Remote Procedure Call (RPC)
Programming [2]

This section describes various aspects of remote procedure call
(RPC) programming and provides examples of its use.

Although the examples illustrate the interface to the C
programming language only, RPCs can be made from any
language. Examples show RPC programming as it is used to
communicate between processes on various machines, but the
procedure is the same for communication between different
processes on the same machine.

Typically, using RPC consists of registering the routine that will
be accessed, making the request for the registered routine to
perform its function, and passing values between the registered
routine and the calling routine. The examples in this section
show how you can accomplish this. Following is an example of a
typical RPC procedure:

Example 1:

A server registers a program that will calculate the factorial of
an integer and will return the square root of the factorial. A
client program accepts as input an integer value and then makes
an RPC to the server, passing it the integer value. The server
performs the calculations and returns the answer. The return
type is doubl e.

For more information on RPC programming, see appendix B,
page 97, appendix C, page 121, and appendix D, page 141.

Subsections 2.1, page 12, and 2.2, page 14, provide code for and
explanations of these processes.

SR-2089 9.0 Cray Research, Inc. 11

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

Registering the
routine on the

server
2.1

12

The server registers the routine that will be used to do the
computation and then exits into a service loop to wait for
requests. The server does not use any CPU resources while
waiting for requests.

Example 1A contains all of the code needed to perform the server
function. This code is entirely portable in the sense that it can
run on a Cray Research system or another system anywhere on
the network. In fact, any machine on the network that supports
RPCs (as well as sockets, UDP, TCP, and a C compiler) can run
this server.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

Example 1A:
/ *
* This is the server routine for exanple 1
*/

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

#def i ne PROGRAM 0x20000100
#defi ne VERSI ON 1
10 #defi ne ROUTI NE 1

©CoOoO~NO UL~ WNE

12 extern double sqgrt();
13 double *conpute result();

15 main()

16 {

17 i f(registerrpc(PROGRAM VERSI ON, ROUTI NE, conput e_resul t,
18 xdr _int, xdr_double) == -1)
19 {

20 perror(“registerrpc”);

21 exit(1l);

22 }

23 svc_run();

24 fprintf(stderr,“svc_run() call failed\n”);
25 exit(1);

26 }

28 double *
29 conpute_result(input)

30 int *i nput ;

31 {

32 int count;

33 static double output;

34

35 out put =1. 0;

36 for(count= *input; count>1; count—)
37 out put *= count;
38

39 out put = sqgrt(output);
40 ret urn(&ut put) ;

41 }

SR-2089 9.0 Cray Research, Inc.

13

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

Client call and
server reply

Pprocess
2.2

14

The following text explains the RPC portions of the server source
code in example 1A.

Line 6: If XDR routines are being used, the <r pc/ r pc. h>
include file is always necessary. Two XDR routines are used in
line 18. (See a discussion of XDR routines in subsection 1.1,
page 2.)

Lines 8 through 10: Constants PROGRAM VERSI ON, and
ROUTI NE uniquely define the RPC being registered. (See a
discussion of these constants in subsection 1.2.2, page 6, and
subsection 1.2.3, page 8.) All three of the constants are
parameters in the r egi st err pc call made in line 17.

Line 17: This is the call that registers the RPC with the
portmapper process so that other programs on the network can
find it. The parameters are as follows: program number
(PROGRAM), version number (VERSI ON), routine number

(RQUTI NE), name of routine associated with routine number
(comput e_r esul t), data translation routine for incoming value
(xdr _i nt), and data translation routine for return value

(xdr _doubl e).

Line 23: This is the exit into the service loop. The server can, of
course, call other routines or do any required setup before calling
the svc_r un routine. However, client requests cannot be
processed until svc_r un is called.

Line 33: It is critical that the variable containing the returned
value be static; otherwise, it might disappear by the time
RPC/XDR sends it out in the response packet.

In example 1B, the client receives an input value and passes it to
the server by using an RPC. The server computes a result and
returns it to the client, where it is then printed out.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Remote Procedure Call (RPC) Programming [2]

Example 1B:

1 /*

2 ¢ This is the client routine for exanple 1
3 */

4

5 #include <stdio. h>

6 #include <rpc/rpc. h>

7

8 #defi ne PROGRAM 0x20000100

9 #define VERSION 1

10 #define ROUTINE 1

11

12 main(argc, argv)

13 int argc;

14 char **argv;

15 {

16 int i nput ,

17 ret val

18 double result;

19 char i nput _buf[25];
20
21 printf(“Enter an |Integer=>"
22 fflush(stdout);
23 fget s(i nput _buf, 25, stdin);

24 i nput = atoi (input_buf);

25 i f((ret_val =callrpc(argv[1l], PROGRAM VERSI ON, ROUTI NE
26 xdr _int, & nput, xdr_double, &result))
27 = 0)

28 {

29 clnt_perrno(ret_val);

30 exit(1l);

31 }

32 printf(“Result = %\ n",result);

33 }

SR-2089 9.0 Cray Research, Inc. 15

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

RPC layers
2.3

16

The following text explains the RPC portions of the client source
code in example 1B.

Line 25: This is the actual call to the server. The client routine
is given the host name on the command line. The parameters to
the cal | r pc routine are as follows:

+ Network name of the host on which the server is running
» Program number (PROGRAM

 Version number (VERSI ON)

* Routine number (ROUTI NE)

» XDR translation routine for the variable being passed to the
server (xdr _i nt)

» Source address of the variable being passed to the server
(i nput)

« XDR translation routine for the variable being returned from
the server (xdr _doubl e)

« Destination address of the result being returned from the
server (resul t)

Lines 29, 30: This is the RPC client error routine. You can
diagnose failure of certain RPC routines through the return
value of the failing routine. For example, if the client were
executed and the specified server host were not running, the
following error message would be returned:

RPC. Program not registered

The RPC interface is divided into three layers. The highest layer
is totally transparent to programmers. To illustrate, at this
level, a program can contain a call to routine r nuser s(3), which
returns the number of users on a remote machine. You do not
have to be aware that an RPC interface is being used, because
you simply make the call in a program, just as you would call
mal | oc(3).

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

At the intermediate layer, routines r egi st err pc and cal | r pc
are used to make RPCs; r egi st err pc obtains a number that is
unique across the system, while cal | r pc executes an RPC. The
r nuser s(3) call is implemented by the use of these two routines.
The intermediate-layer routines are designed for most common
applications.

The lowest layer is for more sophisticated applications, such as
altering the defaults of the routines. At this layer, you can
explicitly manipulate the sockets that transmit RPC messages.

