Synopsis of RPC and XDR Routines [A]

aut h_destroy

aut hdes _create

This appendix summarizes the entry points into the RPC and
XDR system.

This macro destroys the authentication information associated
with aut h. Destruction usually involves deallocation of private
data structures. The use of aut h is undefined after

aut h_dest r oy is called.

Format:
voi d
aut h_destroy(aut h)
AUTH *aut h;

This routine creates and returns an RPC authentication handle
that contains the following DES authentication information:

Format:

AUTH * aut hdes_creat e(net nane, w ndow, syncaddr, deskeyp)

char *net nane
unsi gned w ndow,

struct sockaddr_in *syncaddr;

des_bl ock *deskeyp;

SR-2089 9.0

The net nane parameter is the network name of the server
process owner. If the server process is a root process, you can
derive the name by using the following declaration and call
(argument type is character pointer):

char net name [MAXNETNAMELEN] ;
host 2net nane(ser ver nane, r host nane, NULL) ;

r host nane is the host name of the machine on which the server
process (Ser ver nane) is running.

NULL specifies that the local domain name will be used.

If a user runs the server process, you can derive the name by
using the following declaration and call:

char net nane [MAXNETNAMELEN] ;
user 2net nane(server nane, ui d, NULL) ;

Cray Research, Inc. 67

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

aut hkerb_seccreate

68

ui d is the user ID of the user whose server name you are
requesting.

The wi ndow parameter is the lifetime (in seconds) for the
credential. You can use a credential only once within the
lifetime set by this parameter. The argument type is an
unsigned integer.

The syncaddr parameter is the network address of the host
with which the client must synchronize. Both client and server
must be using the same time. If you are sure that the client and
server are already synchronized (if, for example, both client and
server are running the Network Time Protocol (NTP)), you can
specify this argument as NULL. The argument type is pointer to
the sockaddr _i n structure (sockaddr _i n*).

The deskeyp parameter is the address of a DES encryption key
to use for encrypting time stamps and data. NULL indicates that
you should choose a random key. The ah_key field of the
authentication handle contains the encryption key. The
argument type is a pointer to the des_key structure
(des_key*).

This client side routine returns an RPC authentication handle
that enables the use of the Kerberos authentication system. If
the aut hker b_seccr eat e routine fails it returns NULL. For
more information see the ker ber os_r pc(3) man page.

Format:

AUTH *
aut huni x_seccreate(service, srv_inst, realm
wi ndow, tinehost, status)

char *service ;

char *srv_inst;

char *realm

u_int wi ndow,

char *ti mehost;

int status;

The ser vi ce parameter is the Kerberos principal name of the
service to be used.

The srv_i nst parameter is the instance of the service to be
called.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

aut hnone_create

aut huni x_create

aut huni x_create_defaul t

callrpc

SR-2089 9.0

The wi ndow parameter validates the client credential, with time
measured in seconds. The nt pd(8) daemon provides this
function on a Cray Research machine.

The t i mehost parameter is optional and does nothing.

The st at us parameter is also optional. If you specify st at us, it
is used to return a Kerberos error status code if an error occurs.

This routine creates and returns an RPC authentication handle
that passes no usable authentication information with each
RCP.

Format:

AUTH *
aut hnone_create()

This routine creates and returns an RPC authentication handle
that contains UNICOS authentication information.

Format:

AUTH *

aut huni x_create(host, uid, gid, len, aup_gids)
char *host;
int uid, gid, len, *aup_gids;

The host parameter is the name of the machine on which the
information was created. The ui d parameter is the user’s ID.
The gi d parameter is the user’s current group ID. The | en and
aup_gi ds parameters are counted arrays of groups to which the
user belongs.

This routine calls aut huni x_cr eat e with the default
parameters.

Format:

AUTH *
aut huni x_create_defaul t ()

This routine calls the remote procedure associated with the
program number (pr ognum, version number (ver snum, and
procedure number (pr ocnum on the machine, host .

Cray Research, Inc. 69

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

Format:

cal | rpc(host, prognum ver snum prochum i nproc, i n, out proc, out)

char *host;

u_l ong prognum versnum procnum
char *in, *out;

xdrproc_t inproc, outproc;

The i npr oc parameter encodes the procedure’s parameters, and
the i n parameter is the address of the procedure’s arguments.
The out pr oc parameter decodes the procedure’s results, and
the out parameter is the address of the destination location for
the results.

If it succeeds, this routine returns 0; if it fails, it returns the
value of enumeration cl nt _st at, cast to an integer. The

cl nt _perr no routine is handy for translating failure statuses
into messages.

Note: Calling remote procedures with this routine uses
UDP/IP as a transport; see cl nt udp_cr eat e, page 74, for
restrictions.

cl nt _br oadcast This routine is like cal | r pc, except that the call message is

broadcast to all locally connected broadcast nets. Each time it
receives a response, this routine calls eachr esul t (), which has
the following form:

eachresul t (out, addr)
char *out;
struct sockaddr _in *addr;

The out parameter is the same as out passed to

cl nt _broadcast, except that the remote procedure’s output is
decoded there; addr points to the address of the machine that
sent the results.

