Authentication [3]

The RPC protocol includes a slot for authentication parameters
on every call. The type of authentication used by the server and
client determines the contents of the authentication parameters.
A server can support the following types of authentication at
once:

e AUTH_DES passes encrypted time-stamp information, allowing
the client and server to perform mutual verification and
authentication.

information, allowing the client and server to perform mutual

» AUTH_KERB passes encrypted Kerberos service ticket
verification and authentication.

« AUTH_NULL passes no authentication information (this is
called null authentication and is the default).

» AUTH_SHORT is a shorthand form of passing UNICOS style
credentials.

« AUTH_UNI X passes the UNICOS user ID, group ID, and group
lists with each call.

Authentication types are fully described in appendix E, page
165.

The RPC package on the server authenticates every RPC, and,
similarly, the RPC client package generates and sends
authentication parameters. The authentication subsystem of
the RPC package is open-ended; that is, numerous types of
authentication are easy to support. This section covers
UNICOS, Data Encryption Standard (DES), and Kerberos
authentication.

Authentication of caller to service and vice versa are provided
through call and reply messages. The call message has two
authentication fields: credentials and verifier. The reply
message has one authentication field, the response verifier.

SR-2089 9.0 Cray Research, Inc. 53



Authentication [3]

Remote Procedure Call (RPC) Reference Manual

Setting up
authentication
3.1

Null authentication
requirements
3.1.1

54

The RPC protocol specification uses the XDR language described
in appendix C, page 121. This protocol defines the
authentication structure to be the following opaque type:

enum aut h_f | avor {
AUTH_NULL =
AUTH _UNI X =
AUTH_SHORT =
AUTH _DES =
AUTH_KERB =
/* and npre to

|
TRWNREO

e defined */

b

struct opaque_auth {
union switch (enumauth_flavor) {
default: string auth_body<00>;
1

}s

Any opaque_aut h structure is an aut h_f | avor enumeration,
followed by a counted string whose bytes are opaque to the RPC
protocol implementation.

The interpretation and semantics of the data contained within
the authentication fields are specified by individual, independent
authentication protocol specifications.

If authentication parameters are rejected, the response message
contains information stating why they were rejected.

This subsection describes the requirements for null, UNICOS,
DES, and Kerberos authentication.

Often, calls must be made in which the client does not have to
verify the identity of the server, and the server does not have to
know the identity of the client. In this case, the aut h_f | avor
value (the discriminant of the opaque_aut h’s union) of the RPC
message’s credentials, verifier, and response verifier is
AUTH_NULL. The bytes of the aut h_body string are undefined.
The string length should be 0. Null authentication is the
default; when it is used, the server accepts and performs all
service requests.

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Authentication [3]

UNICOS authentication
requirements
3.1.2

DES authentication
requirements
3.1.3

SR-2089 9.0

Sometimes a server might want to limit its services to a
restricted set of users. One way of doing this is by using
UNICOS authentication. When UNICOS authentication is used,
the aut h_f | avor discriminant of the opaque_aut h structure
has the value AUTH _UNI X. The bytes of the aut h_body can then
be interpreted as an aut huni x_par ns structure, as defined in
appendix E, page 165. In addition to the user ID, other
information, including a time stamp, a machine name, the user’s
group ID, and a list of groups to which the user belongs, is sent
to the server. The server can use the data passed in the

aut huni x_par ns structure any way it chooses; that is, it can
use any of the fields selectively to allow or disallow services.

Unfortunately, nothing prevents malicious users from writing
whatever data they choose into the aut huni x_par ns structure
before it is sent to the server. Thus, it is very easy for a client to
deceive a server into believing it is servicing either a different
user or a user who has a different set of attributes.

DES authentication provides stricter security than does
UNICOS authentication, allowing a server to obtain a client
user’s identity with a very high degree of certainty. Moreover,
the client user can verify the identity of the server with whom it
is communicating. Although it is technologically possible to
deceive even DES authentication, to do so on a local subnet
requires a lot of computational resources.

DES authentication, which is sometimes called secure RPC,
requires that the keyser v(8) daemon be running on both server
and client machines. The administrator must have already
assigned each secure RPC user a public key/secret key pair in
the publ i ckey database. DES users must then register
themselves by using the keyser v process, either automatically,
by logging in with | ogi n(1), or manually, with the keyl ogi n(1)
command.

