Tape Troubleshooting [4]

Occasionally you may experience problems with the hardware or the software
while running magnetic tapes. If so, there are certain steps you should take to
try to clear the user, job, tape drive, or the tape daemon itself, and save the
proper information to debug the problem.

This chapter describes the following troubleshooting topics:
¢ Tape drive or job problems

¢ Tape daemon problems

e tpdfixup utility

* Tracing

* Sample trace analysis

e errpt (8) utility

e Sample errpt (8) analysis

e daemon.stderr file

e crash (8) orcrashmk (8) utility

4.1 Tape drive or job problems

If a tape drive appears to be hung, but the tape daemon is still responding to
commands such as tpstat (1) and tpgstat (8), you can use the tpfrls (8)
command to clear the user’s tape reservation. You can determine the user ID
and job ID to use with tpfrls from either tpstat or tpgstat . If this does
not work, try the tpclr (8) command, with the tape device ID as an operand. If
the problem appears to be hardware related, free the user by the preceding
methods (check this with the tpstat (1) command). Then configure the drive
down with the tpconfig (8) command, and discuss the problem with the
appropriate hardware personnel.

4.2 Tape daemon problems

If the tape daemon (see tpdaemon (8)) is hung (no tapes moving, no response
from any tape commands), and you must take the tape daemon down, first try

SG-2307 10.0 35

Tape Subsystem Administration

4.3 t pdf i xup utility

36

the tpdstop (8) command. If this does not work, or the command hangs,
determine the process ID of the tape daemon (by using the ps(1) command),
and enter the following command line:

kil -2 pid

The pid argument is the process ID of tpdaemon . If kill -2 does not work,
enter the following command line:

kil -9 pid

If you want to report the preceding or other tape problems (such as the
abnormal termination of the tape daemon), it is important that you save the
trace files from the tape daemon. These files help to track down a tape problem.
The trace files are kept in a directory set up during the initial installation of the
tape daemon; see TRACEPFXn the /usr/include/tapereq.h file to find out
where these files are kept.

The default installation of the trace files is in the /usr/spool/tape directory.
Copy these files as follows:

cd directory
cp /usr/spool/tape/trace.*

The directory argument is the directory in which you want to keep the trace
files. It is also a good idea to create a file or note that explains what the
problem was and specifies the devices that were affected: you may also want to
keep a copy of the user job that seemed to cause the problem.

Another useful command is the tpbmx (8) command. tpbmx specified with the
-d option displays the tape driver’s tables for every device. It is recommended
that you save a copy of the tpbmx -d output before attempting to execute
tpdstop or attempting to terminate the daemon with the kill (1) command.

The tpdfixup utility collects information pertinent to the online tape
subsystem on Cray Research computer systems. A privileged user may run this
script when a tape related problem occurs. The information is placed in a
separate directory so it can be easily packaged and shipped for offline analysis.
For the collected information to be of optimal use, tracing for the tape
subsystem should be enabled. For detailed information, please contact the Cray
Research Technical Support Center.

SG-2307 10.0

Tape Troubleshooting [4]

4.4 Tracing

SG-2307 10.0

Before anything is copied to the information directory, the tpdfixup utility
attempts to determine whether the tape daemon is in its normal state, and if
not, runs a few checks for known hang situations.

The tpdfixup utility should be executed to gather information once trouble
with the tape daemon is suspected prior to attempting to terminate the tape
daemon.

Tracing for the tape subsystem is turned on by default. All child processes
created by the tape daemon have tracing enabled. While tracing is a very
important tool for debugging tape subsystem problems, it uses additional CPU
time. Tracing can be turned on and off by issuing the tpset (8) command. To
turn tracing off, enter the following command:

tpset -T off
To turn tracing on, enter the following command:
tpset -T on

If the stability of the tape subsystem at a site has been established, tape tracing
may be an unnecessary overhead. The CPU cycles saved by turning tracing off
depends on the mix of jobs submitted, because some tape operations generate
more trace information than others.

