Central Memory Allocation by SEGLDR [9]

SR-0066 9.0

This section describes the different techniques that the loader
uses to allocate user code and data into central memory on
various Cray Research systems. Generally, you do not need to
know about the techniques that the loader uses, because the
default for your system is selected to work for most applications.
For some applications, you may need to override the loader
defaults, and this can be done using the directives described in
“Program alignment and initialization,” page 47.

If your application depends on any particular memory allocation
scheme, it is recommended that you generalize the program to
remove this dependency. Such code is nonstandard, and such
dependencies can hinder maintenance of the code over time as
systems change.

You can use the ORDER directive to specify the memory allocation
scheme you desire. This works as long as you do not try to run
your code on a different Cray Research system that does not
support the specific option. Cray Research has changed and
added memory allocation algorithms in the past, and will
continue to do so, with the aim of improving the ease-of-use,
system throughput, and performance of Cray Research systems.
Applications that depend on specific memory allocation schemes
will likely not be stable over time.

Cray Research, Inc. 95

Central Memory Allocation by SEGLDR [9]

Segment Loader (SEGLDR) and | d Reference Manual

Definitions of

The following terms are used in this section:

Definition

The unit in which compilers and
assemblers generate code and data
for the loader to load. The actual
memory size of a block is
determined by the program.

A block containing nothing but
instructions.

A block equivalent to the entity
defined by a Fortran COVMON
statement or C global data item.

A local data or common block that
has initial values assigned by the
program (as with the Fortran DATA
statement).

A block containing statically
allocated local data.

A block containing both instructions
and local data.

A local data or common block with
no initial values assigned by the
program.

Every UNICOS executable program is organized in three
sections: the text section, the data section, and the BSS section.
Normally, the text section contains instructions, the data section
contains initialized static data, and the BSS section contains
uninitialized static data. Only the text and data sections are

written into the executable file. The BSS section of the program
is allocated at execution time. The various allocation methods

terms Term

9.1
Block
Code block
Common block
Initialized ... block
Local data block
Mixed block
Uninitialized ... block

Executable

program

organization

9.2

96 Cray Research, Inc.

SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Central Memory Allocation by SEGLDR [9]

ORDER directive
9.3

SR-0066 9.0

attempt to maximize placing uninitialized blocks into the BSS
section whenever allowed by the hardware and the constraints of
the allocation scheme. The placement of blocks into either the
text or data section is critical only for shared text programs.

ORDERis a global directive. It lets you control the central
memory allocation method used by the loader.

Format:

TEXT, DATA, BSS
ORDER=| SHARED
SS. TDB

The operation of each allocation scheme is described in the
following paragraphs.

SHARED Separates the program code and data into two distinct
address spaces and collates each one. ORDER=SHARED
is used to create shared text programs that execute on
Cray PVP systems under the UNICOS operating
system, but ORDER=SHARED is not allowed on other
systems. The program cannot contain any blocks of
mixed code and data if this option is to be effective.

TEXT,DATA,BSS
Allocates code (TEXT) blocks, followed by initialized
data (DATA) blocks, followed by uninitialized data
(BSS) blocks. This is the default.

SS.TDB Creates a split-segment program and allocates code
(TEXT) blocks, followed by initialized data (DATA)
blocks, followed by uninitialized data (BSS) blocks.
See “Memory allocation for segmented programs,”
page 99, for more information.

Cray Research, Inc. 97

Central Memory Allocation by SEGLDR [9] Segment Loader (SEGLDR) and | d Reference Manual

TEXT,DATA,BSS
allocation scheme
for memory

allocation
9.4

Shared-text
allocation scheme
for memory

allocation
9.5

98

Note: ORDER=SHARED cannot be used with segmented
applications. ORDER=SS. TDB cannot be used with
nonsegmented applications.

Command-line equivalents: —n and —Ooptions

The TEXT,DATA,BSS allocation scheme is the default on Cray
PVP systems. The TEXT,DATA,BSS scheme allocates memory in
the following order:

1. Code blocks

2. Initialized local data blocks

3. Initialized common blocks

4. Uninitialized local data blocks
5. Uninitialized common blocks

The TEXT,DATA,BSS scheme assigns as many uninitialized blocks
as possible to the BSS section of the program.

