General Directives [3]

SR-0066 9.0

The loader directives identify relocatable object files to be
loaded, select various control options, and declare the
segmentation structure. When using the segl dr command, you
can specify files of segl dr directives with the —i option or you
can specify directives themselves with the —D option.

The loader recognizes the following groups of directives, which
should be specified in the indicated order:

1. Global directives identify relocatable object files to be loaded
and select various options that control the load process. Most
of the global directives are described in this section; global
and segment directives are also discussed in sections 5, 8, 9,
10, 11, and 12. Global directives can be entered in any order,
but all global directives must precede all other directives.

2. Segment tree definition directives should follow the global
directives and are described in, “Segment tree definition
directives,” page 65.

3. Segmentation directives specify the structure of segmented
programs, should follow tree-definition directives, and are
described in, “Segment description directives,” page 66.

Most loader directives have KEYWORD=value syntax.
Exceptions are stated in individual directive descriptions. The
following describes the conventions used in representing loader
directives:

* You can enter directives and keywords in uppercase or
lowercase, but not in mixed case. Files, modules, entry points,
and common blocks can be specified in uppercase, lowercase,
or mixed case; however, under the UNICOS operating system,
the loader treats file names and module names of different
cases as different names. You can use the CASE directive to
change the way in which the loader interprets lowercase
directives.

« Comments can appear anywhere in the input directives. Each
comment must be preceded with an asterisk (*), and all
characters to the right of the asterisk are not processed.

Cray Research, Inc. 21

General Directives [3] Segment Loader (SEGLDR) and | d Reference Manual

» Terminate directives with a semicolon (;), an asterisk (*), or
an end-of-line character.

+ More than one directive can appear on a single line, but you
must separate multiple directives on a single line with a
semicolon.

+ A directive cannot be longer than 256 characters.
» Separate elements in a list with commas.

« The loader ignores null directives (for example, two successive
semicolons or a blank line).

» Some loader directives can consist of more than one line.
These directives have a comma as the last nonblank character
before the end-of-line character. See individual directive
descriptions for more detail.

» The loader normally uses such special characters as
semicolons (;), commas (,), and others as delimiting
characters when processing directives. If you want to use any
of these characters (except semicolons) in the names of files,
entry points, common blocks, or modules, place the complete
name within single or double quotation marks. For example:
bi n="abc: def. 0’

» Because semicolons are used to separate directives, they
cannot be included in literal strings (strings enclosed in
quotation marks).

Inc]uding The | NCLUDE and LI NCLUDE directives allow you to specify the

. . . names of files that contain directives for the loader to process.
;i;rectlves files When an | NCLUDE or LI NCLUDE directive is encountered, the
’ loader stops reading the current directives files and begins
reading the file specified with the | NCLUDE or LI NCLUDE
directive. When the end of the included directives file is
reached, the loader resumes processing the original file, using
the directive that follows the | NCLUDE or LI NCLUDE directive.
I NCLUDE or LI NCLUDE directives can appear in included files, up
to a maximum of 10 nesting levels.

22 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

| NCLUDE directive
3.1.1

LI NCLUDE directive
3.1.2

SR-0066 9.0

The | NCLUDE directive specifies a file that should be included in
the load process.

Format:

| NCLUDE=file

Example:

MAP=st at
| NCLUDE=di rfil el
DUPLOAD=caut i on

In this example, the loader processes the MAP=st at directive,
then it processes the directives found in di rfi | el, and lastly it
processes the DUPLOAD=caut i on directive.

The LI NCLUDE directive specifies a file that should be included
in the load process. Only the file name component should be
specified. The loader scans the list of search directories to locate
the file. (See “LI BDI Rdirective,” page 111, for information on
user directory search lists.)

Format:

LI NCLUDE=file

Example:

LIBDIR=/nydir/lib
LI NCLUDE=dirfil e2

In this example, the loader searches for file
/nydir/lib/dirfile2. Ifitisfound, the directives in

dirfil e2is processed. Otherwise, the loader looks for
[libl/dirfile2,then/usr/lib/dirfile2. It uses the first of
these files it finds.

Cray Research, Inc. 23

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

Including object

modules
3.2

24

The BI N, LBI N, LI B, and LLI B directives let you identify the
relocatable modules that you want the loader to include in your
program. The DUPORDER directive lets you determine how to
select the modules to be retrieved from libraries. The NODEFLI B
and OM T directives provide control over the system default
libraries. The FORCE, MODULES, and COMMONS directives provide
you with additional control over the loading process.

Files specified in Bl Nor LBI N directives or specified as
command-line arguments by the loader are all considered to be
bi n files. Segmented object files specified as arguments on the

| d command line are also considered to be bi n files. By
convention, bi n files should be the portion of your program that
you have written. Files specified in LI B, LLI B or DEFLI B
directives, or specified with the —| option on the segl dr or| d
command line, are all | i b files. Library files built by bl d and
specified as arguments on the | d command line are also
considered | i b files. By convention, | i b files are libraries of
previously written routines that the loader includes in your
program as needed. The loader processes bi nand | i b filesin a
very similar manner: it scans all modules from both bi n and

I i b files, and it establishes and retains the calling relationships
between all modules. After processing all files in this way, the
loader determines which modules must be loaded. It begins at
the module containing the transfer entry address and scans the
calling relationships, retaining all modules that are called and
deleting all others. Exceptions and differences between bi n and
l'i b file processing are as follows:

« All bi n files are processed before all | i b files. If modules
containing duplicate entry points are discovered, the loader
uses the first occurrence. See “DUPCRDER directive,” page 32.

