Other Tape Administration Issues [3]

This chapter describes the following important issues related to the tape
subsystem administration:

¢ Naming and numbering device groups
e User database (UDB) considerations

e User exits

* Tape autoloaders

* Message daemon and operator interface

3.1 Naming and numbering device groups

Device groups are communicated to all relevant subsystems; use care in naming
and numbering the device groups. The subsystems (such as the user database
(UDB), the Network Queuing System (NQS), the accounting system, dump(2)
and restore (8), and data migration) that use the tape subsystem have
different internal definitions for tape device groups. Any change (from CART
and TAPE to the names of the device groups will probably affect one of these
subsystems. Therefore, you should refer to the appropriate subsystem
documentation before changing or adding device group names.

The order of the device groups can be defined in the

/etc/config/text _tapeconfig file with the DEVICE_GROURtatement.
The order is determined from the devices defined by using the DEVICE
statement. Job limit checking is based on the order of device groups in the tape
configuration file.

3.2 User database considerations

SG-2307 10.0

The user database (UDB) contains several fields that are important to the user’s
ability to access tapes. The permbits field is directly accessed by the tape
subsystem during the execution of a tpmnt (1) command. In order for a user to
mount a tape with a label type of blp (bypass label processing), the user must
have the bypasslabel permission bit set. Any application that intends to use
high-speed positioning which bypasses tape daemon control, must also have
the tape-manage permission bit set.

11

Tape Subsystem Administration

3.3 User exits

3.3.1 Implementation

12

The tape administrator establishes batch and interactive tape limits by setting
the appropriate entries in the jtapelim table. The tape daemon restricts
accesses to device groups based on the values passed during job initiation. The
entries of jtapelim table correlate one for one with the device group
displayed with the tprst (1) command. The order of the device groups in the
tape configuration file determines the order in tprst (1) output.

The following example shows limits for batch tapes listed in a UDB:

jtapelim[b][0] :02:
jtapelim[b][1] :01:
jtapelim[b][2] :00:
jtapelim[b][3] :00:
jtapelim[b][4] :00:
jtapelim[b][5] :00:
jtapelim[b][6] :00:
jtapelim[b][7] :00:

If the tape configuration file defined device groups of CART TAPE 3490, and
TEST, then a corresponding tprst (1) command would show the following;:

dev grp w rsvd used available
CART 0 0 0
TAPE 0 0 0
3490 0 0 0
TEST 0 0 0

In this example, the user can submit a batch job that is limited to accessing 2
CARTdevices and 1 TAPE device.

User exits allow users to add special routines to communicate with the tape
daemon without having access to the source. User exits allow a system process
to examine and modify a structure associated with a tape file.

To implement an user exit, it is necessary to modify and recompile the

tpuex.c file and to switch the user exit on or off within the
[etc/config/text_tapeconfig file. To switch the individual user exit or
all user exits (UEX_ALL) on or off, make an entry in the tape configuration file.

SG-2307 10.0

Other Tape Administration Issues [3]

If you are using the Configuration Tool (CT), select Tapes from the CT’s
subsystem list and either load an existing configuration file or create a new
configuration file. User exit options are selected from the following CT menu:

Tape Configuration
Select Tape SubSystem Options
General Options

The following is an example of the entry to add to the OPTIONSstatement of
the tape configuration file:

user_exit mask = (UEX_ASK_EXPDT,UEX_ASK_LBSW,UEX_ASK_RETRY),

The user exits for user _exit_mask are as follows:

User exit Description

UEX_ALL Enables all user exits
UEX_ASKEXPDT Enables uex_askexpdt user exit
UEX_ASK_HDR1 Enables uex_ask_hdrl user exit
UEX_ASK_LBSW Enables uex_asklbsw user exit
UEX_ASK_RETRY Enables uex _askretry user exit
UEX ASK_VERSCR Enables uex_askverscr user exit
UEX ASK_VSN Enables uex_askvsn user exit
UEX_ASK_SCR_VSN Enables uex_scr _vsn user exit
UEX_CHKACCESS Enables uex_chk_access user exit
UEX _CLS FILE Enables uex_cls_file user exit
UEX_MAC_HDR2 Enables uex_mac_hdr2 user exit
UEX_MNT_MSG Enables uex_mnt_msg user exit
UEX_SM_DEX Enables uex_sm_dex user exit
UEX SM_DUX Enables uex_sm_dux user exit
UEX_SM_VAX Enables uex_sm_vax user exit
UEX_SM_VUX Enables uex_sm_vux user exit
UEX_START Enables uex_start user exit

SG-2307 10.0 13

Tape Subsystem Administration

3.3.2 User exit descriptions

14

TM425 - file

UEX_STOP Enables uex_stop user exit

If an invalid option is used, an error message appears in the daemon.stderr
file similar to the following;:

Jtext_tapeconfig, line 311 at ", offset 54 : syntax error:
KEYWORD_PARAM-VALUE.