Highest RPC layer Imagine you are writing a program to determine how many
2.3.1 users are logged on to a remote machine. You can do this by
calling routine r nuser s(3), as shown in example 2.

Example 2:

#i ncl ude <stdi o. h>
mai n(argc, argv)

i nt argc;

char **argv;

unsi gned num

if (argc <2) {
fprintf(stderr, “usage: rnusers hostname\n”);
exit(1);

}

if ((num = rnusers(argv[1l])) <0) {
fprintf(stderr, “error: rnusers\n”);
exit(-1);

{

printf(”%l users on %\n”, num argv[1]);

exit(0);

RPC library routines such as r nuser s(3) are in the RPC
services library, | i br pcsvc. a. Thus, you should use the
following command to compile the program in example 3 on
Cray Research systems:

% cc programc —lrpcsvce

SR-2089 9.0 Cray Research, Inc. 17

Remote Procedure Call (RPC) Programming [2]

Remote Procedure Call (RPC) Reference Manual

Intermediate RPC layer
2.3.2

18

The r nuser s routine and other RPC library routines are
documented in appendix F, page 177. Table 3 lists RPC service
library routines available to C programmers. These routines are
supported only on the client side. You can invoke the other RPC
services (et her, nount, r quot a, and spr ay), which are not
available to C programmers as library routines, by using the

cal | r pc routine, as described in subsection 2.3.2.

Table 3. RPC service library routines

Routines Description

get publ i ckey Gets public key

getrpcport Gets RPC port number

get secr et key Gets secret key

havedi sk Determines whether remote machine
has a disk

rnusers Returns number of users on remote
machine

r st at Gets performance data from remote
kernel

rusers Returns information about users on

remote machine

rwal | Writes to specified remote machines
yppasswd Updates user password in the NIS
database

Instead of calling routine r nuser s as shown in example 3, you
can use functions r egi st err pc and cal | r pc to make the
rnusers call, as illustrated in examples 3 and 4. These
functions use the UDP transport mechanism, whose arguments
and results are constrained by the maximum length of UDP
packets. Consult the vendor documentation for exact length

restrictions.

Cray Research, Inc.

SR—-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

Registering in the Usually, a server registers all RPCs it plans to handle and then
intermediate layer goes into an infinite loop, waiting to service requests. In the
2.3.2.1 main body of the server routine, you can register only one

procedure, as shown in example 3.

Example 3:
1 #i ncl ude <stdio. h>
2 #i ncl ude <rpcsvc/rusers. h>
3 char *nuser();
4 mai n()
5 {
6 regi sterr pc(RUSERSPROG RUSERSVERS, RUSERSPROC NUM
7 nuser, xdr_void, xdr_u_long);
8 svc_run(); /* never returns */
9 fprintf(stderr, “Error: svc_run returned!'\n”);
10 exit(1);
11 }
12
13 char *
14 nuser (i ndat a)
15 char *indata;
16 {
17 static int nusers;
18 /*
19 * code here to compute the number of users
20 * and place result in variable nusers
21 */
22 return((char *)&nusers);
23 }

The following text explains the RPC portion of the server source
code in example 3.

Lines 6 and 7: The r egi st err pc routine matches each RPC
procedure number with a C procedure. The first three
parameters, RUSERSPROG, RUSERSVERS, and RUSERSPROC_NUM
are the program, version, and procedure numbers of the remote
procedure to be registered; nuser () is the name of the C
procedure implementing it; and xdr _voi d and xdr _u_I ong are,
respectively, the types of the input to and output from the
procedure.

SR-2089 9.0 Cray Research, Inc. 19

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

Calling and replying in Example 4 shows the client source code used in the intermediate
the intermediate layer layer.
2.3.2.2
Example 4:

1 #i ncl ude <stdio. h>

2 #i ncl ude <rpcsvc/rusers. h>

3 mai n(argc, argv)

4 int argc;

5 char **argv;

6 {

7 unsi gned | ong nusers;

8 if (argc < 2) {

9 fprintf(stderr, “usage: nusers hostnane\n”);

10 exit(-1);

11 }

12 if (callrpc(argv[1],

13 RUSERSPROG, RUSERSVERS, RUSERSPROC NUM

14 xdr _void, NULL, xdr_u_long, &nusers) != NULL) {

15 fprintf(stderr, “error: callrpc\n”);

16 exit(1);

17 }

18 printf(”%l users on %\n”, nusers, argv[1l]);

19 exit(0);

20 }

The following text explains the RPC portion of the client source
code in example 4.

Lines 12 through 16: The cal | r pc RPC library routine has
eight parameters. The first is the name of the remote machine
(argv[1]). The next three parameters are the program
(RUSERSPROG), version (RUSERSVERS), and procedure numbers
(RUSERSPRCC_NUM.

Because you can represent data types differently on various
machines, cal | r pc requires both the type of the RPC argument
and a pointer to the argument itself (and, similarly, a type and
pointer for the result). Because the remote procedure requires
no argument, the input data type parameter of cal | r pc is

xdr _voi d. The first return parameter is xdr _u_I| ong, which
indicates that the result is of type unsi gned | ong. The second
return parameter is &user s, which is a pointer to the
destination of the type | ong result.

20 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

Using XDR routines
2.3.2.3

SR-2089 9.0

Lines 10, 16, and 19: If it completes successfully, cal | r pc
returns a 0; otherwise, it returns a nonzero value. The exact
meaning of the return codes is found in file <r pc/ cl nt . h>, and
is in fact an enumeration cast into an integer (type defined as
clnt_stat).

If cal | r pc gets no answer after trying several times to deliver a
message, it returns with an error code. The delivery mechanism
is UDP. Methods for adjusting the number of retries or for using
a different protocol require you to use the lower layer of the RPC
library, discussed in subsection 2.3.3, page 26.

In example 3, the RPC passes one value of type unsi gned

I ong. RPC handles arbitrary data structures, regardless of
different machines’ byte orders or structure layout conventions,
by converting them to a network standard called External Data
Representation (XDR) before sending them over the wire. The
process of converting from a particular machine representation
to XDR format is called serializing; the reverse process is called
deserializing. The type field parameters of cal | r pc and

regi st errpc can specify a built-in procedure (such as

xdr _u_l ong in example 3) or a user-supplied one. XDR has the
following built-in type routines:

xdr _bool () xdr _u_char ()

xdr _char () xdr _u_int()

xdr _enum() xdr _u_long()

xdr _int() xdr _u_short ()
xdr _I ong() xdr _voi d()

xdr _short () xdr _wrapstring()

An XDR routine returns a nonzero value (TRUE in the context of
C) if it completes successfully; otherwise, it returns a 0.