Format:

enum cl nt _st at
cl nt _broadcast (prognum versnum procnum inproc, in, outproc, out,
eachresul t)

70

u_l ong prognum versnum procnhun
char *in, *out;

xdrproc_t inproc, outproc;
resultproc_t eachresult;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

clnt_call

enum cl nt _st at
clnt _call(clnt, procnum

If eachresul t () returns 0, cl nt _br oadcast waits for more
replies; otherwise, it returns with appropriate status.

This macro calls the remote procedure pr ochumassociated with
the client handle, cl nt , which is obtained with an RPC client
creation routine such as cl nt udp_cr eat e.

Format:

i nproc, in, outproc, out, tout)

CLI ENT *clnt; |ong procnum
xdrproc_t inproc, outproc;

char *in, *out;
struct tinmeval tout;

clnt _create

cl nt _destroy

SR-2089 9.0

cl nt is the client handle, pr ocnumis the procedure number,

i nproc encodes the procedure’s parameters, i n is the address of
the procedure’s arguments, out pr oc decodes the procedure’s
results, out is the address of the destination location for the
results, and t out is the time allowed for results to return.

This routine returns a pointer to a CLI ENT structure. It allows
users to pass the host name and protocol type as parameters of
type character pointer.

Format:

struct CLIENT *cp

char *host nane;

unsi gned int prog;

unsi gned int vers;

char *pr ot ocol

cp=cl nt _create (hostnane, prog, vers, protocol);

This macro destroys the client’s RPC handle (cl nt).

Destruction usually involves deallocation of private data
structures, including cl nt itself. Use of cl nt is undefined after
cl nt _dest r oy is called. The user must close sockets associated
with cl nt.

Format:

clnt _destroy(clnt)
CLI ENT *cl nt;

Cray Research, Inc. 71

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

clnt_freeres

clnt_geterr

cl nt _pcreateerror

cl nt_perrno

72

This macro frees any data allocated by the RPC and XDR
system when it decoded the results of an RPC.

Format:

clnt_freeres(clnt, outproc, out)
CLI ENT *cl nt;
xdrproc_t outproc;
char *out;

cl nt is the client handle, out pr oc is the XDR routine that
describes the results in simple primitives, and out is the
address of the results. If the results were successfully freed,
this routine returns 1; otherwise, it returns 0.

This macro copies the error structure out of the client handle
(cl nt) to the structure at address err p.

Format:

voi d

clnt _geterr(clnt, errp)
CLI ENT *cl nt;
struct rpc_err *errp

This routine prints a message to standard error that indicates
why a client RPC handle could not be created. The message is
prepended with string s and a colon. This routine is used after
aclntraw create,clnttcp_create,orcl ntudp_create
call.

Format:
voi d
clnt_pcreateerror(s)
char *s;

This routine prints a message to standard error that
corresponds to the condition indicated by st at. This routine is
used after cal | r pc.

Format:
voi d

cl nt_perrno(stat)
enum cl nt_stat stat;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

cl nt_perror

clntraw create

clnttcp_create

CLI ENT *

This routine prints a message to standard error that indicates
the reason an RPC failed; cl nt is the handle used to do the call.
The message is prepended with string s and a colon. This
routine is used after cl nt _cal | .

clnt_perror(clnt, s)
CLI ENT *cl nt;
char *s;

This routine creates a trivial RPC client for the remote program
pr ognum version Ver snum

Format:

CLI ENT *
clntraw create(prognum versnum
u_l ong prognum versnum

The transport used to pass messages to the service is actually a
buffer within the process address space; therefore, the
corresponding RPC server should reside in the same address
space (see svcr aw_cr eat e, page 82), allowing simulation of
RPC and acquisition of RPC overheads, such as round-trip
times, without interference from the kernel. If the procedure
fails, this routine returns NULL.

This routine creates an RPC client for the remote program
pr ognum version ver snum the client uses TCP/IP as a
transport.

Format:

clnttcp_creat e(addr, prognum ver snum sockp, sendsz, recvsz)
struct sockaddr _in *addr;
u_l ong prognum versnum

i nt *sockp;
u_int sendsz,

SR-2089 9.0

Cray Research, Inc. 73

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

cl ntudp_create

CLI ENT *

cl ntudp_creat e(addr,

The remote program is located at Internet address addr. If
addr —>si n_port is 0, the portmapper on the host at IP address
addr is set to the actual port on which the remote program is
listening (the remote portmap service is consulted for this
information). The sockp parameter is a socket; if it is
RPC_ANYSQOCK, this routine opens a new socket and sets sockp.
Because the RPC that is based on TCP uses buffered I/0, you
can specify the size of the send and receive buffers by using the
sendsz and r ecvsz parameters, respectively; values of 0
indicate that suitable defaults will be chosen. If the procedure
fails, this routine returns NULL.

