Writing C Applications Using Tapes [5]

This chapter describes the ways in which you may work with the tape
subsystem with C programs.

Before you can access the tape subsystem for file processing, you must reserve
the required number of tape drives for each device type needed. After you
have reserved the tape drives, you may specify the tape volume in which the
files to be processed are located.

After you have the volumes mounted and positioned, you can begin processing
the tape files. When processing is complete, release the reserved tape drives.

There are two levels of access to the tape subsystem. The recommended and
easiest to use is the C library level, using flexible file routines. The second level
is to use system calls, which requires much greater detail than the C library
level.

This chapter discusses accessing the tape subsystem with the following
approaches:

e C flexible file I/O library routines
e System call I/O

¢ Tape information requests

* Tape positioning requests

* End-of-volume requests

¢ Tape control requests

Note: The ER90 format is not available on systems that run the UNICOS/mk
operating system or that have GigaRing support.

5.1 C flexible file 1/O library routines

SG-2051 10.0

The flexible file I/O (FFIO) routines provide another way to perform tape I/O
with the ease of use of system calls. The FFIO routines automatically recognize
tape devices and use the appropriate buffering.

The C library routines ffopen (3), firead (3), ffwrite (3), ffseek (3),
fibksp (3), ficlose (3), and ffwrite (3) provide the capability to read and

81

Tape Subsystem User’'s Guide

82

write records to tape, rewind the tape and backspace records, and read and
write tape marks.

For IBM compatible devices, the ffread (3) and ffwrite (3) routines provide
an interface that is sensitive to block boundaries and that returns information
on tape block boundaries on request. For ER90 devices, ffread (3) and

fiwrite (3) provide a way to perform I/O by using either the byte-stream
mode or block mode of the device. With the FFIO layer, a rewind operation can
be performed simply with a call to ffseek (3). Tape marks can be written with
fiweof (3) (ffweof (3) is not supported for ER90 devices in byte-stream mode),
and tape marks can be read with ffread (3). A call to ffwrite (3) can write a
tape block of a designated number of bytes on a tape. A call to ffread (3) can
read up to one tape block from a tape. Explicit information about tape block
boundaries and the ability to read and write partial tape blocks is available
through the use of optional parameters on ffread (3) and ffwrite (3).

The ffpos (3) and fffcntl (3) routines provide the same complete set of
capabilities as available from Fortran including additional positioning, access to
information about the current tape, and end-of-volume processing. The

ffpos (3) and fffcntl (3) routines are available on all systems. Some of the
functionality available with ffpos (3) and fffcntl (3) on IBM compatible
devices are not available on ER90 devices.

The FFIO tape layer may be used with either byte-stream mode or block mode
of the ER90 devices. When you use byte-stream mode, EOV processing, user
tape marks, and some positioning functionality are not available with the FFIO
tape layer. When you use block mode and the FFIO tape layer, each record
written must be the same size as specified on the -b option of the tpmnt (3)
command. An exception to this rule is the last record written before a tape
mark or the end-of-file.

Figure 39 shows a program, called cexam.c. This program demonstrates how
these routines can be used. For more information on the C library routines, see
the UNICOS System Libraries Reference Manual, Cray Research publication
SR-2080 or the UNICOS/mk System Libraries Reference Manual, Cray Research
publication SR-2680. For detailed information about 1/0O, see the Application
Programmer’s I/O Guide, Cray Research publication SG-2168.

SG-2051 10.0

Writing C Applications Using Tapes [5]

#include <fentl.h>
#include <sys/types.h>
#include <foreign.h>
#include <errno.h>
main()
{
int ffd;
int ij;
int buf[2000];
int ret;
ffd = ffopen("mytape", O_RDWR);
if (ffid<0){
printf("open failed, error = %d\n",errno)
exit(1);

[rFFEFR IR ARk Write 10 records, a tape mark, and 10 more records to tape */
for (=0; j < 2; j++){
for (i =0; i < 10; i++){

ret = ffwrite(ffd, buf, 800);
if (ret < 800)4
printf("ffwrite returned %d\n" ret);
printf("error = %dn",errno);
}
}
/************** erte a tapemark */
ret = ffweof(ffd);
if (ret < 0)
printf("ffweof failed, error = %dn",errno);
} /************** Rew'nd the tape */
ret = ffseek(ffd,0,0);
if (ret = 0)
printf("ffseek failed, error = %d\n",errno);

