Loader-created Tables [C]

The loader can create and initialize the contents of several tables
in the generated program. Four of these loader-created tables,
the _i nf obl k, $SEGRES, Segment Linkage, and Segment
Description tables, are described in this appendix.

i nfobl k The _i nf obl k table is created whenever the SYSTEM=UNI CCS
C1 directive is used. This directive is normally found in the default
directives file, and _i nf obl k is normally created for all
UNICOS programs. The table contains general information,
such as the size of various program sections, time and date of
program creation, and version of the loader. _i nf obl k is
structured as follows:
0 32 63
Word
0: vers 1111 a | en
1: name
2: c k sum
3: dat e
4: t 1 me
5: pi d
6: pvr
7: 0OS vr
8: udt
9: fi 1l
10: t base dbase
11: tlen dl en
12: bl en zl en
13: cdat al en I men
14: am en nbase
15: hi ni t hi nc
SR-0066 9.0 Cray Research, Inc. 143

Loader-created Tables [C] Segment Loader (SEGLDR) and | d Reference Manual

0 32 63
Word
16: sinit sinc
17: usxf usxl
18: nt ptr cnptr
19: [r
20: sgptr 11
21: t askst k t aski ncr
22: userl
23: user 2
Table 6. _i nf obl k description
Field Word Bits Description
vers 0 0-6 i nf obl k table version (currently equals 1).
a 0 31 fill Address Generation flag (used by the system startup
routine to insert address in filled words).
I en 0 32-63 Number of words in _i nf obl k (currently 24).
nanme 1 0-63 ASCII _i nf obl k table name (“infoblk”). Null-terminated.
cksum 2 0-63 Check sum of _i nf obl k contents.
date 3 0-63 Date of program creation in ASCII mm /dd/yy format.
tinme 4 0-63 Time of program creation in ASCII hh:mm.:ss format.
pid 5 0-63 ASCII name of loader that created program.
Null-terminated if name is less than 8 characters.
pvr 6 0-63 ASCII version of loader that created program.
Null-terminated if name is less than 8 characters.
osvr 7 0-63 ASCII operating system active when program was created.
Null-terminated if name is less than 8 characters.
udt 8 0-63 Date and time of program creation in UNICOS time-stamp

format.

144 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual

Loader-created Tables [C]

Table 6. _i nf obl k description

(continued)
Field Word Bits Description
fill 9 0-63 Value used by system startup routine to fill uninitialized
areas of memory.

t base 10 0-31 Base address of program text address space.

dbase 10 32-63 Base address of program data address space.

tlen 11 0-31 Number of words in text section.

dl en 11 32-63 Number of words in initialized data section.

bl en 12 0-31 Number of words in uninitialized data section.

zl en 12 32-63 Number of words in zeroset data section.

cdat al en 13 0-31 Number of words in initialized data section prior to

compressed data expansion.

am en 14 0-31 Number of words of auxiliary memory used.

nmbase 14 32-63 Base address of managed memory area.

hi ni t 15 0-31 Initial size of program heap.

hi nc 15 32-63 Heap expansion increment value.

sinit 16 0-31 Initial size of program stack.

si nc 16 32-63 Stack expansion increment value.

usxf 17 0-31 First address of $USXMSGjump table.

usxl 17 32-63 Last address of $USXMSGjump table.

nt ptr 18 0-31 Address of machine targeting information block.
cnptr 18 32-63 Address of first entry in data compression entry list.
sgptr 20 0-31 Address of $SEGRES segmentation information block.
t askst k 21 0-31 Initial size of slave task stack.

t aski ncr 21 32-63 Task stack expansion increment.
SR-0066 9.0 Cray Research, Inc. 145

Loader-created Tables [C] Segment Loader (SEGLDR) and | d Reference Manual

Table 6. _i nf obl k description

(continued)
Field Word Bits Description
userl 22 0-63 Reserved for users.
user 2 23 0-63 Reserved for users.

The contents of the _i nf obl k table may be accessed from a
C language routine by including the following statements:

#1 ncl ude <i nfobl k. h>
extern struct infoblk _infoblk;

Segmentation The loader builds several tables into each segmented program.

tables These tables are used by the segmentation routines included in
the program to manage the segments in memory. The $SEGRES

C.2
table contains general segmentation information, including the
addresses of the other segmentation tables. The Segment
Description table (SDT) contains one entry for each segment in
the program. Each SDT entry describes the size, location, and
residency status of each segment. The Segment Linkage table
(SLT) contains one entry for each intercepted subroutine call
that may result in loading a new segment. Each SLT entry
describes the target segment and address needed to complete the
subroutine reference.

