Using Access Control Lists (ACLs) [3]

3.1 Overview of ACLs

SG-2111 10.0

This chapter describes the discretionary access controls used by a UNICOS
system. The following topics are described:

e Overview of ACLs on a UNICOS system

* How you can create, display, remove, and duplicate access control lists
(ACLs) for your files

e The order in which access control lists (ACLs) are checked to determine the
allowed access

On a traditional UNIX system, discretionary access to a named object is
controlled by the object’s permission bits. These permission bits define the read
(r), write (w), and execute (x) access granted to the owning user, owning group,
and all others. Using only this mechanism is too restrictive because it is
impossible to define the allowed access for multiple users and/or groups of
users.

The UNICOS MLS discretionary access control mechanism uses the access
control list (ACL), which provides a method to extend the traditional
discretionary access mechanisms. ACLs can be applied to all named objects.

An ACL contains one or more ACL entries; each ACL entry has the following
information (shown here in pseudo code for the sake of convenience):

user: group: permissions:

The user field defines the user’s login name. The group field defines the group
name, while the permissions field is used to define any combination of r, w, X, or
no (n) access. A user’s current groups are defined as a combination of the
effective group and all of the user’s group list entries; current groups is also
referred to as member of a specific group and belonging to a group in the following
paragraphs.

The ACL entries are intersected with the file’s group (mask) bits to determine
the type of access allowed; this is called the effective permissions. The term
absolute permissions refers to the permissions defined in an ACL entry. The ACL
entry types are shown in the following list:

37

UNICOS® Multilevel Security (MLS) Feature User's Guide

Entry type Description
User-only The absolute permissions defined for a specific

user, regardless of the user’s current groups. The
format for this type is uid:*:

User-group The absolute permissions defined for a specific
user when that user is a member of a specific
group. The format for this type is uid:gid:

Group-only The absolute permissions defined for any user
that is a member of the specified group. The
format for this type is *:gid:

Owning-group The absolute permissions defined for the group
that owns the file. The format for this type is *::

The owning-group entry type defines the file’s group permission bits as the
ACL mask. This mask defines the maximum permissions allowed for the object
group (an object group being all the ACL entries for an object).

Because no group is specified in the owning-group entry, this entry always
pertains to the group that owns the object at the time the discretionary access
check is made. If the owning group is changed (by using the chgrp (1)
command), this owning-group entry then pertains to the new owning group.

Note: When removing an ACL from a file, the owning group’s permission is
set to the permission granted the owning group with the ACL set. The
owning group’s permission does not change in the process of removing the
ACL.

If there is a group-only entry for the group that owns the file, it is also used to
determine the owning-group access. If neither an owning-group or group-only
entry from the group that owns the file are found in the ACL, the
owning-group permissions default to the ACL mask bits. See Section 3.3, page
55, for more information on the masking operation and the order in which
entries are checked.

When you want file access to be controlled by an ACL, you must do the
following:

1. Create an intermediate ACL file (by using the spacl (1) command).

2. Apply the intermediate ACL file to the file (by using the spset (1)
command).

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

3.2 Maintaining ACLs

An intermediate ACL file is different from the system block where the
information is stored. The intermediate file is a formatted version of the ACL
that is created and displayed with the spacl command. The intermediate file
information is copied to the system block when you use the spset command.
Any changes to an intermediate ACL file are not copied into the system block
unless you execute the spset command again. See Section 3.2.5, page 48, for
more information on these differences.

ACLs can also be applied to Cray/REELlibrarian files and volumes. See the
Cray/REELlibrarian (CRL) User’s Guide, Cray Research publication SG-2126, and
the spset (1) and spacl (1) man pages, for more information.

ACLs can also be applied to IPC objects (shared memory segments, message
queues, and semaphores). See the spset (1) and spclr (1) man pages for more
information.

You can use the spacl command to create, display, remove, or duplicate
entries for a specified ACL. The spset command applies the ACL to a file.

The following sections explain how to use these commands. Each example in
the following sections is built on knowledge defined in the previous section.
Examining the examples out of sequence is not recommended.

3.2.1 Creating entries in an intermediate ACL file

SG-2111 10.0

The spacl command uses the following options to create entries in an
intermediate ACL file:

e The -a aclfile option interactively adds entries to an intermediate ACL file.
The aclfile argument is the name of the resultant intermediate ACL file.

e The -i modfile aclfile option inputs ACL text file changes from modfile into
aclfile. The modfile argument is a file with add and/or remove statements.
The aclfile argument is the name of the resultant intermediate ACL file.

