Soft Externals [10]

This section describes the special handling that the loader
performs when processing “soft” references to an external
symbol, or “soft externals.”

Soft external Soft externals let the user control whether modules containing
references entry points to external functions or data objects are linked to
101 the user’s program. If the user program declares a reference to
' an external function as “soft,” that reference is not sufficient to
ensure that the external function will be included in the
program. The function will be included only when referenced
elsewhere in the program.

For example, Figure 11 contains two user programs, flowpgm
and noflwpgm. flowpgm calls f | owt r ace, performs several
functions, and then calls exi t . noflwpgm does not call

fl owt r ace, but it performs several functions, and then calls
exit. The exi t routine is called by both user programs; it
processes exi t calls for programs that call f | owt r ace and for
programs that do not call f | owt r ace. Therefore, exi t contains
conditional calls to f | owexi t, which is an entry point within the
fl owt race module. If f| owexi t is declared as a “hard,” or
normal external reference in exi t , all of the f | owt r ace module
must be loaded with each user program that calls exi t,
regardless of whether the user program calls f| owt r ace. If

fl owexit is declared as a soft external, then the f| owt r ace
module is linked to the user program only when f | owt r ace is
referenced. In Figure 11, the f | owt r ace module will be loaded
with flowpgm, but it will not be loaded with noflwpgm.

SR-0066 9.0 Cray Research, Inc. 103

Soft Externals [10]

Segment Loader (SEGLDR) and | d Reference Manual

User programs exit flowtrace
f1 owpgm() #pragma soft fl owexit flowtrace() {
#Iowtrace(); exit(){ '

' }
flowexit() {
exit(); '
}
if (_loaded(flowexit)){ }
junk(); '

' }

exit();

How to declare

soft externals
10.2

104

Figure 11. Soft external usage

References made to entry points located outside a compilation
unit are usually “hard,” or normal references. The assembler
(as(1)) and C compiler (Cray C compiler version 5.0 and on and
Cray Standard C compiler version 2.0 and on) allow you to
declare a reference to be soft.

A soft external in assembly language is declared by using the
sof t modifier on the ext directive. For example:

ext getnsg: soft

This statement declares that all references in this module to the
external symbol get msg will be soft references.

To declare a soft external in C, use the #pr agna directive, as
follows:

#pragma soft getnsg
extern int getmsg();

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Soft Externals [10]

The #pr agna directive should appear before any references to
the external entry point. The directive affects the entire source

file.
How to link soft The loader handles hard and soft references in different ways. If
externals the definition has begn found by the logdgr, hard references to
10.3 an external entry point are always satisfied by the symbol

definition. A hard reference to a library entry point will cause
the module containing that entry point to be included in the
executable program.

A soft reference is not automatically satisfied by the symbol
definition. To satisfy the soft reference, the entry point must be
included in the program for some other reason. A soft reference
to a library entry point is not sufficient to cause the module
containing that entry point to be included in the executable
program.

You can cause the library entry point to be included in the
program by including one of the following in your program:

» Include hard references to the entry point in the program.

» Include hard references to other entry points in the same
module so that the module will be included in the program.

» Force-load the object module. See “Including object modules,”
page 24, for a discussion of object module inclusion and
force-loading.

As is the case with hard references, if the entry point is included
in the program, the soft reference is satisfied by the entry point.
If the entry point is not included in the program, the soft
reference is converted into an unsatisfied external reference. If
the reference has not been satisfied, no error message will be
generated indicating that the reference is unsatisfied. If the
entry point is referenced during program execution, an
appropriate error message will be issued and program execution
will terminate.

SR-0066 9.0 Cray Research, Inc. 105

Soft Externals [10]

Segment Loader (SEGLDR) and | d Reference Manual

Using soft

externals
10.4

Testing entry-point
references with

_| oaded

10.4.1

106

At load time, the loader determines if a soft reference should be
linked to the corresponding entry point. An execution-time test
is needed to determine whether the reference is satisfied and can
be called. You can either use the library routine | oaded, or use
a flag word, to perform the test.

If the input argument to the library routine _| oaded is an entry
point that has been included in the program, the library routine
_| oaded returns a nonzero value.

The following example is a simplified version of the program exit
processing, and it illustrates the use of _| oaded. The exi t
routine is called at the end of every program. It needs to call the
f | owexi t routine if flowtrace processing has been enabled,;

fl owexit is contained in the same module as the entry point

fl ow race. The f| owt r ace entry point will be called if the
flowtrace processing is enabled; therefore the soft reference to

fl owexit from exit will be satisfied. Iff| owm r ace is not
called, the soft reference to f | owexi t from exi t will not be
satisfied. The code in exi t. c that calls f | onexi t takes the
following form:

#pragma soft fl owexit
extern int flowexit();
extern int _|oaded();

exit () {

i (_loaded(flowexit))
flowexit();

}

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Soft Externals [10]

Testing entry-point
references with flag
words

10.4.2

How to convert
soft references to

hard references
10.5

SR-0066 9.0

The second test method uses a flag word rather than the
_| oaded routine. The following code uses the same example to
illustrate how a flag word is used:

[* flowtrace.c */

int flowflag 1;
)

flowrace (

-

flowexit () {

-

{

[* exit.c */

int flowflag;
exit () {

it (flowl ag)
flowexit();

}

If the module from f | owt r ace. c is included, f | owf | ag will
have a value of 1, and f | owexi t will be called. If f| om race. c
is not included, f | owf | ag will be 0 and f | owexi t will not be
called.

The HARDREF loader directive can be used to force the loader to
treat all soft references to one or more entry points as hard
references. The loader treats all soft references to the
specialized entry points as hard references, and it will satisfy the
reference if the definition is found. You can use the HARDREF
directive to force the satisfaction of a reference even when no
other condition would cause it to be satisfied.

Cray Research, Inc. 107

Soft Externals [10]

Segment Loader (SEGLDR) and | d Reference Manual

HARDREF directive
10.5.1

How to convert
hard references to

soft references
10.6

SOFTREF directive
10.6.1

108

The HARDREF directive specifies one or more entry points that
should be included in the load process. Any soft references made
to these entry points are converted into hard references.

Format:

HARDREF=epname;|[, epnames. . . |

epname; Name of entry point from which all soft
references will be converted to hard references.

The SOFTREF directive can be used to force the loader to treat all
hard references to one or more entry points as soft references.
The loader treats all hard references to a symbol name as soft
references. The module containing the indicated entry point is
included in the program only when some other factor causes the
inclusion. (See subsection “How to link soft externals,” page 105,
for information.)

The SOFTREF directive specifies one or more entry points that
should not be included in the load process.

The SOFTREF directive should be used with caution, because it
can cause references to symbols to remain unsatisfied, for which
no loader error message will be issued. If a program does not
make a run-time test to determine whether the reference has
been satisfied, and the reference is executed at run time, the
program terminates in error.

Format:

SOFTREF=¢pname;j|[, epnames. . .]

epname; Name of entry point from which all hard
references will be converted to soft references.

Cray Research, Inc. SR-0066 9.0

