Writing Fortran Applications Using Tapes [4]

This chapter describes how you can use the tape subsystem from Fortran
programs. You can use Fortran programs while working with the tape
subsystem and IBM compatible or ER90 devices.

For the examples in this chapter, it is assumed that you understand the

assign (1) command. For more information, see the assign (1) command in
the UNICOS User Commands Reference Manual, Cray Research publication
SR-2011 or in the UNICOS/mk User Commands Reference Manual, Cray Research
publication SR-2611.

4.1 IBM compatible tape processing

This section briefly describes how to use the tape subsystem from Fortran
programs using IBM compatible devices.

4.1.1 Reading and writing to tape

SG-2051 10.0

The following example illustrates the use of a Fortran program to read and
write to tape:

1.

Reserve a tape by using the rsv (1) command. In this example, the tape has
a device group name of TAPEand the number of devices requested is 1:

rsv TAPE 1

Request a tape mount with the tpmnt (1) command. In this example, it is a
new, standard labeled tape with a volume identifier of SCRSI, a device
group name of TAPE a density of 6250, a write ring specified to be on the
reel, a block size of 32768 bytes, and the -P option overwriting the existing
path name of fort.20 with the newest version of fort.20

tpomnt -n -l sl -v SCRSL-g TAPE -d 6250 -r in -b 32768 -P fort.20
Use the assign (1) command to specify that file fort.20 is a tape.
assign -s tape f:fort.20

Compile and load the Fortran write program tapewr.f , directing the
binary output to executable file tapewr :

fo0 -o tapewr tapewr.f

41

Tape Subsystem User’'s Guide

42

5. Execute tapewr , using the data from file input and appending the output
to tapewr.l

tapewr < input >> tapewr.l

6. Compile, load, and execute the Fortran read program by repeating steps 4
and 5, using files taperd.f , taperd , and taperd.|

fo0 -o taperd taperd.f
taperd >> taperd.|

7. Release the resources:
rls -a

Note the write(20) to unit 20 in tapewr and the read(20) from unit
20 in taperd reference steps 2 and 3, in which fort.20 is used in the tpmnt
and assigh commands.

Figure 21 shows the Fortran write program, called tapewr . You must supply
the COMPUTEoutine:

PROGRAMAPEWR
INTEGER IBUF(10)
REAL RNUM(5)

CHARACTER*21CDATA
COMPLEXCNUM(3)
C
C Write 5 records. Each record contains a mix of data types.
C
DO 10 I=1,5
CALL COMPUTE(l,IBUF,RNUM,CDATA,CNUM) ! Compute
WRITE(20) IBUF,RNUM,CDATA,CNUM ! Write them out.
10 CONTINUE
END

Figure 21. Writing an unlabeled tape

Figure 22 shows the Fortran read program, called taperd . You must supply
the ANALYZEroutine:

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

PROGRAMAPERD

@]

10

INTEGER IBUF(10)
REAL RNUM(5)
CHARACTER*21CDATA
COMPLEXCNUM(3)

Read 5 records.

DO 10 I=1,5
READ(20) IBUF,RNUM,CDATA,CNUM ! Read and convert data.
CALL ANALYZE(l,IBUF,RNUM,CDATA,CNUM) ! analyze...

CONTINUE

END

Figure 22. Reading an unlabeled tape

4.1.2 Reading and writing tape marks

The following example illustrates the use of a Fortran program to read and
write tape marks:

1. Reserve a tape by using the rsv (1) command:
rsv. TAPE 1

2. Compile and load Fortran program tapemk.f , directing the binary output
to executable file tapemk :

fo0 -o tapemk tapemk.f

3. Request a tape mount by using the tpmnt (1)command. In this example, the
tape has standard labels, a path name of fort.1 , and a volume identifier
of SCRSL; it uses the -T option to let you read or write tape marks:

tpmnt -P fort.1 -1 sl -v SCRSL-T -g TAPE -n

4. Use the assign (1) command to specify that file fort.1 is a tape:
assign -s tape f:fort.l

5. Execute tapemk :

tapemk

SG-2051 10.0 43

Tape Subsystem User’'s Guide

6. Release the resources:
rls -a

Figure 23 shows the Fortran program that reads and writes a tape mark, called

tapemk.
PROGRANTAPEMK
INTEGER BLOCK(1000)
C
C Write 5 tape blocks, each followed by an end-of-file tape
C mark (EOF).
C
DO 10 I=1,5
WRITE(1) BLOCK ! Write out a tape block/record.
ENDFILE(1) ! Write an EOF.

10 CONTINUE

REWIND 1
C
C Read back the 5 tape blocks (records) and after each, read
C the end-of-file tape mark (EOF).
C
DO 20 I=1,5
READ(1) BLOCK ! Read in a tape block/record.
READ(1, END=20) TPMK ! Read the EOF.
PRINT * Error - no EOF! I If no EOF, then error.
STOP ’error’
20 CONTINUE
END

Figure 23. Reading and writing tape marks

4.1.3 Positioning a tape by bloc ks

The following example illustrates the use of a Fortran program to position a
tape by blocks:

1. Reserve a tape by using the rsv (1) command:

rsv TAPE 1

44 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

SG-2051 10.0

. Compile and load Fortran program pos.f , directing the binary output to

the executable file pos:

fo0 -0 pos pos.f

. Request a tape mount with the tpmnt (1) command. In this example, the

tape has standard labels, a path name of fort.1 , and a volume identifier
of SCRSL:

tpmnt -p fort.l -l sl -v SCRSL-g TAPE -n

. Use the assign (1) command to specify that file fort.1 is a tape:

. Execute pos:

assign -s tape f:fort.l

pos

. Release the resources:

rls -a

Figure 24 shows the Fortran program that positions a tape by blocks, called pos.

