cray Research systems (except Cray MPP systems)

STANDARDS

Other (see the following description)

DESCRIPTION

This library is the low-level C interface to the X protocol, which supports the X Window System,
Version 11, Release 4, from M.1.T.

SEE ALSO
UNICOS X Window System Reference Manual, Cray Research publication SR—2101

768 SR-2080 10.0

XSELFADD(3F) XSELFADD(3F)

NAME
XSELFADD, XCRI TADD — Allows performance of xvar = xvar+xvalue under the protection of a hardware
semaphore

SYNOPSIS

var = XSELFADD(xvar, xvalue)
CALL XCRI TADD(xvar, xvalue)

IMPLEMENTATION
Cray PVP systems
SPARC systems

DESCRIPTION
XSELFADD is a function, and XCRI TADD is a routine.

The following is alist of valid arguments:

Argument Description
xvar Real variable to be incremented by xvalue.
xvalue Real variable by which xvalue is incremented.

A call to XSELFADD is functionally equivalent to, but considerably faster than, the following code block:

CALL LOCKON(lockvar)
var = xvar
xvar = xvar+xvalue
CALL LOCKOFF(lockvar)
A call to XCRI TADD is functionally equivalent to, but considerably faster than, the following code block:

CALL LOCKON (lockvar)
xvar = xvar+xvalue
CALL LOCKCOFF (lockvar)

SEE ALSO
| SELFADD(3F)

SR-2080 10.0 769

XSELFMUL (3F) XSELFMUL (3F)

NAME

XSELFMUL, XCRI TMJUL — Allows performance of xvar = xvar* XVALUE under the protection of a hardware
semaphore

SYNOPSIS

var = XSELFMUL(xvar, xvalue)
CALL XCRI TMUL(xvar, xvalue)

IMPLEMENTATION
Cray PVP systems
SPARC systems
DESCRIPTION
XSELFMUL is a function, and XCRI TMUL is a routine.

The following is alist of valid arguments.

Argument Description
xvar Real variable to be multiplied by xvalue.
xvalue Real variable multiplied by xvar.

A call to XSELFMUL is functionally equivalent to, but considerably faster than, the following code block:
CALL LOCKON(lockvar)

var = xvar
xvar = xvar* xvalue

CALL LOCKOFF(lockvar)

A call to XCRI TMUL is functionally equivalent to, but considerably faster than, the following code block:
CALL LOCKON(lockvar)

xvar = xvar* xvalue

CALL LOCKOFF(lockvar)

SEE ALSO
| SELFMUL(3F)

770 SR-2080 10.0

YPCLNT(3C) YPCLNT(3C)

NAME
yp_get defaul t _domai n, yp_bi nd, yp_unbi nd, yp_mat ch,yp _first,yp_next,yp_all,

yp_order,yp_master, yperr_string, ypprot_err — Network information service (NIS) client
interface
SYNOPSIS
#i ncl ude <rpcsvc/ypclnt. h>
int yp_bind (char *indomain);
void yp_unbind (char *indomain);
int yp_get_default_domain (char *outdomain);

int yp_match (char *indomain, char *inmap, char *inkey, int inkeylen,
char **outval, int *outvallen);

int yp first (char *indomain, char *inmap, char **outkey, int *outkeylen,
char **outval, int *outvallen);

int yp_next (char *indomain, char *inmap, char *inkey, i nt inkeylen,
char **outkey, int *outkeylen, char **outval, int *outvallen);

int yp_all (char *indomain, char *inmap, struct ypall _call back incallback);
int yp_order (char *indomain, char *inmap, int *outorder);

int yp_master (char *indomain, char *inmap, char **outname);

char *yperr_string (int incode);

int ypprot_err (unsigned int incode);

IMPLEMENTATION
All Cray Research systems

STANDARDS

BSD extension

DESCRIPTION

This package of functions, formerly known as yellow pages (Y P), provides an interface to the network
information service (NIS) network look-up service. The package can be loaded from the standard library,
/1ib/libc.a. See"UNICOS Network Information Service" in UNICOS Networking Facilities
Administrator’s Guide, Cray Research publication SG—2304, and ypfi | es(5) and ypser v(8) for an
overview of the network information service, including the definitions of map and domain, and a description
of the various servers, databases, and commands that comprise the network information service.