In addition to the built-in type routines, the following
prefabricated building blocks also exist:

xdr_array() xdr _poi nter () xdr _uni on()
xdr _bytes() xdr _reference() xdr_vector()
xdr _opaque() xdr _string()

Several of these routines are described in the following
paragraphs. All of them are described in appendix A, page 67.

Cray Research, Inc. 21

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

To send a variable-length array of integers, you could package
them as a structure, as follows:

struct varintarr {
i nt *dat a;
int arrlnth;
} arr;

You could then make the following RPC:

cal | rpc(host nane, PROGNUM VERSNUM PRCOCNUM
xdr _varintarr, &arr...);

The xdr _vari nt arr () routine is defined, as follows:

xdr_varintarr(xdrsp, arrp)
XDR *xdr sp;
struct varintarr *arrp;

return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, MAXLEN,
sizeof (int), xdr_int));

The xdr _ar r ay routine takes as parameters the XDR handle
(xdr sp), a pointer to the array (&ar r p—>dat a), a pointer to the
size of the array (&ar r p—>ar r | nt h), the maximum allowable
array size (MAXLEN), the size of each array element

(si zeof (i nt)), and an XDR routine for handling each array
element (xdr i nt).

If the size of the array is known in advance, you can use
xdr _vect or, which serializes fixed-length arrays.

To send out an array of SI ZE integers, you could use the
following routine:

int int_array[Sl ZE];
xdr_intarr(xdrsp, intarr)
XDR *xdr sp;
int intarr[];

return (xdr_vector(xdrsp,intarr, Sl ZE, si zeof (int),xdr_int));

22 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

XDR always converts quantities to 4-byte multiples when
serializing. Thus, if either of the previous examples involved
characters instead of integers, each character would occupy 32
bits. That is the reason for the XDR routine xdr _byt es, which
is like xdr _ar r ay, except that it packs characters. The

xdr _byt es routine has four parameters, which are similar to
the first four parameters of xdr _ar r ay. For null-terminated
strings, there is also the xdr _st ri ng routine, which is the same
as xdr _byt es without the length parameter. On serializing,
xdr_string() gets the string length from strl en(); on
deserializing, it creates a null-terminated string.

The following code shows a user-defined type routine in which
you send the structure

typedef struct sinple {
int a;
short b;

} sinple;

and call cal | r pc, as follows:

cal | rpc(host nane, PROGNUM VERSNUM PRCCNUM
xdr_sinmple, &sinple ...);

Write xdr _si npl e(), as follows:

#i ncl ude <rpc/rpc. h>

xdr _si npl e(xdrsp, sinplep)
XDR *xdr sp;
struct sinple *sinplep;

{
if (!xdr_int(xdrsp, &sinplep—>a))
return (0);
if (!xdr_short(xdrsp, &sinplep—>b))
return (0);
return (1);
}

Example 5 calls the previously written xdr _si npl e(), as well
as the built-in functions xdr _st ri ng and xdr _r ef er ence, to
dereference pointers.

SR-2089 9.0 Cray Research, Inc. 23

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

Example 5:

t ypedef struct final exanple {

char *string;

struct sinple *sinplep;

} final exanpl e;

xdr _fi nal exanpl e(xdr sp,
XDR *xdr sp;

struct final exanple *final p;

if (!'xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (0);

if (!'xdr_reference(xdrsp, &finalp—>sinplep,
si zeof (struct sinple), xdr_sinple))

return (0);
return (1);

final p)

XDR memory allocation
2.3.24

24

By using xdr _r ef er ence instead of merely calling

xdr _si npl e(), you yield the burden of allocating and freeing
storage for the referenced structure to the RPC library. If

xdr _si npl e() were used, you would be forced to provide code
for these memory management functions.

Besides performing input and output operations, XDR routines
also perform memory allocation. This is why the second
parameter of xdr _ar r ay is a pointer to an array, rather than
the array itself. If the second parameter is NULL, xdr _arr ay
allocates space for the array and returns a pointer to it, putting
the size of the array in the third parameter. As an example,
consider the following XDR routine, xdr _chararr 1(), which
deals with a fixed array of bytes with length SI ZE.

xdr_chararr1(xdrsp, chararr)

XDR *xdr sp;
char chararr[];

char *p;
int |en;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

p = chararr;
| en = Sl ZE;
return (xdr_bytes(xdrsp, &p, & en, SIZE))

}

It might be called from a server, as follows:

char chararr|[Sl ZE] ;
svc_getargs(transp, xdr_chararrl, chararr);

In this case, char arr has already allocated space. If you want
XDR to do the allocation, you must rewrite this routine in the
following way:

xdr _chararr2(xdrsp, chararrp)
XDR *xdr sp;
char **chararrp;

{

int |en;

|l en = S| ZE;

return (xdr_bytes(xdrsp, charrarrp, & en, SIZE));
}

Then the RPC might look like this:

char *arrptr;

arrptr = NULL;

svc_getargs(transp, xdr_chararr2, &arrptr);
/ *

* use the result here

*/

svc_freeargs(transp, xdr_chararr2, &arrptr);

After the character array has been used, you can free it by using
svc_freeargs. Inthe xdr _fi nal exanpl e() routine shown in
example 5, imagine that fi nal p—>stri ng was NULL in the
following call:

svc_getargs(transp, xdr_final exanple, & inalp);

The svc_get ar gs call is described in the following subsection.
To free the array allocated to hold f i nal p—>st ri ng, you could
issue the following call:

svc_freeargs(xdrsp, xdr_final exanple, &finalp);

If fi nal p—>stringis NULL, this call frees nothing. The same is
true for f i nal p—>si npl ep.

SR-2089 9.0 Cray Research, Inc. 25

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

To summarize, each XDR routine is responsible for serializing,
deserializing, and allocating memory. When an XDR routine is
called from cal | r pc, the serializer is used; when the routine is
called from svc_get ar gs, the deserializer is used; when it is
called from svc_fr eear gs, the memory deallocator is used.

Lowest RPC layer In the high and intermediate layers, RPC handles many details

2.3.3 automatically for you. This subsection explains how you can
change the defaults of routines by using the lowest layer of the
RPC library. It is assumed that you are familiar with sockets
and the system calls for dealing with them. If you are not, see
socket (2).