45

Tape Subsystem User’'s Guide

PROGRAMPOS

INTEGER BLOCK(1000)
C
C Write 5 records to the tape. (records 1-5)
C

DO 10 I=1,5

WRITE(1) BLOCK
10 CONTINUE

C
C Backspace the tape over the fifth record
C file after the fourth record on the tape.
C

BACKSPACEL
C
C Rewrite record 5 with new data, and add records
C

DO 20 I=1,5

WRITE(1) BLOCK
20 CONTINUE
END

Figure 24. Positioning by blocks

4.1.4 Positioning a tape by using the SETTP(3) library call

4.1.4.1 Example 1

46

to position

the

6-9.

The following examples illustrate the use of the SETTR3) library call in the
positioning of a tape. For more information, see the Application Programmer’s

Library Reference Manual, Cray Research publication SR-2165.

The following example illustrates the positioning of a tape on a multivolume
file. The tpos program positions your tape to block number 50 on the second

volume of a multivolume file.

1. Reserve a tape by using the rsv (1) command. In this example, the tape has
a device group name of TAPEand the number of devices requested is 1:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1) command. In this example, the
tape is an old one with an IBM standard label, with three volume identifiers

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

SG-2051 10.0

of VSN1:VSN2:VSNS, a device group name of TAPE a record format of
fixed length, a block size of 64000 bytes, and a path name of fort.1

tpmnt -0 -1 sl -v VSN1:VSN2:VSN3 -g TAPE -F F -b 64000 -p fort.1

. Use the assign (1)) command to specify that file fort.1 is a tape.

assign -s tape f:fort.l

4. Compile and run the program shown in Figure 25:

47

Tape Subsystem User’'s Guide

IMPLICIT

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

PROGRAMPOS

INTEGER (A - 2)

DIMENSION BUFF(4096)
RECLEN=4096

IN THE SETTP CALL BELOW, THE FIELDS CORRESPONDO THE FOLLOWING:

FIELD 1: UNIT NUMBER.

2:

w

BLOCK # REQUESTSIGN. '1H ' INDICATES THAT THE THIRD
FIELD (50) IS AN ABSOLUTEBLOCK# RELATIVE TO THE
BEGINNING OF THE VOLUME.

INTEGER BLOCK NUMBER

VOLUME# REQUESTSIGN. '1H ' INDICATES THAT THE FIFTH
FIELD (2) IS AN ABSOLUTEVOLUME# RELATIVE TO THE
BEGINNING OF THE VOLUMEIDENTIFIER LIST SPECIFIED ON THE
TPMNT COMMAND.

INTEGER VOLUMENUMBER.

NAME OF VOLUMEIDENTIFIER TO BE MOUNTED.

0 INDICATES THAT THIS PARAMETERS IGNORED.

SPECIFIES WHETHERTHE TAPE SHOULDBE SYNCHRONIZED
(0=NO).

INTEGER RETURNSTATUS. ON EXIT, INDICATES WHETHER
POSITIONING WASSUCCESSFULOR NOT. 0 = SUCCESS;
NONZERO=ERROBR WARNING.

POSITION TO THE 50TH BLOCK OF VOLUMEZ2:
CALL SETTP(1,1H ,50,1H ,2,0,0,STAT)

IF (STAT .NE. 0) THEN
PRINT *’SETTP ERROR: STAT = ',STAT
CALL ABORT

ENDIF

C READ THE 50TH BLOCK ON VOLUME2

C

C

READ(1) (BUFF(N),N=1,RECLEN)

C PROCESSTHE DATA

C

48

END

Figure 25. SETTR3) positioning, example 1

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

4.1.4.2 Example 2

The following example shows you how to position forward nine blocks relative
to the current position, and then read one block.

1. Reserve a tape by using the rsv (1) command. In this example, the tape has
a device group name of TAPEand the number of devices requested is 1:

rsv TAPE 1

2. Request a tape mount by using the tpmnt (1)command. In this example, the
tape is an old one with an IBM standard label, a volume identifier of
SCRNL. a device group name of TAPE a record format of fixed length, a
block size of 64000 bytes, and a path name of fort.1

tpmnt -0 -l sl -v SCRNL-g TAPE -F F -b 64000 -p fort.1
3. Use the assign (1) command to specify that file fort.1 is a tape.
assign -s tape f:fort.l

4. Compile and run the program shown in Figure 26:

SG-2051 10.0 49

Tape Subsystem User’'s Guide

PROGRAMPOS
IMPLICIT INTEGER (A - 2)
DIMENSION BUFF(8000)
RECLEN=8000

NBLKS=200
C
DO 500 I=1,NBLKS,10
C
C SKIP 9 BLOCKS
C
CALL SETTP(1,1H+,9,0,0,0,1,STAT)
IF (STAT .NE. 0) THEN
PRINT *'SETTP ERROR: STAT = ',STAT
CALL ABORT
ENDIF
C
C READTHE 10TH BLOCK
C
READ(1) (BUFF(N),N=1,RECLEN)
C
C PROCESSTHE DATA
C
500 CONTINUE

END

Figure 26. SETTR3) positioning, example 2

4.1.5 Reading and writing tapes containing foreign data

This section shows you how to convert foreign data to Cray Research data or
convert Cray Research data to foreign data. Currently, the Fortran libraries
support the translation and conversion of IBM, VAX/VMS, NOS/VE, IEEE, and
CDC foreign data types. The two methods of foreign data conversion are the
following:

e Explicit

e Implicit

4.1.5.1 Converting foreign data explicitly

This section shows you how to convert foreign data explicitly by using Fortran
library data conversion routines to read tapes written on foreign computer

50 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

SG-2051 10.0

systems. For a complete list of Cray Research Fortran library data conversion
routines, see the Application Programmer’s Library Reference Manual, Cray
Research publication SR-2165.