SR-2080 10.0 771

YPCLNT(3C) YPCLNT(3C)

772

The names of al input parameters begin with i n. Names of output parameters begin with out . Output
parameters of type char ** should be addresses of uninitialized character pointers. The NIS client
package uses mal | oc(3C) to allocate memory, and it may be freed if the user code has no continuing need
for it. For each outkey and outval allocated, there are 2 extra bytes of memory that contain NEWLI NE and
NULL, respectively. These 2 bytes, however, are not reflected in outkeylen or outvallen. The indomain and
inmap strings must be nonnull and null-terminated. String parameters that are accompanied by a count
parameter cannot be null, but can point to null strings; the count argument indicates this. Counted strings
need not be null-terminated.

All functions of type i nt in this package return O if they succeed; otherwise, they return a failure code
(YPERR_ xxxx). The MESSAGES section describes possible error codes.

The NIS look-up calls require, a minimum, a map name and a domain name. It is assumed that the client
process knows the name of the map of interest. Client processes should fetch the node’s default domain by
caling yp_get _def aul t _domai n() and use the returned outdomain value as the indomain argument to
successive NIS calls.

To use the NIS services, the client process must be bound to a NIS server that serves the appropriate
domain; this is accomplished by a call to yp_bi nd. Binding need not be done explicitly by user code;
rather it is done automatically whenever a NIS look-up function is called. When NIS services are
unavailable, the yp_bi nd function can be called directly for processes that make use of a back-up strategy
(for example, a local file)

Each binding allocates (uses up) one client process socket descriptor; each bound domain requires one socket
descriptor. However, multiple requests to the same domain use the same descriptor. The yp_unbi nd()
function is available at the client interface for processes that explicitly manage their socket descriptors while
accessing multiple domains. The call to yp_unbi nd() makes the domain unbound, and it frees all
per-process and per-node resources used to bind it.

If an RPC failure results upon use of a binding, the associated domain is unbound automatically. At that
point, the ypcl nt layer retries forever or until the operation succeeds, If yp_bi nd is running, and either
the client process cannot bind a server for the proper domain or RPC requests to the server fail.

If an error is not related to RPC, or if yp_bi nd is not running, or if a bound ypser v(8) process returns
any answer (success or failure), the ypcl nt layer returns control to the user code, with either an error code
or a success code and any results.

The yp_mat ch function returns the value associated with a passed key. This key must provide an exact
match; no pattern matching is available.

Theyp_first function returns the first key-value pair from the specified map in the specified domain.

The yp_next () function returns the next key-value pair in a specified map. The inkey argument should be
the outkey returned from an initial call to yp_fi r st () (to get the second key-value pair) or the one returned
from the nth call to yp_next () (to get the nth + next key-value pair).

SR-2080 10.0

YPCLNT(3C) YPCLNT(3C)

The concept of first (and, for that matter, of next) is specific to the structure of the NIS map being processed;
the retrieval order is not related to either the lexical order within any original (non-NI1S) database, or to any
obvious numerical sorting order on the keys, values, or key-value pairs. The only ordering guarantee made
isthat if theyp_fi rst () function is called on a particular map, and then the yp_next () function is
repeatedly called on the same map at the same server until the call fails with a reason of YPERR_NOMORE,
every entry in the database will be seen exactly once. Further, if the same sequence of operations is
performed on the same map at the same server, the entries will be seen in the same order.

Under conditions of heavy server load or server failure, the domain may become unbound, then bound once
again (perhaps to a different server), while a client is running. This can cause a break in one of the
enumeration rules; specific entries may either be seen twice by the client or not seen at all. This approach
protects the client from error messages that would otherwise be returned in the midst of the enumeration.
The next paragraph describes a better solution to enumerating all entries in a map.