146 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual

Loader-created Tables [C]

$SECRES table The $SEGRES table can be accessed through the common block
Al1l | $SEGRES/ . The other tables must be located through the
addresses contained in $SEGRES. The $SEGRES format is as
follows:
0 32 63
Word
0: |l en gt h
1: |d]|c|s vers
2: xf er
3: fi 1l
4: numsl t bsl t
5: numsdt bsdt
6: nunj t bl bj t bl
Table 7. $SEGRES description
Field Word Bits Description
| engt h 0 0-63 Number of words in $SEGRES table.
d 1 0-0 Flag indicating segmentation debug mode.
c 1 1-1 Flag indicating that segments should be copied to a scratch
file.
S 1 2-2 Flag indicating that split segment mode is active.
vers 1 58-63 $SEGRES table version (currently equals 2).
xf er 2 0-63 Address of user main entry point.
fill 3 0-63 Fill value used to preset the uninitialized data section of
each segment.
nunsl t 4 0-31 Number of entries in Segment Linkage table.
bsl t 4 32-63 Base address of Segment Linkage table.
nunsdt 5 0-31 Number of entries in Segment Description table.
bsl t 5 32-63 Base address of Segment Description table.
SR-0066 9.0 Cray Research, Inc. 147

Loader-created Tables [C]

Segment Loader (SEGLDR) and | d Reference Manual

Table 7. $SEGRES description

(continued)
Field Word Bits Description
nunj t bl 6 0-31 Number of entries in interception jump table.
bj t bl 6 32-63 Base address of interception jump table.

Segment Linkage table

The Segment Linkage table (SLT) is included in every

c.2.1 segmented program. The SLT describes the inter-segment
linkages in the program. The Segment Linkage table entry
format is as follows:

0 32 63
sdtp i addr
Table 8. SLT description

Field Word Bits Description

sdt p 0 0-31 Address of SDT entry for target segment.

i addr 0 32-63 Parcel address of target routine.

148 Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Loader-created Tables [C]

Segment Description
table
C.2.2

SR-0066 9.0

The Segment Description table is included in every segmented
program. It describes each segment included in the program.
The Segment Description table entry format is as follows:

0 32 63

Word

0: name

1: r|s| [evel | acount

2: sucecop pr edp

3: t 1 en t 1 a

4: dl en dl a

5: zl en bl en

6: A A B R B A |

7 t pos

Cray Research, Inc. 149

Loader-created Tables [C] Segment Loader (SEGLDR) and | d Reference Manual

Table 9. SDT description

Field Word Bits Description

nane 0 0-63 ASCII name of segment. Null-terminated if name is less
than 8 characters.

r 1 0-0 Flag indicating memory residency status of segment.

s 1 1-1 Flag indicating segment contents should be written to
scratch file before overwriting with another segment.

| evel 1 32-47 Level of segment within segment tree.

acount 1 48-63 Number of active calls to routines within segment.
succp 2 0-31 SDT entry address of memory-resident successor segment.
predp 2 32-63 SDT entry address of predecessor segment.

tlen 3 0-31 Number of words in segment text section.

tla 3 32-63 Base address of segment text section.

dl en 4 0-31 Number of words in segment data section.

dl a 4 32-63 Base address of segment data section.

bl en 5 0-31 Number of words in segment uninitialized data section.
zl en 5 32-63 Number of words in segment zeroset data section.

t pos 7 0-63 Byte position within file of segment contents.

150 Cray Research, Inc. SR-0066 9.0

Glossary

absolute binary module

barrier

bin file

block

branch segment

BSS

BSSZ

SR-0066 9.0

A binary module that the linkage editor has bound. All relative
addresses within the bound object modules have been resolved.
Also, all external and entry points in these modules have been
resolved satisfactorily. This module is considered executable.
The name for this module comes from COS where it was
referenced as $ABS.

In macrotasking, a mechanism to synchronize tasks.
Encountering a barrier causes a task to wait until all tasks have
reached the barrier.