When tracing is turned off, the tape daemon and its child processes still trace
entry to and exit from child processes and abnormal termination of tape
processes. Abnormal terminations include those induced by the operator and
terminations caused by errors within the tape subsystem. A tape mount request
canceled by an operator or interrupted user job is considered an abnormal
termination induced by the operator.

The option of turning tracing off for the tape subsystem allows sites running
with a stable tape subsystem to substantially reduce the system and user time
used by the tape daemon. This gain in system and user time must be weighed
with the knowledge that some error information and all trace information will
be lost in case of a tape daemon problem. The only way to analyze the problem
is to turn tracing on, resubmit the job, and collect traces when the problem
reappears.

37

Tape Subsystem Administration

4.5 Sample trace analysis

To obtain a complete picture of a problem, save trace information as soon as
possible after you identify an error situation. You can use the tpdfixup utility
to aid in the data gathering process.

This utility saves all the pertinent trace files in /usr/spool/tape as well as
kernel traces through the issuance of crash (8) or crashmk (8) commands (in
particular tpt and tps). If the tape daemon is not hung, the display
command output is also saved. When you execute the utility, you are asked to
comment on how the system was behaving at the time tpdfixup ~ was run.

All of the trace files are circular. For instance, if a particular tape drive is hung,
by the time it is noticed the tape daemon trace (trace.daemon) has probably
been overwritten. However, the drive trace (trace.omx###) and the kernel
drive trace should provide some useful information. By default, the drive traces
are 409600 bytes in length while the trace.daemon file is 10 times that value
(the default is 4096000 bytes). This parameter is configurable in the tape
configuration file.

Each time a tape daemon routine is entered, tracing for that routine begins.
This is done by using the FUNCfunction defined in the tape.h file. RETURN
and EXIT, also defined in tape.h , indicate when the routine is done.

Within each routine, you can place calls to the trace function to obtain more
detailed information. By using this information, you can trace the paths that the
software took to perform various tape functions.

When tpdaemon (8) forks off its children, (for example, opentdt and

readerr) their trace information is written into the respective tape daemon
device traces (trace.omx###). There are also trace files for avrproc , stknet ,
esinet , and tcpnet . By using all of the appropriate traces, you can obtain the
entire picture of what was happening when a failure occurred.

4.5.1 Trace information

38

The following example shows the information you obtain from a trace line.

10:59:58 151257598.1241 1450 tpdaemon mounttp function entered

FAYAYAYAYAYAYAVAN VAVAYAVAVANRVAVAVAVAV,V VAV, V)N FAYAYAYAN FAYAYAYAYAYAYAVAN NANAN AN ANANNNNNNNN FAVAYAYAYAN

The fields in this line are labeled as follows:

SG-2307 10.0

Tape Troubleshooting [4]

4.5.2 Trace example

SG-2307 10.0

Field

Description

References the wall clock time. Having this time available is
helpful in relating events in one trace to other traces, errpt (8)

files, console messages or daemon.stderr

messages.

References the real time clock. You use this time when timing
issues are more important. It helps to determine whether the
events truly took place in the proper order.

References the process number of the main routine. In the

trace.daemon

the trace.bmx###
tpdaemon (8) forks off to process the request (for example,

opentdt , or writeerr

).

Identifies the main routine.

file, this value will invariably be tpdaemon (8); in
files, the value will be the particular child

References the particular routine called by the main routine. In
this example, the routine is named mounttp .

Provides detailed trace information about the entry. This example
shows that the mounttp function was entered.

