Overview [1]

SR-2089 9.0

Note: The RPC feature is included in the trusted computing
base (TCB) of the Trusted UNICOS system. The operator
functions, procedures, and duties outlined in the following
subsections are required to maintain a Trusted UNICOS
system. No special security administrator or operator
functions are necessary for the management of RPC on a
Trusted UNICOS system.

Remote procedure calls (RPCs) provide a way for you do the
following:

» Distribute program segments across computers in a network

+ Communicate with more than one machine on a given network
while executing a program

« Communicate with other programs that run on the same
machine

The typical configuration for environments that use RPCs
consists of workstations connected to a computer through a
network. The workstations are used for application interface
and high-resolution displays; the computationally intense part of
the code runs on the computer.

A program must be registered so that other programs on the
network can find it. (See an example of registering in subsection
2.1, page 12.) RPCs use a client/server paradigm in which the
client first sends data to a server running in a machine on a
network. The server receives the data packet, processes it as
required, and returns a result to the client. The server does not
have to return any information to the client. In C language
context, the server can be a function of type voi d. The same is
true for the client; it can call a server without passing data to it.
Figure 1 demonstrates the typical RPC paradigm.

Cray Research, Inc. 1



Overview [1]

Remote Procedure Call (RPC) Reference Manual

RPC and XDR
1.1

The machines on a given network can run in different operating
system environments. Programs that use RPC are shielded from
the calling conventions of these various operating systems by the
use of data translation routines known as External Data
Representation (XDR) routines. XDR is a protocol that allows
programmers to specify arbitrary data structures that are
independent of a specific machine. These routines ensure that
data of any type can be passed successfully between machines
with potentially different word sizes or other architectural
differences.

XDR routines act as filters for the data moving back and forth,
ensuring that the data is translated into a form that the
receiving machine can interpret correctly. Translating data from
the sending machine into XDR format is called serializing.
When the receiving machine interprets the serialized data, the
process is called deserializing. The XDR routines do the
serializing and deserializing for each communication between
server and client.

Server returns to client

with results. Client Server executes a specified routine with
continues execution. data from the client.

i

Client program executes.

RPC is made; communications
path is established. Data packet is
passed to server process on
remote machine.

Client sends parameters to
servers.

Figure 1. RPC paradigm

The C library (I i bc. a) contains predefined XDR routines for
passing most data types. If only one request value is being
passed to the server and one result value is being returned, XDR
routines from the library can be used. However, when a
structure is being passed, the programmer must construct an
XDR routine that maps the structure members to predefined
XDR routines by member type. The r pcgen utility can
automate the writing of structure XDR conversion routines. See
appendix B, page 97, for information on r pcgen. Of course, if

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Overview [1]

Identifying remote

procedures
1.2

Remote program
number
1.2.1

SR-2089 9.0

the data going to and from the client and server is the same in
type (for example, the client passes a structure of two integers to
the server, and the server passes a structure of two integers back
to the client), they can share the same user-developed XDR
routine.

RPC and XDR, based on RFC 1057 and RFC 1014, respectively,
have been placed in the public domain; they serve as a standard
for network application development.

An RPC message has three unsigned fields: the remote program
number, the remote program version number, and the remote
procedure number. These fields uniquely identify the procedure
to be called.

The user’s remote program number is a unique number in the
range 0x20000000 to Ox3fffffff. Numbers outside of this range
are reserved for other uses (see Table 1 for assigned ranges).