This routine creates an RPC client for the remote program
pr ognum version ver snum the client uses UDP/IP as a
transport.

Note: On systems that limit UDP datagrams to 8 Kbytes of
data, you cannot use this transport for procedures that accept
large arguments or return large results.

Format:

prognum versnum wait, sockp)

struct sockaddr in *addr;
u_l ong prognum versnum

struct tineval

i nt *sockp;

get _myaddress

74

The remote program is located at Internet address addr. If
addr —>si n_port is 0, the portmap on the host at IP address
addr is set to the actual port on which the remote program is
listening (the remote portmapper service is consulted for this
information). The sockp parameter is a socket; if it is
RPC_ANYSQOCK, this routine opens a new socket and sets sockp.
The UDP transport resends the call message in intervals of

wai t time until a response is received or the call times out.

cl nt _cal | specifies the total time for the call to time out.

This routine puts the machine’s IP address into addr, without
consulting the library routines that deal with / et ¢/ host s. The
port number is always set to ht ons(PMAPPORT).

Format:
voi d

get _nyaddr ess(addr)
struct sockaddr in *addr;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

prmap_get naps This routine is a user interface to the portmap service. It
returns a list of the current RPC program-to-port mappings on
the host located at IP address addr. This routine can return
NULL. This routine is used when using the r pci nf o(8)
command with the —p option.

Format:

struct pnaplist *
prmap_get maps(addr)
struct sockaddr _in *addr

prmap_get port This routine is a user interface to the portmap service. It
returns the port number of a waiting service that supports the
program at Internet address addr, with program number
pr ognum version ver snum and the transport protocol
associated with pr ot ocol .

A return value of 0 means that the mapping does not exist or
that the RPC system failed to contact the remote portmap
service. In the latter case, the global variable r pc_creat eerr
contains the RPC status.

Format:

u_short

pmap_get port (addr, prognum versnum protocol)
struct sockaddr _in *addr;
u_l ong prognum versnum protocol;

prmap_rnt cal | This routine is a user interface to the portmap service.
Format:

enum cl nt _st at
pmap_rntcal | (addr, prognum versnum prochum inproc, in, outproc, out,
tout, portp)

u_l ong prognum versnum procnumni

char *in, *out;

xdrproc_t inproc, outproc;

struct tineval tout;

u_long *portp;

SR-2089 9.0 Cray Research, Inc.

75

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

pmap_set

pmap_unset

regi sterrpc

This routine instructs the portmapper on the host at IP address
*addr to make an RPC on your behalf to a procedure on that
host. If the procedure succeeds, the * port p parameter is
changed to the program’s port number. The definitions of other
parameters are discussed in descriptions of cal | r pc, page 69,
and cl nt _cal |, page 71. You should use this procedure only in
conjunction with a pi ng(8) command. See also

cl nt _broadcast, page 70.

This routine is a user interface to the portmap service.
Format:

prmap_set (prognum versnum protocol, port)
u_l ong prognum versnum protocol;
u_short port;

It establishes a mapping between a program’s [pr ognum

ver snum pr ot ocol] and a port (por t) on a machine’s portmap
service. The value of pr ot ocol is most likely | PPROTO_UDP or
| PPROTO_TCP. If the program succeeds, routine svc_r egi st er
automatically returns 1; otherwise, it returns 0.

This routine is a user interface to the portmap service.
Format:

pmap_unset (prognum versnun
u_l ong prognum versnum

This routine destroys all mappings between

[pr ognumver snum*] and ports on the machine’s portmap
service. If the program succeeds, this routine automatically
returns 1; otherwise, it returns 0.

This routine registers procedure pr ocname with the RPC
service package.

Note: Remote procedures registered in this form are
accessed by using the UDP/IP transport; see
svcudp_cr eat e, page 83.

Format:

regi sterrpc(prognum versnum procnum procnane, i hproc, out proc)
u_l ong prognum versnum procnum

char *(*procnane)();
xdr proc_t

76

out proc;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Synopsis of RPC/XDR Routines [A]

rpc_createerr

svc_destr oy

svc_freeargs

svc_get args

SR-2089 9.0

If a request arrives for program pr ognum version ver snum and
procedure pr ocnum pr ocnane is called with a pointer to its
parameters; pr ocname should return a pointer to its static
results. i npr oc decodes the parameters; out pr oc encodes the
results. If the registration succeeds, this routine automatically
returns 0; otherwise, it returns —1.

This routine is a global variable whose value is set by any RPC
client creation routine that does not succeed. Use the
cl nt _pcreat eerror routine to print the reason for the failure.

Format:
struct rpc_creat eerr rpc_creat eerr,

This macro destroys the RPC service transport handle, xprt .
Destruction usually involves deallocation of private data
structures, including xprt itself. Use of xprt is undefined after
this routine is called.

Format:

svc_destroy(xprt)
SVCXPRT *xprt;

This macro frees any data allocated by RPC and XDR when it
used svc_get ar gs to decode the arguments to a service
procedure. The parameters are those used on the svc_get ar gs
macro call. If the results were successfully freed, this routine
returns 1; otherwise, it returns 0.

