Dynamic Memory Management [8]

Managing global

heap memory
8.1

HEAP directive
8.1.1

SR-0066 9.0

The loader supports the following two types of dynamic memory
management:

» The HEAP, STACK, and TSTACK directives let you use dynamic
memory managed by the system heap routines. The ADDBSS
directive lets you expand the initial size of your program and
reserve space for later memory expansion.

« The DYNAM C directive lets you specify a common block that
can be expanded or contracted at your discretion.

You can use either one or both of these schemes in a single
program,

All directives in this section are global directives.

The HEAP, STACK, and TSTACK directives let you control the size
and location of the system-managed heap and stack. Memory
space can be acquired from the heap by use of the system heap
routines. Under the UNICOS operating system, the heap is
always present and resides after the longest segment branch of
your program. Heap space is available to all segments of your
program.

The HEAP directive allocates memory that the heap manager can
manage dynamically. All memory requests are satisfied with
space from a common heap. The HEAP directive allows the
memory use within a job to increase.

The heap is located in memory following the segment tree
branch that occupies the largest amount of memory. HEAP has
the same effect on both segmented and nonsegmented programs.

Cray Research, Inc. 87

Dynamic Memory Management [8] Segment Loader (SEGLDR) and | d Reference Manual

Format:

HEAP=[init] [+inc]

init Initial number of decimal words available to the
heap manager; the default is specific to each
system.

inc Increment size, in decimal words, of a request to

the operating system for additional memory if the
heap overflows.

A value of 0 indicates that heap size is fixed. If
you specify the DYNAM Cdirective, the loader
ignores an increment size other than 0. The
default is specific to each system.

Command-line equivalent: —H option

STACK directives The STACK directive allocate part of heap memory to a stack for

8.1.2 use by re-entrant programs. When you use STACK, the HEAP
directive is not needed unless you want to change the default
heap values.

The STACK directive is intended for use by individual users to set
the stack size for their programs. The following paragraphs
outline the steps the loader takes in determining a program’s
stack size:

1. If a STACK directive has been used, the initial value specified
with the STACK directive becomes the program’s initial stack
size.

2. If no STACK directive is present, the loader analyzes the
module calling structure of the program. It estimates what
the stack requirements of the program will be. Run-time
characteristics of the program, such as regression or
indirectly invoked procedures, can cause the estimate to be
inaccurate. The loader may underestimate the stack
requirements needed for execution. The loader rarely
overestimates program stack requirements.

88 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Dynamic Memory Management [8]

3. If a DEFSTACK directive, see page 118, has been encountered,
the loader will compare the estimated size with the initial
value specified with the DEFSTACK directive. The larger of
the two values will be used as the initial stack size of the
program.

4. If no DEFSTACK directive is present, the loader will use the
estimated value as the initial stack size.

Format:

STACK=[init] [+inc]

init Initial size, in decimal words, of a stack. Ifinit is
less than or equal to 128 words or is absent, an
installation-defined value is used.

inc Size, in decimal words, of additional increments to
a stack if the stack overflows. A value of zero (0)
implies that stack overflow is prohibited. An
installation-defined value defines the default
increment value.

Command-line equivalent: —S option

The use of more than one of the STACK, HEAP, and FREEHEAP
directives can easily result in an inconsistent specification. If
this occurs, the maximum size heap is used.

TSTACK directive Multitasked programs often have more extensive stack

8.1.3 requirements than unitasked programs. Slave tasks often
require a different amount of stack space than the main program
task. The TSTACK directive allows you to specify a stack size to
be used whenever slave tasks are initiated. In the absence of a
TSTACK directive, the loader estimates the amount of stack space
required for the slave tasks by using the same algorithm that is
used to estimate main program stack size.

SR-0066 9.0 Cray Research, Inc. 89

Dynamic Memory Management [8] Segment Loader (SEGLDR) and | d Reference Manual

ADDBSS directive
8.14

DYNAM Cdirective
8.1.5

90

Format:

TSTACK=init[+inc]

init Initial size, in decimal words, of the stack space
assigned to each slave task when the slave task
begins execution.

inc Size, in decimal words, of additional increments to
a stack if the stack overflows. A value of zero (0)
implies that stack overflow is prohibited. An
installation-defined value defines the default
increment value.

