Introduction to Program Segmentation [4]

SEGLDR segment

tree concept
4.1

SR-0066 9.0

When using the loader, you specify the segment structure and
the contents of the segments to be loaded. This section describes
the principles of the loader program segmentation. The
information in this section does not apply to nonsegmented
programs. “Examples,” page 123, contains an example of a
segmented program.

In addition to automatic segment loading and unloading, the
loader lets you do the following:

» Modify the segmentation structure, usually without
recompilation.

« Overlay different modules (subroutines) without making
significant source code changes.

» Define the contents of a segment by specifying only one
module per segment.

» Pass arguments between subprograms residing in different
segments.

» Unload segments and any contained data blocks. The loader
then reloads the blocks with their updated images.

The loader arranges program segments in a tree structure, as
shown in Figure 1, page 56. A nonsegmented program consists
of only the root segment.

Each segment in a tree contains one or more subprogram
modules, and possibly some common blocks. Subprogram
hierarchy helps you determine the shape of your tree.

The root segment of a tree is the predecessor for every branch
segment and has no predecessor segment itself. Predecessor and
successor segments lie on a common branch. Down the tree (or
branch) means moving away from the root segment, and up the
tree or branch means moving toward the root segment.

Cray Research, Inc. 55

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and | d Reference Manual

56

During program execution, only one immediate successor
segment of each segment can be in memory at one time. The
root segment is always memory-resident; other segments occupy
higher memory addresses when required. Predecessor segments
of the executing segment are guaranteed to be memory-resident.
In addition, successor segments might be memory-resident,
depending on recent subroutine calls to successor segments.

]
A (root)
I
]
B (branch) C
I
D E

Figure 1. Segment tree

Each segment in Figure 1 is assigned an arbitrary but unique
1- to 8-character segment name.

The apex of the loader segment tree (segment A in Figure 1) is
the root segment. The remaining segments (B, C, D, and E) are
the branch segments.

Within these branch segments, B, C, D, and E are successor
segments of A. B and C are immediate successor segments of A,
and D and E are immediate successor segments of C. It follows,
then, that C and A are predecessor segments for D and E, and A
alone is the predecessor segment for B and C. C is the
immediate predecessor segment of D and E.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual

Introduction to Program Segmentation [4]

Loader segment

tree design
4.2

The only restriction on the height or width of the segment tree is
that no more than 1000 segments, including the root, can be
defined. A valid segment tree, however, must adhere to the
following rules:

» Each segment tree can have only one root segment (a segment
with no predecessor segments) and must have at least one
branch segment.

« Each nonroot segment can have only one immediate
predecessor segment.

Figure 2 and Figure 3 show valid segment trees.

SR-0066 9.0

D1

D2

Figure 2. Valid segment tree (broad)

Cray Research, Inc. 57

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and | d Reference Manual

58

/N
/\

Figure 3. Valid segment tree (deep)

Figure 4 and Figure 5 show tree structures that are invalid
because of their multiple root segments or multiple
immediate-predecessor segments.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Introduction to Program Segmentation [4]

Figure 4. Invalid segment tree (multiple root segments)

Figure 5. Invalid segment tree (multiple immediate-predecessor
segments)

Subroutine ca]]ing Calls can be made from any module in a segment to any module
between segments (subroutine or function) in a successor or predecessor segment.
43 Calls across the segment tree are invalid (see Figure 6, page 61).
’ That is, subroutine calls can be made both up and down the tree
if the calling and called modules are owned by segments on a
common branch. If a call is made to a subroutine from a
segment that is not an immediate predecessor to the segment

SR-0066 9.0 Cray Research, Inc. 59

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and | d Reference Manual

60

containing the subroutine, all intermediate segments on the
branch are read into memory. In Figure 3, for example, if a line
of code in segment I makes a call to a subroutine in segment M,
segments J, L, and M are all read into memory.

When a call is made from a subroutine to a subroutine further
down the branch at execution time, the loader does the following:

1. Intercepts the call

2. Loads the appropriate segment or segments (if not already in
memory)

3. Jumps to the called entry point

The loader intercepts only calls to subroutines in successor
segments because they are the only calls that can cause a
segment to be loaded (if a segment is in memory, all of its
predecessors (callers) are already in memory).

Caution: In CAL, it is strongly recommended that you use
the CALL and CALLV macros for subroutine calls to other
modules. If you do not do this, the calls between segments
may fail, with unpredictable results.

Do not pass an entry point to a subroutine as an argument if the
entry point is not in the same segment or a predecessor segment.
In Fortran, for example, the following two statements can
produce calls to segments not in memory:

EXTERNAL SUBL
CALL SUB (SUBL)

The segment SUB1 may not be in memory when this call is made
because the loader cannot detect runtime references.

You should not use the segment structure shown in Figure 6,
because it generates an execution error (explanation following).

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Introduction to Program Segmentation [4]

(Segnent ROOT)

PROGRAM MAI' N
CALL SsuBl
END

CALL sSuB2
END

SUBROUTI NE SUBMAI N

(Segnent SEGL)

(Segnent SEQR2)

SUBROUTI NE SUB1
CALL SUBMAI N
END

SUBROUTI NE SUB2

END

Figure 6. Invalid segment tree (call across segment tree)

Figure 6 shows an invalid segment structure that results in the

following sequence of actions:

1. When SUBL is called, segment SEGL is read into memory.

2. When SUB2 is called, segment SEQ? is read into memory,

overwriting SEGL.

3. On the return to SUB1 from SUBMAI N, SEGL is no longer in

memory; therefore, control cannot return to SUBL.

4. $SEGRES terminates the program at this point, displaying an

error message.

The loader handles subroutine calls as shown in Figure 7.

SR-0066 9.0 Cray Research, Inc.

61

Introduction to Program Segmentation [4] Segment Loader (SEGLDR) and | d Reference Manual

62

A
(1)
B Cc
(2) (3)
D E
(4) (5)

Figure 7. Valid and invalid subroutine references

The following subroutine call descriptions are related to the tree
structure shown in Figure 7. Numbers 1 through 5 represent
modules in segments A through E.

From To Head
1(A) 2,3,4,5 Valid; may need to load some segments.

2 1 Valid; no load needed.

2 3,4,5 Invalid; calls across a branch.

3 2 Invalid; calls across a branch.

3 1,4,5 Valid; may need to load a segment if the

call is to module 4 or 5.

4 5,2 Invalid; calls across a branch.

4 1,3 Valid; no load needed.

5 4,2 Invalid; calls across a branch.

5 3,1 Valid; no load needed.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Introduction to Program Segmentation [4]

Using
segmentation with
multitasked

programs
4.4

SR-0066 9.0

You must be careful when combining segmentation and
multitasking in the same executable program, because there is a
significant risk of program failure. If a program is multitasked,
it is possible for one task to call a subroutine that initiates a
segment change, while another task is actively executing in that
segment. To avoid this situation, it is necessary to restrict
multitasking activity to areas of the program in which segment
changes will not occur.

Macrotasking involves partitioning large areas of a program into
tasks, so that the tasks can run on several CPUs simultaneously.
Because the program tasks contain many subroutines, it is more
likely that a segment change will be initiated somewhere within
a tasked region of the program. The use of macrotasking in a
segmented program is strongly discouraged.

Usually, the tasking activity for an autotasked program is
contained within a particular subroutine, although references to
other routines are possible. Segment changes are unlikely to
occur within tasked regions of the program. If references to
other routines are made, you should ensure that all routines
within the multitasked region are contained within a single
segment.

For more information on multitasking, see the CF77
Optimization Guide, publication SG-3773.

Cray Research, Inc. 63