Format:

svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

This macro decodes the arguments of an RPC request associated
with the RPC service transport handle (xprt).

Format:
svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;

xdrproc_t inproc;
char *in;

Cray Research, Inc. 77

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

svc_getcall er

svc_getreq

svc_getreqgset

78

i nproc is the XDR routine used to decode the arguments, and
i nis the address at which the arguments will be placed. If
decoding succeeds, this routine returns 1; otherwise, it returns
0.

This routine is the approved way of getting the network address
of the caller of a procedure associated with the RPC service
transport handle (xprt)

Format:

struct sockaddr _in
svc_getcal l er(xprt)
SVCXPRT *xprt;

This routine is similar to svc_get reqgset (), but it is limited to
64 descriptors.

This routine is similar to svc_get reqgset (), but it is limited to
64 descriptors.

Format:

voi d
svc_getreq(rdfds)
i nt rdfds;

r df ds is the read file descriptors bit mask.

This routine is of interest only if a service implementer does not
call svc_run, but instead implements custom asynchronous
event processing. It is called when the sel ect (2) system call
has determined that an RPC request has arrived on some RPC
sockets.

Format:

svc_getreqset (rdf dset p)
fd_set *rdfdsetp;

r df dset p is a pointer to the resultant read file descriptor bit

mask. The routine returns when all sockets associated with the
value of r df dset p have been serviced.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

The global variable svc_f dset, which is of type f d_set,
reflects the RPC service side’s read file descriptor bit mask; it is
suitable as a parameter to the sel ect (2) system call. This is of
interest only if a service implementer does not call svc_r un, but
rather does his or her own asynchronous event processing. This
variable is read-only (do not pass its address to sel ect (2)), yet
it can change after calls to svc_get r eqset or any creation
routines. Its format is as follows:

fd_set svc_fdset;

svc_register This routine associates pr ognumand ver snumwith the service
dispatch procedure, di spat ch().

Format:

svc_register(xprt, prognum versnum dispatch, protocol)
SVCXPRT *xprt;
u_l ong prognum versnum
void (*dispatch)();
int protocol;

If pr ot ocol is 0, the service is not registered with the portmap
service. If prot ocol is a nonzero value, a mapping of

[pr ognumver snumpr ot ocol] to xprt —>xp_port is
established with the local portmap service (generally protocol is
0, | PPROTO_UDP, or | PPROTO_TCP). xprt is the RPC service
transport handle. The di spat ch() procedure has the following
form:

di spatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

If di spat ch() succeeds, the svc_r egi st er routine returns 1;
otherwise, it returns 0.

svc_run This routine never returns. It waits for RPC requests to arrive,
and it calls the appropriate service procedure through
svc_getreqgset when one arrives. This procedure is usually
waiting for a sel ect (2) system call to return.

Format:
svc_run()

svc_sendreply An RPC service’s dispatch routine calls this routine to send the
results of an RPC.

SR-2089 9.0 Cray Research, Inc. 79

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

svc_unregi ster

svcerr_auth

svcerr_decode

80

Format:

svc_sendrepl y(xprt, outproc, out)
SVCXPRT *xprt;
xdr proc_t outproc;
char *out;

xprt is the caller’s associated transport handle, out pr oc is the
XDR routine that encodes the results, and out is the address of
the results. If the procedure succeeds, this routine returns 1;
otherwise, it returns 0.

This routine removes all mapping of [pr ognumver snum to
dispatch routines, and all mapping of [pr ognumver snum*] to
port numbers.

Format:

voi d
svc_unregi ster(prognum versnumn
u_l ong prognum versnum

A service dispatch routine that refuses to perform an RPC
because of an authentication error calls this routine.

Format:

voi d

svcerr_auth(xprt, why)
SVCXPRT *xprt;
enum aut h_stat why;

xprt is the RPC service transport handle. why indicates the
reason the service dispatch routine is refusing to perform the
RPC.

A service dispatch routine that cannot successfully decode its
parameters calls this routine.

Format:
voi d
svcerr_decode(xprt)
SVCXPRT *xprt;

xprt is the RPC service transport handle. See also
svc_get ar gs, page 77.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Synopsis of RPC/XDR Routines [A]

svcerr_noproc

SVCerr_noprog

svcerr_progvers

svcerr_systenerr

SR-2089 9.0

A service dispatch routine that does not implement the
procedure number the caller requests calls this routine.

Format:
voi d
svcerr_noproc(xprt)
SVCXPRT *xprt;
xprt is the RPC service transport handle.

This routine is called when the specified program is not
registered with the RPC package.

Format:
voi d
svcerr_noprog(xprt)
SVCXPRT *xprt;

xprt is the RPC service transport handle. Service
implementers usually do not need this routine.

This routine is called when the desired version of a program is
not registered with the RPC package.

Format:
voi d
svcerr_progvers(xprt)
SVCXPRT *xprt;

xprt is the RPC service transport handle. Service
implementers usually do not need this routine.