« The FORCE directive causes the loader to include all modules
from bi n files, even if they are not referenced. FORCE does not
affect modules from | i b files. See “FORCE directive,” page 30.

« The BRI EF option to the MAP directive limits load maps to
modules derived from bi n files. Modules from | i b files are
not listed. See “MAP directive,” page 37.

» The DUPORDER directive affects the selection of modules from
library files. See “DUPORDER directive,” page 32.

« The DUPENTRY directive controls messages concerning
duplicate definitions of the same entry point. It differentiates
between entry points from bi n files and those from | i b files.
See “DUPENTRY directive,” page 41.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

« Fortran BLOCKDATA subprograms encountered in bi n files are
always included in the program. BLOCKDATA subprograms
encountered in | i b files are included only if they are
referenced.

e The loader always includes a module written in C and
encountered in a bi n file if the module initializes global data.
C modules from | i b files that initialize global data are
included only if they are referenced.

In addition to the files you provide, the loader also scans a set of
default system libraries. You can use the NODEFLI B directive to
inhibit default library processing.

The default libraries that segl dr and | d scan and the order of
scanning are specified in the default directives files. The default
directives files as released by Cray Research specify processing
the libraries in the order listed:

libc.a
l'i bu. a
l'ibm a
i bf.a
libfi.a
libsci.a
libp.a

Some of the default libraries listed above may be released
separately from the UNICOS operating system; therefore, they
may not be present on your system. Missing libraries are
silently ignored.

The loader uses a directory search algorithm to locate each
default | i b file. If you have provided a list of search directory
names by using the —L option or LI BDI Rdirective, the loader
searches the directories specified to locate the default libraries.
If the libraries cannot be located in those directories, the loader
searches the directories specified in the default directory search
list. (See “DEFDI R directive,” page 109, for information on the
default directory search list.)

SR-0066 9.0 Cray Research, Inc. 25

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

Bl Ndirective
3.2.1

LBI Ndirective
3.2.2

26

The Bl Ndirective names the relocatable object input files to be
searched. Multiple Bl N directives have a cumulative effect. If
you specify multiple files with Bl N, the loader processes them in
the order specified.

If a module is present in more than one file, the loader loads the
first module encountered. However, if you use the MODULES
directive and specify a particular file, this rule may not apply.

Format:

Bl N=file1[, fileo, files, . . ., file,]

file; Names of relocatable input files to be included. If
no bi n files are specified, the default is a. o.

If you continue this directive beyond one line, end each
continued line with a comma.

Examples:

bi n=nyfile,../group/ourfile.o,
../suelherfile.a,/ul/stevel/anyfile.o

bi n=newfile.a,oldfile.a

Modules contained in global Bl Nfiles (as opposed to segmented
Bl Nfiles) are not assumed to be in any particular segment,
unless the module is specified in a segmented MODULES directive.

Command-line equivalent: objfiles argument

The LBI N directive, in a manner similar to the Bl N directive,
names relocatable object input files for the loader to search.
With LBI N, however, only the file name component is specified.
The LI BDI Rdirectory search applies to names on the LBI N
directive. Each LI BDI Rdirectory is searched for the files
specified. The first file found is included in the program.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

Format:
LBI N=fileq[, files, files, . . ., file,]
file; Names of the files you provide.
LI B directive The LI B directive names the relocatable object library files for
3.2.3 the loader to search when the loader is trying to find entry

points that are referenced in Bl N files but are not defined in any
Bl Nfiles or previously searched LI B files.

Use the LI B directive to specify | i b files in addition to those in
the loader’s default list of libraries. Library files specified with
the LI B directive are searched in the order specified and before
any default libraries.

The effect of multiple LI B directives is cumulative.

If you continue this directive beyond one line, end each
continued line with a comma. The LI BDI R directory search does
not apply to files specified in LI B directives. Each name should
be a complete path name.

Format:

LI B=libq[, libe, libs, . . ., lib,]
lib; Names of the libraries you provide.
Examples:

lib=/u/lib/lib7.a,/u/libllibarf.a,
[1ib/1ib3A a, nytnmplib.a,nylibY.a

l'ib=nylibs.o,/lib/libc.a

These examples each specify seven libraries that the loader
should search before searching the default libraries. The
libraries are searched in the order given.

SR-0066 9.0 Cray Research, Inc. 27

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

LLI B directive
3.2.4

NODEFL| B directive
3.2.5

28

The LLI B directive, in a manner similar to the LI B directive,
specifies relocatable object libraries for the loader to search.
With LLI B, however, only the file name component is specified.
The LI BDI Rdirectory search applies to what is specified on the
LLI B directive. Each LI BDI Rdirectory is searched for the files
specified. The first file found is included in the program.