You can use the lowest layer of RPC under various conditions.
First, you might need to use TCP. The higher and intermediate
layers use UDP, which might restrict RPCs to 8 Kbytes of data.
Using TCP permits calls to send long streams of data (for an
example, see subsection 2.3.3.4, page 34). Second, you might
want to allocate and free memory while serializing or
deserializing with XDR routines. No call at the higher or
intermediate level exists to let you free memory explicitly (for
more explanation, see subsection 2.3.2.4, page 24). Third, you
might need to perform authentication on either the client or
server side by supplying credentials or verifying them (see the
explanation in section 3, page 53).

Registering in the lowest The server for the nuser s program shown in example 6 uses a
layer lower layer of the RPC package but performs the same function
2.3.3.1 as the server in example 3, which uses r egi st err pc.

26 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

Example 6:

1 #i ncl ude <stdio. h>

2 #i ncl ude <rpc/rpc. h>

3 #include <rpcsvc/rusers. h>

4 mai n()

5

6 SVCXPRT *transp

7 int nuser();

8 transp=svcudp_creat e(RPC_ANYSOCK) ;

9 if (transp == NULL){
10 fprintf(stderr, “can’t create an RPC server\n”);
11 exit(1);

12 }

13 prmap_unset (RUSERSPROG, RUSERSVERS) ;

14 if (!svc_register(transp, RUSERSPROG RUSERSVERS

15 nuser, | PPROTO UDP)) {

16 fprintf(stderr, “can’'t regi ster RUSER service\n");
17 exit(1);

18 }

19 svc_run(); /* never returns */
20 fprintf(stderr, “should never reach this point\n”);
21 }
22 nuser(rqstp, tranp)
23 struct svc_req *rqstp;
24 SVCXPRT *transp
25 {
26 unsi gned | ong nusers;
27 switch (rgstp—>rq_proc) {
28 case NULLPROC:
29 if (!'svc_sendreply(transp, xdr_void, 0)) {
30 fprintf(stderr, “can’'t reply to RPC call\n")
31 return;
32 }
33 return;
34 case RUSERSPROC NUM
35 /*

36 * code here to compute the number of users

37 * and put in variable nusers

38 */

39 if (!svc_sendreply(transp, xdr_u_long, &nusers) {
40 fprintf(stderr, “can’'t reply to RPC call\n");
41 return,
42 }
43 return;
44 defaul t:
45 svcerr_noproc(transp);
46 return;
47 } o}

SR-2089 9.0 Cray Research, Inc.

27

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

The following text explains the RPC portions of the server source
code in example 6.

Lines 6 through 11: First, the server gets a transport handle,
which is used for sending out and replying to RPC messages.
This example uses svcudp_cr eat e to get a UDP handle. If you
require a reliable protocol, call svct cp_cr eat e instead. If the
argument to svcudp_cr eat e is RPC_ANYSOCK (as in the
example), the RPC library creates a socket on which to send out
RPCs; otherwise, svcudp_cr eat e expects its argument to be a
valid socket number. If you specify your own socket, it can be
bound or unbound. Ifitis bound to a port, the port numbers of
svcudp_creat e and cl nt udp_cr eat e (the low-level client
routines) must match.

When you specify RPC_ANYSOCK for a socket or give an unbound
socket, the system determines port numbers in the following
way:

1. When a server starts up, it advertises to a portmapper
daemon on its local machine.

2. The server-side portmap daemon picks a port number for the
RPC procedure if the socket specified as a parameter to
svcudp_cr eat e is not already bound.

3. On the client side, when the cl nt udp_cr eat e call is made
with an unbound socket, the system queries the portmapper
on the machine to which the call is being made, and it gets
the appropriate port number.

4. If the portmapper is not running on the server side, or has no
port that corresponds to the RPC, the RPC fails.

You can make RPCs to the portmapper yourself. The
appropriate procedure numbers are in include file
<rpc/ pmap_prot. h>

Lines 13 through 17: After creating a service transport handle,
(SVCXPRT) , the next step is to call pmap_unset so that, if the
nuser s server crashed earlier, any previous trace of it is erased
before restarting. More precisely, pmap_unset erases the entry
for RUSERSPROG from the portmapper’s tables.

28 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

SR-2089 9.0

Finally, the program number for nuser s is associated with the
nuser routine. The final argument to svc_r egi st er is usually
the protocol being used, which, in this case, is | PPROTO_UDP.
Notice that, unlike r egi st err pc, no XDR routines are involved
in this registration process. Also, registration is done on the
program, rather than procedure, level.

Lines 28 through 46: The nuser routine must call and dispatch
the appropriate XDR routines, based on the procedure number.

The nuser routine handles three conditions. First, procedure
NULLPRQOC (currently 0) returns without arguments. You can use
this as a simple test for detecting whether a remote program is
running. Second, nuser checks for valid procedure numbers.
Third, svcerr_nopr oc, which is the default, is called to handle
the error.

The user service routine serializes the results and returns them
to the RPC caller through svc_sendr epl y. The first parameter
of the service routine is the SVCXPRT handle, the second is the
XDR routine, and the third is a pointer to the data to be
returned.

Not illustrated in example 6 is how a server handles an RPC
program that passes data. In example 7, a procedure,
RUSERSPROC_BQOQL, is added. This procedure has an argument,
nuser s, and returns TRUE or FALSE if the number of users
logged on equals the number specified by nuser s. The relevant
routine is svc_get ar gs, which takes an SVCXPRT handle, the
XDR routine, and a pointer to the destination for the return
values.

Cray Research, Inc. 29

Remote Procedure Call (RPC) Programming [2]

Remote Procedure Call (RPC) Reference Manual

Example 7:

case RUSERSPROC BOOL: ({

int bool ;

unsi gned nuser query;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);

return;
}
/ *
* code to set nusers = number of users
*/
if (nuserquery == nusers)
bool = TRUE;
el se

bool = FALSE
if (!svc_sendreply(transp, xdr_bool, &bool){
fprintf(stderr, “can’'t reply to RPC call\n");

exit(1);
}
return;
}
Calling in the lowest layer When you use cal | r pc, you have no control over the RPC
2.3.3.2 delivery mechanism or the socket used to transport the data. To
illustrate the layer of RPC that lets you adjust these parameters,
consider example 8, which contains code to call the nusers
service.
Example 8:
30 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

1 #include <stdio. h>

2 #include <rpc/rpc. h>

3 #i ncl ude <rpcsvc/rusers. h>

4 #include <sys/socket. h>

5 #i ncl ude <sys/tine. h>

6 #include <netdb. h>

7 mai n(argc, argv)

8 int argc;

9 char **argv;

10 {

11 struct hostent *hp

12 struct tineval pertry tineout, total tinmeout;

13 struct sockaddr i n server_addr

14 int addrlen, sock = RPC_ANYSQOCK;

