Authentication Routines [E]

UNICOS

authentication
E.1

SR-2089 9.0

This appendix contains detailed information about the data that
is passed during UNICOS, Data Encryption Standard (DES),
and Kerberos authentication and validation.

The client of a remote procedure might want to identify itself as
it is identified on a UNICOS system. In this case, the value of
the credential’s discriminant of an RPC message is AUTH_UNI X
The bytes of the credential’s string encode the following (XDR)
structure:

struct auth_unix {

unsi gned st anp;
string machi nenane[255] ;
unsi gned ui d;

unsi gned gi d;
unsi gned gi ds[10];
}s

The st anp value is an arbitrary ID that the caller machine can
generate. machi nenane is the name of the caller’s machine
(such as krypt on). ui d is the caller’s effective user ID. gi d is
the caller’s effective group ID. gi ds is a counted array of groups
that contain the caller as a member. The verifier that
accompanies the credentials should be AUTH_NULL.

The value of the discriminate of the response verifier received in
the reply message from the server can be AUTH_NULL or
AUTH_SHORT. In the case of AUTH SHORT, the bytes of the
response verifier’s string encode an aut h_opaque structure.
This new aut h_opaque structure can be passed to the server
instead of the original AUTH_UNI X credentials. The server keeps
a cache that maps shorthand aut h_opaque structures (passed
back by way of an AUTH SHORT-style response verifier) to the
original credentials of the caller. The caller can save network
bandwidth and server CPU cycles by using the new credentials.

Cray Research, Inc. 165

Authentication Routines [E]

Remote Procedure Call (RPC) Reference Manual

DES

authentication
E.2

typedef struct {

The server can flush the shorthand aut h_opaque structure at
any time. If this happens, the RPC message is rejected because
of an authentication error. The reason for the failure is
AUTH_REJECTEDCRED. At this point, you might want to try the
original AUTH_UNI X credentials.

When you use DES authentication, the authentication and
validation data exchanged with each RPC call and reply become
markedly more complex. When a client chooses to use DES
authentication, it must make a call to aut hdes_cr eat e to build
a DES authentication structure. The DES authentication
structure has the following form:

struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
uni on des_bl ock ah_key;
struct auth_ops {
voi d (*ah_nextverf)();
i nt (*ah_marshal) (); /* nextverf & serialize */
i nt (*ah_val i date)(); /* validate verifier */
i nt (*ah_refresh)(); /* refresh credentials */
voi d (*ah_destroy)(); /* destroy this structure
*/
} *ah_ops;
caddr _t ah_private;
} AUTH;

struct opaque_auth {

The first field in the AUTH structure is ah_cr ed. This is the
authentication handle credential field; it contains the
information the client will provide the server for authentication.
The second field in the AUTH structure is ah_ver f. This is the
authentication handle verification field; it contains the
information the server will return to the client to prove its
identity. Both of these fields are of type opaque_aut h. An
opaque_aut h structure has the following form:

enumt oa_flavor; /* flavor of auth */

caddr t oa_base;

/* address of nore auth stuff */

u_int oa_| engt h; /* not to exceed MAX AUTH BYTES */

166

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

The oa_f | avor field specifies the type of authentication or
validation being done. It can take the value AUTH_NONE,
AUTH_UNI X; AUTH_SHORT, or AUTH_DES.

The oa_base field is a pointer to specific data being used for
authentication or validation. In the case of AUTH_DES, the
ah_cred. oa_base field is unused, but the ah_verf. oa_base
field points to an area that contains an encrypted time stamp
filled in by the server and checked by the client.

The oa_| engt h field specifies the number of data bytes to which
the oa_base field points.

The third field of the AUTH structure is called ah_key, the
authentication handle key. This field contains a DES key used
for the duration of the AUTH structure. The ah_key field is of
type uni on des_bl ock, which is specified as follows:

uni on des_bl ock {

struct {
#i f def CRAY
wor d64 bot h;
#el se
u_l ong high;
u_long I ow,
#endi f
} key;
char c[8];
s

typedef uni on des_bl ock des_bl ock

The des_bl ock is a union of 8 bytes, which constitute the DES
session key. This session key exists only for the duration of the
AUTH structure, which is no longer than the duration of the

CLI ENT structure with which this AUTH structure is associated.
Typically, a new CLI ENT structure is generated each time the
client-side application is executed. Thus, a new DES key is
generated each time the application is run. This DES session
key is never sent across the network in its plain form. Instead,
it is sent only after it has been encrypted as part of the

ah_pri vat e data, described below.