Format:

LLI B=name| , name, . . .|

Command-line equivalent: —| option
Example:

LIBDIR=/lib/xlib
LLI B=li bscan. a

First, the loader looks for file / | i b/ xl'i b/ | i bscan. a, then
/1ib/libscan. a,and finally /usr/1i b/ |i bscan. a. It uses
the first of these files it finds.

The segl dr default directives file contains a set of DEFLI B
directives. NODEFLI B instructs the loader to ignore some or all
of the libraries that have been specified by DEFLI B directives. If
all default libraries are to be ignored, only modules found in files
declared as Bl Nor LI B files are considered for loading.

Format:

NODEFLI| B
NODEFLI B=deflib;[, deflibs, . . . , deflib,]

If the first format is used, all default libraries are ignored. If the
second format is used, only the specified default libraries are
ignored.

Note: For a segmented load, you must specify the library
containing the loader run-time routine $SEGRES.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

DEFLI B directive
3.2.6

SR-0066 9.0

Example:

NODEFLI B
LIB=/lib/libio.a,/lib/libc.a

The preceding example tells the loader to search the libraries
specified by the LI B directive (in the order specified) for
unsatisfied externals. The loader does not search the default
libraries for entry points not found in the specified libraries.

Example:
NODEFLI B=l i bp. a

This example directs the loader to ignore the Pascal library, and
to process the other default libraries as usual.

Command-line equivalent: —N option

The DEFLI B directive instructs the loader to add libraries to its
list of default libraries. Each library specified in the DEFLI B
directive is added to the end of the list of default libraries. If
DEFLI B specifies a library that is already part of the default
library list, the loader moves that library name to the end of the
list. You may use NODEFLI B and DEFLI B together to replace
some or all of the default system libraries (See “Including object
modules,” page 24). All libraries specified by the DEFLI B
directive are processed after all libraries that are specified by
the LI B directive are processed.

Format:

DEFLI B=deflib;[, deflibs, . . ., deflib,]

deflib; Name of one library to add.
Example:
DEFLI B=li brryl i b. a

This example directs the loader to add the user’s library to the
end of the default library list.

Cray Research, Inc. 29

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

FORCE directive
3.2.7

MODULES and SMODULES
directives
3.2.8

30

Example:
NODEFLI B; DEFLI B=l i buser. a

This example suppresses all normal default system libraries,
replacing them with one user library.

The loader gathers all modules in all files specified with global
Bl Nand LI B directives. It then discards all modules with entry
points that are never called. FORCE specifies that subprograms
not called by other subprograms are to be loaded anyway
(force-loaded). This can be helpful in debugging, letting you
force-load a debug routine not actually called by the program.

Format:
FORCE=QON| OFF
ON Enables force-loading; when FORCE=O0N, the loader
loads all modules specified in MODULES directives
and in all bi n files.
CFF Disables force-loading; when FORCE=CFF, the

loader discards modules to which no references
have been made (except the XFER directive’s
module and the BLOCKDATA subprograms found in
bi n files) (default).

Command-line equivalent: —F option

The MODULES and SMODULES directives specify modules to load.
Normally, if more than one module with a particular name
exists, the loader chooses the first such module it encounters. If
modules of the same name are encountered in different files, you
can use the MODULES directive to specify the files from which the
modules are obtained.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

Additionally, you can use MODULES to specify the loading order in
a nonsegmented load. Loading order can be affected by other
considerations such as the current memory ordering algorithm.
See “Executable program organization,” page 96. If you use the
MODULES directive, an error message will be issued if the
modules specified cannot be located in any included file. Error
messages are not issued if SMODULES is used.

COVVONS and SCOVMONS
directives
3.2.9

SR-0066 9.0

Format:
MODULES=modname/] :file1] [, modnames] :files] , . . . , modnamey,| file,]]
SMODULES=modname][file1] [, modnames| :files] , . . . , modname,| file,] |
modname; Name of the module to be loaded.
file; Name of the file from which to obtain the
module.
Example:

MODULES=SUBA, SUBB: nyfi | e. o, SUBC
MODULES=SUBD: | i bl. a

In the preceding example, the MODULES directive tells the loader
to obtain SUBB from file myfi | e. 0 and to obtain SUBD from file
l'i bl. a; modules SUBA and SUBC are obtained from the first file
in which each is encountered.

In an unsegmented program, COVMONS and SCOMMONS cause the
listed common blocks to be loaded in the indicated order. In a
segmented load, however, the COVMONS directive serves only to
order and/or set the size of common blocks. Loading order can be
affected by other considerations such as the current memory
ordering algorithm. See “Executable program organization,”
page 96.

If you continue this directive beyond one line, end each
continued line with a comma.

If you use the COVONS directive, an error message will be
issued if the indicated common blocks cannot be located in any
included file. No error messages are issued if SCOVMONS is used.