Files specified in Bl N directives, which are specified as

segl dr (1) command-line option-arguments. By convention, bi n
files should be the portion of your program that you have
written. See also object module.

(1) The smallest allocation unit in a file system; a group of
contiguous characters recorded on and read from magnetic tape
as a unit. Blocks are separated by record gaps. A block and a
physical record are synonymous on magnetic tape. Usually, a
block is the size of one physical disk sector. (2) A logical term
denoting an arbitrary amount of data; generally a synonym for a
4096-byte hardware sector. See also sector. (3) A structure
defined by each language processor that represents a contiguous
area of memory. Blocks can be local to the defining object
module (local blocks) or shared between modules (common
blocks). A block can contain instructions, data, or both.

Any segment in a segment program that is not the root segment.
Branch segments are brought into memory when required, and
they may be overwritten by other branch segments.

The part of a program containing uninitialized data. Space for
the area is allocated at execution time.

A BSS area that is initialized to zero.

Cray Research, Inc. 151

Glossary

Segment Loader (SEGLDR) and | d Reference Manual

CAL

CDBX

common block

data loading

DEX

distributed mode

entry point

events

152

Cray Assembly Language

An interactive, symbolic debugger that can be used to perform
source-level debugging while executing programs running under
UNICOS.

A block of memory that will be shared by more than one object
module. (1) A Fortran data area that contains data that is
accessible to multiple parts of a program. COVMONis a type of
scope declaration in Fortran that makes variables accessible to
multiple parts of a program. More than one program module can
specify data for a common block, but if a conflict occurs,
information from later programs is loaded on top of previously
loaded information. A program may declare 0 to 125 common
blocks, which can be either labeled or blank. (2) The C language
gl obal data items generate both a common block and an entry
point.

The process by which a loader inserts data into object module
blocks. Occurs explicitly in response to program statements,
such as the Fortran DATA statement or C language data
initialization operation. Implicit data loading of locations within
a subprogram code block can also occur if the compiler or
assembler so dictates.

Distributed EXpression table. A DEX contains many
expressions that are evaluated at load time. These expressions
are used for many purposes. A prominent use is relocation logic.

In PVM message passing, distributed mode handles
communications between a Cray MPP system and a Cray PVP
host system.

A location in a program or routine at which execution begins. A
routine may have several entry points, each serving a different
purpose. Linkage between program modules is performed when
the linkage editor binds the external references of one group of
modules to the entry points of another module. See also absolute
binary module, object module, and loader.

Events record the state of a program’s execution (for instance,
whether or not it has accessed data yet) and communicate that
state to other tasks.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Glossary

executable program

external reference

floating

force-loading

Global Symbol table

heap

include

initial transfer address

SR-0066 9.0

The result of the load process. The executable program is a
memory image built from the submitted object files and libraries
that can be loaded into memory and executed. The default file
name for the executable program is a. out .

A reference to an entry point defined outside the referencing
module. Fortran CALL statements and function calls generate
external references. The CAL EXT pseudo instruction indicates
an external reference. C procedure calls and ext er n statements
generate external references.

The process by which the loader assigns movable blocks to
segments.

The inclusion of a module that has no callers (for example,
force-loading is performed on BLOCKDATA modules). The FORCE
directive enables the force-loading of all uncalled entry points.

The Global Symbol table is appended to the executable program,
and contains information describing the modules, local blocks,
common blocks, and entry points included in the program.

A section of memory within the user job area that provides a
capability for dynamic allocation. See “HEAP directive,” page 87,
or see the heap memory management routines in the Application
Programmer’s Library Reference Manual, publication SR—-2165.

To make an object module encountered in an object file or library
a part of the executable program.

The entry point at which your program begins execution.

Cray Research, Inc. 153

Glossary

Segment Loader (SEGLDR) and | d Reference Manual

library

loader

magic number

module

movable block

object module

ordered duplicate
selection

154

A collection of functions, or routines, that are functionally
related, are called from within programs, and perform commonly
used tasks. They are not operating system functions. Library
functions let you use code that is already written (you do not
have to reinvent wheels), make programs less complicated, and
make changing programs easier. The loader includes any
module in the library in the executable program only if one of
the entry points in the module satisfies an external reference
from another module included in the executable program. A
library usually is built by a library maintenance tool, such as
bl d(1) or ar (1). The file name typically ends with . a, and the
library is sometimes referred to as a . a file.