The des_bl ock union contains a conditional compilation
statement. This is necessary because, on a Cray Research
system, a long value consists of 64 bits. On most other machines
that run secure RPC, a long value consists of only 32 bits. Thus,
to maintain consistency, the key portion of the union is declared

SR-2089 9.0 Cray Research, Inc. 167

Authentication Routines [E]

Remote Procedure Call (RPC) Reference Manual

/*

a structure that contains one element of type word64 on the
Cray Research system. The word64 type is defined in the

<rpc/ types. h> file, and it is merely a 64-bit entity that allows
the user to address the high or low 32 bits of it separately.

The ah_key field of the AUTH structure is currently used only
when performing DES authentication and validation. For other
types of authentication, its contents are undefined.

The next field in the AUTH structure is the ah_ops field, which is
a pointer to a structure that contains function pointers specific
to the authentication method. The functions pointed to are
enumerated in the AUTH structure and include functions to get
the next verifier, to marshal (generate) credentials, to validate
credentials, to refresh credentials, and to destroy credentials.

The last field in the AUTH structure is the ah_pri vat e field,
which is a generic pointer to data specific to the authentication
method. In the case of DES authentication, the ah_pri vate
field points to a structure of type ad_pri vat e. Users should not
manipulate the data within this structure. The contents of the
structure are described as follows; this description is only for
informational purposes.

* This struct is pointed to by the ah _private field of an “AUTH *”
* when doi ng DES aut henti cati on. */

struct ad_private {

char *ad_ful |l nane; [* client’s full nanme */
u_int ad _full nanel en; /* length of nanme, rounded up */
char *ad_servernane; /* server’s full nane */
u_int ad_servernanel en; /* length of nane, rounded up */

u_int ad_w ndow,
bool t ad_dosync;

/* client specified wi ndow */
/* synchroni ze? */

struct sockaddr ad_syncaddr; /* renote host to synch with */
struct tineval ad tinediff; /[* server's tinme — client’s tine
*/
u_l ong ad_ni cknane; /* server’s nickname for client */
struct authdes cred ad cred; /* storage for credential */
struct authdes_verf ad verf; /* storage for verifier */
struct tinmeval ad_tinme-stanp; /* time-stanp sent */
des_bl ock ad_xkey; /* encrypted conversation key */
1
This structure constitutes the authentication data that actually
is sent across the network.
168 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

SR-2089 9.0

The first four fields of the structure are largely self-explanatory.
ad_ful I name and ad_ser ver nane are strings that contain the
client’s name and the server’s name, respectively. The

ad_ful I nanel en and ad_ser ver nanel en fields are the
lengths of these client and server names, rounded up to a
multiple of 4 bytes.

The ad_wi ndowfield is an unsigned integer that contains the
duration (in seconds) of the credentials. By having a small
duration during which the authentication credentials are valid,
the client protects itself from malicious users who might
intercept these credentials and attempt to retransmit them later.
If such a scheme were used, the server would detect that the
credentials had expired and would deny the request.

The ad_w ndowfield is taken directly from the second
parameter passed on the aut hdes_cr eat e call. For this reason,
you should pass a relatively small number, perhaps 60, as this
parameter.

The ad_dosync field is a flag that indicates whether the server
and client want to synchronize their concepts of local time.
Doing this ensures that the client and server agree on the end of
the effective lifetime of a credential. However, synchronizing
client and server is a nontrivial procedure and is not
recommended. Instead, clients and servers should run an
application such as nt pd(8), which implements the Network
Time Protocol. By running nt pd, users are assured that the
concept of current time on their local machine is essentially the
same, at least for DES authentication purposes, as the current
time on the server. If the third argument to the

aut hdes_cr eat e call is not NULL, the ad_dosync field is set to
TRUE.

The ad_syncaddr field is a pointer to the address of the host
with whom to synchronize. This value was passed in as the
third parameter of the aut hdes_cr eat e call. Again, you should
set this parameter to NULL.