To find the error, check the appropriate line in the text_tapeconfig file. The
at ")" in the error message indicates that the tape daemon does not expect to
see the character "," here.

There are two other files, tpuex.c and tpuex.h , that are necessary to
implement user exits. They are located in the directory
lusr/src/cmd/cl/tp/tpnex . The file tpuex.c has stub routines
corresponding to each user exit; the tpuex.h file contains the declarations
needed for defining the user structure (uex_table).

All user exits have access to the uex_table structure. An exit may make its
decisions based on the values contained in this structure.

To use the user exits, follow these three steps:
1. Modify the tpuex.c file to reflect the required action of the user exit.

2. Recompile the tpnex.c file using the nmake command in the directory
Jusr/src/cmd/cl/tp . This creates a new tpnex.o file, relinks the file,
and creates new executables.

3. Install the new tape daemon with the nmake install command.

Examples on how to code the user exits can be found in the tpuex.c file.

User exits returning the values of 0 or -1 can use the defined symbolic values of
YES (0) or NO(-1) defined in the tpuex.h file. Descriptions of tape subsystem
user exits follow:

uex_askexpdt(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This exit returns an answer to the question "Can user userid
write on unexpired VSN ovsn?"

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

uex_asklbsw(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This exit returns an answer to the question "Can user userid
switch from label original label to new label for VSN vsn?"

uex_askretry(uex _table, message_type, server_or_front-end,

message_id,

reason _for_retrying)

Receives the uex_table structure and the additional
parameters as shown above and returns an integer value of YES
or NQ

It is called when the tape daemon is unable to send a request to
a front-end/server and returns an answer to the question
"Should message to front end be re-sent or aborted?"

The returned value of YESmeans to retry the request; NO
means to cancel the request.

uex_askverscr(uex_table, vsn)

Receives the uex _table structure and a VSN. It returns an
integer value of YESor NQ

This exit returns an answer to the question "Is volume vsn on
device dovn a valid scratch volume for the job ID jid?"

uex_askvsn(uex_table)

Receives the uex_table structure and returns either a
character pointer with the value NULL or an address of a string.

This exit returns an answer to the question "What is the VSN
on device don?"

The returned value of NULL means no VSN was returned while
a pointer to a string is used as the value of the scratch VSN. If
no VSN is returned, then the tape daemon calls the askvsn ()
routine, just as if the user exit had not been taken.

15

Tape Subsystem Administration

16

uex_ask_hdrl(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This user exit is called from a child process in the tape daemon
at the point where the VOL1 and HDR1 labels have been read
from a tape and the child process prepares to check some of the
values in the HDR1 label against values that are kept by the
tape daemon and its child processes.

A site can use this user exit to add code that enables the tape
daemon to do the following:

Obtain a number that controls how many characters of the
file identifier field in a HDR1 label is compared to a
character string kept by the tape daemon or, to an alternate
character string that is provided by this user exit.

The tape daemon uses the number in the user_fidl field
of the uex_table structure. If the site changes this number,
the modified number must have a value that is equal to or
greater than 1 and less than or equal to 16. The number

must be returned in the user_fidl field, while the return
value from this user exit must be YES If NOis returned, the
user_fidl field is not examined.

Obtain an alternate character string for the file identifier to
be compared to the character string in the file identifier field
in the HDR1 label from the tape.

The character string that the tape daemon uses is in the
user _fid field of the uex table structure. If the site
changes this string, the modified character string must be
stored in the user_fid field, while the return value from
this user exit must be YES If NOis returned, the user_fid
field is not examined.

Obtain an alternate one character string, which, in case of
ANSI labels, is compared to the accessibility character string
in the accessibility field in the HDR1 label from the tape. If
the character strings match, the action that is taken is the
same as the action taken for the space character as defined
in the ANSI standard.