Theyp_al | function provides a way to transfer an entire map from server to client in a request by using
TCP (rather than UDP, as with other functions in this package). The entire transaction occurs as a single
RPC request and response. You can use yp_al | just like any other NIS procedure: identify the map in the
normal manner, and supply the name of a function that will be called to process each key-value pair within
the map. You return from the call to yp_al | only when the transaction is completed (successfully or
unsuccessfully), or your f or each function decides that it does not want to see any more key-value pairs.

The third parameter to yp_al | is as follows:

struct ypall _cal |l back *incallback {
int (*foreach)();
char *data;

}s
The function f or each is called as follows:

foreach (int instatus, char *inkey, int inkeylen,
char *inval, int invallen, char *indata);

The instatus argument holds one of the return status values defined in header filer pcsvc/ yp_prot . h,
either YP_TRUE or an error code. (The yppr ot _err function, described later in this entry, converts an
NIS protocol error code to aypcl nt layer error code.)

The key and value parameters are somewhat different from the definition in the SYNOPSIS section. First,
the memory to which the inkey and inval arguments point is private to the yp_al | function, and it is
overwritten with the arrival of each new key-value pair. The f or each function must do something useful
with the contents of that memory, but it does not own the memory itself. Key and value objects presented to
the f or each function look exactly as they do in the server’'s map; if they were not terminated by a new
line or null-terminated in the map, they are not here either.

SR-2080 10.0 773

YPCLNT(3C) YPCLNT(3C)

The indata argument is the contents of the i ncal | back- >dat a element passedtoyp_al | . Thedat a
member of the yp_cal | back structure can be used to share state information between the f or each
function and the main-line code. Its use is optional, and no part of the NIS client package inspects its
contents; you can cast it to something useful or ignore it.

The f or each function is a Boolean. It should return O to indicate that it wants to be called again for
further received key-value pairs, or a nonzero value to stop the flow of key-value pairs. If f or each returns
a nonzero value, it is not called again; the functional value of yp_al | isthen O.

Theyp_or der function returns the order number for a map.
Theyp_mast er function returns the machine name of the master NIS server for a map.

Theyperr _stri ng function returns a pointer to an error message string that is null-terminated, but it
contains no period or new line.

The yppr ot _err function takes an NIS protocol error code as input and returns aypcl nt layer error
code, which can be used, in turn, asinput to yperr _stri ng.

MESSAGES

FILES

774

All integer functions return O if the requested operation is successful, or one of the following errors if the
operation fails:

Error Code Description

YPERR_BADARGS The function’s arguments are bad.

YPERR _RPC RPC failure; the domain has been unbound.
YPERR _DOVAI N You cannot bind to the server on this domain.
YPERR _MAP No such map isin the server’s domain.
YPERR_KEY No such key isin the map.

YPERR YPERR An internal NIS server or client error occurred.
YPERR RESRC A resource allocation failure occurred.

YPERR _NOVORE No more records are in the map database.
YPERR_PNMAP You cannot communicate with the portmapper.
YPERR_YPBI ND You cannot communicate with ypbi nd.
YPERR_YPSERV You cannot communicate with ypser v.
YPERR _NCDOM Loca domain name has not been set.

[usr/include/ rpcsvc/ypclnt.h Header file for the ypcl nt interface
[fusr/include/ rpcsve/yp_prot.h Header file that holds return status values

SR-2080 10.0

YPCLNT(3C) YPCLNT(3C)

SEE ALSO

mal | oc(3C)

ypfil es(5) in the UNICOS File Formats and Special Files Reference Manual, Cray Research publication
SR-2014

ypser v(8) in the UNICOS Administrator Commands Reference Manual, Cray Research publication
SR-2022

UNICOS Networking Facilities Administrator’s Guide, Cray Research publication SG—2304

SR-2080 10.0 775