* The -t tmodfile aclfile option inputs ACL text file changes from tmodfile into
aclfile. The tmodfile argument is a file of an ACL display format from a
previous execution of a spget -a or spacl -l command. The aclfile
argument is the name of the resultant intermediate ACL file. The -t option
is explained in Section 3.2.7, page 52.

39

UNICOS® Multilevel Security (MLS) Feature User's Guide

3.2.1.1 Interactive creation of intermediate ACL files (spacl -a)

The spacl -a command interactively adds new entries to the intermediate
ACL file (aclfile) by prompting you for the user name, group name, and
permissions for each ACL entry. You can use the wildcard (*) character to
specify all users in a group or a specific user in any group; specifying a
wildcard character for both the user and group (*:*) in a single entry is not
allowed. Specifying *.: defines the owning-group entry.

Example 6 shows how to create an intermediate ACL file called myacl with
four entries. At the enter users name OR an * prompt in the first entry,
the user called tnn is specified. The spacl command checks the specified user
name against the valid choices listed in the user database (UDB). If you specify
an invalid choice, the system prompts you for another choice.

At the enter group name OR an * prompt in the first entry, the wildcard
(*) character specifies that tnn can belong to any group. The group entry is
checked against the entries in /etc/groups to ensure it is a valid choice. If
you specify an invalid choice, the system prompts you for another choice.

Finally, at the enter access mode (n = none) prompt, you must specify
the access modes for the entry. You can specify any combination of r, w, and x,
or n. The rw definition in the example results in absolute read and write access
being allowed for tnn to the file protected by myacl .

The second entry allows a user called jog , who must belong to the trng
group, to be allowed absolute permissions of read and write.

The third entry allows any user (specified by use of the wildcard character),
who belongs to the trng group, to be allowed absolute permission of read.

The fourth entry defines the owning-group entry. This entry allows the owning
group absolute permission of read and write.

As shown in the fifth entry, you cannot specify a wildcard character for both
the user name and group. If you do, the NO user or group name entered
message appears. Also, as shown in the sixth entry, duplicate user name and
group entries are not allowed. If you try to enter duplicate entries, the
duplicate entry NOT accepted message appears.

40 SG-2111 10.0

Using Access Control Lists (ACLs) [3]

SG-2111 10.0

Example 6: Creating ACL entries (spacl -a)

$ spacl -a myacl

ENTER "quit" to END SESSION, “ctrl-c" to ABORT
enter user's name ORan *.. tnn
enter group name ORan *... *

enter access mode (n = none)...... rw
ADD MODE

enter user's name ORan *.... jog
enter group name ORan *... trng
enter access mode (N = none)...... rw
ADD MODE

enter user's name ORan *... *
enter group name ORan *... trng
enter access mode (N = none)...... r
ADD MODE

enter user's name ORan *... *
enter group name OR an *.....

enter access mode (N = none)...... rw

Entering quit at any point saves the changes and exits the interactive session
(as shown in the last entry). Executing a CONTROL-Gdiscards all changes and
exits the session.

The absolute permissions defined in ACL entries are always intersected with
the file’s mask bits to determine the requester’s effective access permissions. See
Section 3.3, page 55, for more information on the masking operation and the
order in which entries are checked. All of the following examples in this section
are showing the absolute permissions.

41

UNICOS® Multilevel Security (MLS) Feature User's Guide

3.2.1.2 Creation of intermediate ACL file entries using an input file (spacl -i)

The -i modfile aclfile option inputs ACL edit statements through modfile into
aclfile. The following is the format for adding a record (line) in modfile:

al user_name: group_name: access_mode:

Example 7, page 42 shows how to use the spacl -i command. When using
the -i option, the user name, group name, and permission guidelines presented
in the previous section apply.

In Example 7, page 42 the intermediate ACL file called myacl2 is created and
contains the same entries as the intermediate ACL file called myacl in the
previous example, except for the last entry, which denies root access. See
Section 3.3.2, page 59, for more information.

Example 7: Creating ACL entries (spacl -i)

$ cat modfile

atnn:*:rw:

a:jog:trng:rw:

a*:itrng:r:

ar*irw:

a:root:*:n:

$ spacl -i modfile myacl2
spacl: end of file on modfile

3.2.2 Displaying intermediate ACL files (spacl -l)

42

You can display the contents of an intermediate ACL file by using one of the
following methods:

e Thespacl -l aclfile command, which lists a long version of the ACL entry.

e The spacl -s aclfile command, which lists a condensed version of the
output shown when using the -| option.