Note: Because the network information service (NIS)
manages the publ i ckey database, NIS must be configured
and running on the Cray Research system for DES
authentication to work. Moreover, the Cray Research system
must be in the same NIS domain as any host with whom DES
authentication will be used.

Cray Research, Inc. 55



Authentication [3]

Remote Procedure Call (RPC) Reference Manual

Kerberos
authentication
requirements
3.1.4

Client

authentication

3.2

clnt—>cl _auth

cl nt—>cl _auth

clnt—>cl _auth
status);

56

Kerberos authentication uses encrypted Kerberos service tickets
to provide more security than either UNICOS or DES
authentication. Kerberos authentication requires that the
Kerberos Enigma security package be installed on your system
and that the site have an ONC+ license. See the ONC+
Technology for the UNICOS Operating System, publication
SG-2169, for more information about ONC+. Users must obtain
a Kerberos service ticket by using the ki ni t (1) command prior
to using AUTH_KERB flavor RPC.

Servers using AUTH_KERB flavor RPC must register themselves
with the authentication software by using the svc_kerb_reg
library call. See the ker ber os_r pc(3) man page for more
information.

Suppose a caller creates a new RPC client handle, as in the
following command:

CLI ENT *cl nt;
clnt = clntudp_create(address, prognum versnum
wait, sockp)

By default, the type of authentication to use is set to NULL.
However, the RPC client can choose to use UNICOS, DES, or
Kerberos authentication by setting cl nt —>cl _aut h after
creating the RPC client handle.

For UNICOS authentication, the handle would be set as follows:
clnt—>cl _auth = aut huni x_create_defaul t();

If an authentication failure occurs, you can use the following
command instead:

aut huni x_create(host,uid, gid,|len,aup_gids);

For DES authentication, the handle would be set as follows:

aut hdes_creat e(servernane, credlife, &erver _addr, key) ;

For Kerberos authentication, the handle would be set as follows:

aut hker b_seccreat e(server, i nstance, real m wi ndow, ti nehost,

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual

Authentication [3]

Server

authentication
3.3

/~k
* An RPC service request
*/
struct svc_req {
u_long rq_prog;
u_long rq_vers;
u_long rq_proc;
struct opaque_auth
rq_cred,;

caddr _t rqg_clntcred,

b

/*

* Aut hentication information

*/

struct opaque_auth {
enumt oa_flavor;
caddr _t oa_base;
u_int oa_length;

s

SR-2089 9.0

See appendix A, page 67, for descriptions of arguments for
aut hdes_cr eat e and aut huni x_cr eat e.

People who develop RPC services have a more difficult time
dealing with authentication issues than those implementing
client applications, because the RPC package passes the service
dispatch routine a request that has an arbitrary authentication
style associated with it. Consider the fields of a request handle
passed to a service dispatch routine:

/* service program nunber */
/* service protocol vers_num */
/* desired procedure number */

/[* raw credentials fromwre */
/* credentials (read only) */

The r g_cr ed field is mostly opaque, except for the style of
authentication credentials, as in the following:

Mostly opaque to the progranmrer.

/* style of credentials */
/* address of nore auth stuff */
/* not to exceed MAX AUTH BYTES */

The RPC package makes the following guarantee to the service
dispatch routine:

Cray Research, Inc. 57



Authentication [3]

Remote Procedure Call (RPC) Reference Manual

58

» The request’s r g_cr ed field is well-formed. Thus, the service

implementer might inspect the request’s r q_cred. oa_f | avor
field to determine which style of authentication the caller
used. Ifrg_cred. oa_fl avor is AUTH_UNI X, the pointer
rg_cl nt cr ed could be cast to a pointer to an

aut huni x_par s structure. Ifrq_cred. oa_fl avor is
AUTH_DES, the pointer r g_cl nt cr ed could be cast to a pointer
to an aut hdes_cr ed structure. Ifrg_cred. oa_fl avor is
AUTH_KERB, the pointer r g_cl nt cr ed could be cast to a
pointer to an aut hker b_cl nt _cr ed structure. If the style is
not one of the styles that the RPC package supports, the
service implementer might also want to inspect the other
fields of r g_cr ed.

The request’s r g_cl nt cr ed field is either NULL or points to a
well-formed structure that corresponds to a supported style of
authentication credentials. If r g_cl nt cr ed is NULL, the
service implementer might want to inspect the other (opaque)
fields of r g_cr ed in case the service knows about a new type
of authentication that the RPC package does not.