A service dispatch routine calls this routine when the service
dispatch routine detects a system error not covered by any
particular protocol. For example, if a service can no longer
allocate storage, it might call this routine.

Format:
voi d
svcerr_systenmerr(xprt)
SVCXPRT *xprt;

xprt is the RPC service transport handle.

Cray Research, Inc.

81

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

svcerr_weakaut h

svcraw _create

svctcp_create

82

A service dispatch routine that refuses to perform an RPC
because of insufficient (but correct) authentication parameters
calls this routine.

Format:

voi d
svcerr_weakaut h(xprt)
SVCXPRT *xprt;

xprt is the RPC service transport handle. The routine calls
svcerr_aut h(xprt ,AUTH_TOONEAK) .

This routine creates a trivial RPC service transport to which it
returns a pointer. The transport is really a buffer within the
process address space; therefore, the corresponding RPC client
should reside in the same address space (see

clntraw _create(), page 73.

Format:

SVCXPRT *
svcraw create()

This routine allows simulation of RPC and acquisition of RPC
overheads (such as round-trip times), without any kernel
interference. If the procedure fails, this routine returns NULL.

This routine creates an RPC service transport based on TCP/IP,
to which it returns a pointer.

Format:

SVCXPRT *

svctcp_create(sock, send_buf_size, recv_buf_size)
i nt sock;
u_int send buf_size, recv_buf_size;

The transport is associated with the socket sock; sock can
be RPC_ANYSOCK, in which case a new socket is created. If
the socket is not bound to a local TCP port, this routine binds
it to an arbitrary port. Because an RPC that is based on
TCP/IP uses buffered I/O, you can specify the size of the send
(send_buf _si ze) and receive (r ecv_buf _si ze) buffers;
values of 0 indicate that suitable defaults will be chosen. On
completion, the xp_sock field of the created SVCXPRT
structure is the transport’s socket number, and the xp_port
field of the created SVCXPRT structure is the transport’s port
number. If the procedure fails, this routine returns NULL.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

svcudp_create

xdr _accepted_reply

xdr _array

SR-2089 9.0

This routine creates an RPC service transport based on UDP/IP,
to which it returns a pointer.

Note: On systems that can hold only up to 8 Kbytes of
encoded data, you cannot use this transport for procedures
that accept large arguments or return large results.

Format:
SVCXPRT *
svcudp_creat e(sock)

i nt sock;

The transport is associated with the socket sock; sock can be
RPC_ANYSOCK, in which case a new socket is created. If the
socket is not bound to a local UDP port, this routine binds it to
an arbitrary port. On completion, the xp_sock field of the
created SVCXPRT structure is the transport’s socket number, and
the xp_port field of the created SVCXPRT structure is the
transport’s port number. If the routine fails, it returns NULL.

This routine is used for describing RPC messages externally. It
is useful for users who want to generate messages in the RPC
style without using the RPC package.

Format:

xdr _accepted_reply(xdrs, ar)
XDR *xdr s;
struct accepted reply *ar

xdr s is the XDR stream, and ar points to the structure that
contains the reply structure.

This routine is a filter primitive that translates between arrays
and their corresponding external representations.

Format:

xdr_array(xdrs, arrp, sizep, naxsize, elsize,
el proc)

XDR *xdrs;

char **arrp;

u_int *sizep, maxsize, elsize;

xdrproc_t el proc;

Cray Research, Inc. 83

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

xdr _aut hdes_cred

xdr _aut hdes_verf

xdr _aut huni x_par ns

84

xdr s is the XDR stream. arr p is the address of the pointer to
the array. si zep is the address of the element count of the
array; this element count cannot exceed naxsi ze. The el si ze
parameter is the size (in bytes) of each of the array’s elements,
and el proc is an XDR filter that translates between the C form
of the array elements and their external representation. If the
routine succeeds, it returns 1; otherwise, it returns 0.

This routine serializes/deserializes an aut hdes_cr ed structure.
The client side uses this procedure to serialize a credential
structure to be passed to the server. The server side uses this
procedure to deserialize an aut hdes_cr ed structure from a
client.

Format:

bool _t

xdr _aut hdes_cred(xdrs, cred)
XDR *xdrs;
struct authdes _cred *cred,

xdr s is the XDR stream. cr ed is the aut hdes_cr ed structure.

This routine serializes/deserializes an aut hdes_verf structure.
The client side uses it to deserialize a verification structure from
the server. The server may use the routine to serialize a
verification structure to be passed to the client.

Format:

bool _t
xdr _aut hdes_verf (xdrs, verf)
regi ster XDR *xdrs;
regi ster struct authdes_verf *verf;

xdr s is the XDR stream. verf points to a DES authentication
verifier.

This routine describes UNICOS credentials externally. It is
useful for users who want to generate these credentials without
using the RPC authentication package.