Generic term for the system software product that loads a
compiled or assembled program into memory and prepares it for
execution.

A number UNICOS uses to identify the type of a file.

(1) A hardware module is the basic building block of Cray
Research systems; modules are made of cold plates and printed
circuit boards, and fit into the mainframe chassis. (2) A
software module is the basic building block of the IOS-E
operating system. (3) A Fortran 90 program module is a
program (or function) that contains or accesses definitions to be
accessed by other program units.

A module or common block not assigned by a segment
description directive to a specific segment but assigned by
SEGLDR to the highest-level segment that precedes all callers.

The executable binary program that SEGDLR produces.

A method of selecting one of several duplicated entry points
found in libraries. SEGLDR locates the first module that
references the duplicated entry point and then looks for a
definition of the symbol in succeeding modules. The first
definition found in a succeeding module is the one used. If
SEGLDR finds no succeeding definition, the first definition
encountered anywhere is used.

Cray Research, Inc. SR-0066 9.0

Segment Loader (SEGLDR) and | d Reference Manual Glossary

partition

primary entry point

PVM

relocatable binary
module

root segment

SDT

sector

SR-0066 9.0

(1) A contiguous set of blocks on a logical device that holds a file
system. A partition of a logical device corresponds to a slice on a
physical device. In file allocation, partitions permit the
distribution of files across the physical devices underlying the
logical device on which a file system is mounted. (2) A whole or
partial disk unit that consists of an arbitrary number of
consecutive tracks on a physical disk device.

An entry point specified by the Fortran or Pascal PROGRAM

statement, the CAL START pseudo-op, or the C main function; it
serves as the default transfer address for the program. The first
primary entry point encountered is the default transfer address.

Parallel virtual machine. The message-passing model used by
the Cray MPP system. It supports message passing between
PEs working on the same application on the Cray MPP system,
between the Cray PVP system and the Cray MPP system, and
among other combinations of systems (including workstations).

A binary module that cannot be executed because absolute
machine addresses have not yet been set by the loader/linker;
addresses are still only relative to others in the module and
therefore, they can be relocated to anywhere in hardware
memory.

The segment that occupies the root node of the segment tree;
always resides in memory during program execution.

Segment Description table. The table is constructed by the
loader and is included in every segmented program. It describes
each segment included in the program.

A unit of disk storage space equal to 4096 bytes (a physical disk
area that can store 512 Cray words). It is the smallest unit of
transfer to or from a disk drive. The term block is often used
rather than sector when discussing the concept at a high level.
However, when disk storage space is meant, the term sector is
used. See also block.

Cray Research, Inc. 155

Glossary

Segment Loader (SEGLDR) and | d Reference Manual

segment

Segment Description
table

Segment Linkage table

SLT

special purpose
program

stack

static memory

transfer entry point

tree trimming

unsatisfied external
reference

156

(1) A single node in the tree structure of a segmented program.
(2) A 512-word (minimally) piece of the channel buffer that is
allocated by a system’s get seg code, at the request of the
MUXIOP; used for system service requests such as central
memory peek or poke executed from the OWS-E. (3) A part ofa
TCP data stream sent from TCP on one host to TCP on another
host. Segments include control fields that identify the segment’s
location in the data stream and a checksum to validate the
received data.

See SDT.
See SLT.

Segment Linkage table. The table is constructed by the loader,
and is included in every segmented program. The SLT describes
the inter-segment linkages in the program.

A program that will not run under control of the UNICOS
operating system. Examples of special-purpose programs
include the operating system kernel, or stand-alone diagnostics
programs.

(1) A data structure providing a dynamic, sequential data list
that can be accessed from one end or the other; a last-in,
first-out (push down, pop up) stack is accessed from just one end.
(2) A dynamic area of memory used to hold information
temporarily; a push/pop method of adding and retrieving
information is used.

Memory that is not on the stack or not in the heap.

The primary entry point that will receive control from the
system initialization routine when the program begins
execution.

The process by which SEGLDR eliminates modules that are not
referenced in the executable program.

An external reference for which no entry point of that name can
be found in any of the object modules scanned by the loader.

Cray Research, Inc. SR-0066 9.0