Table 1. Remote program number assignments

Program number Assignment
0x0 — Ox 1fffffff Sun
0x20000000 — Ox3fftffff User
0x40000000 — Ox5fftffff Transient
0x60000000 — Ox7{ftfftf Reserved
0x80000000 — OxOfffffff Reserved
0xa0000000 — Oxbfffffff Reserved
0xc0000000 — Oxdfffffff Reserved
0xe0000000 — OxfTffffff Reserved

Sun Microsystems administers the first group of numbers, which
should be identical for all RPC users. If a user develops an
application that is of general interest, that application can be
given an assigned number in the first range. The second group

Cray Research, Inc. 3



Overview [1]

Remote Procedure Call (RPC) Reference Manual

of numbers is reserved for specific customer applications and
will not, in general, be the same across machines. This range is
intended primarily for debugging new programs. The third
group is reserved for programs that generate program numbers
dynamically. The final groups are reserved for future use and
should not be used by any user-developed programs.

To register a protocol specification, send a request by electronic
mail to r pc@un. con or write to the following:

RPC Administrator

Sun Microsystems

2550 Garcia Avenue
Mountain View, CA 94043

Please include a compilable r pcgen. x file that describes your
protocol. In return, you will be given a unique program number.

You can find the RPC program numbers and protocol
specifications of standard RPC services in the include files in the
/usr/incl ude/rpcsvc directory. These services, however,
constitute only a small subset of those that have already been
registered. Table 2 contains the most recent list of registered
programs, as of the time of this printing. An asterisk denotes
programs that are provided in the UNICOS 9.0 software release.

Table 2. Registered program list

RPC number Program Description

100000%* PMAPPROG Portmapper

100001* RSTATPROG Remote statistics

100002%* RUSERSPROG Remote users

100003* NFSPROG NF'S daemon

100004* YPPROG Network information service (NIS)
100005* MOUNTPROG nount daemon

100006 DBXPROG Remote dbx

100007* YPBI NDPROG NIS binder

100008* WALLPROG Shutdown message

100009* YPPASSWWDPROG NIS password server

100010 ETHERSTATPROG Ethernet statistics server
4 Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Overview [1]

Table 2. Registered program list

(continued)

RPC number Program Description

100011 RQUOTAPROG Disk quota server
100012%* SPRAYPROG Spray packets server
100013 | BMB270PROG 3270 mapper

100014 | BVRJEPROG RJE mapper

100015 SELNSVCPROG Selection service

100016 RDATABASEPROG Remote database access
100017 REXECPROG Remote execution server
100018 ALl CEPROG Alice office automation
100019 SCHEDPROG Scheduling service
100020 LOCKPROG Local lock manager
100021 NETL OCKPROG Network lock manager
100022 X25PROG X.25 i nr protocol
100023 STATMON1PROG Status monitor 1

100024 STATMONZ2 PROG Status monitor 2

100025 SELNLI BPROG Selection library

100026 BOOTPARAMPROG Boot parameters service
100027 MAZEPROG Mazewars game

100028 YPUPDATEPROG NIS update server
100029%* KEYSERVEPROG Key server for secure RPC
100030 SECURECVDPROG Secure login

100031 NETFWDI PROG NF'S net forwarder initializing
100032 NETFWDTPROG NFS net forwarder transmission
100033 SUNLI NKMVAP_PROG SunLink MAP

100034 NETMONPROG Network monitor
100035 DBASEPROG Lightweight database
100036 PWDAUTHPROG Password authorization
100037 TFSPROG Translucent file service
100038 NSEPROG NSE server

100039 NSE_ACTI VATE_PRG NSE activate daemon
SR-2089 9.0 Cray Research, Inc.



Overview [1]

Remote Procedure Call (RPC) Reference Manual

Table 2. Registered program list

(continued)
RPC number Program Description
150001* PCNFSDPROG PC password authentication
200000 PYRAM DL OCKI NGPROG Pyramid-locking
200001 PYRAM DSYS5 Pyramid-sys5
200002 CADDS | MAGE CV cadds_i mage
300001 ADT_RFLOCKPROG ADT file locking
Remote program The version number is the release number for the RPC

version number
1.2.2

procedure. By convention, the first version number of any
program PROG is PROGVERS_CRI G and the most recent
version is PROGVERS. In the following example,
PROG=RUSERS. Suppose a new version of the user program
returns an unsigned short rather than a long value. If this
version is named RUSERSVERS_SHORT, a server that wants to
support the first version and this version would register twice,
as follows:

exit(1);
}

exit(1);

if (!svc_register(transp, RUSERSPROG RUSERSVERS ORI G
nuser, |PPROTO TCP)) {
fprintf(stderr, “can’t regi ster RUSER service\n”);

if (!svc_register(transp, RUSERSPROG RUSERSVERS SHORT,
nuser, |PPROTO TCP)) {
fprintf(stderr, “can’t regi ster RUSER service\n”);