The following library conversion routines translate data in a foreign format into

Cray Research format:

Routine Description

IBM2CRAY3) Converts IBM data to Cray format

IEG2CRAY(3) Converts IEEE or generic 32-bit data to Cray
format

NVE2CRAY3) Converts NOS/VE data to Cray format

VAX2CRAY3) Converts VAX data to Cray format

CDC2CRA®) Converts CDC 60-bit data to Cray format

The following library conversion routines translate data in Cray Research

format into a foreign format:

Routine Description

CRAY2IBM3) Converts Cray data to IBM format

CRAY2IEG3) Converts Cray format to IEEE or generic 32-bit
data

CRAY2NVB) Converts Cray data to NOS/VE format

CRAY2VAX3) Converts Cray data to VAX format

CRAY2CDQ) Converts Cray data to CDC 60-bit format

With explicit conversion you must specify the type and size of all data
conversions before you can set up structures for the converted data; therefore,
you must know the type and size of the data originally written on a tape.

Note: Be careful when specifying foreign record translation with the -F

option on the assign (1) command. With most values of the -F options, you
can only read, write, backspace, and rewind your tape. With the -F
ibm.uitape , -F ibm.vbs,tape ,-F ibm.vbtape ,or-F ibm.v,tape
option you can also use the -d skipbad option to request that bad data be
automatically skipped. See the assign (1) man page for more details on the
-d option. When you use the -F bmxor -F tape option, and do not
specify any other FFIO layers, you can also use the Fortran tape positioning
routines, process bad data, and do end-of-volume processing.

51

Tape Subsystem User’'s Guide

4.1.5.2 Example 1

This example illustrates the handling of data by using library conversion
routines:

1.

Reserve a tape by using the rsv (1) command. In this example, the device
group name is CARTand the number of devices requested is 1:

rsv. CART1
Compile Fortran program ibmcvt.f
f90 ibmcvt.f
Load the ibmcvt.o file, directing the output to executable file ibmcvt :
segldr -0 ibmcvt imbcvt.o
. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has an IBM standard label, a volume identifier of ISCSL, a device
group name of CART a block size of 32768 bytes, and a path name of
fort.29
tpmnt -l sl -v ISCSL -g CART-b 32768 -p fort.29 -n
Use the assign (1) command to specify that file fort.1 is a tape.
assign -s tape f:fort.29
Execute ibmcvt :
ibmevt
Release the reserved resource:

rls -a

Figure 27 shows the Fortran program, called ibmcvt.f

52

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

PROGRAMBMCVT
INTEGER CRAY2IBM,IBM2CRAY
C
C REALA and REALB are the arrays that hold the CRAY format numbers.
C IBMA and IBMB hold the converted IBM data. Note that they are half as
C large as the CRAYreal numbers, because the IBM real format is only 32
C bits long. The type of the IBM array is not important, because no
C computations will be performed on them. Only the proper amount of
C space is important.
C
REAL REALA(10000)
REAL REALB(10000)
C
INTEGER IBMA(5000)
INTEGER IBMB(5000)
C
CALL GENERATE(REALA) ! REAL data is generated and converted to IBM format
C
C The data produced is converted to IBM internal format and placed in
C array IBMA. See the man pages for the CRAY2IBM(3) and IBM2CRAY(3)
C routines.
C
ISTAT = CRAY2IBM(2, ! data type, 2=REAL
+ 10000, I number of items to convert
+ IBMA, I ’foreign’ array
+ 0, I bit offset in IBMB
+ REALA, I CRAY data
+ 1) I stride
IF (ISTAT.LT.0) STOP ’error 1" ! Check for conversion error.
C
C Write the converted data to unit 29. No ‘foreign’ assign options should
C be present on this unit, or the data will be converted twice!
C
WRITE(29) IBMA
REWIND 29
C
READ(29) IBMB ! Read the IBM format data back from the file.

SG-2051 10.0 53

Tape Subsystem User’'s Guide

C

ISTAT = IBM2CRAY(2, ! data type, 2=REAL

+ 10000, I number of items to convert

+ IBMB, I ’foreign’ array

+ 0, I bit offset in IBMB

+ REALB, I CRAY data

+ 1) ! stride

IF (ISTAT.LT.0) STOP ’error 1" ! Check for convert error.
C

CALL PROCESS(REALB)
END

4.1.5.3 Example 2

54

Figure 27. Converting data to an IBM format

The data generated on Cray Research systems, converted to IBM format by the
data conversion routines, is altered to fit the storage capabilities of IBM
computer systems because the system storage limits of precision have been
exceeded. The following list describes the way data is handled when it exceeds
the limits of precision for IBM computer systems:

* Cray Research positive numbers (if they exceed IBM computer systems’
limits of precision) are assigned the largest positive values allowed for
integer or floating-point real numbers that can be expressed on IBM systems.

* Cray Research negative numbers with absolute values that exceed IBM
computer systems’ limits of precision are assigned the most negative value
that can be expressed on IBM systems.

¢ Cray Research positive and negative numbers approaching zero, which are
more precise than the smallest positive or negative fractional value that can
be expressed on IBM computer systems, are assigned a value of 0.

If the data is generated on IBM computer systems and read on Cray Research
systems, you do not need to be concerned with loss of precision in the
conversion process. This is true of any computer system that has both a smaller
exponent and a smaller mantissa size than that of Cray Research systems.