The SHARED allocation scheme can be used to create shared text
programs. In order to create a shared-text program, all object
modules used in the program must be split into fully-separated
code and data blocks. All Cray Research compilers generate
separate code and data blocks and all Cray Research libraries
contain separated modules. If you include your own assembly
language routines, however, you must ensure that the generated
code is separated from other modules in your program by
including CODE and DATA attributes in any SECTI ON
pseudo-instructions. If all modules are separated, the loader
loads all the code sections of the program into one address space,
and then loads the DATA and BSS sections into a separate
address space.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Central Memory Allocation by SEGLDR [9]

Advantages of
shared-text programs
9.5.1

Disadvantages of
shared-text programs
9.5.2

Memory allocation
for segmented

programs
9.6

SR-0066 9.0

A shared-text program has two major advantages:

» Multiple processes using the same application can share code,
while keeping separate data areas. Thus, process demands on
central memory are reduced.

* When the UNICOS operating system allocates memory for a
process, it must find sufficient contiguous memory to allow the
process to execute. With split code and data, the amount of
memory required for the process is the same, except it is
divided into two smaller pieces. Therefore, the UNICOS
operating system can search for two small sections of memory
rather than a single large one.

A shared-text program has two major drawbacks:

» The CDBX debugger cannot operate on shared-text programs.
You should not use the shared-text scheme while debugging
the program.

+ Shared-text programs cannot be segmented.

The allocation orders specified by the ORDER directive allocate
each segment as a contiguous area of memory. Each segment is
allocated separately; the modules and common blocks assigned
to the segment are allocated in the specified order. Each
segment begins where its predecessor ends.

On Cray PVP systems, code must reside in the first 4 Mwords of
memory. Large data areas in the root segment may occupy
enough memory below these limits to force code in later
segments above these limits. To successfully load programs that
encounter this problem, you can use the SS. TDB value for the
ORDER directive.

The SS. TDB allocation order creates split-segment programs.
Each program segment is separated into a data section and a
code section, which are allocated separately. Any modules and
common blocks assigned to a segment are still allocated in the
specified order. The code section of each segment is allocated in
memory starting where the code section of the segment’s
predecessor ends. The data portion of each segment (except the

Cray Research, Inc. 99

Central Memory Allocation by SEGLDR [9] Segment Loader (SEGLDR) and | d Reference Manual

CORDER=SS. TDB
9.6.1

100

root segment) is allocated in memory following the data section
of the segment’s predecessor. The data section for the root
segment is allocated after the highest address used to store code
from the segments.

The following segment tree directives describe a program with a
root segment and two successor segments:

TREE
ROOT(SEGL, SEG2)
ENDTREE

The MODUL ES,COVMONS, COMMONS,MODUL ES, and TEXT,DATA,BSS
allocation orders create a program having the following
structure in memory:

0 (high address)
ROOT code SEGI1 code and data
and [—————————7]
data SEG?2 code and data

The SS. TDB allocation order creates a program with the
following structure in memory:

0 (high address)

ROOT SEG1 code ROOT SEG1 data

code SEG2 code data | SEG2 data

You should use the SS. TDB allocation order on Cray PVP
systems when large data areas in the root segment of a program
force code in successive segments above the 4-Mword memory
boundary. The SS. TDB allocation scheme creates a
split-segment program, allocating blocks to the code and data
sections within each segment, as follows:

Code section:

* Code and mixed blocks

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Central Memory Allocation by SEGLDR [9]

Data sections:

o Initialized local data blocks

Initialized common blocks

» Uninitialized local data blocks

e Uninitialized common blocks

SR-0066 9.0 Cray Research, Inc. 101

Soft Externals [10]

This section describes the special handling that the loader
performs when processing “soft” references to an external
symbol, or “soft externals.”

Soft external Soft externals let the user control whether modules containing
references entry points to external functions or data objects are linked to
101 the user’s program. If the user program declares a reference to
' an external function as “soft,” that reference is not sufficient to
ensure that the external function will be included in the
program. The function will be included only when referenced
elsewhere in the program.

For example, Figure 11 contains two user programs, flowpgm
and noflwpgm. flowpgm calls f | owt r ace, performs several
functions, and then calls exi t . noflwpgm does not call

fl owt r ace, but it performs several functions, and then calls
exit. The exi t routine is called by both user programs; it
processes exi t calls for programs that call f | owt r ace and for
programs that do not call f | owt r ace. Therefore, exi t contains
conditional calls to f | owexi t, which is an entry point within the
fl owt race module. If f| owexi t is declared as a “hard,” or
normal external reference in exi t , all of the f | owt r ace module
must be loaded with each user program that calls exi t,
regardless of whether the user program calls f| owt r ace. If

fl owexit is declared as a soft external, then the f| owt r ace
module is linked to the user program only when f | owt r ace is
referenced. In Figure 11, the f | owt r ace module will be loaded
with flowpgm, but it will not be loaded with noflwpgm.

SR-0066 9.0 Cray Research, Inc. 103