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Overview [1]

The same C procedure can handle both versions, as follows:

nuser (rqstp, tranp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
unsi gned | ong nusers;
unsi gned short nusers2;
swi tch(rqgstp—>rqg_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, “can’t reply to RPC call\n");
}
return;
case RUSERSPROC_NUM
/*
* Code here to conpute the nunber of users
* and put it in the variable ’nusers’
*/
if (rgstp—>rq_vers == RUSERSVERS ORI G {
if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr,“can’'t reply to RPC call\n");
}
} else if (rqgstp—>rg_vers == RUSERSVERS SHORT) {
nusers2 = (unsigned short) nusers;
if (!svc_sendreply(transp, xdr_u_short, &nusers2) {
fprintf(stderr,“can’'t reply to RPC call\n");
}
} else {
/* send “bad version” error reply */
svcerr_progvers(transp, RUSERSVERS ORI G RUSERSVERS SHORT);
}
return;
defaul t:
/* send “bad procedure” error reply */
svcerr_noproc(transp);
return;
} /* end switch */
}

SR-2089 9.0 Cray Research, Inc. 7



Overview [1]

Remote Procedure Call (RPC) Reference Manual

Remote procedure

number
1.2.3

Registering with the
portmapper
1.2.4

Transports and

semantics
1.3

The procedure number is the number of the routine being
referenced in the server; it identifies the procedure to be called.
Servers can register many RPC routines, which would typically
be numbered in order, 1, 2, 3, ... n. Procedure numbers are
documented in the specific program’s protocol specification. For
example, a file service’s protocol specification might state that its
procedure number 5 is read, and its procedure number 12 is
write.

RPC servers can register themselves with the portmapper. This
capability is useful if, for some reason, it becomes necessary to
restart the portmapper while the RPC servers continue. The —r
option of the por t map command specifies restart for standard
RPC servers. The —f option directs the portmapper to send a

S| GHUP signal to each of the process/UID pairs found in the file.
See por t map(8) for a list of the servers that can be restarted and
for examples of the - r and —f parameters.

The RPC protocol deals only with the specification and
interpretation of messages; it is independent of transport
protocols. Because of transport independence, the RPC protocol
does not attach specific semantics to the remote procedures or
their execution. Some semantics can be inferred from (but
should be explicitly specified by) the underlying transport
protocol.

For example, when UDP/IP is used, RPC message passing is
unreliable. Thus, if the client retransmits call messages after
short time-outs, it can only infer from no reply message that the
remote procedure was executed zero or more times (and from a
reply message, one or more times). On the other hand, when
TCP/IP is used, RPC message passing is reliable. No reply
message means that the remote procedure was executed at most
once; a reply message means that the remote procedure was
executed exactly once.

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Overview [1]

Error messages
1.4

SR-2089 9.0

The reply message to a request message contains enough
information to distinguish the following error conditions:

The remote implementation of RPC is not compatible with
protocol version 2. The lowest and highest supported RPC
version numbers are returned.

The remote program is unavailable on the remote system.

The remote program does not support the requested version
number. The lowest and highest supported remote program
version numbers are returned.

The requested procedure number does not exist (this is usually
a client-side protocol or programming error).

The parameters to the remote procedure are invalid from the
server’s perspective. (Again, this is usually caused by a
difference in the protocol between client and server.)

An authentication error occurred.

Cray Research, Inc. 9






