Segmentation Directives [5]

Segment tree
definition
directives

5.1

SR-0066 9.0

This section describes the directives you need for defining the
memory tree structure of your program and for assigning
modules and common blocks to specific segments. All of the
directives in “Segment tree definition directives” and “Segment
description directives,” page 66, are segment directives, and they
must be placed after all global directives. “Examples,” page 123,
contains an example of a segmented program.

Use the TREE and ENDTREE segment tree definition directives to
tell the loader the shape of the tree that represents the memory
layout of your code. Tree structures can be of any width or
depth, but they must contain no more than 1000 segments. Only
one set of TREE and ENDTREE directives is allowed in a program
load.

The TREE directive signals the end of the group of global
directives (described in “General Directives,” page 21) and the
beginning of the segment tree definition directives. The set of
directives specifying the tree structure follows TREE.

The ENDTREE directive terminates the segment tree definition
directives; it signals the end of the tree description. The
ordering of segment tree definition directives between TREE and
ENDTREE is unimportant. The segment description directives
immediately follow ENDTREE.

Tree definition directives apply only to segmented programs.

Format:

TREE
segname( segname;[ , segnames, segnames, . . . , segname,] )
ENDTREE

Cray Research, Inc. 65



Segmentation Directives [5]

Segment Loader (SEGLDR) and | d Reference Manual

Segment
description

directives
5.2

SEGVENT and ENDSEG
directives
5.2.1

66

segname Name of a segment.

segname;  Names of all immediate successor segments of
segname.

If the description of a segment continues beyond one line, end
each continued line with a comma.

Example:

TREE
A(B, ©) A
B(D, E, F)
C(GH)
d1,d)
ENDTREE

Segment description directives apply only to segmented
programs and specify the contents of the segments. At least one
module or common block must be assigned to each segment.

In addition to the directives described in this subsection, the
COMVENT, ECHO, and Tl TLE directives discussed in “General
Directives,” page 21, can also be used within the segment
description directives.

The SEGQVENT directive specifies the segment being described by

the segment description directives. SEGQVENT is always the first

of the segment description directives, except when you are using
the DUP directive.

Cray Research, Inc. SR-0066 9.0



Segment Loader (SEGLDR) and | d Reference Manual Segmentation Directives [5]

The ENDSEG directive terminates the segment description. Any
of the segment description directives may appear between
SEGVENT and ENDSEGin any order.

Format:

SEGVENT=segname
seg descr dirs
ENDSEG

segname 1- to 8-character segment name.

seg descr dirs  One or more segment description directives.
Example (the / / indicates blank common):

SEGVENT=SAM
MODULES=A, B, C
COVMONS=/ / , SAMCOM

ENDSEG
MODULES and SMODULES The MODULES and SMODULES directives let you assign modules to
directives the segment specified by the SEGVENT directive. The MODULES
5.2.2 and SMODULES directives also order the modules within the
segment.

You must assign at least one module to each segment, and you
may assign as many as needed. You do not need to assign all
modules to segments. “Program Duplication and Block
Assignment,” page 75, describes the way the loader handles
modules that you have not explicitly assigned to segments.
Modules that should be assigned explicitly include those that
should reside in the segment specified by the SEGVENT directive
but are called by modules in predecessor segments.

If you use the MODULES directive, an error message is issued if
the modules specified cannot be located in any included file.
Error messages are not issued if SMODULES is used.

SR-0066 9.0 Cray Research, Inc. 67



Segmentation Directives [5]

Segment Loader (SEGLDR) and | d Reference Manual

COMVONS and SCOVMONS
directives
5.2.3

68

Format:
MODULES=modnamei[ , modnames, . . . , modname,]
modname; Names of the modules to be loaded.

You may specify argument modname; as either modname or
modname:name. Use the second form to specify a module to be
loaded from a specific file.

If your list of modules is greater than one line, you may use more
MODULES directives or end the line with a comma and continue
the list on the next line.

Example:

MODULES=SUBA, SUBB: | i b1. a, SUBC
MODULES=SUBD: FI LE. o

The loader obtains modules SUBA and SUBC from the first file in
which each is encountered. It obtains SUBB from file | i bl. a
and SUBD from file fi | e. o.