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

The character string that the tape daemon uses is in the
user_vac field of the uex_table structure. If the site
changes this string, the modified character string must be
stored in the user_vac field, while the return value from
this user exit must be YES If NOis returned, the user_vac
field is not examined.

If this user exit returns YES the following three actions occur:

e The surfeited field is checked for a number that is equal
to or greater than 1 and less than or equal to 16. If the

returned number is outside this range, the default value of
17 is used.

* The contents of the surfed field is copied into a tape
daemon structure.

¢ The contents of the served field is copied into a tape
daemon structure after it is checked against the following
characters:
A Z 0 .. 9 " N%&)*+,-I; <=>? "

If NOis returned, uex_table information is not used to update
data structures in the tape daemon.

uex _chk_access(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This user exit is called from a child process in the tape daemon
at the point where the tape daemon has accepted a tape volume
to read from or to write to. It enables a site to add code to
check the access of the tape.

For example, the code could allow or reject access to a tape
volume after it has checked a locally maintained permission
file. When this user exit checks permission to access an output
tape, the tape daemon upon return from this user exit checks
the user_error field of the uex_table structure. If this field
contains error code ETNSC(90089 - not scratch), the tape
daemon rejects the tape volume. If more tape volumes have
been specified in the tpmnt (1) command, tpmnt (1) tries the
next tape volume.

17

Tape Subsystem Administration

18

Besides setting the user_error field to ETNSC this user exit
also sets the uex_table bit field uex_lst.flg.nsc to 1. The
tape daemon updates the fit field Ist.flg.nsc with this
information from the uex_table field.

If the user_error field contains any other error number, the
tape daemon upon return aborts the child process with error
code EACCE{13 - permission denied). If this user exit returns
the value NQ the tape daemon aborts the child process with
error code EACCESIS this user exit returns the value YES the
tape daemon accepts the tape volume and processing continues.

When this user exit checks permission to access an input tape,
the tape daemon upon return from this user exit checks the
return code. If the return code is NQ the tape volume is rejected
and the child process aborts with error code EACCESIf the
return code is YES the tape volume is accepted and processing
continues.

Besides the possible update of bit field Ist.flg.nsc in the
fit , no other information from the uex_table is used to
update data structures in the tape daemon.

uex _cls_file(uex_table)

Receives the uex_table structure and returns. The tape
daemon upon return from this user exit does not update any of
its information with information from uex_table

This user exit is called from a child process in the tape daemon
after the tape processing is completed and when the tape file is
about to be closed. The exit provides a site with an opportunity
to add code. For example, the code could enable the tape
daemon to add information to the tape.msg file concerning
the tape volumes that were used while processing the tape file.

uex_mac_hdr2(uex _table)

Receives the uex _table structure and returns an integer value
of YESor NQ

This user exit is called from a child process in the tape daemon
after the tape daemon reads the label information from the tape
and has called the security code to check proper
beginning-of-tape structure: VOL1, HDR1 and HDR?2 labels.
The user exit is called when a tape has a VOL1 and a HDR1

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

label, but not a HDR?2 label. A site may use this user exit to
add code that allows or rejects access to the tape volume.

If this user exit returns the value NQ the tape daemon continues
its normal processing. It allows the tape to be overwritten, but
not to be read. If the exit returns the value YES the tape
daemon allows the user access to the tape. A return code of NO
complies with security guidelines.

No information from the uex table structure is used to
update data structures in the tape daemon.

uex_mnt_msg(uex_table)

Receives the uex_table structure and returns.

This user exit is called from either a child process or the tape
daemon itself after the tape daemon has built a tape mount
message and before it is sent to be processed. A site can use this
exit to add code that supplements information in the existing
mount message or changes it in some other way. When the tape
daemon transfers control to this user exit, the user_buff field
of the uex_table structure contains the address of the mount
message character string and the user_bytes field of the
uex_table structure contains the length in bytes of the
memory block that are allocated to hold the mount message.

If this user exit extends the length of the delivered character
string beyond the size of the allocated memory block, the user
exit allocates the necessary memory to store the newly
composed mount message. The address of which is returned to
the tape daemon in the user_buff location. The length in
bytes of the newly allocated memory block is returned in the
user_bytes field. The uex_table field update is set to a
nonzero value.

If this user exit does not extend the length of the delivered
character string beyond the size of the allocated memory block,
the code does not allocate another memory block, and the
address in the user_buff field is left unaltered. The length in
bytes of the allocated memory block in the user_bytes field
also remains unaltered. The update field of the uex_table
structure is set to zero.