Format:

xdr _aut huni x_par ns(xdrs, aupp)
XDR *xdr s;
struct aut huni x_parns *aupp;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

xdr _bool

Format:

xdr _bytes

xdr _cal | hdr

xdr _cal | nmsg

SR-2089 9.0

xdr s is the XDR stream, and aupp points to the structure that
contains the UNICOS authentication parameters.

This routine is a filter primitive that translates between
Booleans (C integers) specified by bp and their external
representations (xdr s). When encoding data, this filter
produces values of either 1 or 0. If the routine succeeds, it
returns 1; otherwise, it returns 0.

xdr _bool (xdrs, bp)
XDR *xdr s;
bool _t *bp

This routine is a filter primitive that translates between counted
byte strings and their external representations (xdr s).

Format:

xdr _bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp
u_int *sizep, maxsize;

xdr s is the XDR stream. sp is the address of the string pointer.
The length of the string is located at address si zep; strings
cannot be longer than maxsi ze. If the routine succeeds, it
returns 1; otherwise, it returns 0.

This routine describes RPC headers associated with messages
externally. It is useful for users who want to generate message
headers in the RPC style without using the RPC package.

Format:
voi d
xdr _cal | hdr (xdrs, chdr)
XDR *xdrs;

struct rpc_nsg *chdr

xdr s is the XDR stream, and chdr points to the structure that
contains the call header data.

This routine describes RPC messages externally. It is useful for
users who want to generate messages in the RPC style without
using the RPC package.

Cray Research, Inc. 85

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

xdr _char

xdr _destr oy

xdr _doubl e

xdr_enum

86

Format:

xdr _cal | meg(xdrs, cnsq)
XDR *xdrs;
struct rpc_nsg *cnsg;

xdr s is the XDR stream, and cnsg points to the structure that
contains the call message data.

This routine is a filter primitive that translates between C
characters (cp) and their external representations (xdr s). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr _char (xdrs, cp)
XDR *xdrs;
char *cp;

This macro invokes the destroy routine associated with the XDR
stream xdr s. Destruction usually involves freeing private data
structures associated with the stream.

Format:

voi d
xdr _dest roy(xdrs)
XDR *xdrs;

Using xdr s after xdr _dest r oy is invoked produces undefined
results.

This routine is a filter primitive that translates between C
double-precision numbers (dp) and their external
representations (xdr s). If the routine succeeds, it returns 1;
otherwise, it returns 0.

Format:

xdr _doubl e(xdrs, dp)
XDR *xdrs;
doubl e *dp

This routine is a filter primitive that translates between C
enumerations (actually integers) specified by ep and their

external representations (xdr s). If the routine succeeds, it
returns 1; otherwise, it returns 0.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

xdr _fl oat

xdr _get pos

xdr _inline

SR-2089 9.0

Format:

xdr _enun(xdrs, ep)
XDR *xdrs;
enumt *ep;

This routine is a filter primitive that translates between C
floating-point numbers (f p) and their external representations
(xdr s). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr _float(xdrs, fp)
XDR *xdr s;
float *fp;

This macro invokes the get-position routine associated with the
XDR stream xdr s.

Format:

u_int
xdr _get pos(xdrs)
XDR *xdr s;

The routine returns an unsigned integer that indicates the
position of the XDR byte stream. A desirable feature of XDR
streams is that simple arithmetic works with this number,
although the XDR stream instances do not ensure this.

This macro invokes the inline routine associated with the XDR
stream xdr s.

Note: If the xdr _i nl i ne routine cannot allocate a
contiguous piece of a buffer, it might return NULL (0).
Therefore, the behavior can vary among stream instances;
the routine exists for the sake of efficiency.

Format:
inline_ t*
xdr _inline(xdrs, |en)

XDR *xdrs;
int_len;

Cray Research, Inc. 87

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

xdr _int

xdr | ong

xdr _opaque

xdr _opaque_auth

88

The routine returns a pointer to a contiguous piece of the
stream’s buffer; | en is the byte length of the desired buffer. The
pointer is cast to i nl i ne_t *, which is char * on Cray Research
systems. The address returned is cast to | ong *.

This routine is a filter primitive that translates between C
integers (i p) and their external representations (xdr s). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr _int(xdrs, ip)
XDR *xdrs;
int *ip;
This routine is a filter primitive that translates between C long

integers (I p) and their external representations (xdr s). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr _long(xdrs, 1p)
XDR *xdrs;
[ong *I p;

This routine is a filter primitive that translates between
fixed-size opaque data and its external representation (xdr s).

Format:

xdr _opaque(xdrs, cp, cnt)
XDR *xdr s;
char *cp;
u_int cnt;

cp is the address of the opaque object; cnt is its size (in bytes).
If the routine succeeds, it returns 1; otherwise, it returns 0.

This routine describes RPC messages externally. It is useful for
users who want to generate messages in the RPC style without
using the RPC package.

Format:
xdr _opaque_aut h(xdrs, ap)

XDR *xdrs;
struct opaque_auth *ap;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

xdr _pnmap

xdr _pnmapl i st

xdr _poi nter

xdr _reference

SR-2089 9.0

xdr s is the XDR stream, and ap points to the opaque
authentication structure.