The following example shows what happens when a user issues an rsv (1)
command. The listing contains fields E and F of the trace information from
trace.daemon

(Start

getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq

of trace)
function
request
request X
000312fe
00031300
00031302
00031304
00031306
00031308

0003130e
00031310
00031312
00031314
00031316

entered
came from /usr/spool/tape/daemon.request

5472657148000470 0000000000000214
0000000000000293 0000000000000000
0000000000000000 0000000000000000
2f7573722f73706f 6f6c2f746170652f
5¢36353972737635 3439353700000000
0000000000000000 0000000000000000
*kkkk same *kkkk

0000000000005b6e 0000000000002e3c
0000000000005b6e 0000000000000000
0000000000000000 0000000000000000
2f746d702f6a746d 702e303030363539
612f544150455f52 45515f3635390000

lusr/spool/tape/
659rsv54957....

/tmp/jtmp.000659
a/TAPE_REQ 659..

39

Tape Subsystem Administration

getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq
getreq

4.5.2.1 Source

00031318 0000000000000000 0000000000000000
*kkkk same *kkkk

0003131e 2f636c6f7564792f 75362f6261722f74

00031320 6170652e6d736700 0000000000000000

00031322 0000000000000000 0000000000000000
*kkkk same *kkkk

00031328 6261720000000000 0000000000000000

0003132a 0000000000000001 4341525400000000

0003132c 0000000000000000 0000000000000001

0003132e 0000000000000000 0000000000000000
*kkkk same *kkkk

00031342 0000000000000000 0000000000000063

00031344 0000000000000063 0000000000000063
*kkkk same *kkkk

0003134a 0000000000000000 0000000000000000

0003134c 0000000000002e3c 0000000000000009

0003134e 00000000000003ef 0000000000000003

00031350 0000000000003128 00000000000030f6

00031352 0000000000000000 0000000000000000
*kkkk same *kkkk

0003138a 0000000000000000 0000000000000000

getreq returns code =1

/cloudy/u6/bar/t

ape.msg.......

The tape daemon checks its request pipes and determines a request is pending.
The getreq function is entered as shown by the trace entry. While you
examine the trace information, you may want to access the tpdaemon (8)

source. Following the code in getreq.c

if (reghdr.code 1=
trace(func,"request

TR_TPS) {
came from
DUMP("request”,reqp,reghdr.size);

/*
%s",reqfsp->fn);

don’t dump tpstat

is a trace entry:

*

This code traces from where the request came as well as dumping the request.

If the request is a tpstat

tpstat

the line request

40

(1) command, it is not dumped because the

(1) command is issued so often. To determine what the request is,
examine the code in word one of the request. In this example, word 1 contains
0000000000000214. The information is dumped in hexadecimal as evidenced by

X. (A dump in octal would show request

Q)

SG-2307 10.0

Tape Troubleshooting [4]

fir013%
#define

SG-2307 10.0

To identify the request, check the tape.h file:

grep 214 tape.h

TR_RSV

0x214 /* reserve devices */

The request structures for each request are generally contained in the files
named tr xxxx.h. xxxx refers to the command issued. To examine the request
structure for this example, look in the trsv.h file. If a structure does not have
its own header (.h) file, it is probably located in tape.h , the mount tape
structure.

Within the tpdaemon (1) source is a series of case statements. Based on the
request code, tpdaemon (1) calls the necessary function. In this instance, the
request code of x214 corresponds to TR_RSV

(from tpdaemon.c)
case TR_RSV:
cfunc = rsvdev;
break;

(Trace continued)
rsvdev function entered
gettusr function entered

gettusr gettusr returns : code = 0
addq function entered

addq addq returns : code = 157881
dgpavail function entered

dgpavail dgpavail returns : code =1

addrsv function entered
gettrsv function entered
gettrsv gettrsv returns : code = 201728

The rsvdev trace is the next function entered. It calls gettusr to determine if
the user has already reserved a tape drive. gettusr returns a 0 indicating that
no reserves are currently assigned to this user. Since a 0 is returned, the
following if statement is false and the if block is bypassed.

(from rsvdev.c)
if (tusrp = gettusr(regp- >rh.jid)) { /* user found */

By looking at the code, you can deduce that this example was run on a system
that did have security running because it does not contain any security trace
entries.