19

Tape Subsystem Administration

When this user exit returns, the tape daemon checks the value
of the update field. If its value is zero, the tape daemon
continues its normal processing. It sends the mount message
from the location it has allocated to be processed. If the value
in the update field is nonzero, the tape daemon compares the
address of the memory block that it has allocated for its mount
message and the address that has been returned in the
user_buff field. If these addresses are the same, the tape
daemon continues its normal processing. If these addresses
differ, the tape daemon frees the memory block it had allocated
for its mount message and takes the address from the
user_buff field as its replacement.

No other uex_table information is used to update data
structures in the tape daemon.

uex _scr_vsn(uex_table)

Receives the uex_table structure and returns either a
character pointer with the value NULL or an address of a string.

This exit allows a site to specify the VSN for a scratch request.

The returned value of NULL means no VSN was returned while
a pointer to a string is used as the value of the scratch VSN. If
no VSN is returned, the tape daemon uses the default scratch
VSN, just as if the user exit had not been taken.

uex _sm_dex_1(uex_table)

20

Receives the uex_table structure and returns.

This user exit is called from a child process in the tape daemon
after the tape daemon has built a dataset enquiry (dex) request
for a servicing front-end machine and before it is sent to be
processed. A site can use this user exit to add code to
supplement information in the existing dex request or change it
in some other way.

When the tape daemon transfers control to this user exit, the
user_buff field of the uex_table structure contains the
address of the dex request and the user_bytes field of the
uex_table structure contains the length in bytes of the
memory block that is allocated to hold the dex request. The
{usr/src/cmd/cl/tp/tpuex/festbls.h header file

SG-2307 10.0

Other Tape Administration Issues [3]

SG-2307 10.0

contains a layout of the data structures making up the format
for the delivered dex request.

If this user exit extends the length of the delivered dex request
beyond the size of the allocated memory block, the code
allocates the necessary memory to store the newly composed
dex request. The address of this allocated memory block is
returned to the tape daemon in the user_buff location. The
length in bytes of the newly allocated memory block is returned
in the user_bytes field. The length in words of the newly
composed dex request is returned in the user_wc field of the
uex_table structure. The update field of the uex_table
structure must be returned set to a nonzero value, while the
yes_no field must be returned set to YES

If this user exit does not extend the length of the delivered dex
request beyond the size of the allocated memory block, the code
does not have to allocate another memory block and the
address in user_buff field remains unaltered. The length in
bytes of the allocated memory block in the user_bytes field
also remains unaltered. The length in words of the newly
composed dex request is returned in the user_wc field. The
update field must be returned set to a nonzero value, while
the yes_no field must be returned set to YES If this user exit
does not change the delivered dex request in any way, the
update field must be returned set to zero, while the yes _no
field is returned set to YES If this user exit determines that the
dex request should not be sent to the servicing front-end
machine, the yes_no field is has to be returned set to NQ

When this user exit returns, the tape daemon checks the value
returned in the yes _no field. If the value in this field is NQ the
tape daemon does not send the request to the servicing
front-end machine and continues its processing.

If the value returned in the yes_no field is YES the tape
daemon checks the value of the update field. If its value is
zero, the tape daemon continues its normal processing. It sends
the dex request from the location it has allocated to the
servicing front-end machine to be processed. If the value in the
update field is nonzero, the tape daemon replaces its value of
the length in words of the dex request with the value which is
returned in the user_wc field. It compares the address of the
memory block it has allocated for its dex request and the

21

Tape Subsystem Administration

22

address which has been returned in the user_buff field. If
these addresses are the same, the tape daemon continues its
normal processing. If these addresses differ, the tape daemon
frees the memory block it allocated for its dex request and takes
the address from the user_buff field as its replacement, after
which it continues its normal processing.

No other uex_table information is used to update data
structures in the tape daemon.

uex_sm_dux_2(uex_table)

Receives the uex_table structure and returns.

This user exit is called from a child process in the tape daemon
at the point where the tape daemon receives a reply from the
servicing front-end machine to a dataset enquiry (dex) request
and before it processes this reply. A site can use this exit to add
code that processes the reply in accordance with local
requirements. When the tape daemon transfers control to this
user exit, the user_buff field of the uex_table structure
contains the address of the dex reply and the user _bytes field
contains the length in bytes of the memory block which has
been allocated to hold the dex reply. The
{usr/src/cmd/cl/tp/tpuex/festbls.h header file
contains a layout of the data structures making up the format of
the delivered dex reply.