The display of these two commands is shown in Example 8. The main difference
between the two displays is that the uid and gid numbers (that correspond to
the user name and group name, respectively) are shown in the -| display, but
not in the -s display. The uid and gid numbers are unique identification
numbers assigned to users and groups by your system administrator.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

Example 8: Displaying an intermediate ACL file (spacl -l and -s)

$ spacl -1 myacl
ACL owner's uid: 10505
ACL owner's name: ben

uid:1822 gid: - user = tnn group = * mode = rw-
uid:927 gid: 28 user = jog group = trng mode = rw-
uid:- gid: 28 user = * group = trng mode = r--
uid:- gid: - user = * group = mode = rw-
$ spacl -s myacl

ACL owner's name: ben

user = tnn group = * mode = rw-

user = jog group = trng mode = rw-

user = * group = trng mode = r--

user = * group = mode = rw-

3.2.3 Removing entries in intermediate ACL file

You can use the following spacl options to remove entries from a specified
intermediate ACL file:

e The -r aclfile option interactively removes entries from an intermediate ACL
file. The aclfile argument is the name of the resultant intermediate ACL file.

* The -i modfilel aclfile option inputs ACL text file changes from modfilel into
aclfile. The modfilel argument is a file with add or remove statements. The
aclfile argument is the name of the resultant intermediate ACL file.

3.2.3.1 Interactive removal of intermediate ACL files (spacl -r)

SG-2111 10.0

The -r option removes entries from the aclfile. As with the -a option, you are
prompted for a user name/group name pair that exists in the specified ACL.
The permission prompt does not appear when using the -r option.

When removing entries, a question mark (?) is used as a wildcard character;
specifying ?:? is not allowed. The * is used to match user names and/or
group names that were specified that way in the original entry.

43

UNICOS® Multilevel Security (MLS) Feature User's Guide

44

Use of the -r option is shown in Example 9, page 45. First, the contents of
myacl2 (created in Section 3.2.1.2, page 42) are displayed by using the spacl
-l command.

Then, by using the spacl -r command, the first entry removes the user called
tnn in any group (specified by the *) from myacl2 . The second entry removes
all users (specified by the ?) in the trng group from myacl2 , which results in
both the jog:trng and *:itrng entries being removed. The third entry
removes the owning-group entry.

These modifications produce an intermediate ACL file with only one entry, as
shown in Example 9. This is the entry that denies root access.

Executing a CONTROL-Cdiscards all changes and exits the interactive session.
Entering quit saves the changes and exits the interactive session.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

Example 9: Removing an intermediate ACL file entry (spacl -r)
$ spacl -l myacl2
ACL owner's uid: 10505
ACL owner's name: ben
uid:1822 gid: - user = tnn group = * mode = rw-
uid:927 gid: 28 user = jog group = trng mode = rw-
uid:0 gid: - user = root group = * mode = n
uid:- gid: 28 user = * group = trng mode = r--
uid:- gid: - user = * group = mode = rw-
$ spacl -r myacl?
ENTER "quit" to END SESSION, “ctrl-c" to ABORT
REMOVEMODE
enter user's name ORa ? ORan *.... tnn
enter group name ORa ? ORan *.... *
REMOVEMODE
enter user's name ORa ? ORan *.... ?
enter group name ORa ? ORan *.... trng
REMOVEMODE
enter user's name ORa ? ORan *.... *
enter group name ORa ? ORan *....
REMOVEMODE
enter users name ORa ? ORan *... quit
entry session terminated
$ spacl -1 myacl2
ACL owner's uid: 10505
ACL owner's name: ben
uid:0 gid: - user = root group = * mode = n

SG-2111 10.0 45

UNICOS® Multilevel Security (MLS) Feature User's Guide

3.2.3.2 Removing entries in intermediate ACLs files using an input file (spacl -i)

The -i modfile aclfile option inputs ACL edit statements through modfile into
aclfile. Using this option to remove entries is similar to the add example shown
in Section 3.2.1.2, page 42. The following is the format for removing a record
(line) in modfile:

[T user_name: group_name:

You can use the question mark (?) when removing all instances of a user or
group, as shown in the spacl -r example; specifying ?:? is not allowed.