41

Tape Subsystem Administration

42

Many of the tpdaemon (8) subroutines are contained within their own named
.c file. Others are contained within various subroutines. If you cannot locate a
particular routine, use a grep (1) command on the tpdaemon (1) source to find it.

rsvdev continues on. addq is then entered and returns the queue header
pointer to rsvdev .

The dgpavail routine is called to determine if a device is available within the
device group requested.

(from rsvdev.c)
FUNC(dgpavalil);

for (i = 0; i < tdth.numdgp; i++) |

trsvp = tdth.tusrgh.f- >trsvp +
if (!strcmp(trsvp- >dgn,dgn)) { /* found */
if (hum > trsvp- >num) {
rc = -1;
} else {
*trsvpa = trsvp;
rc =1,
}
break;
}
}
RETURN(rc);

The value that is returned, 1, indicates that a device is available. A particular
return code is neither good nor bad based on its value; you must examine the
source to determine the meaning of a code.

c = dgpavail(reqp->dgn[i].name,regp->dgn[i].num,&tdtrsvp);
c >0 { /* available *

addrsv(tusrp,reqp- >dgn[i].name,regp->dgn[i].num);

Since c is greater than 0, the next block of code is executed. addrsv is called to
add to tape reserved. addrsv calls gettrsv to return the address of the trsv
structure. The code returned by gettrsv is the decimal address 201728, which
converts to 31400 in hexadecimal. The addrsv trace dumps the tusr and

trsv structures. The trsv structure is dumped from location x31400:

(Trace continued)
addrsv tusr X
addrsv 0003138f 0000000000000000 000000000002bcd4

SG-2307 10.0

Tape Troubleshooting [4]

addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv
addrsv

The next routine called, bdmrsv , sends an ioctl

00031391 2f746d702f6a746d 702e303030363539
00031393 612f544150455f52 45515f3635390000
00031395 0000000000000000 0000000000000000
*kkkk same *kkkk
0003139d 000000000000000d 0000000000000293
0003139f 0000000000000000 0000000000000000
000313a1 0000000000000000 6261720000000000
000313a3 0000000000000000 0000000000005b6e
000313a5 0000000000005b6e 2f636c67564792f
000313a7 75362f6261722f74 6170652e6d736700
00031329 0000000000000000 0000000000000000
*kkkk same *kkkk
000313b1 0000000000000000 0000000000000001
000313b3 0000000000000000 0000000000000000
*kkkk same *kkkk
000313b7 0000000000031400 0000000000002e3c
000313b9 0000000000000000 0000000000000000
*kkkk same *kkkk
000313bd 0000000000002e3c 0000000000000009
000313bf 00000000000003ef 0000000000000003
000313c1 0000000000003128 00000000000030f6
000313c3 0000000000000000 0000000000000000
*kkkk same *kkkk
000313fb 0000000000000000 0000000000000000
trsv = X
00031400 4341525400000000 0000000000000000
00031402 0000000000000001 0000000000000000
00031404 5441504500000000 0000000000000000
00031406 0000000000000000 0000000000000000
00031408 5445535400000000 0000000000000000
0003140a 0000000000000000 0000000000000000
0003140c 3334393000000000 0000000000000000
0003140e 0000000000000000 0000000000000000
addrsv returns code =0

reserve to the kernel.

(from rsvdev.c)

if (ioctl(bmxfs.fd,BDM

_RSV,jid)

<0 {

errmsg(func,ETSYS, TM047 ,bmxfs.dvn,bmxfs.fn,

RETURN(errno);

SG-2307 10.0

"ioctl",

"BDM_RSV",errno);

/tmp/jtmp.000659
a/TAPE_REQ_659..