Cray Research, Inc. 31

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

Format:
COMMONS=blknameq] :size1] [, blknamesg[:sizeg |, ..., blknamey]| : size,]]
SCOVMONS=blkname/] :size1] [, blknameg| sizes |, . .., blkname,] :size,]]

DUPORDER directive
3.2.10

32

blkname; Name of the common block to be loaded.

size; Decimal number indicating the size of the
common block. If present, it overrides any
common block sizes declared in your code. If the
size specified is 0, the first common block size
encountered in your code (for this common
block) is used. By default, the loader uses the
longest common block definition it encounters in
those modules of your code that are actually
referenced and loaded.

The DUPORDER directive selects the method the loader uses to
process duplicated entry points found in libraries. When
processing Bl Nfiles, the loader always chooses the first
occurrence of a duplicated entry point. If the duplicated symbol
appears in both a Bl Nand a LI B file, the loader always chooses
the one in the Bl Nfile. If the duplicated symbol appears only in
library files, the loader has two methods of selecting the
occurrence of the symbol to use: if the DUPORDER directive is
not enabled (OFF, default for segl dr), the loader uses the first
occurrence of the symbol. If the DUPORDER directive is enabled
(ON, default for | d), the loader uses ordered duplicate selection,
which means that the loader locates the first module that
references the duplicated symbol and then looks for a definition
of the symbol in succeeding modules. The first definition found
in a succeeding module is the one used. If the loader finds no
succeeding definition, the first definition encountered anywhere
is used.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual

General Directives [3]

SR-0066 9.0

Format:

DUPCRDER=QON| OFF

N The loader uses ordered duplicate selection to
choose the entry point to use (default for | d).

OFF The loader uses the first occurrence of the
duplicated entry point (default for segl dr).

The following example, in which a partial Fortran program is
loaded, contrasts the ON and OFF settings of the DUPORDER
directive.

nodul e 1: PROGRAM DUPEXAMP
CALL REFMOD
ENb

nmodul e 2: SUBROUTI NE DUPLI CAT
ENiZ)

nodul e 3: SUBROUTI NE REFMOD

CALL DUPLI CAT
END

nodul e 4: SUBROUTI NE DUPLI CAT

END

Module 1 contains the main program and is included in the load
in a binary file. Modules 2, 3, and 4 occur, in the order shown, in

library files. If the DUPORDER directive is disabled (OFF, or not
used), the loader selects the DUPLI CAT symbol in module 2 to
satisfy the reference in module 3, because it is the first
occurrence of the symbol. If the DUPORDER directive is enabled
(ON), the loader selects the DUPLI CAT symbol from module 4

because this is the first definition for DUPLI CAT that occurs after

the reference in module 3.

Cray Research, Inc.

33

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

OM T directive
3.2.11

The executable

program
3.3

34

The OM T directive specifies modules that should be bypassed by
the loader when processing object or library files.

Format:

OM T=modulel[:filel] [, module2| :file2], . . .]

Modules specified on the OM T directive are not included in the
program, even if referenced from other modules. If file is not
present, all modules with the indicated name are omitted,
regardless of the file in which they are found. If file is specified,
only module from that file is omitted. Modules with the same
name, but in different files, are included.

If a module is omitted, and the program makes references to
symbols within that module (that cannot be satisfied by any
other module), the reference is treated in the same manner as
any other unsatisfied reference.

Example:
omt=printf$c:/1ib/libc.a, nynodul e

In this example, the pri nt f $¢ module, from file /1 i b/ | i bc. a
and from any module with the name nynodul e, is bypassed in
the load process.

The ABS and TRI AL directives give you a measure of control over
the executable program that the loader produces. You can tell
the loader where to write the executable file, or whether the
loader should produce the executable file or only a load map and
error messages.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

ABS directive The ABS directive specifies the file to receive the executable
3.3.1 program constructed by the loader.
Format:
ABS=file
file The file parameter specifies the file to receive the

executable program. The default is a. out .

Command-line equivalent: —0 option

TRI AL directive The TRI AL directive lets you make a sample of the loader run

3.3.2 without creating any executable output. You can therefore print
a load map and most error messages without using a lot of
memory to build the executable output. Making test runs with
TRI AL also lets you determine optimal memory use for data
areas or identify total memory requirements for a particular
application.

Format:

TRI AL

Command-line equivalent: -t option

Load map control The ECHO, COMVENT, MAP, and Tl TLE directives control the

3.4 information that the loader writes to the listing output file. The
default listing output file is st dout . You can change these
defaults by using the —Moption.

SR-0066 9.0 Cray Research, Inc. 35

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

ECHOdirective
3.4.1

Comments
3.4.2

36

The ECHO directive resumes or suppresses the printing of input
directives.

Format:
ECHO=ON| OFF
ON Resumes the listing of input directives.
OFF Suppresses directive listing. If ECHO=OFF, the

loader automatically echoes erroneous directive
lines, followed by the error message (default).

Comments annotate the loader directives. They are echoed to
the listing file but are otherwise ignored. All characters to the
right of the asterisk are considered part of the comment string.

The asterisk character begins a comment. You can use
comments in either the global or the segment description
directives, but you cannot embed comments within directives.