3.2.4 Modifying intermediate ACL files

46

If you want to modify an existing intermediate ACL file, you can do so by in
one of the following ways:

e If you are adding a new entry, use the spacl -a command as described in
Section 3.2.1.1, page 40.

e If you want to delete an entry, use the spacl -r command as described in
Section 3.2.3.1, page 43.

e If you want to change the access mode of an existing ACL entry, you must
first remove the entry by using the spacl -r command and then recreate
the entry with the new access mode by using the spacl -a command.

Example 10 shows how to modify the ACL entry for jog . First, the entry for
jog is created to allow read access by using the spacl - a command. Second,
the entry for jog is removed by using the spacl -r command. Last, the entry
for jog is recreated (again, by using the spacl -a command), but this time
both read and write access are allowed.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

SG-2111 10.0

Example 10: Modifying an existing ACL entry

$ spacl -a myacl?

ENTER "quit" to END SESSION, “ctrl-c"
ADD MODE

enter user's name ORan *.... jog
enter gruop name ORan *.... trng
enter access mode (n = none)... r
enter user's name ORan *.... quit
entry session terminated

& spacl -r myacl2

ENTER "quit" to END SESSION, “ctrl-c"
REMOVEMODE

enter user's name ORa ? ORan *....
enter gruop name ORan *... trng
REMOVEMODE

enter user's name ORa ? ORan *....
entry session terminated

& spacl -a myacl2

ENTER "quit" to END SESSION, "ctrol-c"
ADD MODE

enter user's name or an *..... jog
enter group name ORan *... trng
enter access mode (n=none)..... rw
ADD MODE

enter user's name ORa ? ORan *...
entry session terminated

to ABORT

to ABORT

to ABORT

47

UNICOS® Multilevel Security (MLS) Feature User's Guide

3.2.5 Applying ACLs to files (spset -a)

48

Once an intermediate ACL file has been created or modified, you must apply it
to the file by using the spset -a aclfile files command. You must be the owner
of the file (or the security administrator) to apply an ACL to a file. The spset
-a command copies the contents of an intermediate ACL file to an ACL system
block. The system block is defined by a pointer in the inode of the
ACL-protected file.

An ACL system block is not shared by multiple files in the file system, even
though the same intermediate ACL file can be applied to multiple files by using
the spset -a command.

As shown in Figure 8, myacl is the aclfile (intermediate ACL file). It has an
inode associated with it, which identifies the data block(s) from which the
intermediate ACL file information is copied when the spset -a command is
executed.

Figure 8 also shows that a system block is allocated for filel and file2 . The
address of the system block is stored in the inode of each file; this is the pointer
to the ACL. The system block ACL information is transparent to you as a user
and can be accessed only by the system kernel.

The contents of myacl are converted into binary and copied into the system
block for each file each time the spset -a command is executed. If any of the
entries in myacl are modified, the new information is not automatically copied
into the system block unless you use the spset -a command again.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

inode Data block
for myacl for myacl

- Intermediate
Pointers to ACL file

data block

spset -a myacl filel file2

System bIOC/ \System block

ACL ACL
for for
filel file2

inode for filel inode for file2

Pointers to ACL

Pointers to Dellta Pointers to Dgta

data block data block

all252

Figure 8. Connections between ACLs and files

SG-2111 10.0 49

UNICOS® Multilevel Security (MLS) Feature User's Guide

50

Example 11 shows how to use the spset -a command. In this example,
myacl is first displayed by using the spacl -l command and then applied to
the file called newfile by using the spset -a command.

As stated previously, any changes made to an intermediate ACL file are not
automatically copied into the system block. In Example 12, changes are made to
myacl by using the spacl -a command to add the jack:*:r entry.

To update the system block with this new information, the spset -a
command must be executed again. Because this file is already protected by an
ACL, the system will ask you if you want to replace it. Notice that the last step
in Example 12 removes myacl . This does not affect newfile because it has its
own copy of the ACL entries.