The COVMONS and SCOMMONS directives specify common blocks to
be loaded into the segment specified by the SEGVENT directive.
Common block specification is optional unless common blocks
are to be duplicated or loaded in a specific order.

Common blocks with the same name that are loaded into two or
more segments are considered unique. They occupy different
memory locations, and the program can reference their contents
unambiguously.

You may not include the dynamic common block in a COMMONS
directive, because it is not assigned to a segment. See “Common
block use,” page 83, for more information on common blocks.

If you use the COVMONS directive, an error message is issued if
the indicated common blocks cannot be located in any included
file. No error messages are issued if SCOVMONS is used.

Cray Research, Inc. SR-0066 9.0



Segment Loader (SEGLDR) and | d Reference Manual Segmentation Directives [5]

Format:

COMMONS=blknameq] :size1] [ , blknames[ :sizeg |, ..., blkname,]| :size,] |

Bl Ndirective
5.24

SR-0066 9.0

blkname;  Name of the common blocks to be loaded.

size; Decimal number indicating the size of the

common block. If present, it overrides any
common block sizes declared in your code. If the
size specified is 0, the first common block size
encountered in your code (for this common
block) is used. By default, the loader uses the
longest common block definition it encounters in
your code as the size of the common block.

Common blocks are loaded in the order in which they are
specified. The effect of multiple COVMONS or SCOVMONS
directives is cumulative.

If you continue this directive beyond one line, end each
continued line with a comma.

The Bl Ndirective specifies files containing relocatable modules.
The loader loads all modules within the specified bi n files into
the segment specified by the SEGVENT directive.

Format:
Bl N=bin1[ , bing, bing, . . ., bin,]
bin; Names of files containing relocatable object

modules.

The loader processes the files in the order presented. The effect
of multiple Bl N directives is cumulative.

If you continue this directive beyond one line, end each
continued line with a comma.

Cray Research, Inc. 69



Segmentation Directives [5]

Segment Loader (SEGLDR) and | d Reference Manual

SAVE directive
5.2.5

70

Example:

SEGVENT=SEGL

Bl N=segla. o, seglb. o
Bl N=seglc. o

segld. o, segle. o
ENDSEG

In this example, all modules in files segla. o, seglb. o,
seglc. o, segld. o, and segle. o are loaded into segment
SEGL.

The SAVE directive specifies whether the current segment state
is written to mass storage before the loader overlays it with
another segment. This directive overrides the effect of the global
SAVE directive for individual segments.

Caution: If you do not use the segmented SAVE directive and
if you have not specified SAVE=ON as a global directive,
SAVE=C0FF is assumed. Ifthe SAVE directive is OFF when a
segment is loaded into the same memory area as the current
segment, the updated values in the current segment are lost.

If you specify SAVE=0N, however, the loader writes the updated
image of the overlaid segment to mass storage before the new
segment is loaded. Subsequent execution of a saved segment
starts from its saved image. This lets you overlay data areas
whose updated values are required in subsequent executions of
the saved segment.

Format:
SAVE=ON| OFF
N Enables segment saving.
OFF Suppresses segment saving (default).

For an example of the use of this directive, see “SAVE directive,”
page 72,

Cray Research, Inc. SR-0066 9.0



Segment Loader (SEGLDR) and | d Reference Manual Segmentation Directives [5]

DUP directive Use the DUP directive if you want modules with the same name

5.2.6 to be loaded into different segments. The DUP directive must
precede all SEGVENT directives when duplicate module names
are to be loaded.

You can duplicate the modules by using the DUP directive or by
using the MODULES directive and assigning the same module
name to more than one segment. “Program Duplication and
Block Assignment,” page 75, discusses the handling of duplicate
modules and entry points in detail.

Format:

DUP=modname( seg1| , segs, . . . , segy])

modname Name of a module to be loaded into more than
one segment.

seg; Names of the segments in which modname is to
be loaded.