15 regi ster CLIENT *client;

16 enum clnt_stat clnt_stat;

17 unsi gned | ong nusers;

18 if (argc < 2) {

19 fprintf(stderr, "usage: nusers hostnane\n”);
20 exit(-1);
21 }
22 if ((hp = gethostbynanme(argv[1])) == NULL) {
23 fprintf(stderr, “can’'t get addr for %\n”,argv[1]);
24 exit(-1);
25 }
26 pertry timeout.tv_sec = 3;
27 pertry_timeout.tv_usec = O;
28 addrlen = sizeof (struct sockaddr_in);

29 bzero ((char*) &server_addr, sizeof (server_addr));
30 bcopy(hp—>h_addr, (caddr_t) &server_addr. si n_addr
31 hp—>h_I engt h) ;

32 server_addr.sin famly = AF_I NET

33 server_addr.sin_port = 0;

34 if ((client = clntudp_create(&server_addr, RUSERSPROG
35 RUSERSVERS, pertry_timeout, &sock)) == NULL) {
36 clnt_pcreateerror(“clntudp_create”);

37 exit(-1);

38 }

39 total tineout.tv_sec = 20;
40 total tineout.tv_usec = O;
41 clnt_stat = clnt_call(client, RUSERSPROC NUM xdr_void,
42 0, xdr_u_long, &nusers, total tineout);
43 if (clnt_stat != RPC _SUCCESS) ({
44 clnt_perror(client, “rpc”);
45 exit(-1);
46
47 cl nt_destroy(client);
48 cl ose(sock);
49 exit(0)

50 }

SR-2089 9.0 Cray Research, Inc. 31

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

The following text explains the RPC portions of the client source
code in example 8.

Lines 34 through 37: The client pointer is encoded with the
transport mechanism. The cal | r pc routine uses UDP; thus, it
calls cl nt udp_cr eat e to get a client pointer. The

cl ntudp_cr eat e parameters are the server address, the
program number, the version number, a time-out value (between
tries), and a pointer to a socket. The final cl nt _cal | argument
(line 41) is the total time to wait for a response. Thus, the
number of tries is the cl nt _cal | time-out divided by the

cl ntudp_cr eat e time-out.

To get TCP/IP and to make a stream connection, the call to
cl ntudp_cr eat e is replaced with the following call to
clnttcp_create:

clnttcp_create(&server_addr, prognum versnum &socket,
i nput si ze, outputsize);

There is no time-out argument; instead, you must specify the
receive (i nput si ze) and send (out put si ze) buffer sizes. When
the cl ntt cp_cr eat e call is made, a TCP connection is
established. All RPCs using that client handle use this
connection. (On the server side of an RPC using TCP,
svcudp_cr eat e is replaced by svct cp_create.)

Lines 41 through 42: The low-level version of cal | r pc is

clnt _call. Thecl nt _cal | parameters are a client pointer
(rather than a host name), the procedure number, the XDR
routine for serializing the argument, a pointer to the argument,
the XDR routine for deserializing the return value, a pointer to
the destination for the return value, and the number of seconds
to wait for a reply.

Line 47: The cl nt _dest r oy call deallocates any space
associated with the client handle, but it closes the socket
associated with the client handle only if the RPC library opened
it. If a user opened the socket, it stays open because, if multiple
client handles are using the same socket, you can close one
handle without destroying the socket that other handles are
using.

32 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Remote Procedure Call (RPC) Programming [2]

struct CLIENT *cp;

char *host nane;
unsi gned i nt prog;
unsi gned int vers;
char *protocol;

The cl nt _cr eat e interface greatly simplifies the method for
accessing the low-level RPC features. Like cl nttcp_create
and cl ntudp_creat e, cl nt _cr eat e returns a pointer to a
client structure. However, cl nt _cr eat e removes much of the
work associated with the other two calls by allowing you to pass
in the host name and protocol type as parameters of type
character pointer (char *).

The syntax of the cl nt _cr eat e call is as follows:

/* hostnane string */

/* the program nunmber */

/* the version nunmber */

[* currently “udp” or “tcp” */

cp = clnt_create(hostnane, prog, vers, protocol);

Using this interface, lines 22 through 35 of example 8 could be
replaced by the following line:

if ((client = clnt_create(argv[l], RUSERSPROG RUSERSVERS, “udp”)) == NULL)

{

RPC_HOSTUNKNOWN;
RPC_SYSTEMERR;
RPC_UNKNOWNPROTO,

Select processing
2.3.3.3

SR-2089 9.0

If a TCP delivery mechanism were preferred, string t cp would
replace string udp in this call.

If cl nt _creat e fails, it returns the value NULL; the error can be
identified with a call to cl nt _pcreateerror. clnt_create
can fail for the following reasons:

/* host not known by the system */
/* host not in Internet Address Fanily */
/* unknown protocol...not “udp” or “tcp” */

Suppose a routine is processing RPC requests while performing
another activity. If the other activity involves periodically
updating a data structure, the process can set an alarm signal
before calling svc_run. But if the other activity involves
waiting on a file descriptor, the svc_r un call will not work.
Example 9 shows the code for svc_run.

Cray Research, Inc. 33

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

Example 9:

voi d
svc_run()
{
fd_set readfds;
extern int errno;
for (;;) {
readf ds = svc_fdset;
switch (select(32, & eadfds, NULL, NULL, NULL)) {

case —1:
if (errno == EINTR)
conti nue;
perror(“select”);
return;
case O:
br eak;
defaul t:
svc_getregset (& eadf ds);
}
}
}
You can bypass svc_r un and call svc_getreq (or
svc_getregset) yourself. To do so, you must know only the file
descriptors of the sockets associated with the programs for which
you are waiting. Thus, you can have your own sel ect (2), which
waits on both the RPC socket and your own descriptors.
Note: svc_f dset is a global bit mask of all file descriptors
that RPC is using for services. It can change any time an
RPC library routine is called. Descriptors are constantly
being opened and closed (for example, for TCP connections).
TCP processing In example 10, the initiator of the snd() RPC takes its standard
2.3.3.4 input and sends it to server r cv(), which prints it on standard

output. The RPC uses TCP. This example also illustrates an
XDR procedure that behaves differently on serialization than on
deserialization.