If this user exit determines that the servicing front-end machine
has returned a message in the reply, the address of the message
must be returned to the tape daemon in the user_tmsgp field
of the uex_table structure. It assures the message is properly
processed. If the servicing front-end machine has not returned
a message in the reply field, user_tmsgp has to be zero.

The user _error field is provided in case the user exit
encounters an error condition which has to abort the tape
daemon child process. When the user exit returns this field is
set to a nonzero value and the yes _no field of the uex_table
structure set to value NQ the tape daemon passes the value in
user_error on to the abort function. For a list of possible
return values, see the Tape Subsystem User’s Guide, Cray
Research publication SG-2051.

SG-2307 10.0

Other Tape Administration Issues [3]

If this user exit completes without errors and updates
information in the uex_table structure from the information
delivered in the dex reply, it returns a nonzero value to the tape
daemon in the update field of the uex_table structure and in
the yes_no field of the uex_table structure value YES This
causes various data structures in the tape daemon to be
updated with uex_table information. The code in function
uex_sm_dex_2() in the

lusr/src/cmd/cl/tp/tpuex/tpuex.c file contains an
example which is based on the way the tape daemon processes
the dex reply. It shows the uex_table fields which have to be
updated. If this user exit completes without updating the
uex_table fields and has determined that the tape daemon
has to do the processing of the dex reply, it returns to the tape
daemon with the yes_no field set to YESand the update field
set to zero. This prevents the tape daemon from updating its
data structures with information from the uex_table

structure. If the user exit relies on the tape daemon to process
the dex reply, the reply must be in the format the tape daemon
can handle.

uex_sm_vax(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

This exit returns an answer to the question "Can user uid access
volume vsn?" It is called in place of the volume access request
made to the front-end system.

This routine must validate access for a VSN and set the
following:

* Expiration information for the file
¢ The allowed-permission-bits structure
Returning a nonzero value denies access to the dataset.

uex_sm_vux(uex_table)

Receives the uex_table structure and returns an integer value
of YESor NQ

SG-2307 10.0 23

Tape Subsystem Administration

This exit provides the opportunity to update tables and log
fields after a volume has been accessed. It is called in place of
the volume access request made to the front-end system.

The return value YES means that the update was successful,
while the return value NOmeans that the update failed.

In addition, the new user exit, uex_vsn _ok_to_use , is called prior to sending
a tape mount request to the tape daemon. It provides the requested VSNs for
the tape mount. A site may replace the default exit with an exit tailored for its
needs.

3.4 Automatic volume recognition

24

A tape daemon with automatic volume recognition (AVR) enabled
automatically reads the label of a tape mounted on a device that is configured
up but is not assigned to a user. The tape daemon saves the volume serial
number (VSN); consequently, when the tape is requested by a tpmnt (1)
command, the correct tape is assigned. When a nonlabeled tape is mounted, the
operator is asked to supply the VSN.

For ER90 devices, the tape daemon saves the format ID. The correct tape is
assigned based on this format ID. When a blank tape is mounted, the operator
is asked to supply the external ID.

You can dynamically turn the AVR option on and off by issuing the tpset (8)
command. To turn AVR on, enter the following command:

tpset -a on
To turn AVR off, enter the following command:
tpset -a off

When the tape daemon successfully switches the AVR option, no message is
issued. If the tape daemon is busy with active tape users, you will receive a
message, and the AVR option will not be switched.

Issuing tpset (8) with no options results in a report of the status of AVR
front-end servicing, the status of front-end servicing, the status of tape tracing,
the status of the volume management facility, the status of Cray/REELlibrarian,
and tape operator ID.

When a user asks for a tape, the tape daemon verifies that the requested tape is
mounted on a drive in the requested device group and that it is not already

SG-2307 10.0

Other Tape Administration Issues [3]

3.5 Tape autoloader s

SG-2307 10.0

assigned to a user. If the tape is found, it will be assigned to the user who
issued the request. If the tape is not found, a message will be sent to the
operators requesting that the tape be mounted.

When the tape daemon is looking for a device to assign to a user, it stops the
search as soon as a matching VSN for BMX devices or format ID for ER90
devices is found. If multiple tapes with the same VSN are mounted, the first
drive that has a matching VSN and is not already assigned is assigned to the
user. Others with a matching VSN are queued. Therefore, it is best to have a
unique VSN for all tapes, including scratch tapes.