The ad_ti nmedi ff fieldisati nmeval structure, which is defined
in the sys/ ti me. h file. It contains the difference between
server time and client time, and it is used as part of the
synchronization mechanism.

The ad_ni cknane field is an unsi gned | ong value that the
client and server use to speed up validation after initial
validation has completed. Essentially, the client specifies in the
ad_cr ed field (described below) whether a “full name” or a

Cray Research, Inc. 169

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

“nickname” is being used for the credentials. When a full name
is being used, the server must go through the calculations
necessary to produce information that allows the client to
validate confidently the server’s identity. After this is done, the
client can specify that, from then on, a nickname credential can
be used. This tells the server that there is no need to calculate
such complex validation information for the server for each and
every RPC request. It is a shorthand mechanism analogous to
the AUTH_SHORT mechanism used with UNICOS validation.

The next field in the ad_pri vat e structure is the ad_cr ed field.
This is an element of type struct aut hdes_cred, which is
described, as follows:

/*
* A DES aut hentication credential
*/
struct authdes_cred {
enum aut hdes_naneki nd adc_naneki nd;
struct authdes_full name adc_ful | name;
u_l ong adc_ni cknane;
b
The adc_naneki nd field takes either the value ADN_FULLNANE

or the value ADN_NI CKNAME, depending on whether or not “real”
validation is being requested.

The adc_f ul | nane field, which is an aut hdes_f ul | nanme
structure, looks like this:

/*
* A full name contains the network nanme of the client,
* a conversation key and the w ndow

*/
struct authdes_full nane {
char *nane; /* network nanme of client, up to MAXNETNAMELEN
*/
des_bl ock key; /* conversation key */
u_|l ong w ndow, /* associ ated w ndow */
1

The types of all fields that have this structure have already been
defined.

The last field in the aut hdes_cr ed field is adc_ni cknane,
which is just an integer that the client uses to conveniently
identify the server.

170 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

The ad_verf field of the ad_pri vat e structure is of type
struct aut hdes_verf, which is described, as follows:

/*
* A des authentication verifier
*
struct authdes_verf {
uni on {
struct tinmeval adv_ctine; [* clear time */
des_bl ock adv_xti ne; [* crypt time */
} adv_tinme_u;
u_long adv_int_u;

This is the structure that the server returns to the client to
prove its identity. The first field is a union of a ti neval
structure and a des_bl ock structure, both of which contain 8
bytes. It is convenient for the server to declare the structure this
way, because it must encrypt a time stamp and an integer as
part of the proof of identity it sends to the client. The
adv_int_u | ong field is the integer the server encrypts.

The ad_t i me- st anp field of the ad_pr i vat e structure is
simply the time at which the client created the credential. The
server uses this to detect old credentials structures.

The last field of the ad_pri vat e structure is the ad_xkey field,
which is the encrypted conversation key generated by the client
and sent to the server. A pointer to the plain conversation key
may be passed as the fourth argument to the aut hdes_create
call. If this pointer is NULL, aut hdes_cr eat e generates and
encrypts a pseudo-random conversation key for the client.

Kerberos When you use Kerberos authentication, the authentication and
henti jon validz}tion data excha.nge'd with each RP.C call i.s similar to that

]i]l l;t enticatio used in DES authentication. An RPC client using Kerberos

) authentication must make a call to aut hker b_seccr eat e to

build a Kerberos authentication structure. The Kerberos

authentication structure has the following form:

typedef struct_auth {

struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
uni on des_bl ock ah_key;

SR-2089 9.0 Cray Research, Inc. 171

Authentication Routines [E] Remote Procedure Call (RPC) Reference Manual

} AUTH;

struct auth_ops {

voi d (*ah_nextverf)();
i nt (*ah_marshal) (); /* nextverf & serialize */
i nt (*ah_validate)(); /* validate verifier */
i nt (*ah_refresh)(); /* refresh credentials */
voi d (*ah_destroy)(); /* destroy this structure */
} *ah_ops;

caddr _t ah_private;

The first field in the AUTH structure is ah_cr ed. This field
points to information the client sends the server to perform
authentication. The authentication data is stored in an
aut hker b_cr ed structure.