34 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Remote Procedure Call (RPC) Programming [2]

Example 10:
/*
* The xdr routine:
* on decode
* on encode, read fromthe file,
*
* Returns 1 if successfu
* Returns O if an xdr failure occurs
* Exits if a fread or fwite fails.
*

/

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
xdr _rcp(xdrs, fp)
XDR *xdrs;

FILE *fp;

{

unsi gned | ong si ze;
char buf[BUFSI Z] ;
char *p;

if (xdrs—>x_op == XDR _FREE) {

return(l);
}
while (1) {
i f (xdrs—>x_op == XDR _ENCODE) {
if ((size = fread(buf, sizeof(char), BUFSIZ, fp) == 0)
&& ferror(fp)) {
fprintf(stderr, “can’'t fread”\n");
exit(1);
}
(continued)

read fromthe network, wite to the file
wite to the network

SR-2089 9.0

Cray Research, Inc.

35

Remote Procedure Call (RPC) Programming [2]

Remote Procedure Call (RPC) Reference Manual

}
p = buf;
/* On ENCODE, this operationis a “wite to network”
* On DECODE, this operation is a “read from network”
*/
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ)) {
return(0); /* an XDR failure */
}
if (size == 0) { /* Normal exit */
return(l);
}
i f (xdrs—>x_op == XDR_DECODE) {
if (fwite(buf, sizeof(char), size, fp) = size) {
fprintf(stderr, “fwite error\n”);
exit(1);
}
}
} /* end while */
}
/ *
* The sender routines
*/
#i ncl ude <stdio. h>
#i ncl ude <netdb. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/tinme. h>
int callrpctcp();
mai n(argc, argv)
int argc;
char **argv;
{
int err;
if (argc < 2) {
fprintf(stderr, “usage: % servernanme\n”,argv[O0]);
exit(1l);
(continued)
36 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Remote Procedure Call (RPC) Programming [2]

}
if ((err = callrpctcp(argv[l1l], RCPPROG RCPPROC FP, RCPVERS,
xdr_rcp, stdin, xdr_void, 0) '=0)) {
clnt_perrno(err);
fprintf(stderr, “can’'t nmake the RPC call\n");
exit(1);
}
}
cal I rpctcp(host, prognum procnum versnum inproc, in, outproc, out)
char *host;
i nt prognum
i nt procnum
i nt versnum
xdr _proc_t inproc;
char *in;
xdr _proc_t out proc;
char *out;
{
struct sockaddr _in server_addr;
i nt sock = RPC_ANYSCCK;
enumclnt _stat client_stat;
struct hostent *hp;
regi ster CLIENT *client;
struct tineval total tineout;
if ((hp = gethostbynane(host)) == NULL) {

fprintf(stderr,
exit(1);
}

bzero((char*) &server_addr,
(caddr _t) &server _addr. sin_addr,
= AF_| NET;

bcopy(hp—>h_addr,
server_addr.sin_famly
server_addr.sin_port

if ((client

perror(“rpctcp_create”);

clnttcp_create(&server_addr,
&sock, BUFSIZ, BUFSI Z))

“can’t get address for "%’ \n”, host);

si zeof (server _addr));
hp—>h_l engt h) ;

prognum versnum

NULL) {

exit(1);
}
total tineout.tv_sec = 20;
total tineout.tv_usec = O;
(continued)
SR-2089 9.0 Cray Research, Inc. 37

Remote Procedure Call (RPC) Programming [2]

Remote Procedure Call (RPC) Reference Manual

client_stat = clnt_call(client,

out proc, out,
clnt_destroy(client);
return((int)client_stat);

}

/*
* The receiving routines
*/

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>

rcp_service(rqgstp, transp)
regi ster struct svc_req *rqstp;
regi ster SVCXPRT *transp;

{
switch (rgstp—>rq_proc) {

case NULLPROC:
fprintf(stderr,

}

return;

total _tineout);

mai n()
{
regi ster SVCXPRT *transp;
if ((transp = svctcp_create(RPC_ANYSOCK, BUFSI Z, BUFSI Z)) == NULL) {
fprintf(stderr, “svctcp _create: error\n”);
exit(1);
}
pmap_unset (RCPPROG, RCPPRCC) ; /* renmove any old entry */
if (!svc_register(transp, RCPPROG RCPVERS
rcp_service, |PPROTO TCP)) {
fprintf(stderr, “svc_register: error\n”);
exit(1l);
}
svc_run(); /* should never return */
fprintf(stderr, “svc_run should not return, but it did/l\n");
}

if (!svc_sendreply(transp,

procnum inproc, in,

xdr_void, 0)) {
“err: rcp NULL service\n”);

(continued)

38 Cray Research, Inc.

SR—-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

case RCPPROC _FP:
if (!svc_getargs(transp, xdr_rcp, stdout)) {

}

if (!svc_sendreply(transp, xdr_void, 0)) {

svcerr_decode(transp);
return;

fprintf(stderr, “can’t send reply\n”);

}
return;
def aul t:
svcerr_noproc(transp);
return;
} /* end switch */
}
Callback Occasionally, it is useful to have a server become a client and
proc essing make an RPC back to the process that is its client. This is called
94 callback processing. An example of its use is remote debugging,

) in which the client is a window system program and the server is
a debugger running on the remote machine. Usually, the user
clicks a mouse button at the debugging window, which brings up
a debugger command and then makes an RPC to the server
(where the debugger is actually running), telling it to execute

SR-2089 9.0 Cray Research, Inc. 39

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

40

that command. However, when the debugger hits a breakpoint,
the roles are reversed, and the debugger must make an RPC to
the window program, informing the user that it has reached a
breakpoint.

To do callback processing, you need a program number on which
to make the RPC. Because this will be a dynamically generated
program number, it should be in the transient range,
0x40000000 to Ox5fffffff. In example 11, the gettransi ent
routine returns a valid program number in the transient range
and registers it with the portmapper. It talks only to the
portmapper that is running on the same machine as the
gettransi ent routine itself. The call to pmap_set is a test and
set operation; that is, it indivisibly tests whether a program
number has already been registered, and, if it has not, reserves
it. This prevents more than one process from reserving the same
program number. On return, the sockp argument contains a
socket that can be used as the argument to an svcudp_create
or svct cp_creat e call.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Remote Procedure Call (RPC) Programming [2]

Example 11:

<stdi o. h>

#i ncl ude <rpc/rpc. h>

#i ncl ude <sys/socket. h>

gettransi ent(proto, vers, sockp)
int proto, vers, *sockp

{

#i ncl ude

static int prognum = 0x40000000;
int s, len, socktype;
struct sockaddr _in addr;
swi tch(proto) {
case | PPROTO _UDP:
sockt ype = SOCK DGRAM
br eak;
case | PPROTO_TCP
socktype = SOCK_STREAM
br eak;
defaul t:
fprintf(stderr,
return O;