(2) system call about the

43

Tape Subsystem Administration

}
usrmsg(func, TM000); /* tell user about it *

(Trace continued)

bdmrsv function entered

bdmrsv TMOOO - tape resource reserved for you
bdmrsv bdmrsv returns @ code = 0

4.5.2.2 Associated kernel trace entry

The kernel code to process the ioctl (2) system call is in
{usr/src/uts/cl/io/tpddem.c . You can obtained this kernel information
by issuing a tpt tpdemreq command from within the tpdaemon (8)
command. These traces are in the oldest-to-latest order; the following is the
latest or last trace entry:

tpddemct 0000000000000000002061 0000001000500000002006 1. .
tpddemct is entered as follows:

(from /usr/src/uts/cl/io/tpddem.c)
tpddemctl(vp, cmd, arg)

The trace is coded as:

(from /usr/src/uts/cl/io/tpddem.c)
TPD_TRACE(io, ’'tpddemct’, arg, UTPACK(cmd, vp));

From the ioctl (2) system call in bdmrsv , you can equate vp to bmxfs.fd ,
BDMRSVto cmd, and jid to arg . Based on the kernel trace entry, 2061 should
be the job ID. In this case, 1073 (decimal equivalent of 2061) is the job ID, and
10005 corresponds to the BDM_RS\Wommand.

(from /usr/src/uts/cl/sys/tpddem.h)
#define TDMRSV 010005 /* Mark job having device(s) reserved */

rsvdev then dumps tusr and trsv , calls sendrep to send the reply, and
returns with a code of 0 that indicates successful completion.

rsvdev tusr X

rsvdev 0003138f 0000000000000000 000000000002bcd4 ...

rsvdev 00031391 2f746d702f6a746d 702e303030363539 /tmp/jtmp.000659
rsvdev 00031393 612f544150455f52 45515f3635390000 a/TAPE_REQ 659..
rsvdev 00031395 0000000000000000 0000000000000000 ccoeenveee

rSVdeV *kkkk same *kkkk

rsvdev 0003139d 000000000000000d 0000000000000293 cccceueee

44 SG-2307 10.0

Tape Troubleshooting [4]

4.6 err pt (8) utility

SG-2307 10.0

rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
rsvdev
sendrep
sendrep
rsvdev

0003139f 0000000000000000 0000000000000000

000313al 00599e4eeclee788 6261720000000000

000313a3 0000000000000000 0000000000005b6e

000313a5 0000000000005b6e 2f636¢67564792f

000313a7 75362f6261722f74 6170652e6d736700

00031329 0000000000000000 0000000000000000
*kkkk same *kkkk

000313b1 0000000000000000 0000000000000001

000313b3 0000000000000000 0000000000000000
*kkkk same *kkkk

000313b7 0000000000031400 0000000000002e3c

000313b9 0000000000000000 0000000000000000
*kkkk same *kkkk

000313bd 0000000000002e3c 0000000000000009

000313bf 00000000000003ef 0000000000000003

000313c1 0000000000003128 00000000000030f6

000313c3 0000000000000000 0000000000000000
*kkkk same *kkkk

000313fb ~ 0000000000000000 0000000000000000

trsv X

00031400 4341525400000000 0000000000000000

00031402 0000000000000001 0000000000000000

00031404 5441504500000000 0000000000000000

00031406 0000000000000000 0000000000000000

00031408 5445535400000000 0000000000000000

0003140a 0000000000000000 0000000000000000

0003140c 3334393000000000 0000000000000000

0003140e 0000000000000000 0000000000000000

function entered

sendrep returns code =0
rsvdev returns code =0

The errpt (8) utility processes data collected by the error-logging mechanism
(errdemon (8)) and generates a report of that data. The default report is a
summary of all errors posted in the files specified on the command line. The
options apply to all files. If you do not specify any files, errpt (8) attempts to

use the /usr/adm/errfile

file.

A summary report notes the options that can limit its completeness, records the
time stamped on the earliest and latest errors encountered, and specifies the

45

Tape Subsystem Administration

total number of errors of one or more error types. The number of times that
errpt (8) has difficulty reading input data is included as read errors.