The Fortran program fragment shown in Figure 28 illustrates how you might
read an unknown number of records that are all of the same length and contain
the same data type:

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

10

20

30

4.1.5.4 Example 3

The partial Fortran program shown in Figure 29 reads data records consisting
of floating-point, integer, or character data (or any combination of these):

SG-2051 10.0

ICT =0

CONTINUE

READ(29,ERR=20,END=30) (ARRAY(l),I=1,LENGTH)
ICT = ICT + 1

CALL IBM2CRAY(ITYPE,LENGTH,ARRAY,0,NARRAY, 1)
CALL PROCESS(NARRAY)

GOTO10

print *’ Error in read on record ’ICT+1
STOP ’error’

print * End of File encountered on record ’JICT+1

(continue program)

Figure 28. Reading an unknown number of records

55

Tape Subsystem User’'s Guide

C Read in IBM data records.

C
READ(29,END=20,ERR=15) (A(l),I=1,NUM)
READ(29,END=30,ERR=25) (B(l),I=1,CNT)
READ(29,END=40,ERR=35) (C(l),I=1,NUMBER)
READ(29,END=50,ERR=45) (D(l),I=1,COUNT)

Now convert IBM data to Cray format. The fields of IBM2CRAY are:
Field 1: Type code. Indicates format of IBM data.
: Number of data items to convert.
IBM array from which you are converting.
Bit number to begin conversion.
Array to contain the converted data.

O0O00000O0
aRrwbd

CALL IBM2CRAY(7,NUM,A,1,SPR)
CALL IBM2CRAY(1,CNT,B,1,INT)
CALL IBM2CRAY(2,NUMBER,C,1,DPR)
CALL IBM2CRAY(6,COUNT,D,1,CHR)

indicates short integer
indicates long integer
indicates short real
indicates char (EBCDIC)

ON P N

Figure 29. Reading mixed data types

Note: To correctly convert the data to be read, you must know the data types
of the contents of the tape.

4.1.5.5 Converting foreign data implicitly

This section shows you how to translate the blocking structures and convert
foreign data implicitly to Cray Research data and vice versa by using the
assign (1) command. Currently, implicit conversion supports the translation
and conversion of IBM, VAX/VMS, CDC (60-bit), NOS/VE, ULTRIX, and IEEE
foreign data types.

The following example shows you how to read foreign data with Fortran
programs using the assign (1) command:

1. Reserve a tape by using the rsv (1) command. In this example, the device
group name is TAPEand the number of devices requested is 1:

rsv TAPE 1

56 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

SG-2051 10.0

. Compile and load Fortran program impread.f , directing the output to the

executable file impread :

fo0 -o impread impread.f

. Request a tape mount by using the tpmnt (1) command. In this example,

the tape has an IBM standard label, a volume identifier of SCRSI, a device
group name of TAPE a block size of 32768 bytes, and a path name of
fort.29

tpmnt -l sl -v SCRSL-g TAPE -b 32768 -p fort.29

. Request implicit data conversion. In this example, specify (by using the -F

option) that the blocking of the tape is in the IBM VBS format, specify (by
using the -N option) that the numeric data to be converted is IBM data, and
use the assign (1) command to specify that file fort.29 is a tape:

assign -F ibm.vbs,tape -N ibm f:fort.29

. Execute impread :

impread

. Release the reserved resource:

rls -a

Figure 30 shows the Fortran program, called impread.f

57

Tape Subsystem User’'s Guide

PROGRAMMPREAD

INTEGER INT

REAL RL(4)

COMPLEXCOM(3)
C
C THIS PROGRAMREADS DATA IN FROMTHE DATA FILE AND PRINTS IT.
C THE RECORDFORMATOPTION (-F) AND DATA CONVERSIONOPTIONS (-N)
C MUST BE SPECIFIED IN THE ASSIGN COMMAND.
C
C THE RUN-TIME LIBRARY WILL DEBLOCKTHE FOREIGN RECORD(S) AND
C CONVERTTHE DATA ITEMS AS REQUESTEDN THE ASSIGN COMMAND.
C

DO 10 1=1,10
READ(29) INT,RL,COM
PRINT *’REC=",INT
PRINT *’ RL=,RL
PRINT *’COM=",COM
10 CONTINUE
END

Figure 30. Converting foreign data

4.1.6 Using the bad data recovery routines

This section shows you how to use the bad data recovery routines, which allow
you to skip or accept bad data. These routines check the status of the I/O
function. If an error has occurred, these routines call a Fortran error-handling
routine. For more information on the Fortran error handling routines, see the
Application Programmer’s Library Reference Manual, Cray Research publication
SR-2165.

The Fortran error-handling routines available are as follows:

Routine Description

SKIPBAD(3) Skips bad data

58 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

ACPTBAIB) Makes bad data available

4.1.6.1 Example 1
Figure 31 shows the following example, called skipbdxmp . This example

illustrates how to use the Fortran error-handling routine SKIPBAD, which skips
bad data on the read operation:

SG-2051 10.0 59

Tape Subsystem User’'s Guide

PROGRANMSKIPBDXMP
IMPLICIT INTEGER (A-2)
PARAMETERMAXSIZ=50000)
DIMENSION BUFFER(MAXSIZ),UDA(512)