The second field in the AUTH structure, also of st r uct
opaque_aut h, is the ah_verf field. This field points to
information the client sends to the server for verification. The
verification data is stored in an aut hker b_ver f structure.
Both of these fields, ah_cr ed and ah_ver f, are of type
opaque_aut h.

An opaque_aut h structure has the following form:

struct opaque_auth {

172

enumt oa_flavor; /* flavor of auth */
caddr t oa_base; /* address of nobre auth stuff */
u_int oa_| engt h; /* not to exceed MAX AUTH BYTES */

The oa_f | avor field specifies the type of authentication or
validation being done. It can take the value AUTH_NONE,
AUTH_UNI X, AUTH_SHORT, AUTH_DES, or AUTH_KERB. For
Kerberos RPC, the oa. f | avor field is set to AUTH_KERB.

The oa_base field is a pointer to specific data being used for
authentication or verification. The ah_cr ed. oa_base field
points to an aut hker b_ver f structure. The aut hkerb_cred
and aut hker b_verf structures are described after the
_ak_pri vat e structure.

The oa_| engt h field specifies the number of data bytes to which
the oa_base field points.

Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual Authentication Routines [E]

SR-2089 9.0

The third field of the AUTH structure is called ah_key, the
authentication handle key. This field contains a Kerberos
session key used for the duration of the AUTH structure. The
ah_key field is of type uni on des_bl ock, which is specified as
follows:

uni on des_bl ock {

struct {
#i f def CRAY
wor d64 bot h;
#el se
u_l ong high;
u_long | ow
#endi f
} key;
char c[8];
1

typedef union des_ bl ock des_bl ock

The des_bl ock is a union of 8 bytes, which constitute the
Kerberos session key. This session key exists only for the
duration of the AUTH structure, which is no longer than the
duration of the CLI ENT structure with which this AUTH structure
is associated. Typically, a new CLI ENT structure is generated
each time the client-side application is executed. Thus, a new
Kerberos key is generated each time the application is run.

The des_bl ock union contains a conditional compilation
statement. This is necessary because, on a Cray Research
system, a long consists of 64 bits. On most other machines that
run secure RPC, a long value consists of only 32 bits. Thus, to
maintain consistency, the key portion of the union is declared a
structure that contains one element of type word64 on the Cray
Research system. The word64 type is defined in the

<r pc/ types. h> file, and it is merely a 64-bit entity that allows
the user to address the high or low 32 bits of it separately.

The ah_key field of the AUTH structure is used only when
performing Kerberos authentication and verification.

The next field in the AUTH structure is the ah_ops field, which is
a pointer to a structure that contains function pointers specific
to the authentication method. The functions pointed to are
enumerated in the AUTH structure and include functions to get
the next verifier, to marshal (generate) credentials, to validate
credentials, to refresh credentials, and to destroy credentials.

Cray Research, Inc. 173

Authentication Routines [E]

Remote Procedure Call (RPC) Reference Manual

The last field in the AUTH structure is the ah_pri vat e field,
which is a generic pointer to data specific to the authentication
method. In the case of Kerberos authentication, the

ah_pri vat e field points to a structure of type _ak_pri vat e.
Users should not manipulate the data within this structure. The
contents of the structure are described as follows; this
description is only for informational purposes.

/-k
* This struct
* when doi ng Kerberos authentication.

is pointed to by the ah_private field of an “AUTH *”