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Authentication [3]

You can extend the remote users service example so that it
computes results for all users except user ID 16, as follows:

nuser (rqgstp, tranp)
struct svc_req *rqgstp;
SVCXPRT *transp;

struct aut huni x_parns *uni x_cr ed,;
unsi gned | ong nusers;
struct aut hdes_cred *des_cred;
struct authkerb clnt _cred *authkerb_cred;
int uid;
int gid,
int gidlen;
int gidlist[10];
/*
* we don’t care about authentication for null proc
*/
if (rgstp—>rqg_proc == NULLPRCC) {
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, “can’'t reply to RPC call\n");
exit(1);
}

return;

*

* now get the uid
*/
switch (rgstp—>rq_cred.oa flavor) {
case AUTH _UN X:
uni x_cred = (struct authunix_parns *)rqstp—>rq_cl ntcred;
uid = uni x_cred—>aup_ui d;
br eak;

}
/

(continued)

SR-2089 9.0 Cray Research, Inc. 59



Authentication [3] Remote Procedure Call (RPC) Reference Manual

case AUTH_DES:

des cred =
(struct authdes_cred *) rqgstp—>rqg_cl ntcred;
if (! netnanme2user(des_cred—>adc_ful | nane. nane,
&ui d, &gid, &gidlen, gidlist))

{
fprintf(stderr, “unknown user: %\n",
des_cred—>adc_f ul | nane. nane) ;
svcerr_systenerr(transp);
return;
}
br eak;

case AUTH _KERB:
aut hkerb _cred =
(struct authkerb_clnt_cred *)rqgstp—>rq_clntcred;
if (lauthkerb_getucred (rqstp, &uid, &gid, gidlen, gidlist)) {
fprintf (stderr, “unknown user:%\n”,
aut hker b_cred—>akc_ful | nane. pnane) ;
svcerr_systenerr(transp);
return,
}
br eak;
case AUTH NULL:
defaul t:
svcerr_weakaut h(transp);
return,
}
switch (rgstp—>rq_proc) {
case RUSERSPROC NUM
/ *
* Explicitly disallow user with UD 16
*/
if (uid == 16) {
svcerr_systenerr(transp);
return;
}
/ *
* code here to compute the number of users
* and put in variable nusers
*/
if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, “can’t reply to RPC call\n");
exit(l);
}
return;
def aul t:
svcerr_noproc(transp);
return;

60

Cray Research, Inc. SR-2089 9.0



Remote Procedure Call (RPC) Reference Manual Authentication [3]

You should note the following points:

It is customary not to check the authentication parameters
associated with NULLPROC (procedure number 0). This allows
any user to test for the presence of the server, simply by using
r pci nf o(8).

« If the authentication parameter’s type is not suitable for your
service, the server should call svcerr_weakaut h. For
example, if the client sent credentials of type AUTH_UNI X or
AUTH NULL, and the server required credentials of type
AUTH_DES, the server should call svcerr _weakaut h.

« The service protocol itself should return the status for access
denied. In the case of the previous example, the protocol does
not have such a status; therefore, the service primitive
svcerr_systemerr is called instead.

The last point underscores the relationship between the RPC
authentication package and the services; RPC deals only with
authentication and not with access control for individual
services. Each service must implement its own access control
policy and reflect that policy as return statuses in its protocol.

Record.marking When RPC messages are passed on top of a byte stream protocol
standard (such as TCP/IP), you should delimit one message from ano’ghgr
34 to detect and possibly recover from user protocol errors. This is
’ called record marking (RM). One RPC message fits into one RM
record.

A record is composed of one or more record fragments. A record
fragment consists of a 4-byte header, followed by 0 to 231-1 bytes
of fragment data. The bytes encode an unsigned binary number;
as with XDR integers, the byte order is from highest to lowest.
The number encodes two values: a Boolean that indicates
whether the fragment is the last fragment of the record (bit
value 1 implies that the fragment is the last fragment) and a
31-bit unsigned binary value that is the number of bytes in the
fragment’s data. The Boolean value is the high-order bit of the
header; the length is the 31 low-order bits.

Note: This record specification is not in XDR standard form.

SR-2089 9.0 Cray Research, Inc. 61