Format:

* comment string

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual

General Directives [3]

MAP directive
3.4.3

SR-0066 9.0

Example:

TI TLEFGLOBAL DI RECTI VES

kkhkkhkkhkkhkikikikhkikikkk*k

* d obal directives

ER IR I b I 3 S b I b b I S b I B I b I I I I I b b I b b I
Bl N=X

TI TLE=TREE DI RECTI VES

kkhkkhkkhkikikikikk**k

*Tree directives

R R R I b S b b b S b S I R b S I S S S b S

TREE

ROOT(A, B)
ENDTREE
TI TLE=SEG DESCR. DI R.
EE R R S b S I R R I R R Ik
SEGVENT=ROOT
* Segment Description Directives foll ow

The MAP directive controls the loader map output generation.
Besides memory mapping, MAP provides the time and date of
load, the length of the longest branch and the last segment, and
the transfer address. Map output is written to the listing file.
See “Examples,” page 123, for more information on map output.

Format:

MAP=[keywordz, ..., keyword,]

NONE Writes no map output to the listing file (default).

STAT Writes statistics for the load (such as date and
time), length of longest branch, last segment,
transfer entry point, and stack and heap
information.

ALPHA Writes the STAT information plus the block map
for each segment, listing the modules in
alphabetical order.

ADDRESS Writes the ALPHA information, but it lists
modules by ascending load address.

PART Writes both ALPHA and ADDRESS information.

Cray Research, Inc. 37

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

Tl TLE directive
3.44

38

EPXRF Writes the STAT information plus the Entry
Point Cross-reference table.

CBXRF Writes the STAT information plus the Common
Block Cross-reference table.

FULL Writes all PART, EPXRF, and CBXRF information.

BRI EF Limits information in the ADDRESS and ALPHA

output to modules from bi n files.
The effects of multiple keywords are cumulative.

Command-line equivalents: —mand —Moptions.

The Tl TLE directive places an arbitrary, user-defined character
string in the second line of each page header. Tl TLE forces a
page eject and then writes the header lines at the top of the new

page.

The title line is initially clear, and it can be reset by Tl TLE
directives in either the global or the segment description
directives portion of the input. An end-of-line or a semicolon (;)
signals the end of the Tl TLE string.

Format:

Tl TLE[=title string]

title string User-defined character string; maximum
length is 74 characters. If no title string is
specified, the title line is cleared.

Example:
TI TLE=Pl ace this in the page header, please.

This Tl TLE directive copies the string “Pl ace this in the
page header, please.” tothe page header.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

Controlling error

messages
3.5

M_LEVEL directive
3.5.1

SR-0066 9.0

The MLEVEL, USX, REDEF, DUPENTRY, DUPL OAD, NODUPNSG,
NOUSXMSG and MSGLEVEL directives let you control the printing
of error messages. Error messages are written to st derr by
default, although you can redirect them to other files by using
standard I/O redirection or with the loader —k command-line
option.

The MLEVEL directive controls the loader messages on the listing
output. The keyword indicates the lowest-priority message to be
printed. If you do not use the M_LEVEL directive,

M_LEVEL=CAUTI ONis assumed.

Format:

M_EVEL=keyword

FATAL Prints only FATAL-level messages. When a
message with this severity level is issued, the
loader is terminated immediately, and no
executable output is written.

WARNI NG Prints FATAL- and WARNI NG-level messages. A
WARNI NG-level message indicates that the
executable output may not be written; if the
output is written, it is not executable.
Processing continues so that additional
messages may be printed.

CAUTI ON Prints FATAL-, WARNI NG-, and CAUTI ON-level
messages. A CAUTI ONHlevel message indicates
that an error may have occurred, but it is not
severe enough to prohibit generation of
executable output (default).

NOTE Prints FATAL-, WARNI NG-, CAUTI ON-, and
NOTE-level messages. A NOTE-level message
indicates that the loader may have been misused
or used inefficiently; it has no effect on execution
validity.

COWMENT Prints all levels of messages. A COVVENT-level
message does not affect execution.

Cray Research, Inc. 39

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

USX directive
3.5.2

REDEF directive
3.5.3

40

The USX directive lets you determine the severity level of
unsatisfied external symbols. CAUTI ONis the default.

Format:

USX=keyword

FATAL, WARNI NG, CAUTI ON, NOTE, COMVENT

See the descriptions for these in “M_EVEL
directive,” page 39.

| GNORE This is the same as COVIVENT.

The loader generates an error message if you redefine common
blocks with varying lengths in different modules.

REDEF lets you control the severity level of the loader’s messages
when common blocks are defined with varying sizes. The loader
always takes the longest definition, regardless of the REDEF
value. The severity level you select applies to cases in which the
common block is redefined with a larger size. The severity level
is one level lower for cases in which the common block is
redefined with a smaller size.

Format:

REDEF=keyword

FATAL, WARNI NG, CAUTI ON, NOTE, COMVENT

See the descriptions for these in “M_EVEL
directive,” page 39.

| GNORE This is the same as COVIVENT.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

DUPENTRY directive The DUPENTRY directive controls the severity of the message

354 generated when the loader encounters a duplicated entry point;
the default is CAUTI ON. The loader generates the duplicate
entry error message with the severity level you specify. See
“Program Duplication and Block Assignment,” page 75, for more
information on duplicated entry points.