Example 11: Applying ACLs (spset -l)

$ spacl - myacl

#ACL owner's uid: 10505
#ACL owner's name: ben

uid:1822 gid:- user = tnn group = * mode = rw-
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-

$ spset -a myacl newfile

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

Example 12: Applying ACLs (spset -a)

$ spacl -a myacl

ENTER "quit" to END SESSION, “ctrl-c" to ABORT
ADD MODE

enter user's name ORan *.... jack

enter group name OR an *..... *

enter access mode (n=none)..... r

ADD MODE

enter user's name ORan *.... quit

entry session terminated

$ spset -a myacl newfile

spset: replace existing acl for file? vy
$ rm myacl

3.2.6 Displaying ACLs applied to files (spget -a)

If you are unsure which files have ACLs applied to them, use the Is -e
command as shown in Example 13. An a appears prior to the file name if an
ACL is applied. If you use the Is -le command, the a appears immediately
after the UNICOS mode permissions. See Section 5.2, page 78, for more
information on the IS command.

You can display the ACL entries by using the spget -a or spget -ar
commands, as shown Example 14. The spget -ar command displays a
reduced format, which is useful when duplicating ACL entries (an example of
this is shown in the next section).

SG-2111 10.0 51

UNICOS® Multilevel Security (MLS) Feature User's Guide

Example 13: Displaying ACL entries (spget -e)
$Is -e
0 file
0 modfile
0 myacl2
a 0 newfile
0 testfile
$ Is -le newfile
-PW------- a 0 1 ben trng 60 May 16 15:10 newfile
Example 14: Displaying ACL entries (spget -a)
$ spget -a newfile
ACL Information for: newfile
uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-
$ spget -ar newfile
#ACL information for: newfile
user = tnn group = * mode = rw-
user = jack group = * mode = r--
user = jog group = trng mode = rw-
user = * group = trng mode = r--
user = * group = mode = rw-

3.2.7 Duplicating ACLs (spset -d or spacl -t)

52

It may be necessary to duplicate the contents of an ACL. An example of this is
if you want to apply an ACL to another of your files, but you cannot locate the

intermediate ACL file.

There are two ways you can duplicate an ACL from one file and apply it to

another file. The first way is to use the spset

-d command; the second way is

a three-step process using the spget -ar , spacl -t , and the spset -a
commands. The second method generates an intermediate ACL file.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

SG-2111 10.0

To duplicate the ACL permissions found in the ACL applied to one file and
apply them to another file, use the spset -d filel file2 command, as shown in
Example 15. In this example, filel is the file that has the ACL that you want to
duplicate for file2.

Example 15: Duplicating ACLs (spset -d)

$ spget -a newfile
ACL Information for: newfile

uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-

$ spset -d newfile testfile
$ spget -a testfile
ACL Information for: testfile

uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-
$Is -le testfile

-PW------- a 0 1 jack trng 77 May 16 15:15 testfile

To duplicate an ACL from one file to another, even though the intermediate
ACL file has been removed from the directory, you can use the following
three-step process (shown in Example 16):

1. Create a file that contains the ACL information in a reduced format. You do
this by using the spget -ar command to redirect the output of a file’s
ACL into a text file. The -r option (which can only be used with the -a
option) gets a reduced version of the ACL information.

2. Create an intermediate ACL file. You do this by using the spacl -t

command to convert the reduced format from step 1 into an intermediate
ACL file.

3. Apply the ACL file created in step 2 to the new file. You do this by using
the spset -a command.

When using this method, you can edit the reduced format text before issuing
the spacl -t command. Use a text editor to add or remove entries or modify

53

UNICOS® Multilevel Security (MLS) Feature User's Guide

existing entries. Thus, a similar, but not identical ACL is applied to file ~ when
the spset -a is executed.

Example 16: Duplicating ACLs (spacl -t)

$ spget -ar testfile > text
$ spacl -t text myacl
spacl: end of file on text
$ spacl -1 myacl

#ACL owner's uid: 10505
#ACL owner's name: ben

uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-

$ spset -a myacl file
$ spget -a file
ACL Information for: file

uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-

3.2.8 Removing ACLs (spclr -a)

54

You can use the -a option of the spclr (1) command to remove an ACL from
one or more files, as shown in Example 17.

The spclr command can fail for the following reasons:

* You are not the owner of the file or you are not the security administrator.
e An ACL is not applied to the file.

¢ An invalid ACL was detected.

If you do not have the correct permission to access the directory in which the
file is located, you will get a permission denied message. If you are not the
owner of the file (or are not an active security administrator), and you try to
remove an ACL, you will get a spclr: acl remove error for filename
message.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

Example 17: Removing ACLs from files (spclr -a)

$Is -le newfile

“PW=--=-=- a 0 1 ben trng 77 May 16 15:15 newfile
$ spclr -a newfile

$Is -le newfile

-PW=--=--- 0 1 ben trng 77 May 16 15:15 newfile

3.3 How ACLs are checked

SG-2111 10.0

The order in which ACL entries are searched and the masking operation is
shown in Figure 9. The following explanation follows the numbered sequence
shown in the figure.