AVR allows the operator to mount a tape requested by a user on one of the
following devices:

* Any drive that is not assigned to a tape user of the requested device group.
The output of the tpstat (1) command shows the drives that are
unassigned.

* The drive assigned to the user. The operator can determine the drive
assigned to a given user by looking at the output of the tpstat (1)
command. The drive assigned to the user is indicated by the VSN and an
asterisk (*) preceding the VSN.

When a device is released (and neither the -n option of the rls (1) command
nor the -u option of the tpmnt (1) command has been specified), the tape is
unloaded.

If the user asks for a scratch tape (by failing to specify a VSN on the tpmnt (1)
command), the tape daemon asks for a mount with the default scratch VSN.
The operator must specify the name of a device that has a scratch tape mounted
in the reply to the mount message. The tape daemon then assigns the drive to
the user.

After a tape drive is configured up and a tape is mounted, the operator should
not unload the tape by pressing the "reset” button or the "not ready” button. A
tape should be unloaded by use of the tpu (8) command. The tpu (8) command
unloads tapes only on drives that are configured up but not assigned.

This subsection briefly describes the command flow between the software
components that are involved in the handling of tape volumes through an
autoloader. This flow is described in general and then in detail for StorageTek,
EMASS, and IBM autoloaders. This subsection also describes how to install and

25

Tape Subsystem Administration

configure each type of autoloader; and describes some pointers in organizing,
numbering, naming and accessing tape devices.

3.5.1 Command flow

Note: EMASS autoloaders are only supported on UNICOS systems.

The following steps describe command flow between software components that
are involved in the handling of tape volumes.

1.

The tape daemon starts a child process for each autoloader that has been
configured up. This child process is a daemon process that executes as long
as the autoloader it is associated with is configured up. If this autoloader is
configured down, the child process is terminated.

The tape daemon sends requests to the child process over a named pipe;
the tape daemon receives a confirmation reply and a final reply for each of
these requests. The final reply contains status information concerning the
completion of the request.

After the child process has received a request from the tape daemon and
has returned a confirmation reply, it translates the request into a format that
is acceptable to software supplied by the autoloader vendor. This software
is installed on a computer platform that is connected to a network to which
the Cray Research system is connected.

The translated request is sent to the vendor-supplied software using the
Remote Procedure Call/eXternal Data Representation (RPC/XDR) protocol
by way of Transmission Control Protocol/Internet Protocol (TCP/IP).

The vendor software returns a confirmation reply after the request has been
received from the Cray Research system.

After the vendor-supplied software has completed the request, it sends a
final reply to the Cray Research system over the network. The reply
contains status information concerning the completion of the request.

When the child process receives the reply from the vendor-supplied
software, it translates this reply into a format that is acceptable to the tape
daemon and sends it over a pipe to the tape daemon.

This process is depicted in Figure 1.

26

SG-2307 10.0

Other Tape Administration Issues [3]

Tape Loader , Vendor
daemon daemon software
Named TCP/IP
pipe

al0050

Figure 1. UNIX autoloader communication

3.5.2 StorageT ek autoloader information

SG-2307 10.0

The StorageTek Autoloader Cartridge Systems (ACS) support the IBM 3480,
3490, and 3490E compatible tape cartridges as well as the cartridges used for
the helical-scan StorageTek Redwood drives. These systems use the StorageTek
4480 drive, StorageTek Silverton drive, StorageTek Timberline drive, and
StorageTek Redwood drive.

The child process started by the tape daemon for a StorageTek autoloader is
named stknet , and the vendor-supplied software is called Automated
Cartridge System Library Server (ACSLS). The ACSLS application typically runs
on a Sun platform.

stknet is a program in executable binary format for which the building blocks
are delivered with the release materials. The cmd/cl/tp/stkacs directory
contains these building blocks:

File Description
Nmakefile Contains instructions to create stknet out of

stknet.o and stklib.a . It is installed in the
cmd/cl/tp/stkacs directory. This Nmakefile
file is, typically, called into execution from the
Nmakefile located in the cmd/cl/tp directory.