Format:

DUPENTRY=keyword;| , keywords| , keywords] |

FATAL, WARNI NG, CAUTI ON, NOTE, COMVENT

See the descriptions for these in “M_EVEL
directive,” page 39.

| GNORE This is the same as COVIVENT.

The default for segl dr is DUPENTRY=CAUTI ON,CAUTI ON,NOTE.
The default for | d is DUPENTRY=CAUTI ON,NOTE, NOTE.

The first keyword controls the severity level of messages issued
for cases in which both duplicated entry points are in a bi n file.
The second keyword controls the severity level of messages
issued for cases in which one duplicated entry point is in a bi n
file and the otherisin a |l i b file. The third keyword controls the
message severity level for cases in which both duplicated entry
points occur in a | i b file. Table 4 shows this correspondence.

Table 4. DUPENTRY keywords for duplicated entry definitions

Keyword bi n file Iibfile
keyword; both entries N/A
keywordy one entry one entry
keywords N/A both entries

If the second or third keyword is not provided, the value of the
last keyword present is used.

SR-0066 9.0 Cray Research, Inc. 41

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

DUPLOAD directive
3.5.5

NODUPMSGdirective
3.5.6

42

The DUPLOAD directive lets you control the severity of messages
that the loader generates when a common block is initialized by
two or more modules. The loader generates messages with the
severity level you specify with DUPLQAD. This level applies to
common blocks referenced by C language modules. The level of
messages generated for multiple common block initialization by
Fortran modules is one severity level lower than the level you
specify. Subsequent initializations of a common block overwrite
any preceding ones.

Format:

DUPLOAD=keyword

FATAL, WARNI NG, CAUTI ON, NOTE, COMVENT

See the descriptions for these in “M_EVEL
directive,” page 39.

| GNORE This is the same as COVVENT.

The NODUPMSG directive suppresses messages about duplicated
entry points. If you know that one or more particular entry
points are duplicated, and do not want the loader to issue
messages about those symbols, use NODUPM5Gto suppress the
messages.

Format:

NCDUPMSG=epname]| , epname, . . . |

epname Name of an entry point for which no message
should be issued.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

NOUSXMSGdirective
3.5.7

MSGLEVEL directive
3.5.8

SR-0066 9.0

The NOUSXMSGdirective suppresses messages concerning
unsatisfied external references. If you know that one or more
specific external references will not be satisfied in your program,
and you do not want the loader to issue messages about those
references, use NOUSXMSGto suppress the messages.

Format:

NOUSXMSG=epname| , epname, . . . |

epname Name of an entry point for which no unsatisfied
references are present and for which no messages
should be issued.

The MSGLEVEL directive lets you set the severity level for any
message that the loader issues. For instance, you can increase
the severity for certain cases and decrease the severity for
others. If you increase the severity to equal to or greater than
the WARNI NGlevel for a particular error, the loader will not make
your program executable if that error occurs. If you decrease the
severity to equal to or below the NOTE level for a particular error,
the loader will not print a message if that error occurs.

Format:

VMSGLEVEL=number:keyword[, number:keyword. . .]

number Number of message for which the severity level
should be changed.

keyword FATAL, WARNI NG, CAUTI ON, NOTE, COMVENT

See the descriptions for these in “M_EVEL
directive,” page 39.

Example:

MSGLEVEL=268: NOTE, 114: WARNI NG

In this example, the severity level of message number 268 is set
to NOTE; the severity level of message number 114 is set to
WARNI NG,

Cray Research, Inc. 43

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

Controlling entry
points and

execution
3.6

XFER directive
3.6.1

44

Message numbers are displayed as part of every error message
that is issued. They are appended to the | dr message group
identifier. In the following message example, the message
number is 112:

| dr=112 sldr: WARN NG
File "a.out’ is not executable due to
previ ous errors.

The XFER, EQUI V, and SET directives let you control the point at
which your program begins executing, and they also intercept
definitions of entry points at load time.

The XFER directive specifies the transfer entry point for your
program. Control is passed from the system start-up routine to
the XFER entry point. If you do not use the XFER directive, the
loader uses the first primary entry point it encounters as the
transfer entry point. A primary entry point can be specified by
the Fortran language PROGRAMstatement, by the CAL START
pseudo instruction, or by the C language procedure name of
mai n.

The XFER directive can also be used to identify which primary
entry point to use as the transfer entry when the loader
encounters more than one primary entry point.

Format:
XFER=entry
entry Entry point name.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

EQUI V directive The EQUI V directive lets the loader substitute a call or reference
3.6.2 to one entry point for a call or reference to another entry point.
Format:
EQUI V=epname(syni[, syns, . . ., syn,])

epname Name of a target entry point.

syn; Name of the entry point to be linked to epname.

If you continue this directive beyond one line, end each
continued line with a comma.