*/

struct _ak_private {
char ak_servi ce[ANAME_SZ] ; /* service nanme */
char ak_srv_inst[INST_SZ]; [* server instance */
char ak_real nf REALM SZ] ; /* realm*/
u_i nt ak_w ndow, /* client specified wi ndow */
bool _t ak_dosync; /* synchronize? */
char *ak_tinehost; /* renpote host to synch with */
struct tinmeval ak_tinediff; /* server’'s time — client’s tinme */
u_l ong ak_ni cknane; /* server’s nicknanme for client */
struct tineval ak tine-stanp; /* time-stanp sent */
struct authkerb_cred ak_cred; /* storage for credential */
struct authkerb_verf ak verf; [* storage for verifier */
KTEXT_ST ak_ticket; /* Kerberos ticket */
3
This structure contains additional data sent to the RPC server.
The ak_servi ce,ak_srv_inst,ak_real mand ak_wi ndow
fields are set by the client side call aut hker b_seccr eat e, and
are assigned from the service, instance, realm, and window
parameters. The ak_ti nehost field is always left blank. The
ak_ni cknane field is assigned when a reply is received from the
RPC server. The server returns the nickname. The nickname is
used to speed up validation after the initial validation has
completed.
The ak_w ndowfield is an unsigned integer that contains the
duration (in seconds) of the credentials. By having a small
duration during which the authentication credentials are valid,
the client protects itself from malicious users who might
intercept these credentials and attempt to retransmit them later.
If such a scheme were used, the server would detect that the
credentials had expired and would deny the request.
174 Cray Research, Inc. SR-2089 9.0

Remote Procedure Call (RPC) Reference Manual

Authentication Routines [E]

struct aut hkerb_ful | nanme
KTEXT_ST ticket;
u_l ong w ndow,

SR-2089 9.0

} .

The ak_ti nmedi ff fieldisati meval structure, which is defined
in the sys/ ti nme. h file. It contains the difference between
server time and client time, and it is used as part of the
synchronization mechanism.

The ak_ni cknane field is an unsi gned | ong that the client
and server use to speed up validation after initial validation has
completed. Essentially, the client specifies in the ad_cr ed field
(described below) whether a “full name” or a “nickname” is being
used for the credentials. When a full name is being used, the
server must go through the calculations necessary to produce
information that allows the client to validate confidently the
server’s identity. After this is done, the client can specify that,
from then on, a nickname credential can be used. This tells the
server that a less complex verification and authentication may
be used.

The next field in the _ak_pri vat e structure is the ak_cr ed
field. This is an element of type struct aut hkerb_cred,
which is described, as follows:

struct authkerb_cred {
enum aut hker b_naneki nd akc_naneki nd;

struct authkerb_full nanme akc_ful | nane;
u_l ong akc_ni cknane;
1
The aut hker b_naneki nd field takes either the value
AKN_FULLNAME or the value AKN_NI CKNAME, depending on
whether or not full validation is being requested. When an

AKN_FULLNAME value is used, an aut hker b_f ul | name
structure is sent to the server.

The akn_f ul | nane field, which is an aut hker b_f ul | name
structure, looks like this:

{

[/ * associ ated w ndow */

The KTEXT_ST structure is a Kerberos ticket structure. The
u_l ong wi ndow parameter is the window for the ticket. See the
include file <kr b/ kr b. h> for a description of the ticket.

Cray Research, Inc. 175

Authentication Routines [E]

Remote Procedure Call (RPC) Reference Manual

struct authkerb_verf {

176

uni on {

Kerberos RPC places restrictions on client and server clocks.
They must be synchronized within five minutes of each other.
Cray Research recommends that a site run the Network Time
Protocol (NTP) time protocol on the client and server to ensure
synchronization.

The AUTH_KERB authentication flavor uses Cipher Block
Chaining (CBC) mode encryption when sending a fullname
credential that includes the ticket and the window. Electronic
Code Book (ECB) encryption is used for nickname credentials.
The Kerberos session key is used for the initial input vector for
CBC encryption.

The ak_verf field of the _ak_pri vat e structure is of type
struct aut hkerb_verf, which is described, as follows:

struct tinmeval akv_ctine; /* clear tine */

des_bl ock
} akv_tinme_u;
u_long akv_int_u;

akv_xtinme; [* crypt time */

This is the structure that the server returns to the client to
prove its identity. The first field is a union of a ti neval
structure and a des_bl ock structure, both of which contain 8
bytes. It is convenient for the server to declare the structure this
way, because it must encrypt a time stamp and an integer as
part of the proof of identity it sends to the client. The
akv_int_u | ong field is the integer the server encrypts.

The ak_ti me- st anp field of the _ak_pri vat e structure is
simply the time at which the client created the credential. The
server uses this to detect old credentials structures.

The server returns the nickname to the client by reusing the
aut hker b_verf structure on the return call. The client stores
the nickname in its _ak_pri vat e structure.

Cray Research, Inc. SR-2089 9.0