A detailed report contains, in addition to specific error information, all instances
in which the error logging process was started and stopped, and the time
changes (using the date (1) command) that may have occurred during the
interval being processed. A summary of each error type included in the report
is appended to a detailed report.

A report can be limited to certain records by the use of options.

For the tape subsystem, the errpt (8) command generates information useful
for debugging both hardware and software. For more information, see the
errpt (8) man page.

The following example will generate a detailed report about tape devices:

errpt -f -d tape

4.7 Sample err pt (8) analysis

The errpt (8) analysis available for SCSI protocols is more detailed than that
for the block multiplexer (mux) and ESCON protocols. The samples in this
section illustrate this difference.

4.7.1 Block mux and ESCON protocols

This analysis deals with errpt (8) tape errors for the block mux and ESCON
protocols. Error information is generally logged in /usr/adm/errfile . When
these logs are restarted, they are saved as files named errfile # where # is a
sequential number starting with and incrementing. The errpt (8) program or
the UNICOS olhpa (8) program reads the logs and formats the data. Error
messages reported by errpt (8) are created by the bmxereclog routine called
from the bmx routines in /ust/src/uts/cl/io

You can also display these messages on the console by using the bmxconmsg
routine. The console messages generally have the following form:

ebmx: cart04: unassign, command reject, C040002700000020 0000154400000000

AAAA BBBBBB CCCCC

46

CCC DDDDDDDDDDDDDIEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

The fields in this line are labeled as follows:

SG-2307 10.0

Tape Troubleshooting [4]

Tue Nov

Field Description

A Indicates the calling program, ebmx.

Indicates the device on which the error occurred.
Shows the bmx command that was issued.

Shows the resulting error message.

m o O @

Usually records sense bytes 0 through 15. Verify by checking the
specific error message in ebmx.c .

For aid in breaking down the sense bytes, see the appropriate IBM
documentation.

The following command produced the sample errpt (8) record:
errpt -d tape -s 11011400 -e 11011500

The -s and -e parameters refer to the starting and ending times that were
used. They are in the mmddhhmnformat. The -d parameter indicates that
errpt (8) should report on tape errors.

1 14:53:53 1994
Tape Error record Cluster 0 IOS 1 Device 150
Volume: Owner: 0 Command:

(CART) Error type: Drive assigned elsewhere Final status: UNRECOVERED

Initial channel: 036 Initial control unit: 013 Initial device: 000
Final channel : 000 Final control unit : 000 Final device : 000
Request code: O0x9a Response code: O0x0e

Channel command: Assign

Initial status (erpa): 0x045 Extended status: 0x2002

Initial device status : Ox02 Final device status : 0x00

Block: 0 Density: 0 Retry count: 00000

Sense bytes: (hexadecimal)

SG-2307 10.0 47

Tape Subsystem Administration

48

00
04
08
12
16
20
24
28

41 40 80 45
00 00 00 20
01 40 33 e4
00 00 00 00
00 00 00 70
00 00 00 00
f6 80 34 72
20 50 00 00

This sample is a relatively straightforward errpt (8) record. If a tape job were
involved, the volume, owner, and command fields would contain relevant
information. However, the error type field indicates that the drive was assigned
elsewhere with a final status of unrecovered.

The channel is octal 36, the control unit is octal 13, and the drive ID (initial
device) is 0. You can verify this information in the tape configuration file:

{
CONTROL_UNIT

protocol = STREAMING,
status = UP,
path = ((036, 11))
DEVICE
name = 150 ,
device _group_name = CART,
id = 00 ,
type = 3480 ,
status = DOWN,
loader = Operator

The request code of x9a indicates a command list, and the response code of
x0e is a sequencer detected error. These commands are in the
{usr/include/sys/epackt.h file under request codes to the IOS and I0S
response codes.

