Program Duplication and
Block Assignment [6]

Duplication and
block assignment
in nonsegmented

programs
6.1

Duplicate module
names
6.1.1

Duplicate entry-point
names
6.1.2

SR-0066 9.0

This section describes two related topics, duplication and block
assignment. Duplication occurs when more than one module,
entry point, or common block has the same name. The loader
handles duplication differently for segmented and nonsegmented
programs. Block assignment refers to the process the loader
uses to position all modules and common blocks that you have
not explicitly assigned.

In a nonsegmented program, there is no duplication of modules,
entry points, or common blocks.

In a nonsegmented load, you can load modules with duplicate
names, although this is not recommended because it may result
in misleading entry-point definitions, load maps, and debugging.

You can use the MODULES directive with a file specifier to make
the loader load a module from a particular file.

In a nonsegmented load, each entry point (external definition)
must have a unique name. The loader uses the entry point
defined in the first module loaded and ignores all subsequent
entry points with the same name except to issue a warning
message (see “DUPORDER directive,” page 32). You can control
the printing of duplicated entry-point messages by using the
DUPENTRY directive.

Some of a module’s entry points can be used in the load while
others are ignored. The EPXRF parameter in the MAP directive
causes the loader to print the Entry Point Cross-reference table,
which notes all active and ignored (inactive) entry points.

Cray Research, Inc. 75

Program Duplication and Block Assignment [6]

Segment Loader (SEGLDR) and | d Reference Manual

Duplicate common
blocks
6.1.3

Block assignment
6.1.4

Duplication in
segmented

programs
6.2

Module duplication
6.2.1

76

Only one common block with a particular name is loaded in a
nonsegmented load. The loader assumes that all common blocks
with the same name are the same common block (this includes
common blocks specified in modules that are never called and,
thus, are not loaded).

The loader considers a common block’s size to be the largest size
encountered in the relocatable modules actually included in the
program. You can override this size limit by using the COVMMONS
directive.

All modules and common blocks in a nonsegmented program are
assigned to the single segment that makes up the program.

In segmented programs, each segment may contain a module, an
entry point, and a common block, each with the same name.
Duplication can arise from your use of the DUP, MODULES, and
COMMONS directives, or it can arise automatically, as a side effect
of using the FLOAT directive.

You can manually load copies of the same module or different
modules with the same name into different segments. Each
segment may have only one module of a particular name.

Duplicate a module by using the DUP directive or by using the
MODULES directive to place the duplicated modules in the desired
segments. The loader handles duplicated entry-point names
automatically, provided that you have duplicated the modules in
your directives.

The loader must know where to put all duplicate module names
before encountering the modules. Therefore, you must use the
MODULES directive to assign all duplicate modules and their
callers to the appropriate segment.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Program Duplication and Block Assignment [6]

Entry-point duplication Every active entry point in each segment must have a unique
6.2.2 name. You must assign all modules containing duplicated entry
points and all modules referencing duplicated entry points.

A module referencing a duplicated entry point is linked to the
entry point in the same segment. If no entry point with the
requested name is in the same segment as the calling module,
there can be only one entry point with the duplicated name on
the branch.

For example, assume that module X in segment B is in dataset
Bl N1 and that another module X in segment E is in Bl N2. Also
assume that the module name and the entry-point name are the
same, and that Wcalls the X in segment B, and Y calls the X in

segment E.
Common block In a segmented load, you can load common blocks with the same
duplication name into different segments. Use the COVMONS directive to
6.2.3 place the duplicated common blocks in the desired segments.

You must also use the MODULES directive to assign every module
that references a duplicated common block to the module you
desire.

A module referencing a duplicated common block is linked to the
common block in the same segment. If there is no common block
with the requested name in the same segment as the referencing
module, there can be only one common block with the duplicated
name on the branch.

Rules for references to duplicated common blocks are the same
as the rules for duplicated entry points.

Figure 8 shows the directives required to obtain this description.

SR-0066 9.0 Cray Research, Inc. 77

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and | d Reference Manual

TREE
A(B, O A
C(D, E)
ENDTREE
SEGVENT=A
Bl N=BI N3 W
ENDSEG X:BIN1
SEGVENT=B
MODULES=X: BI NL, W
ENDSEG
SEGVENT=C XYZ D E X:BIN2
MODULES=Y
ENDSEG
SEGVENT=D
MODULES=XYZ
ENDSEG
SEGVENT=E
MODULES=X: Bl N2
ENDSEG

Segment assignments:

Segment Segment

containing calling

duplicated duplicated

entry point entry point Comments

B,D B,C Calls from B are linked to the copy in B.
Calls from C are linked to the copy in D.

C,E C,E Calls from C are linked to the copy in C.
Calls from E are linked to the copy in E.

D,E AC lllegal; both calls are ambiguous.

B,C B,C,D,E Calls from B are linked to the copy in B.
All others are linked to the copy in C.

B,C A lllegal; reference is ambiguous.

B,B Anywhere lllegal; cannot have two copies in the same segment.

Figure 8. Entry-point duplication example

78 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Program Duplication and Block Assignment [6]

Block assignment
in segmented

programs
6.3

SR-0066 9.0

Common blocks loaded into different segments are considered
unique because they occupy different memory locations.
Modules that reference duplicated common blocks must be
assigned to different segments to ensure that the program
contains no ambiguous references to common block data. (See
“COMMONS and SCOMMONS directives,” page 31.)

For example, if common block / ABC/ were included in segments
B and C in the segment tree in Figure 9, a reference to / ABC/
from a module in segment A would be ambiguous.