When you attempt to gain access to a file, the ACL of the file is searched. The
first check made in the ACL is to see if you are root (this step is not shown in
Figure 9). Depending on your system configuration, one of the following occurs:

* On systems using the super-user mechanism, root is always granted DAC
access to a file, even if there is an entry for root in the ACL.

* On systems using the PAL-based privilege mechanism, root is not given
any special consideration for DAC access. It is treated the same as an entry
for any user and the ACL can be used to determine (or deny) access for
root . A process is allowed to override the DAC restrictions only if the
process belonging to root has the PRIV_DAC_OVERRIDBprivilege in its
effective privilege set.

If you are not root or your system is using the PAL-based privilege
mechanism, then a check is made to determine if you are the owner of the file
(shown in step 1 of Figure 9). If you are, the access specified by the file’s owner
permission bits are granted. The ACL is not checked in this case; regardless of
the ACL entry, the type of access that a file’s owner is granted can be
determined by using the Is -l command.

If you are not the owner of the file, then the ACL is searched for the set of
uid:gid: and/or uid:*: entry or entries that relates to you and your current
groups (shown in step 2 of Figure 9). The current groups are your effective gid
and your group list. If there is a uid:gid: entry or entries for you and any of
your current groups, the entry or a union of these entries is intersected with the
file’s mask bits to determine the type of access allowed.

55

UNICOS® Multilevel Security (MLS) Feature User's Guide

1

2)

3)

4)

5)

56

Start DAC
checks

Is user
file's Yes Use owner’s
owner? permission bits
Are there } bAC
user:group: Yes Union of user:group: Intersect with y Are permission
and/or uid:* and/or uid:* entries file's mask bits I bits set? access
entries? granted
Access
Is user in Are there Union of denied
owning group? *:ogroup: and /or *.ogroup: and/or |
’ *: entries? *: entries
Use n.1ask. |,
permission bits
Is user in -
groups specified Yes Union of f:group:
by *:group: = entries
entries?
Use other
permission bits
all253

Figure 9. Flowchart of how UNICOS ACLs are checked

An example of this check is shown with the following ACL entries for a user
named Jack with groups training and testing wants to access a file that has its
mask bits set to r-x . Assume for this example that Jack has only the following
entries defined for him:

user: jack group: training mode: r--
user: jack group: testing mode: -w-
user: jack group: * mode: --X

The union of these entries (which would be rwx) is intersected with the file’s
mask bits, resulting in Jack having r-x access to that file. If Jack requests write
access to this file, it is denied.

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

The union of multiple entries is used because of the fact that the UNICOS
operating system supports multiple groups. Thus, users can simultaneously
belong to all of their groups and no single group takes precedence over any
other group.

If no match was found in step 2, then a check is made to see if you belong to
the owning group of the file (shown in step 3 of Figure 9). If yes, a search is
made for a *:ogroup: (where ogroup is the group-only entry for the owning
group) and/or a *:: entry (where *:: is the owning-group entry). If either of
these entries is found, the entry or a union of these entries is intersected with
the file’s mask bits to determine the type of access allowed.

If neither a *:ogroup: or *:: entry is found, then the file’s mask permissions
are used to determine the type of access allowed to the member of the owning

group.

If you do not belong to the owning group, then the ACL is checked for a
*.group: entry that matches your current groups (shown in step 4 of Figure
9). If one or more matching entries are found, then the entry or a union of all
*:group: entries are intersected with the file’s mask bits to determine the type
of access allowed.

If no matching *:group entry is found, then access is granted according to the
file’s other permission bits (shown in step 5 of Figure 9). There is no
intersection with the file’s mask bits in this check.

A user or group can be denied permission by entering n in the ACL, as shown
in the following example:

jack : * : n

As explained previously, multiple entries for the same user or group are
combined for the masking operation. When specifying n (no) access, be certain
that multiple matching entries are not specified in the ACL. See Section 3.2.1,
page 39, for more information on adding entries to an ACL.