This routine provides an external description of parameters to
various portmap procedures. It is useful for users who want to
generate these parameters without using the pnmap interface.

Format:

xdr _pmap(xdrs, regs)
XDR *xdr s;
struct pmap *regs;

xdr s is the XDR stream, and r egs points to the structure
that contains registration information.

This routine describes a list of port mappings externally. It is
useful for users who want to generate these parameters without
using the prmap interface.

Format:

xdr _pmaplist(xdrs, rp)
XDR *xdrs;
struct pnmaplist **rp;

xdr s is the XDR stream, and r p is a pointer to the array that
will store the port map map entries.

This routine translates a pointer to a possibly recursive data
structure. It differs from xdr _r ef er ence in that it can
serialize and deserialize trees correctly.

Format:

xdr _poi nter(xdrs, objpp, obj_size, xdr_obj)
XDR *xdr s;
char **obj pp;
u_int obj_size;
xdrproc_t xdr_obj;

xdr s is the XDR stream, obj pp is the address of the pointer,
obj _si ze is the size of the structure to which obj pp points,
and xdr _obj is a pointer to a structure for each data type that
is to be encoded or decoded.

This routine is a primitive that provides pointer-dereferencing
within structures.

Cray Research, Inc. 89

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

Format:

xdr _reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u.int size;
xdrproc_t proc;

pp is the address of the pointer, si ze is the size (in bytes) of the
structure to which * pp points, and pr oc is an XDR procedure
that filters the structure between its C form and its external
representation (xdr s). If the routine succeeds, it returns 1;
otherwise, it returns 0.

xdr_rejected_reply This routine describes RPC reject type messages externally. It
is useful for users who want to generate error messages in the
RPC style without using the RPC package.

Format:

xdr _rejected reply(xdrs, rr)
XDR *xdrs;
struct rejected reply *rr;

xdr s is the XDR stream, and r r points to the structure that
contains the rejected reply information.

xdr _repl ynsg This routine describes RPC accept type messages externally. It
is useful for users who want to generate messages in the RPC
style without using the RPC package.

Format:
xdr _repl ynsg(xdrs, rmsg)
XDR *xdr s;
struct _rpc_nsg *rnsg;

xdr s is the XDR stream, and r n8g points to the structure that
contains the reply message information.

xdr _set pos This macro invokes the set position routine associated with the
XDR stream xdr s.

Note: It is difficult to reposition some types of XDR streams;
therefore, this routine might fail with one type of stream and
succeed with another.

90 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

xdr _short

xdr _string

xdr _u_char

xdr_u_int

SR-2089 9.0

Format:

xdr _set pos(xdrs, pos)
XDR *xdrs;
u_int pos;

pos is a position value obtained from xdr _get pos. If the XDR
stream can be repositioned, this routine returns 1; otherwise, it
returns 0.

This routine is a filter primitive that translates between C short
integers (sp) and their external representations (xdr s). If the
routine succeeds, it returns 1; otherwise, it returns 0.

Format:

xdr _short (xdrs, sp)
XDR *xdrs;
short *sp

This routine is a filter primitive that translates between C
strings and their corresponding external representations (xdr s).

Format:

xdr _string(xdrs, sp, maxsize)
XDR *xdr s;
char **sp
u_int maxsize;

Strings cannot be longer than maxsi ze. The Sp parameter is
the address of the string’s pointer. If the routine succeeds, it
returns 1; otherwise, it returns 0.

This routine is a filter primitive that translates between C
unsigned characters (cp) and their external representations
(xdr s). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr _u_char (xdrs, cp)
XDR *xdrs
unsi gnedchar *cp;

This routine is a filter primitive that translates between C
unsigned integers (up) and their external representations
(xdr s). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Cray Research, Inc. 91

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

xdr _u_l ong

xdr _u_short

xdr _uni on

92

Format:

xdr _u_int(xdrs, up)
XDR *xdrs;
unsi gned *up;

This routine is a filter primitive that translates between C
unsigned long integers (ul p) and their external representations
(xdr s). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr_u_l ong(xdrs, ulp)
XDR *xdrs;
unsi gned_l ong *ul p

This routine is a filter primitive that translates between C
unsigned short integers (usp) and their external representations
(xdr s). If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdr _u_short (xdrs, usp)
XDR *xdrs;
unsi gned_short *usp

This routine is a filter primitive that translates between a
discriminated C union and its corresponding external
representation (xdr s).

Format:

xdr _uni on(xdrs, dscnp, unp, choices, dfault)
XDR *xdr s;
int *dscnp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

xdr _vect or

xdr _void

xdr_wrapstring

SR-2089 9.0

The dscnp parameter is the address of the union’s discriminant,
and unp is the address of the union. If the routine succeeds, it
returns 1; otherwise, it returns 0. choi ces points to an array of
xdr _di scri mstructures. This array must be terminated with
an entry that contains a NULL procedure pointer. If the
discriminant does not match any entry specified in the choi ces
list, df aul t points to the default xdr routine to use. See the

r pc/ xdr . h file for further details.