}

if (*sockp == RPC_ANYSOCK) {
if ((s = socket (AF_I NET,

perror(“socket”);
return (0);
}
*sockp = s;

}

el se
s = *sockp;

bzero ((char*) &addr

addr.sin_addr.s_addr = O;

addr.sin _famly = AF_| NET;

addr.sin_port = 0;

| en = sizeof (addr);

/*

* may be al ready bound,
*/

bi nd(s, &addr, |en);

i f (getsocknane(s, &addr
perror (“getsocknane”);
return (0);

}

whil e (!prap_set (prognumt+,
conti nue;

return (prognum-1);

“unknown pr ot oco

sockt ype,

si zeof (addr));

so don’t check

& en)< 0) {

Vers,

type\n”);

0)) <0) {

for error

proto, addr.sin_port))

SR-2089 9.0

Cray Research, Inc. 41

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

The two programs in example 12 illustrate how to use the

get transi ent routine. The client makes an RPC to the server,
passing it a transient program number. The client then waits to
receive a callback from the server at that program number. The
server registers the program EXAMPLEPROG so that it can
receive the RPC informing it of the callback program number.
Then at some random time (on receiving an ALRMsignal in this
example), it sends a callback RPC, using the program number it

received earlier.

Example 12:

/*

*

*/

client

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
i nt call back();

char host nane[256] ;
mai n(argc, argv)

int argc;
char **argv;

int x, ans, s;

SVCXPRT *xprt;

get host nane(host nane, si zeof (host nane));

s = RPC_ANYSCCK;

X = gettransient (1l PPROTO UDP, 1, &s);

fprintf(stderr, “client gets prognum %\ n", x);

if ((xprt = svcudp create(s)) == NULL) {

fprintf(stderr, “rpc_server: svcudp_create\n”);
exit(1l);

}

/* protocol is O — gettransient() does registering
*/
(void)svc_register(xprt, x, 1, callback, 0);
ans = cal Il rpc(host name, EXAMPLEPROG EXAMPLEVERS
EXAMPLEPROC CALLBACK, xdr_int, &x, xdr_void, 0);
if (ans !'= RPC_SUCCESS) ({
fprintf(stderr, “call: ”);
cl nt_perrno(ans);
fprintf(stderr, "\n");
exit(1)

(continued)

42

Cray Research, Inc.

SR—-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

}

sve_run();
fprintf(stderr, “Error: svc_run shouldn’t return\n”);

cal | back(rqgstp, transp)
regi ster struct svc_req *rqgstp;
regi ster SVCXPRT *transp;

{
switch (rgstp—>rqg_proc) }
case O:
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, “err: rusersd\n”);
exit(l);
}
exit(0);
case 1:
if (!svc_getargs(transp, xdr_void, 0)) {
svcerr_decode(transp);
exit(l);
}
fprintf(stderr, “client got callback\n");
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, “err: rusersd”);
exit(l);
}
}
}
/*
* server
*/

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude <sys/signal . h>
char *get newpr og();
char host name[256] ;
i nt docal | back();
int pnum /* program nunber for callback routine */
mai n(argc, argv)
int argc
char **argv;
{

(continued)

SR-2089 9.0 Cray Research, Inc. 43

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

get host nane(host nane, si zeof (host nane));
regi st err pc(EXAMPLEPROG, EXAMPLEVERS,
EXAMPLEPROC CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf(stderr, “server going into svc_run\n”);
si gnal (SI GALRM docal | back) ;
al arm(10) ;
svc_run();
fprintf(stderr, “Error: svc_run shouldn’t return\n”);
}
char *
get newpr og(pnunp)
char *pnunp;
{
pnum = *(int *)pnunp;
return NULL;
}
docal | back()
-
int ans;
ans = cal lrpc(hostnane, pnum 1, 1, xdr_void, 0,
xdr _void, 0);
if (ans '=0) {
fprintf(stderr, “server:\n");
cl nt _perrno(ans);
fprintf(stderr, "\n");
}
}
Other uses of the The RPC protocol is intended for use in calling remote
RPC protoc ol procedures: each call message is matched with a response
95 message. However, the protocol itself is a message-passing

protocol with which protocols other than RPC can be
implemented. For example, you can use the RPC message
protocol for batching (or pipelining) and broadcast RPC.

44 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

Batching
2.5.1

SR-2089 9.0

The RPC architecture is designed so that clients send a call
message and wait for servers to reply that the call succeeded.
This implies that clients do not compute while servers are
processing a call. This is inefficient if the client does not want or
need an acknowledgment for every message sent. In such cases,
clients can use RPC batch facilities to continue computing while
waiting for a response.

Batching allows a client to send an arbitrarily large sequence of
call messages to a server; reliable byte stream protocols (such as
TCP/IP) are used for transport. In the case of batching, the
client never waits for a reply from the server, and the server
does not send replies to batch requests. A nonbatched RPC
command usually terminates a sequence of batch calls to flush
the pipeline (with positive acknowledgment).

Because the server does not respond to every call, the client can
generate new calls in parallel with the server’s execution of
previous calls. Furthermore, the TCP/IP implementation can
buffer up many call messages and can send them to the server in
one W i t e(2) system call. This overlapped execution greatly
decreases the interprocess communication overhead of the client
and server processes and the total elapsed time required for a
series of calls.

Assume that a string-rendering service (such as a window
system) has two similar calls: one renders a string and returns
void results; the other renders a string and remains silent. The
service (using the TCP/IP transport) might look like example 13.

Cray Research, Inc. 45

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

Example 13:
/*
* This is the file wi ndow. h
*/
#def i ne W NDOAWPROG (0x20100003) /* PROGNUM wit hin the USER range */

#defi ne W NDOWERS (1)
/* W ndow ng Procedures */

#def i ne RENDERSTRI NG (1)
#def i ne RENDERSTRI NG _BATCHED (2)

/* end of “w ndow. h” */

/*
* This is the file w ndow svc.c
*/

#i ncl ude <stdi o. h>
#i ncl ude <rpc/rpc. h>
#i ncl ude “w ndow. h”

voi d wi ndowdi spatch();

mai n()
{
SVCXPRT *transp;

transp = svctcp_creat e(RPC_ANYSOCK, 0, 0);

if (transp == NULL) {
fprintf(stderr, “can’'t create the RPC server\n”);
exit(1l);

}

/* renove any old mapping that nay be left over */
prmap_unset (W NDOWPROG, W NDOWERS) ;
if (!svc_register(transp, W NDOAPROG W NDOAERS,

wi ndowdi spat ch, | PPROTO TCP)) {
(continued)