3.3.1 Displaying masked ACL permissions (spget -ae)

SG-2111 10.0

You can use the spget -ae command to show the masked ACL entries.
Execution of this command masks each ACL entry’s mode bits against the file’s
mask permissions and displays the resultant mode bits. Example 18, page 58
shows how the -ae option works (the -e option can be used only with the -a
option).

57

UNICOS® Multilevel Security (MLS) Feature User's Guide

58

In Example 18, page 58, execution of the Is -le command reveals the
standard permission bits for testfile allow read and write access for the user
only (-rw------- a). Executing the spget -a command displays the absolute
permissions defined in the ACL entries for testfile

Because the mask permission bits for testfile do not allow access for any
group, the masking operation results in no access for any user listed in the
ACL. This result is shown in the display of the spget -ae command.

In Example 19, page 59, the file’s permission bits are changed by executing
chmod g+r, which results in the mask permissions for testfile allowing
read access. The masking operation results in read access for all the users. This
result is shown in the display of the spget -ae command.

Example 18: Displaying the masked ACL mode bits (spget -ae)

$Is -le testfile
“PW=--=-=- a 0 1 ben trng 77 May 16 15:15 testfile

$ spget -a testfile
ACL Information for: testfile

uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-
$

$ spget -ae testfile
ACL Information for: testfile

uid:1822 gid:- user = tnn group = * mode = n
uid:196 gid:- user = jack group = * mode = n
uid:927 gid:28 user = jog group = trng mode = n
uid:- gid:28 user = * group = trng mode = n
uid:- gid:28 user = * group = mode = n

SG-2111 10.0

Using Access Control Lists (ACLs) [3]

Example 19: Displaying the masked ACL mode bits (spget -ae)

$ chmod g+r testfile

$Is -le testfile

-rW-r-----a 0 1 ben trng 77 May 16 15:15 testfile
$

$ spget -ae testfile

ACL Information for: testfile

uid:1822 gid:- user = tnn group = * mode = r--
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = r--
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = r--

In Example 20, page 59, the file’s permission bits are changed by executing
chmod g+w, which results in the mask permissions for testfile allowing
read and write access. The masking operation results in read and write access
for the tnn:* , jog:itrng , and owning-group entries. The jack:* and *:trng
entries are not granted write access because the ACL entries defined an
absolute access of read only.

Example 20: Displaying the masked ACL mode bits (spget -ae)

$ chmod g+w testfile

$Is -le testfile

-rW-rw----a 0 1 ben trng 77 May 16 15:15 testfile
$

$ spget -ae testfile

ACL Information for: testfile

uid:1822 gid:- user = tnn group = * mode = rw-
uid:196 gid:- user = jack group = * mode = r--
uid:927 gid:28 user = jog group = trng mode = rw-
uid:- gid:28 user = * group = trng mode = r--
uid:- gid:- user = * group = mode = rw-

3.3.2 ACLs and root access

On a system using the PAL-based privilege mechanism, root is subject to all
ACL rules. An ACL entry for root is treated the same as for any other user.

SG-2111 10.0 59

UNICOS® Multilevel Security (MLS) Feature User's Guide

On a system using the super-user mechanism, root can override the ACL,
even if it contains an entry for root .

If the file’s ACL does contain an entry for root , then the entry is masked
against the file’s mask permissions as explained in Section 3.3, page 55. This
means that you can deny root access by entering n in the ACL, as shown in
Example 7, page 42, and in the following example:

root:*:n

Using this type of entry does not completely prevent root access for the
following reasons:

e root has the ability to bypass a file’s ACL protection by changing the
permission mode, owner, and/or owning group of a file.

e root is allowed to access file system data through device special files, thus
allowing root the ability to grant itself discretionary access to an object by
changing the contents of the object’s inode.

On a system using the super-user mechanism, if a file does not have an ACL,
then root is automatically granted rwx access if all the mandatory access
control checks are passed. For systems using the PAL-based privilege
mechanism, if the file does not have an ACL, root is granted access through
the permission mode bits.

3.3.3 umask(1) default access permissions

60

On a UNICOS system, the default setting for umask is 077 (instead of 027 as on
previous non-MLS systems). This default setting is necessary to meet the
TCSEC requirements. This default must be used on a Cray ML-Safe
configuration of the UNICOS system.

Use of this default affects you in the following ways:

¢ If you want new files to automatically have group and/or world access, you
must manually set the file access permission bits to enable this type of access.

¢ If you want to use a default other than 077, place umask in your
$HOME/.profile ~ or $HOME/.login file.

SG-2111 10.0