NUMBLKS=1000000
NWORDS=4096

DO 5000 NBLK=1,NUMBLKS
CALL READ(99,BUFFER,NWORDS,STATUS)
IF(STATUS .EQ. 0) GO TO 5000

IF(STATUS .EQ. 4) THEN
PRINT*****PARITY ERRORON READ AT RECORD’,NBLK
NPAR=NPAR+1
GO TO 2500

ENDIF

IF(STATUS .EQ. 2) THEN
PRINT*,*****END OF FILE DETECTED,RECORDS=",NBLK
STOP

ENDIF

IF (STATUS .NE. 0) THEN
PRINT*'UNEXPECTED RETURNCODEFROMREAD=",STATUS
CALL ABORT

ENDIF

2500 CALL SKIPBAD (99,BLKS, TERMCND)
PRINT*'SKIPBAD-BLOCKS SKIPPED’,BLKS
PRINT*'STATUS EQUALS’', TERMCND

IF (TERMCND.EQ. 0) GO TO 5000

IF (TERMCND.EQ. 1) THEN
PRINT*,****END OF FILE DETECTED, RECORDSREAD=',NBLK
PRINT****NUMBER OF PARITY ERRORS='NPAR
STOP

ENDIF

60 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

IF (TERMCND.LT. 0) THEN
PRINT*,****NOT ON A RECORDBOUNDARY,ABORTING’
CALL ABORT
ENDIF
5000 CONTINUE
STOP
END

Figure 31. Using the SKIPBAD(3) routine

4.1.6.2 Example 2

Figure 32 shows you how to use the Fortran error-handling routine called
ACPTBAIB), which accepts bad data on the read operation):

SG-2051 10.0

61

Tape Subsystem User’'s Guide

PROGRAMMCPTBAD

IMPLICIT INTEGER (a-2)
PARAMETERNUMBLKS=10000)
PARAMETERMAXSIZE=50000)
PARAMETERRECLEN=4096)

DIMENSION BUFFER(MAXSIZE),UDA(MAXSIZE)

NPAR= 0
DO 5000 NBLK=1,NUMBLKS
NWORDS=RECLEN
CALL READ(1,BUFFER,NWORDS,STATUS)
IF (STATUS .EQ. 0) GO TO 5000
IF (STATUS .EQ. 4) THEN
PRINT ****PARITY ERRORON READ AT RECORD,NBLK
NPAR = NPAR+1
GO TO 2500
ENDIF

IF ((STATUS .EQ . 2) .OR. (STATUS .EQ. 3))THEN
PRINT *’END OF FILE/DATA DETECTED, RECORDS= NBLK
STOP 'COMPLETE’

ENDIF

IF (STATUS .NE. 0)THEN
PRINT *’UNEXPECTED RETURNCODEFROMREAD = ',STATUS,NBLK
CALL ABORT

ENDIF

62

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

2500 CALL ACPTBAD(1,UDA,CNT, TERMCND,UBC,MAXSIZE)

C
C BUILD UP USER RECORD
C
X =0
DO 3500 | = (NWORDS+1),(NWORDS+CNT)
IX=IX+1

BUFFER(I)=UDA(IX)
3500 CONTINUE

IF (TERMCND.LT. O0)THEN
PRINT *, 'END OF RECORDNOT REACHED’

ENDIF

IF (TERMCND.EQ. 1)THEN
PRINT *,%xxx END OF FILE DETECTED,RECORDS ' ,NBLK
PRINT *,%xxx NUMBEROF PARITY ERRORS= ' ,NPAR

ENDIF

5000 CONTINUE
END

Figure 32. Using the ACPTBAI®B) routine

4.1.6.3 Example 3

Figure 33 shows you how to reserve, mount, and release tapes from inside your
Fortran program, using the ISHELL (3) routine. If you use this routine, you
must make sure that the tape file is closed before the tape is released. Use the
Fortran CLOSEstatement to close a file.

SG-2051 10.0 63

Tape Subsystem User’'s Guide

PROGRAMP1
DIMENSION IBUF(500)
INTEGER ISHELL

C RESERVEA CART DEVICE

ISTAT = ISHELL(rsv CART 1))
IF (ISTAT.NE.O) GOTO100

C REQUESTMOUNTOF DESIRED CART

ISTAT = ISHELL(tpmnt -1l al -v ISCAL -p fort.10 -g CART-n)
IF (ISTAT.NE.O) GOTO200

C WRITE TO THE TAPE. YOU MUST HAVE PREVIOUSLY USED THE ASSIGN
C COMMANDOO IDENTIFY UNIT 10 AS A TAPE.

DO 10 | = 1,500
WRITE(10)IBUF
10 CONTINUE

C BEFORERELEASING THE TAPE, THE FILE MUSTBE CLOSED.
CLOSE(10)

C RELEASE THE TAPE, BUT KEEP THE CART RESOURCE.

ISTAT = ISHELL(rls -k -p fort.10)
IF (ISTAT.NE.O) GOTO300

C REQUESTMOUNTOF ANOTHERTAPE
ISTAT =ISHELL(tpmnt -1 sl -v ISCSL -p fort.10 -g CART-n)

IF (ISTAT.NE.O) GOTO200
C WRITE TO TAPE

DO20 | = 1,500
WRITE(10) IBUF
20

64 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

C CLOSE THE FILE AND RELEASE ALL TAPE RESOURCES

CLOSE(10)

ISTAT = ISHELL(rls -a)
IF (ISTAT.NE.O) GOTO300
STOP

100 PRINT *’RSV FAILED’
STOP

200 PRINT *'TPMNT FAILED’
ISTAT = ISHELL(rls -a')
STOP

300 PRINT *’RLS FAILED’
PRINT *'ISTAT = 'JISTAT
STOP
END

Figure 33. Using the ISHELL (3) routine

To execute the preceding program, tpl , type the following;:

fo0 -0 tpl tpl.f
assign -s tape f:fort.10./tpl

4.1.7 Using end-of-v olume processing requests

SG-2051 10.0

This section describes user end-of-volume (EOV) processing from a Fortran
program. For information about user EOV processing from a C program, see

Chapter 5, page 81.