/*

* Define request codes to ios

*/

#define TCommandList 0232
/*

* 10S response codes

SG-2307 10.0

Tape Troubleshooting [4]

#define

*

#define RUnitCheck 016

The channel command is assign . The ERPA code of X045 can be located in
the /usr/include/sys/erec.h file.

T3480_DAE 0x45 /* Drive assigned elsewhere */

4.7.2 SCSI protocols

The sample shows the additional information that is available for SCSI

protocols.
Tue Aug 6 15:48:53 1996

Tape Error record Cluster 3 I0S 2 Device $9490s0
Volume: Owner: 40 Command:
(CART) Error type: Read data check Final status: UNRECOVERED
Initial channel: 002 Initial control unit: 002 Initial device: 000
Final channel 000 Final control unit 000 Final device 000
Request code: O0x9a Response code: O0x0Oe
Channel command: Load display
Initial status (erpa): 0x023 Extended status: 0x400e
Initial device status 0x0e Final device status 0x00
Block: 0 Density: 0 Retry count: 00000
Sense bytes: (hexadecimal)

00 - 48 40 00 23

04 - 00 00 00 00

08 - 00 00 00 00

12 - 00 00 00 00

16 - 00 00 00 00

SG-2307 10.0

49

Tape Subsystem Administration

20 -
24 -
28 -
32 -
36 -
40 -
44 -
48 -
52 -
56 -
60 -

SCSI Sense Byte
SCSI Sense Byte
SCSI Sense Bytes

SCSI Sense bytes:
00 -
04 -
08 -
12 -
16 -
20 -
24 -
28 -

00
00
00
00
00
00
11
00
00
00
00

2 bits

2 bits

12/13:

3 - 0: 0x3(Medium Error)

7

5: 0x0

(hexadecimal)

00
00
00
11
00
00
00
00

4.8 daenon. st derr file

4.9 crash(®) or crashnk() utility

50

The /usr/spool/tape/daemon.stderr

Research for offline analysis.

00
00
00
00
00
00
01
00
00
00
00

0x1101(Read Retries

00
00
00
01
00
00
00
00

00 00
00 00
00 00
03 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
Exhausted)
03 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

file contains all tape daemon error
messages. Therefore, this file contains debug information that helps diagnose
errors. This file, along with the output from errpt (8), is useful for
administrators when working on drive problems. It is also useful for debugging
tape daemon problems when sent with other tape daemon trace files to Cray

The crash (8) or crashmk (8) utility can help you discover and correct tape
subsystem problems. This interactive utility can examine an operating system

SG-2307 10.0

Tape Troubleshooting [4]

core image. It has facilities for interpreting and formatting the various control
structures in the system and certain miscellaneous functions that are useful
when examining a dump file.

The core_filename argument specifies where the system image can be found. The
default value of core_filename is /dev/imem , which lets you use the crash (8) or
crashmk (8) utility without an operand to examine an active system. If you
specify the system image file, it is assumed to be a system core dump and the
default process is set to that of the process active in the kernel at the time of the
crash. This is determined by a value stored in a fixed location by the dump
mechanism.

The following crash (8) or crashmk (8) commands are useful for tape problem
solving:

tpt [devicel][device2]...

Prints kernel level tape device traces. tpt called without any
arguments prints out a table containing the device name (as
seen in the tpstat (1) display); index (physical device name);
and the start, middle, and end trace pointers for each device in
the tape table. tpt called with a device name prints out traces
for that device.

On UNICOS systems, tpt called with a dash (-) instead of
devicel dumps out traces for all tape devices in the system.

For more information concerning the tpt command on
UNICOS/mk systems, use help tpt from within the
crashmk (8) utility.

tps [devicel][device?]...

(UNICOS systems only) Prints tape device structures. tps
called without any arguments prints out tape I/O structures for
all tape devices in the system. tps called with a device name
prints out the tape structures associated with that device. tps
called with a dash (-) instead of devicel prints out tape
structures for all tape devices in the system.

SG-2307 10.0 51