Example:

DUP=SUBX( SEGL, SEG2)
SEGVENT=SEGL r oot
MODUL ES=SUBY

COMVONS=COMBLK1

ENDSEG

SEGVENT=SEG SEGL SE®

MODUL ES=SUBZ

COVMONS=COVBLK1 COMBLK1 COMBLK1

ENDSEG SUBY SUBZ
SUBX SUBX

In this example, assume that the module name and entry-point
name are the same. Module SUBX is duplicated in segments
SEGL and SEQ2. If SUBY is to call SUBX in segment SEGL, SUBY
must be assigned to segment SEGL. If SUBZ is to call SUBX in
segment SEGQ2, SUBZ must be assigned to segment SEQ. If SUBY
or SUBZ were to go into r oot , the call would be ambiguous.

SR-0066 9.0 Cray Research, Inc. 71



Segmentation Directives [5]

Segment Loader (SEGLDR) and | d Reference Manual

Global directives

for segmentation
5.3

SLT directive
5.3.1

SAVE directive
5.3.2

72

The directives in this subsection are global directives; that is,
they must be specified before the TREE directive and they affect
the entire program. These directives apply only to segmented
loads.

The SLT directive specifies the size of the Segment Linkage
table (SLT). The loader’s resident run-time routine uses the SLT
to service intersegment subroutine calls. The loader writes the
actual SLT requirement to the listing file upon load completion.
If SLT specifies a size less than the actual requirement, an error
message specifies the actual requirement.

Format:
SLT=nnn
nnn Size (decimal word count) to be reserved for the SLT.

By default, the loader computes the size of the SLT according to
the following formula: SLT=40* NBRNCH;, NBRNCH is the number
of nonterminal segments (segments having at least one
successor segment). Calls to predecessor segments need no
resident loader intervention.

The global SAVE directive determines whether the current
segment states are written to mass storage before they are
overlaid with another segment. The global SAVE directive
suppresses or enables saving of all segments, but the local SAVE
directive can override the global SAVE directive for individual
segments.

When SAVE=CN, the loader writes the updated image of the
overlaid segment to mass storage before the new segment is
loaded. Subsequent execution of a saved segment starts from its
saved image; this lets you overlay data areas whose updated
values you require in subsequent executions of the saved
segment.

If the SAVE directive is OFF when a segment is loaded into the
same memory area as the current segment, the updated values
in the current segment are lost.

Cray Research, Inc. SR-0066 9.0



Segment Loader (SEGLDR) and | d Reference Manual Segmentation Directives [5]

COPY directive
5.3.3

SR-0066 9.0

Format:

SAVE=ON| OFF

N Enables segment saving.
OF

F Suppresses segment saving (default).

Example:

SAVE=ON VAl N
TREE A
A(B, C
ENDTREE
SEGVENT=A
MODULES=MAI N
SEGVENT=B
MODUL ES=XX
SEGVENT=C
MODULES=YY
ENDSEG

The preceding example program performs calculations on two
large data arrays, X( 100000) and Y(100000), contained in
subroutines XX and YY, respectively. It completes part of the
calculations on one array, then on the other, then returns to the
first, and so on, alternating between them. Because the arrays
are in two separate subroutines that are never active at the
same time, the two arrays can be overlaid rather than forced to
the root segment (A).

The COPY directive forces your program to execute from a
scratch file. This enables $SEGRES to use a faster form of I/0,
which may speed program execution, but increase program
start-up time. Programs in which the same segments are loaded
and executed many times may improve their performance.

COPY has no effect if SAVE=ON for any segment, because SAVE
also forces the use of a scratch file.

Cray Research, Inc. 73



Segmentation Directives [5] Segment Loader (SEGLDR) and | d Reference Manual

Format:

COPY=ON| OFF

ON Program executes from scratch file, using a
faster I/O method.

OFF Disables execution from scratch file (default).

SEGORDER directive The SEGORDER directive lets you determine the order of the

5.34 segments in an executable file. Ordering the segments can
speed up program execution, particularly when part of the file
can be contained in buffer memory.

Format:
SEGORDER=seg;, sega, . . . , segp
seg; Name of a program segment.

The loader writes the segments to the executable file in the order
specified. The root segment is always first, regardless of the
SEGORDER specification. You do not need to specify all program
segments in the SEGORDER directive; segments not specified
follow the specified segments in the order in which they are
specified in the directives.

74 Cray Research, Inc. SR-0066 9.0