When this Nmakefile file is called into execution
with the install parameter, stknet is placed
in the /usr/lib/tp directory from which the
tape daemon calls it into execution.

stklib.a Contains an archive of modules in relocatable
binary format that link into the executable
version of stknet

27

Tape Subsystem Administration

stknet.o Contains a module in relocatable binary format.

stknet supports all tape drives that can be connected to a StorageTek library.
If stknet serves StorageTek Redwood drives, license CRSTK/STKRED and its
accompanying Cray FLEXIm key is required to activate the code in stknet that
supports the StorageTek Redwood drives. For assistance with the license,
contact your Cray Research service representative. No license is needed for all
other tape drives that can be connected to a StorageTek library.

3.5.3 IBM autoloader information

28

The IBM 3494 Tape Library Dataserver supports the IBM 3480, 3490, and 3490E
tape cartridges and uses the drives that IBM supports with these autoloaders.

The child process started by the tape daemon for an IBM autoloader is called
ibmnet and the vendor-supplied software is called Controlled Path Service
(CPS). The atl application typically runs on an IBM RISC system /6000
platform.

ibmnet is a program in executable binary format for which the building blocks
are delivered with the release materials. The directory cmd/cl/tp/ibmtld
contains these building blocks:

File Description
Nmakefile Contains instructions to create ibmnet out of

ibmnet.o and ibmlib.a . It is installed in the
cmd/cl/tp/ibmtld directory. This Nmakefile
file is, typically, called into execution from the
Nmakefile located in the cmd/cl/tp directory.

When this Nmakefile file is called into execution
with the install parameter, ibmnet is placed
in the /ust/lib/tp directory from which the
tape daemon calls in execution.

ibmlib.a Contains an archive of modules in relocatable
binary format that link into the executable
version of ibmnet .

ibmnet.o Contains a module in relocatable binary format.
The functionality that is coded within ibmnet is only accessible to sites that
have obtained license CRIBM/IBM3495 which is required for the IBM 3494 Tape

Library Dataserver, and the accompanying Cray FLEXIm key. For assistance
with the license, contact your Cray Research service representative.

SG-2307 10.0

Other Tape Administration Issues [3]

3.5.4 EMASS autoloader information

The child process started by the tape daemon for an EMASS autoloader is

called esinet

and the vendor-supplied software is called VolServ. The VolServ

application typically runs on a Sun platform.

esinet is a program in executable binary format for which the building blocks
are delivered with the UNICOS release materials. The cmd/cl/tp/dtdl
directory contains these building blocks.

File

Nmakefile

esilib.a

esinet.o

Description

Contains instructions to create esinet out of
esinet.o and esilib.a . It is installed in the
cmd/cl/tp/dtdl directory. This Nmakefile

file is, typically, called into execution from the
Nmakefile located in the cmd/cl/tp directory.

When this Nmakefile file is called into execution
with the install parameter, esinet is placed
in the /usr/lib/tp directory from which the
tape daemon calls into execution.

Contains an archive of modules in relocatable
binary format that link into the executable
version of esinet

Contains a module in relocatable binary format.

The functionality which is coded within esinet is only accessible to sites that
have obtained license CREMS/DTDL and the accompanying Cray FLEXIm key.
For assistance with the license, contact your Cray Research service

representative.

3.5.5 General installation information

To use an IBM autoloader, an EMASS autoloader, or the UNIX version of the
StorageTek autoloader, you must build your system with TCP/IP turned on in

the /etc/config/config.mh
contain the following lines:

#define CONFIG_TCP1
#define CONFIG_RPC1

file. That is, /etc/config/config.mh must

The UNIX storage server host name must be defined in the local /etc/hosts
file. For more information, see the hosts (5) man page. The UNIX storage

SG-2307 10.0

29

Tape Subsystem Administration

system host name also must be specified in the server parameter of the
LOADERdefinition in the /etc/config/text_tapeconfig file.

For the UNIX version of the StorageTek autoloader, you must set
CSI_UDP_RPCSERVICEnd CSI_TCP_RPCSERVICHo TRUEin the
/usr/ACSSS/rc.acsss file of the UNIX storage server host.

It is recommended that you use the installation documentation for the
autoloaders at your site to correctly install these products.

3.5.6 Organizing your devices in attended and unattended modes

30

If the autoloader is the only mechanism your site uses to service mount
requests, you may skip the following discussion. However, if the tape daemon
processes mount requests in a mixed environment, you must organize the
devices to use the devices and loaders in the most efficient manner possible.