Normally, volume switching is handled by the tape subsystem and is
transparent to you. However, when user EOV processing is requested, you gain
control at the end-of-tape and your program may perform special processing.
For more information on the Fortran interface routines used in EOV processing,
see the Application Programmer’s Library Reference Manual, Cray Research
publication SR-2165. The library interface routines for EOV processing from a

Fortran program are as follows:

65

Tape Subsystem User’'s Guide

66

Routine Description

SETSR3) Enables or disables EOV processing

STARTSH3) Starts special tape processing
ENDSHK3) Ends special tape processing
CHECKTEB) Checks tape position

CLOSEN3) Closes volume and mounts next volume specified in the volume
identifier list

When using EOV processing for online tape files on the tape subsystem, make
sure that data is flushed from the library and system buffers before calling
certain routines as discussed in the following. Failure to flush the buffers and
check for EOV can result in lost data at the end of the tape volume.

To instruct the system to perform EOV processing, call the SETSProutine with
the appropriate parameter set to ONafter a tape file is opened.

Check for EOV by calling the CHECKTRnacro. To test whether a tape is at
EOV, you must call CHECKTRafter each WRITE ENDFILE, or READoperation.
In addition, for an output dataset, call CHECKTRafter each GETTPor GETPOS
call to see if EOV was encountered.

For output datasets, you should also ensure that the library and system have
flushed their buffers, and then test whether the tape is at EOV, before issuing
any of these statements:

CLOSE

REWIND

BACKSPACE

and before calling any of these routines:
SETTR3)

SETPO$3)

CLOSEB)

SETSR3) (OFF)

To flush the buffers, call GETTR3) with the SYNCHparameter set to ON Then
call CHECKTR) to see if EOV was reached.

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

4.1.7.1 Example 1

The following example shows you how to use EOV processing by using the
library interface routines:

1. Reserve a tape by using the rsv (1) command:
rsv. CART 1

2. Compile and load Fortran program teov.f , directing the output to
executable file teov :

f90 -0 teov teov.f

3. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.9 , and volume identifiers of x
and y:

tpmnt -l nl -P fort.9 -v xy -g CART-n
4. Use the assign (1) command to specify that file fort.9 is a tape:
assign -s tape f:fort.9
5. Execute teov :
teov
6. Release the reserved resource:
s -a

Figure 34 shows the Fortran program, called teov.f

SG-2051 10.0 67

Tape Subsystem User’'s Guide

PROGRAMEQV

20

68

IMPLICIT INTEGER(A-Z)
PARAMETERBLKLEN = 512)

MAXREC= total number of records to be written
PARAMETERMAXREC = 10000)

DIMENSION BLK(BLKLEN)

INTEGER IPA(45)

Set up for special EOV processing
CALL SETSP(9, 1, ISTAT)
IF (ISTAT .NE. 0) GOTO20

Write MAXRECrecords. Check for end-of-volume after each write.

If end-of-volume is detected, call the subroutine EOVPROC
DO10 | =1, MAXREC

WRITE (9)BLK

CALL CHECKTP(9, ISTAT, ICBUF)

IF (ISTAT. EQ. 0) THEN

At EOV
CALL EOVPROC()
ENDIF
CONTINUE
We have written all of the records. Call GETTP with the
sync parameter set to flush the library's and system’s buffers.

CALL GETTP(9, 40, IPA, 1, IREPLY)
IF (IREPLY.NE. 0)GOTO 20
CALL CHECKTP(9, ISTAT, ICBUF)
IF (ISTAT. EQ. 0) THEN

At EOV

CALL EOVPROC()
ENDIF
Stop end-of-volume processing
CALL ENDSP (9, ISTAT)
IF (ISTAT .NE. 0)GOTO 20
Close the file
CLOSE(9)
STOP
PRINT *’ERROR’
END

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

SG-2051 10.0

SUBROUTINEEOVPROC()
DIMENSION TBLK(512)
DIMENSION HBLK(512)

C Start special processing at eov.
CALL STARTSP(9, ISTAT)
IF (ISTAT. NE. 0) GOTO20

C Write a special block at the end of the tape
C and close the volume.

WRITE (9) TBLK

CALL CLOSEV(9, ISTAT)

IF (ISTAT. NE. 0) GOTO20

C Write a special block at the beginning of the next

WRITE (9) HBLK

C Stop special processing
CALL ENDSP (9, ISTAT)
IF (ISTAT. NE. 0) GOTO20
RETURN

20 PRINT *’ERROR’
STOP
END

Figure 34. Using Fortran library routines for EOV processing

69

Tape Subsystem User’'s Guide

4.1.7.2 Example 2

The following example illustrates EOV processing when writing a tape file. The
program writes until end-of-volume is reached. It then reads the last two blocks
on the first volume and the blocks buffered in the I0S, and writes these on the
second tape volume:

1. Reserve a tape by using the rsv (1) command:
rsv. CART 1

2. Compile and load Fortran program teov2.f , directing the output to
executable file teov2 :

f90 -0 teov2 teov2.f

3. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.9 , and volume identifiers of
VOLland VOL2

tpmnt -l nl -v VOL1:VOL2 -p fort.9 -g CART-r in -n -T
4. Use the assign (1) command to specify that file fort.9 is a tape.
assign -s tape f:fort.9
5. Execute teov2 :
teov2
6. Release the reserved resources:
s -a

Figure 35 shows the Fortran program, called teov2.f

70 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

PROGRAMEOV2

Cc

10

Example of EOV processing. Assumes that fort.9
IMPLICIT INTEGER(A-Z)
PARAMETERBLKLEN = 512,

DIMENSION BLK(BLKLEN),

PALEN = 30)
PA(PALEN)

Set up for special EOV processing.
CALL SETSP(9,1,ISTAT)

IF (ISTAT.NE.O) GOTO100

CHECKTPreturns
has been reached.