In Figure 9, assume that a copy of / ABC/ has been included in
both segments B and C. References from segments C, D, and E
would be relocated to the / ABC/ common block in segment C.
References to / ABC/ from segment B would be relocated to the
/ ABC/ common block in segment B.

Figure 9. Segment tree with duplicate common blocks

After you have indicated the segmentation structure and
assigned certain modules and common blocks to segments, the
loader assigns any remaining movable blocks to segments. A
movable block is any module or common block that you have not
explicitly assigned to a segment. The loader uses one of two
methods to assign movable blocks: floating or automatic
duplication. The FLOAT directive lets you choose which of these
two methods the loader uses.

Cray Research, Inc. 79

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and | d Reference Manual

FLOAT directive
6.3.1

Floating
6.3.2

Automatic duplication
6.3.3

80

FLOAT is a global directive. It selects the method the loader uses
to handle movable blocks.

Format:

FLOAT=ANY| NONE

ANY Enables movable block floating (default).

NONE Disables movable block floating and enables
automatic duplication of movable blocks.

When floating is enabled, the loader “floats” each movable block
up the tree structure to the lowest segment (the one farthest
from the root segment) that is a predecessor common to all
segments in which the movable block is referenced. The block is
thus resident in memory when any segment references it. If the
movable block is a common block, all modules that reference it
access the same memory space. Floating is the faster of the two
methods for loading, and it yields the smallest overall program.

When automatic duplication is enabled, the loader assigns a
copy of each movable block to each segment that references it,
unless a copy of the block has been assigned to a predecessor
segment of that block. The block is duplicated automatically in
the target segment as if a MODULES or COMMONS directive had
positioned it there. References to a block access unique copies of
the block unless it has been assigned to a common predecessor of
the modules referencing it. Automatic duplication takes longer
to load than floating, and it generates a larger overall program,
but it may generate a program that requires less memory to
execute. It also allows access to a unique copy of automatically
duplicated common blocks.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual

Program Duplication and Block Assignment [6]

Example
6.3.4

SR-0066 9.0

The following examples show the assignment of movable blocks
by floating and automatic duplication. Consider the following
partial Fortran program and associated loader directives:

PROGRAM EXAVMPLE
CALL SuB1

CALL SuB2

CALL ASUB

END

SUBROUTI NE SUB1
COVMMON / ACOM J(200)
CALL BSUB

CALL ASUB

END

SUBROUTI NE SUB2
CALL BSUB

CALL SUB2A
CALL SuB2B

END

SUBROUTI NE SUB2A
COWMON / BCOM' | (100)
END

SUBROUTI NE SUB2B
COVVON / ACOM J(200)
COVVON / BCOM | (100)
END

Cray Research, Inc.

81

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and | d Reference Manual

Along with this program are the following segmentation
directives:

TREE
A(B, C)
C(D E)
ENDTREE
SEGVENT=A

MODUL ES=EXAMPLE
ENDSEG
SEGVENT=B

MODUL ES=SUB1
ENDSEG
SEGVENT=C

MODUL ES=SUB2
ENDSEG
SEGVENT=D

MODULES=SUB2A
ENDSEG
SEGVENT=E

MODULES=SUB2B
ENDSEG

Figure 10 shows the segmentation structure before movable
block assignment.

EXAMPLE A

SUB1 B C SUB2

SUB2A D E SUB2B

Figure 10. Segmentation structure before movable block
assignment

82 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Program Duplication and Block Assignment [6]

Common block use
6.4

Data load restrictions
6.4.1

SR-0066 9.0

If floating is enabled, the loader makes the following movable
block assignments:

ASUB is assigned to segment A because it is referenced in
EXAMPLE.

BSUB is assigned to segment A to move it to a common
predecessor of segments B and C, enabling both SUB1 and
SUB2 to reference BSUB.

ACOMis assigned to segment A to accommodate references to it
from SUB1 in segment B and SUB2B in segment E.

BCOMis assigned to segment C to accommodate references to it
from SUB2A in segment D and SUB2B in segment E.

If automatic duplication is enabled, the loader makes the
following movable block assignments:

ASUB is assigned to segment A because it is referenced in
EXAMPLE. It is not duplicated in segment B, because ASUB is
present in predecessor segment A.

BSUB is duplicated in segments B and C.
ACOMis duplicated in segments B and E.

BCOMis duplicated in segments D and E.

This subsection describes some restrictions that apply to
common blocks in segmented programs.

Data loads from modules in segments other than the segment in
which the common block resides are not processed. The loader
issues warning messages for data loads from other segments and
skips the data.

The dynamic common, blank common, and task common blocks
cannot be data loaded.

Cray Research, Inc. 83

Program Duplication and Block Assignment [6] Segment Loader (SEGLDR) and | d Reference Manual

Block data routines
6.4.2

Referencing data in
common blocks
6.4.3

84

A

The loader always loads modules in Bl Nfiles that are block data
routines. If block data in LI B routines is to be loaded, it must be
referenced by a previously loaded program (using an EXTERNAL
statement in Fortran) or by the loader’s MODULES directive.

If you have a subroutine (not block data) that is never called but
contains data loads, you can use the MODULES and FORCE
directives to ensure that it is loaded.

Data in a common block can be referenced by any module in
either the same or a predecessor segment.

Caution: Referencing a common block that is in a successor
segment is not recommended, because it is not guaranteed
that the successor segment is memory resident at the time of
the reference. This can cause unpredictable and incorrect
program results.

Cray Research, Inc. SR-0066 9.0