A mixed environment consists of devices serviced by a manual operator and
devices serviced by an autoloader. A volume has a domain associated with it
and, as such, has a preferred or best loader to service a mount request. If the
domain of a tape cartridge is a tape vault, the best loader is an operator. If the
tape cartridge resides in the autoloader’s domain (silo), the best loader is the
autoloader.

Each tape device belongs to a device group, which is a collection of devices with
equivalent physical characteristics. Although cartridge devices can have
equivalent physical characteristics, you should consider the manner in which the
devices will be serviced to determine whether or not they should be grouped.

One of the principal reasons for using an autoloader is that the loader can be
run in unattended mode (that is, without an operator). Using the autoloader in
this manner means that no imports or exports are considered, and a
user-requested tape mount that cannot be satisfied by the autoloader is canceled.

The easiest way to prevent canceled mounts is to assign the autoloader drives
to a device group different from the one serviced by manual operators. A user
can then determine whether the required device group is available before
requesting a tape mount. The only drawback to this method is that the user
must be aware of the domain in which the tape resides and, if necessary, make
changes to scripts if the domain of the tape changes.

For operations that have 24-hour operator coverage, all tape cartridges can be
assigned to one device group, with the operator deciding whether the mount
request should be queued or canceled, or whether the volume should be

SG-2307 10.0

Other Tape Administration Issues [3]

imported or exported. In this case, the user need not be concerned about the
domain of the tape.

3.5.7 Accessing tape cartridges

3.6 Message daemon

SG-2307 10.0

Another administration issue is the accessibility of tape cartridges in an
autoloader. In the past, control of a volume serial number (VSN) was provided
by an operator or by security programs on a front-end computer. With an
autoloader, control of VSNs does not exist; therefore, with the distributed tape
daemon software, any user may request the mounting of any VSN in the
domain of the autoloader.

On all Cray Research systems, the released routines reside in the vsnexit.c
module; you can change the module to suit the particular needs or desires of
your site.

and operator interface

The message daemon and its associated operator interface provide mount
messages for administrators and operators who are loading and unloading
tapes. This subsection provides a brief overview of the daemon and interface.

You must have super-user privileges to start or stop the message daemon.

Only one message daemon can be running at any time. If you attempt to start
the message daemon while it is already running, an error message will be
returned.

All messages are logged by the message daemon as they are received. The logs
are kept in the msglog.log log file in the /usr/spool/msg directory. The
letc/newmsglog shell script saves the last several versions of the log. The
versions are called msglog.log.0 , msglog.log.1 , and so on, with
msglog.log.0 being the most recent. This script also instructs the message
daemon to reopen the log file; it should be run from the crontab (1) command.

The message daemon request pipe is located in the /usr/spool/msg directory.

Table 1 shows the message daemon commands and the privileges required to
access them.

31

Tape Subsystem Administration

32

Table 1. Message daemon commands

Command Privilege Description

msgdaemon(8) Super user Starts the message daemon

msgdstop (8) Super user Stops the message daemon

oper (8) Operator Operator display; displays
messages

msgi (1) All users Sends informative message to
operator

msgr (1) All users Sends action message to
operator

An operator is defined as anyone with a special operator group ID. The default
group is operator . This group ID can be changed in the Nmakefile file in
the /usr/src/cmd/msg directory. On Trusted UNICOS or MLS systems, the
sysops category is also necessary.

The operator display provided by the oper (8) command can be run from any
terminal defined in the /usr/lib/terminfo file. It requires at least 80
columns and 24 lines. The three lines at the bottom of the operator display
screen are used for input and for running commands that do not display
information on the screen. The rest of the screen is used as a refresh display to
display messages and to run other display commands.

Configuration file $HOME/.operrc lists the commands to be run as refresh
displays and those that require full control of the screen. $HOMBEs the user’s
home directory. If this file does not exist, the default configuration file
{usr/lib/oper.rc is used.

Commands not listed in the configuration file are assumed to be nondisplay
commands.

The following are three of the commands available from the operator display:

Command Description

infd (8) Displays informative messages
msgd(8) Displays action messages

rep (8) Replies to action messages

Two types of messages appear on the operator interface:

SG-2307 10.0

Other Tape Administration Issues [3]

¢ Informative messages, which are deleted after the operator has seen them.
The operator cannot reply to informative messages.

* Action messages, which require a reply from the operator. These are
primarily tape mount messages, but they may be other types of messages to
which users need responses. An action message is not deleted until either
the operator replies to it or the sender cancels it.

Both types of messages are logged by the message daemon.

SG-2307 10.0 33