Fill the first volume. a status that

whether end-of-volume

CONTINUE

WRITE(9)BLK

CALL CHECKTP(9,ISTAT,ICBUF)

IF (ISTAT.LT.0) GOTO10

the

buffered in 10S.

synch here.

number of blocks
we do not request

Determine
Note that

CALL GETTP(9, PALEN, PA, 0,
IF (ISTAT.NE.O) GOTO100

ISTAT)

Start special processing
CALL STARTSP(9,ISTAT)
IF (ISTAT.NE.O) GOTO100

from
and store

Backspace 2 blocks. Read these 2 blocks
the 10S + blocks in the library buffer
temporary file (fort.10)

BACKSPACE(9)

BACKSPACE(9)

NBLK=PA(12)+2+PA(11) I blocks in
! + blocks in

I0S + 2
library
DO 20 |I = 1,NBLK

READ(9)BLK

SG-2051 10.0

tape + blocks
them in a

is a tape file

indicates

from

from tape

buffer

71

Tape Subsystem User’'s Guide

20 WRITE(10)BLK

c Backspace 2 blocks before closing the volume, because these

c 2 blocks will be rewritten on the second volume.
BACKSPACE(9)
BACKSPACE(9)

c The programmer wants to write a tape mark at EOV
ENDFILE(9)

c Close the volume and request mount of the next volume

CALL CLOSEV(9,ISTAT)
IF (ISTAT.NE.O) GOTO100

CALL ENDSP(9,ISTAT) I stop special processing
IF (ISTAT.NE.O) GOTO100

c Disable special processing

CALL SETSP(9, 0, ISTAT)
IF (ISTAT.NE.O) GOTO100

REWIND(10) ! rewind temporary file
c Write the blocks in fort.10 onto the second volume
DO 30 | = 1,NBLK
READ(10)BLK

30 WRITE(10)BLK
CLOSE(9) I close the file
STOP

100 CALL ABORT()
END

Figure 35. Using EOV processing when writing a file

4.1.7.3 Example 3

The following example shows how to use EOV processing to detect the
end-of-volume when reading a multivolume file.

72 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

SG-2051 10.0

. Reserve a tape by using the rsv (1) command:

Irsv

. Compile and load the Fortran program eovr.f directing the output to

executable file eovr :

f90 -o eovr eovr.f

. Request a tape mount by using the tpmnt (1) command. In this example,

the file has a standard label, a path name of fort.10 , and volume
identifiers of x and y:

tpmnt -l sl -p fort.10 -V Xy

. Use the rsv (1) command to specify that file fort.10 is a tape:

assign -s tape f:fort.10

. Execute eovr :

eovr

. Release the reserved resource:

rls -p fort.10

Figure 36 shows the Fortran program, called eovr.f

73

Tape Subsystem User’'s Guide

10

74

PROGRAMEOVR

IMPLICIT INTEGER (A-2)
PARAMETERBLKLEN=4096)

DIMENSION BLK(BLKLEN)

CALL SETSP(10,1,ISTAT)

IF (ISTAT.NE.O) THEN
PRINT *’'BAD STATUS FROMSETSP ' ISTAT
GOTO100

ENDIF

Read untii we get to the end of a volume or the end of data

CONTINUE
IC = BLKLEN
CALL READ(10, BLK, IC, ISTAT)
IF ((ISTAT.EQ.2).0R.(ISTAT.EQ.3)) THEN
PRINT *’END OF FILE/DATA’
GOTO100

ELSEIF (ISTAT.NE.O) THEN
PRINT *’UNEXPECTED STATUS FROMREAD 'ISTAT
GOTO100

ENDIF

Check for end of volume

CALL CHECKTP(10,REPLY,CB)

IF (REPLY .LT. 0) GOTO10

IF (REPLY .GT. 0) THEN
PRINT *’UNEXPECTED STATUS FROMCHECKTP’,REPLY
GOTO100

ENDIF

At EOV. Start special processing, and call CLOSEVto mount the
next tape

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

CALL STARTSP(10,ISTAT)

IF (ISTAT.NE.O)THEN

PRINT *’BAD STATUS FROMSTARTSP 'ISTAT

GOTO100
ENDIF

CALL CLOSEV(10,ISTAT)

IF (ISTAT.NE.O)THEN

PRINT *’'BAD STATUS FROMCLOSEV',ISTAT

GOTO100
ENDIF

CALL ENDSP(10,1,ISTAT)

IF (ISTAT.NE.O)

THEN

PRINT *’BAD STATUS FROMENDSP ' ISTAT

GOTO100
ENDIF
GOTO10

c Disable EOV processing
100 CALL SETSP(10,0,ISTAT)

CLOSE(10)
END

Figure 36. Using EOV processing when reading a multivolume file

4.2 ER90 tape processing

SG-2051 10.0

You can access ER90 devices through Fortran. Unformatted I/0O is currently
supported. You can select either the byte-stream mode or block mode of the
device.

Note: The ER90 format is not available on systems that run the UNICOS/mk
operating system or that have GigaRing support.

In byte-stream mode, two processing classes are available:

e Pure data mode

* COS blocking

To select the processing class, use the assign (1) command.

In block mode, select the FFIO tape layer by using the following command:

assign -F tape

75

Tape Subsystem User’'s Guide

With this processing class, each Fortran record corresponds to a block. Because
ER90 devices require that each block be the size specified by the -b option of
the tpmnt (1) command, all Fortran records must be the same size. An
exception to this rule is the last record written before a tape mark or the
end-of-file. This record may be smaller than the size specified by the -b option.
When you choose this processing class, EOV processing routines, user tape
marks, and the SETTR3) routine are available.

4.2.1 Using pure data mode

76

In pure data mode, no record control words are written to the file. This
indicates that the user must know the size of the records being read. Reading,
writing, and rewinding are allowed in this mode.