46 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Remote Procedure Call (RPC) Programming [2]

fprintf(stderr, “can’'t register WNDOW service\n”);
exit(1);
}
svc_run(); /* never returns */
fprintf(stderr, “svc_run should never return, but it did!\n");
}
voi d
wi ndowdi spat ch(rqgstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
char *s = NULL;
switch (rqgstp—>rq_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, “can’t reply to NULL RPC call\n");
}
return;
case RENDERSTRI NG
if (!svc_getargs(transp, xdr_wapstring, &s)) {
fprintf(stderr, “can’t decode RENDERSTRI NG args\n”);
/[* tell the caller they nade an error */
svcerr_decode(transp);
br eak;
}
/* Code here to actually render the string... */
/* Now send reply to the caller...*/
(continued)
SR-2089 9.0 Cray Research, Inc. 47

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, “can’t reply to RPC call\n");
return;
br eak;

case RENDERSTRI NG_BATCHED:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, “can’t decode BATCHED args\n”);

/* since batched, silent in face of protocol errs */

br eak;

}

/* Code here to actually render the string... */
/* Since batched, send NOreply to the caller...*/
br eak;

defaul t:
svcerr_noproc(transp);
return;

} /* end switch */

/* Free the string allocated when the argunments were decoded... */

svc_freeargs(transp, xdr_wrapstring, &s);

The service could have one procedure that takes the string and a
Boolean to indicate whether the procedure should respond.

For a client to take advantage of batching, the client must
perform RPCs on a TCP-based transport, and the actual calls
must have the following attributes:

« The XDR routine result must be 0 (NULL).
* The time-out of the RPC must be 0.

48 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

Example 14 shows a client that uses batching to render a series
of strings; the batching is flushed when the client gets a null
string.

Example 14:

#i ncl ude <stdi o. h>

#i ncl ude <rpc/rpc. h>
#i ncl ude “w ndow. h”

#i ncl ude <sys/tine. h>

mai n(argc, argv)
int argc;
char **argv;

{
struct tinmeval total tineout;
regi ster CLIENT *client;
enumclnt_stat client _stat;
char buf[1000];
char *s = buf;
client = clnt _create(argv[1l], WNDONPROG W NDOWERS, “tcp”);
if (client == NULL) {
fprintf(stderr, “clnt_create [%] failed\n”,argv[1]);
exit(1);
}
total tinmeout.tv_sec = O;
total timeout.tv _usec = 0;
/* Somewhat dangerous...the scanf() could overflow the buffer */
while (scanf("%”, s) != EOF) {
client_stat = clnt_call(client, RENDERSTRI NG_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total _tineout);
if (client_stat != RPC _SUCCESS) {
clnt_perror(client, “batched rpc”);
exit(-1);
}
} /* end while */
/* Now flush the pipeline */
total timeout.tv_sec = 20;
(continued)
SR-2089 9.0 Cray Research, Inc. 49

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

client_stat = clnt_call(client, NULLPROC,
xdr _void, NULL, xdr_void, NULL, total _timeout);

if (client_stat !'= RPC SUCCESS) {
clnt_perror(client, “rpc”);
exit(-1);

}

/* all done...now clean up */

clnt_destroy(client);

Because the server sends no message, the clients cannot be
notified of any failures that occur. Therefore, clients must
handle errors on their own.

Example 14 was completed to render all 2000 lines in the

/ et c/terntap file. The rendering service did nothing but
delete the lines. The example was run (by Sun Microsystems) in
the following configurations with the following results:
Configuration Results

Machine to itself, regular RPC 50 seconds

Machine to itself, batched RPC 16 seconds

Machine to another, regular RPC 52 seconds

Machine to another, batched RPC 10 seconds

Running f scanf (see scanf (3)) on file / et ¢/ t er ntap requires
only 6 seconds. These timings show the advantage of protocols
that allow for overlapped execution, although these protocols are
often difficult to design.

Broadcast RPC In broadcast protocols based on RPC, the client sends a

252

50

broadcast packet to the network and waits for numerous replies.
Broadcast RPC uses unreliable, packet-based protocols (such as
UDP/IP) for transport. Servers that support broadcast protocols
respond only when the request is processed successfully, and
they are silent when errors occur.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Remote Procedure Call (RPC) Programming [2]

The portmapper is a daemon that converts RPC program
numbers into DARPA protocol port numbers (see port map(8)).
You cannot do broadcast RPC without the portmapper, port map,
in conjunction with standard RPC protocols. The following are
the main differences between broadcast RPC and normal RPC:

« Normal RPC expects one answer; broadcast RPC expects many
answers (one or more answers from each responding machine).

¢ Only packet-oriented (connectionless) transport protocols such
as UDP/IP can support broadcast RPC.

» The implementation of broadcast RPC treats all unsuccessful
responses as garbage by filtering them out. Thus, if a version
mismatch exists between the broadcaster and a remote
service, the user of broadcast RPC never knows.

« All broadcast messages are sent to the portmap port. Thus,
only services that register themselves with their portmapper
are accessible through the broadcast RPC mechanism.

» Broadcast request sizes are limited to the maximum
transmission unit (mtu) of the local network.

The following is a synopsis of broadcast RPC:

#i ncl ude <rpc/ pmap_clnt. h>

enumcl nt_stat clnt_stat;

clnt_stat =

cl nt _broadcast(prog, vers, proc, xargs, argsp, xresults,
resultsp, eachresult)

u_l ong prog; /* program nunber */

u_Il ong vers; /* version nunber */

u_l ong proc; /* procedure nunber */

xdr proc_t xargs; [* xdr routine for args */
caddr _t ar gsp; /* pointer to args */

xdr proc_t xresul ts; /* xdr routine for results */
caddr _t resul tsp; /* pointer to results */

bool _t (*eachresult)(); /* call with each result obtained*/

The eachresul t () routine is called each time a valid result is
obtained. It returns the following Boolean, which indicates
whether the client wants more responses:

bool _t done;

done = eachresult(resultsp, raddr)

caddr _t resultsp

struct sockaddr _in *raddr; /* addr of respondi ng machi ne */

SR-2089 9.0 Cray Research, Inc. 51

Remote Procedure Call (RPC) Programming [2] Remote Procedure Call (RPC) Reference Manual

52

If done is TRUE, broadcasting stops, and cl nt _br oadcast
returns successfully; otherwise, the routine waits for another
response. The request is rebroadcast after a few seconds of
waiting. If no responses return, the routine returns with
RPC_TI MEDQUT. To interpret cl nt _st at errors, feed the error
code to cl nt _perrno.

Cray Research, Inc. SR-2089 9.0