The ADDBSS directive tells the loader to expand the initial size of
your program. This provides preallocated space for later
requests of the program to expand its heap space.

Format:
ADDBSS=value
value The number of 1024-word blocks of space to add to

the uninitialized data area of your program.

Command-line equivalent: —b option

The DYNAM C directive specifies the common block that can
expand or contract under your control. You must call the system
routines to expand your program size before referencing the
portions of the dynamic common block not initially allocated to
your program. The common block occupies memory following
the largest segment, and all segments have access to it at any
time during program execution. The contents of the dynamic

common block may not be declared at load or compile time (data
loaded).

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Dynamic Memory Management [8]

Format:

DYNAM C=comblk| / |

comblk Allocates the specified common block to the first
word following the longest segment branch. Only
one common block can be specified.

I Specifies the blank common block as dynamic.

If no HEAP is required, blank common is always dynamic
(default); otherwise, there is no default dynamic common block.

If you expand a common block that is not the dynamic common
block, you may overwrite a segment in memory, or, when the
loader brings in the successor segment, the loader may overwrite
the common block. Use the dynamic common block instead.

Example:
CFT program

PROGRAM X
COVMON / DYNCOM SPACE(1)

In this user-supplied code, the
user requests 9999 additional
. words of memory.

DO 100 1 =1, 10000
SPACE(1)=0 This code zeroes out 10,000 words,

but only 1 word is actually

. preallocated by the loader.

100 CONTI NUE

SEGLDR directive

DYNAM C=DYNCOM Identifies | DYNCOM as the dynamic
common block.

SR-0066 9.0 Cray Research, Inc. 91

Dynamic Memory Management [8] Segment Loader (SEGLDR) and | d Reference Manual

Using the heap
and dynamic

common together
8.2

Fortran example for
acquiring space from
the heap

8.2.1

92

You can use the heap and dynamic common together in a
program if you are careful to adhere to the following guidelines:
When both the heap and dynamic common are used, the heap
begins immediately after the longest segment branch of your
program, and it has a fixed size. No expansion of the heap is
allowed. The dynamic common block begins after the heap, and
it can expand.

Because the heap cannot expand, the initial size assigned to it
must be large enough to accommodate all requests for heap
space. This is critically important under the UNICOS operating
system because many system library routines request heap
space to perform their functions. In general, the initial size of
the heap should be at least 5000 words.

The following examples use several system routines for memory
management. Additional memory management routines are also
available. If you require further information about any of the
library routines used in these examples, consult the library
manual appropriate to the language and operating system.

The following is an example of a Fortran program that acquires
a 1-Mword block of heap space. You do not need loader
directives, but you may use some to set heap values to something
other than their defaults.

PROGRAM USEHEAP
| NTEGER SPACE(0: 0), ERRCCODE, | NDEX
PO NTER (SPTR, SPACE)

CALL HPALLOC (SPTR, 1000000, ERRCODE, O0)
| F (ERRCODE . EQ 0) THEN
DO 1 INDEX = 0, 999999
SPACE(| NDEX) = | NDEX

1 CONTI NUE
ENDI F
END

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Dynamic Memory Management [8]

Fortran example for

using dynamic common
8.2.2

SR-0066 9.0

The following is an example of a Fortran program that runs
under the UNICOS operating system and sets up a dynamic
common block of 1 million words. The example requires the use
of SBREAK, a Fortran interface to the system library routine

sbr eak, documented in the UNICOS System Calls Reference
Manual, publication SR—2012. SBREAK expands the field length
of the program for the additional space. For this example, you
also need the two loader directives: DYNAM C=DYNCOM to
identify the dynamic common block, and HEAP=10000+0, to set
up a heap size large enough and to indicate that it cannot
expand. Both of these directives are described in this manual.

PROGRAM USEDYN
COVMON / DYNCOM SPACE(1)
| NTEGER SBREAK, ERRCCDE
. Only one word of space is preallocated to the program.
. The user must call the system library routine SBREAK to
. expand the program’s field length and to acquire the
. additional space.
ERRCODE=SBREAK(1000000)
| F (ERRCODE . GE. 0) THEN

DO 100 I =1, 1000000

SPACE(1) = 0.0

100 CONTI NUE
ENDI F
END

Cray Research, Inc. 93