This routine is a filter primitive that translates between vectors
and their corresponding external representations (xdr s).

Format:

bool _t
xdr_vector(xdrs, basep, nelem elensize,
xdr_el em

XDR *xdr s;

char *basep;

u_int nelem

u_int elensize;

xdrproc_t xdr_el em

The basep parameter is a pointer to the vector. nel emis the
number of elements in the vector. el ensi ze is the size of each
element in the vector. xdr _el emis an XDR filter that
translates between the vector elements’ C form and their
external representation (xdr s). If the routine succeeds, it
returns 1; otherwise, it returns 0.

This routine always returns 1.

Format:
xdr _voi d()

This routine is a primitive that calls the xdr _stri ng

(xdr s,sp,MAXUNSI GNED) routine; MAXUNSI GNEDis the
maximum value of an unsigned 31-bit integer.

xdr _wr apst ri ng translates null-terminated strings to or from
external representation.

Format:
bool _t
xdr _wrapstring(xdrs, cpp)

XDR *xdrs;
char **cpp;

Cray Research, Inc. 93

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

xdr s is the XDR stream, and cpp is the address of the pointer
to the string.

xdrmem creat e This routine initializes the XDR stream object to which xdr s
points.
Format:
voi d
xdrmem create(xdrs, addr, size, op)
XDR *xdrs;

char *addr;
u_int size;
enum xdr _op op

The stream’s data is written to or read from a chunk of memory
at location addr ; the memory length can consist of a maximum
of si ze bytes. The op parameter determines the direction of the
XDR stream (xdr s); the direction can be XDR_ENCODE,
XDR_DECODE, or XDR_FREE.

xdrrec_create This routine initializes the XDR stream object to which xdr s
points.

Note: This XDR stream implements an intermediate record
stream. Therefore, additional bytes in the stream provide
record boundary information.

Format:

voi d
xdrrec_create(xdrs, sendsize, recvsize, handle,
readit, witeit)

XDR *xdrs;

u_int sendsize, recvsize;

char *handl e;

int (*readit)(), (*witeit)();

94 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Synopsis of RPC/XDR Routines [A]

xdrrec_endofrecord

xdrrec_eof

xdrrec_ski precord

SR-2089 9.0

The stream’s data is written to a buffer of size sendsi ze; a
value of 0 indicates that the system should use a suitable
default. The stream’s data is read from a buffer of size

recvsi ze; it too can be set to a suitable default by passing a 0
value. When a stream’s output buffer is full, witeit () is
called. Similarly, when a stream’s input buffer is empty,
readit () is called. The behavior of these two routines is
similar to that of the UNICOS r ead(2) and wri t e(2) system
calls, except that handl e is passed as the first parameter to the
UNICOS routines. The caller must set the XDR stream’s op
field.

This routine can be invoked only on streams created by
xdrrec_create.

Format:

xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
i nt sendnow,

xdr s is the XDR stream. The data in the output buffer is
marked as a completed record; if sendnowis nonzero, the output
buffer is optionally written out. If the routine succeeds, it
returns 1; otherwise, it returns 0.

This routine can be invoked only on streams (xdr s) created by
xdrrec_create. This routine returns 1 if no more input is in
the buffer after the rest of the current record has been
consumed.

Format:

xdrrec_eof (xdrs)
XDR *xdrs;

int enpty;

This routine can be invoked only on streams (xdr s) created by
xdrrec_create. It tells the XDR implementation that the rest
of the current record in the stream’s input buffer should be
discarded. If the routine succeeds, it returns 1; otherwise, it
returns 0.

Format:

xdrrec_ski precord(xdrs)
XDR *xdrs;

Cray Research, Inc. 95

Synopsis of RPC/XDR Routines [A] Remote Procedure Call (RPC) Reference Manual

xdrstdio_create This routine initializes the XDR stream object to which xdr s
points.

Note: The destroy routine associated with XDR streams
calls f | ush (by using f f | ush, see f cl 0se(3)) on the file
stream, but never cl ose (by using cl ose(2)).

Format:

voi d

xdrstdio create(xdrs, file, op)
XDR *xdrs;
FILE *file;
enum xdr _op op

The XDR stream data is written to or read from the stream file
specified by fi | e. The op parameter determines the direction
of the XDR stream (XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Xprt_register After RPC service transport handles (xprt) are created, they
should be registered with the RPC service package. This
routine modifies the global variable svc_f dset. Service
implementers do not usually need this routine.

Format:

voi d
xprt_register(xprt)
SVCXPRT *xprt;

Xprt _unregister Before an RPC service transport handle (xprt) is destroyed, it
should be unregistered with the RPC service package. This
routine modifies the global variable svc_f dset. Service
implementers do not usually need this routine.

Format:
voi d

Xprt_unregister(xprt)
SVCXPRT *xprt;

96 Cray Research, Inc. SR-2089 9.0