Use the assign (1) command to select this mode, as follows:
assign -F er90 assign.object

Pure data mode does not support EOV processing, SETTR3), SKIPF(3), and
multiple ENDFILES. GETTPis allowed, but the meaning of some fields that are
returned in the information array differs from that returned when using round
or cartridge tapes and the following assign (1) command:

assign -[F,s] [tape,bmx]

GETPO$) and SETPO®3) are supported when using this processing class. The
len parameter for these routines must be at least 4. The values returned by
GETPOS®) in the pa array contain device specific information; it may be used
in a subsequent call to SETPO$3). For ER90 files, the information returned does
not include the volume serial number (VSN) or partition information. Before
using SETPO$3), verify that the correct VSN and partition is in position.

When using round or cartridge tapes, each Fortran record corresponds to a
physical tape block. When using the ER90 device in byte-stream mode, each
byte is considered a block. Therefore, the ipa(10) ,ipa(11l) , and ipa(12)
fields return byte counts.

When the file is assigned with -F er90 , each Fortran read or write results in
one or more system calls. The bufa layer may be used to provide
asynchronous buffering, potentially reducing the number of system calls and
improving performance. It may be combined with the er90 layer as follows:

assign -F bufa,er90 assign.object

SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

The following example illustrates the use of pure data mode with the ER90
device.

1.

Reserve a device by using thersv (1) command:

rsv. ER90

. Compile the Fortran program tpwrl.f v, resulting in the relocatable file

ctpwrl.o
fo0 tpwrl.f

By default, the ER90 flexible file I/O (FFIO) layer is disabled. It can be
enabled by the system administrator, or by specifying the ff_er90 loader
directives file.

Load the relocatable file tpwrl.o , directing the binary output to the
executable file tpwrl using the following segldr (1) command:

segldr -0 tpwrl tpwrl.o - ff _er90

Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.1 , and a volume identifier of
00011 :

tpmnt -p fort.1 -1 nl -v 00011 -g ER90

Use the assign (1) command to specify that file fort.1 is an ER90 file
with asynchronous buffering:

assign -F bufa,er90 fort.1
Execute tpwr :

Jtpwrl

Release the reserved resources:

rls -a

Figure 37 shows the Fortran program, called tpwrl.f

SG-2051 10.0

77

Tape Subsystem User’'s Guide

program tpwrl
integer buf(2000)
integer ipa(4)

c write 100 records
do 10 i = 1,100
do 5 = 1,2000
buf(j) =i
5 continue
write(1)buf

if (i.eq.50)then
call getpos(l, 4, ipa, Istat)
if (istat.ne.0)then

print *’bad stat ’, istat
stop ’error’
endif
10 endif
rewind(1)
c read the records and verify
do 20 i = 1,100

read(l) buff
do 15 j = 1,2000
if (buf(j).ne.i)then
print *’bad data ', buf(j),i

stop ‘error’
endif
15 continue
20 continue
c now position back to the point where we did the getpos

call setpos(l, 4, ipa, istat)
if (istat.ne.0)then
print *’bad stat istat

stop ’error’
endif
read(1)buf
if (buf(1).ne.51)then

print *’bad data after setpos ', buf(1)
endif

end

Figure 37. Using pure data mode

78 SG-2051 10.0

Writing Fortran Applications Using Tapes [4]

4.2.2 Using COS bloc king mode

SG-2051 10.0

In COS blocking mode, users can read, write, rewind, and backspace.
Use the assign (1) command to select COS blocking for the ER90, as follows:
assign -F cos,er90 assign.object

The COS blocking mode does not support EOV processing, SKIPF (3),
CLOSEN3), SETTR3), and concatenated tape files. GETTR3) is allowed, but
some of the fields that are returned in the information array differ from those
returned when using round or cartridge tapes. The COS blocking layer buffers
data, and it is not included in the value returned by GETTPin ipa(11).

GETPO®) and SETPOS$3) are supported when using this processing class. The
len parameter for these routines must be 6 or higher. The values returned by
GETPOSn the pa array contain device specific information.

The following example illustrates the use of COS blocking mode with the ER90
device.

1. Reserve a device by using the rsv (1) command:
rsv. ER90

2. Compile the Fortran program tpwr2.f , resulting in the relocatable file
tpwr2.0

fo0 tpwr2.f

3. By default, the ER90 flexible file I/O (FFIO) layer is disabled. It can be
enabled by the system administrator, or by specifying the ff_er90 loader
directives file.

Load the relocatable file tpwr2.0 , directing the binary output to the
executable file tpwrl using the following segldr (1) command:

segldr -0 tpwr2 tpwr2.o - ff _er90

4. Request a tape mount by using the tpmnt (1) command. In this example,
the tape has no label, a path name of fort.1 , and a volume identifier of
00011 :

tpmnt -p fort.1 -1 nl -v 00011 -g ER90
5. Use the assign (1) command to specify that file fort.1 is an ER90 file:

assign -F er90 fort.1

79

Tape Subsystem User’'s Guide

6. Execute tpwr :
Jtpwr2

7. Release the reserved resources:
s -a

Figure 38 shows the Fortran program tpwr2.f

program tpwr2
real rbuf(2000)

c write 100 records
do 10 i = 1,100
do 5 = 1,2000
rbuf(j)=i
5 continue
write(1) rbuf
10 continue
rewind(1)
c read the records and verify
do 20 i = 1,100

read(1) rbuf
do 15 j=1,2000
if (rbuf(j).ne.i)then

print *’ bad data ’, rbuf(j),
stop
endif
15 continue
20 continue
end

Figure 38. Using COS blocking mode

80

SG-2051 10.0