Example:

CALL A

CALL B

In the preceding code sequence, the calls to A and B are linked to
C by the following specification:

EQUI V=C(A, B)

The module containing entry point C is loaded, but the module
or modules containing A and B might not be loaded. The module
or modules containing A and B are loaded if they are needed to
satisfy other references to other entry points within those
modules.

In this example, EQUI V has the same effect as using a text editor
to replace all occurrences of CALL A and CALL B with CALL C,
except that you do not have to recompile or change the source
code.

SR-0066 9.0 Cray Research, Inc. 45

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

SET directive
3.6.3

UNSAT directive
3.6.4

46

The SET directive assigns a value to an external entry point. A
SET value for the specified entry point takes precedence over a
value encountered in the relocatable modules.

Format:

SET=epname:value[:mod]

epname Specifies the entry point to be given a value.

value Decimal value associated with epname.
mod Alignment modifier. mod may be one of the
following:

W Represents a word address (default)
P Represents a parcel address

\% Represents a constant

The UNSAT directive specifies the names of one or more
unsatisfied external references that are placed in the loader
symbol tables before loading any object files. UNSAT is useful if
all files to be loaded are | i b files. Modules from | i b files are
included in the executable program only if an entry point in the
module satisfies a reference to the | i b file. With the UNSAT
directive, you can specify the entry points that will cause
modules to be included from library files.

Format:

UNSAT=epname;| , epnames. . .]

epname; ~ Name of an unsatisfied entry point.
Example:

UNSAT=bl ockt wo
LI B=nylib. a

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

An unsatisfied external reference to bl ockt wo is generated,
causing the module in nyl i b. a that contains the bl ockt wo
entry point to be included in the program.

Command-line equivalent: —u option

Program The ALI GN, PRESET, and ORGdirectives let you initialize
ali gnment and uninitialized data areas and control the loading of some modules
or common blocks.

initialization

3.7

ALl CNdirective The ALI GN directive controls the starting locations of modules
3.7.1 and common blocks. The loader recognizes an align bit for each

relocatable module and common block containing an ALI GN
pseudo-op. See the Cray Assembly Language (CAL) for Cray
PVP Systems Reference Manual, publication SR-3108.

Format:

ALl GN=keyword

| GNORE Allocates the local blocks of each module and
each common block at the beginning of the word
following the previous local block or common
block. The align bit is ignored.

MODULES Allocates the local blocks of each module
containing code to an instruction buffer boundary
according to the instruction buffer size of the
machine. The instruction buffer size is 32 words
for Cray PVP systems. Common blocks are
forced to instruction buffer boundaries only when
the align bit is set.

SR-0066 9.0 Cray Research, Inc. 47

General Directives [3] Segment Loader (SEGLDR) and | d Reference Manual

NORNMAL Allocates the local blocks of each module and
each common block with the align bit set to an
instruction buffer boundary, according to the
machine’s instruction buffer size. The
instruction buffer size is 32 words for Cray PVP
systems.

If the align bit is not set for a local or common
block, that local or common block is allocated at

the word following the previous local or common
block (default).

Command-line equivalent: —a option

PRESET directive The PRESET directive specifies a value that the loader uses to

3.7.2 preset uninitialized data areas within the object module (for
example, variables in labeled Fortran common blocks with no
DATA statements).

Stack-allocated data is not part of the program image. As a
result, the loader cannot preset variables that reside on the
stack.

Format:

PRESET=keyword

ONES Sets uninitialized data words to —1.

ZERCS Sets uninitialized data words to O (default).

| NDEF Sets uninitialized data to
O 0605054000000000000000. This value
generates a floating-point error if used as an
operand in a floating-point operation.

—|I NDEF Sets uninitialized data to
0 1605054000000000000000. This value is the
same as that of | NDEF, except that it is negative.

48 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

ORGdirective
3.7.3

SR-0066 9.0

| NDEFA

—| NDEFA

value

Sets uninitialized data to the sum of a logical OR
operation of O 0605054000000000000000 and
the address of the word being preset. This value
is the same as that of | NDEF, except the address of
the word referenced appears in the low-order bits
of the value.

Sets uninitialized data to the sum of a logical OR
operation of O 10605054000000000000000 and
the address of the word being preset. This value
is the same as that of —I NDEF, except the address
of the word referenced appears in the low-order
bits of the value.

Inserts a 16-bit, user-supplied octal value into
each parcel of uninitialized data words. The value
must be in the range 0 <= value <= O 177777

Command-line equivalent: —f option

The ORGdirective sets the initial addresses for different portions
of your program. Normal programs must have ORG values of 0.
The ORG directive should be used only for special-purpose

programs.

Format:

ORG=corg: dorg: lorg

corg

dorg

lorg

Specifies an octal value between 0 and 77777777.
The default is 0, which is the initial address for
the code portion of the program.

Specifies an octal value between 0 and 77777777.
The default is 0, which is used for initial data for
the program.

Specifies an octal value between 0 and 177777.
The default value is 0.

Cray Research, Inc. 49

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

Miscellaneous

global directives
3.8

SYMBCLS directive
3.8.1

KEEPSYMand H DESYM
directives
3.8.2

50

The SYMBOLS directive determines whether the debug symbol
table should be constructed. The KEEPSYM and HI DESYM
directives determines the visibility of externals in the relocatable
module. The CASE and CPUCHECK directives control case
conversions and machine characteristic checking, respectively.
The COMPRESS directive controls compression of executable files.
The LOGFI LE directive specifies the name of the file to which
the loader writes log messages. The LOGUSE directive specifies
the names of the object or library files for which log messages
should be generated.

The SYMBOLS directives determines whether the loader
constructs the debug symbol table for the executable program.

Format:

SYMBOLS=0ON OFF

ON The loader writes symbol table information to the
executable file, following the executable program
(default).

OFF Instructs the loader to ignore all symbol table
information.

Command-line equivalent: —g and —s options

The KEEPSYM and HI DESYMdirectives determine the visibility of
externals in the relocatable module. By default, global symbols
are visible. The H DESYMdirective hides selected symbols. The
KEEPSYMdirective hides all symbols except the selected symbols.
A directive is needed for each symbol affected.

The KEEPSYMand HI DESYMdirectives are mutually exclusive.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

Format:

Hl DESYMesymbol:type
KEEPSYM=symbol:type

symbol Name of a symbol.

type The type of symbol, which is one of the following:
C Common block symbol
E External symbol
B Both types of symbols (a C language
external)
CASE directive The CASE directive controls whether characters in the directives
3.8.3 file are converted to uppercase before they are processed.
Format:

CASE=keyword

UPPER Directs the loader to convert all module, entry
point, and common block names in the directives
to uppercase. Usually this is desirable when no
relocatable modules with lowercase names are
encountered.

M XED Specifies that no translation is done, and names
must match exactly (default).

CPUCHECK directive The CPUCHECK directive controls whether machine characteristic

3.84 checking is done within the loader. Turning off checking allows
a slight increase in the execution speed of the loader, but it also
allows the loading and execution of modules that have
incompatible characteristics.

SR-0066 9.0 Cray Research, Inc. 51

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

COVPRESS directive
3.8.5

52

Format:

CPUCHECK=keyword

ON Enables machine characteristic type checking
(default).
OFF Disables machine characteristic type checking.

The COMPRESS directive enables or disables compression of
executable files, and it specifies the size of blocks the loader
should consider for compression. As the loader loads your
program, it scans for large areas of the program in which each
word contains the same value. When it finds a block of words
with the same value, it generates a compression entry rather
than the actual code. The system start-up routine expands the
compression entry into actual code at run time. To be eligible for
compression, a block must satisfy the following requirements:

« It must contain only data
» It must contain repetitively initialized values

« It must have a block size larger than the compression
threshold

Executable programs that have been compressed require less
memory to link, as well as less storage space. Execution time of
the system start-up routine increases for compressed programs,
but file transfer time is decreased.

Format:

COVMPRESS=keyword

OFF Disables all compression.

number Sets compression block size to number. The
default is 1000.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual General Directives [3]

LOGFI LE directive
3.8.6

LOGUSE directive
3.8.7

SR-0066 9.0

The LOGFI LE directive specifies the name of the file to which the
loader writes log messages. (See “LOGUSE directive,” page 53, for
information on log messages.) Normally, this directive should
be used in the default def _seg and def _| d directives files to
identify the log file for all users.

Format:
LOGFI LE=file
file Name of a file to which the loader writes log

messages.

The log file must be created prior to loader execution, and it
must have W i t € permission enabled for all users. On systems
with multilevel security (MLS), the log file must be created in
the most restrictive partition of the file system, so that all users
can write to the file. The loader appends log messages to the end
of the file; it does not initialize, summarize, or report on the
contents of the log file. If the log file is not present, or the loader
cannot write to it, the loader suppresses all log messages
without issuing an error message.

Command-line equivalent: none

The LOGUSE directive specifies the names of object or library
files for which log messages should be generated. Normally, this
directive should be used in the default directives files def _seg
and def _I| d to log the usage of specific object or library files by
all users. If the specified library is not a default library (even if
it is in a default search path) you should specify the full path
name of the library.

Format:

LOGUSE=file;] , files, . . .]

file Name of an object or library file whose usage
should be logged.

Cray Research, Inc. 53

General Directives [3]

Segment Loader (SEGLDR) and | d Reference Manual

54

Whenever the file specified on the LOGUSE directive is processed
by the loader, a log message is appended to the log file (specified
by the LOGFI LE directive).

The generated message is in ASCII characters, and it is
terminated by new-line characters (“\ n”). Individual fields
within the message are separated by a vertical bar (“| 7). The
message format is as follows:

| oguse| filename| date| time| uid| code\ n

filename Name of file.

date Date of reference to the file; format is mm/dd/yy.
time Time of reference to the file; format is hh:mm:ss.
uid User ID of user referencing the file.

Character indicating the type of reference.

S The file was scanned, but no modules
were included.

i The file was scanned, and modules were
included.

Command-line equivalent: none.

Cray Research, Inc. SR-0066 9.0