SG-2051 10.0 83

Tape Subsystem User’'s Guide

Rk Read the tape wuntil the first tape mark is reached. */
for (i}
ret = ffread(ffd, buf, 16000);
if (ret < 0) {
printf(“ffread failed, error = %dn",errno);
break;
}
else if (ret == 0)
break;
/¥ Just read a tape mark */
else
printf("We read %d bytes\n",ret);
}
/************** Close the flle */
ffclose(ffd);
}
Figure 39. C library routine usage
Figure 40 shows how to execute cexam.c :
cc cexam.c
rsv. CART 1
tpmnt -v ISCSL -l sl -p mytape -g CART-r in -n -T
assign -F tape mytape
Ja.out
s -a
Figure 40. Executing cexam.c
The fffcntl (3) routine provides the capability to detect tape end-of-volume,
and to do special end-of-volume processing. An example of special
end-of-volume processing using the FFIO routines follows.
For more information about end-of-volume processing, see Section 4.1.7, page
65. As described in this section, you must check for EOV after each
ffwrite (3), ffweof (3), or ffread (3) when EOV processing is requested. For
output data sets, check for EOV after each fffcntl ~ (3) using cmd FC_GETTP
84 SG-2051 10.0

Writing C Applications Using Tapes [5]

SG-2051 10.0

or cmd FP_GETPOSFor output data sets, you should also ensure that the
library and system have flushed their buffers, and then test whether the tape is
at EOV, before calling any of the following routines:

fiseek (3)

ffpos (3) (with cmd FP_SETPOSFP_SETTRE FP_SKIPF, or FP_BSEEK
fficlose (3)

fffcntl (3) (with cmd FP_CLOSEVor FP_SETSP(off))

To flush the buffers, call fffcntl (8) using cmd FC_GETTPand with the
structure field ffc_synch set to 1.

To execute cexam2.c , shown in Figure 41, enter:

cc cexam2.c

rsv TAPE 1

tpmnt -v VOL1:VOL2 -g TAPE -p mytape -r in -n -T
Ja.out

rls -a

Figure 41. Executing cexam2.c

The fffentl (3) and ffpos (3) routines, shown in Figure 42, are on all systems.
EOV processing with fffcntl (3) is not available for ER90 devices.

85

Tape Subsystem User’'s Guide

#include <fentl.h>
#include <sys/types.h>
#include <sysfiosw.h>
#include <foreign.h>
#include <errno.h>

#define BUFSIZ 4000

#define ERREXIT(a, b) {printf("%s error

main()
{
int ffd, fftmp;
int i
long bufent;
int buf[BUFSIZ];
int ret, eov = 0
struct ffc_chktp_s checktp;
struct ffc _gettp_s gettp;
struct ffp_settp _s settp;
long pal40];
struct ffsw stat;

= %d\n",a,b);

ffd = ffopens("mytape”,0_RDWR,0,0,&stat,"tape");

if (ffd < 0)
ERREXIT("open failed
/*

* |nitiate special end-of-volume

*/
if (ffsetsp(ffd, &stat) < 0)
ERREXIT("ffsetsp failed
/*
* Write unti we reach EOV
*/
do {
if (ffwrite(ffd,buf,BUFSIZ)
ERREXIT("ffwrite

86

" stat.sw_error);

processing

" errno);

failed

BUFSIZ)
" errno);

exit(1);

}

SG-2051 10.0

Writing C Applications Using Tapes [5]

/*
* We must check for EOV status after each write
*/
if (fffentl(ffd, FC_CHECKTP, &checktp, &stat) < 0)
ERREXIT("CHECKTP failed " stat.sw_error);
if (checktp.stat == 0)
eov = 1; /* Have reached eov */
} while('eov);

/* Determine how many blocks are buffered */

gettp.ffc_glen = 40;

gettp.ffc_synch = 0;

gettp.ffc_pa = pa;

if (fffentl(ffd, FC_GETTP, &gettp, &stat) < 0)
ERREXIT("GETTP failed " stat.sw_error);

bufcnt = pa[l0] + pa[ll]; /* Dblocks in library buffer + system */

/*

* Start special end-of-volume processing

*/

if (fffentl(ffd, FC_STARTSP, 0, &stat) < 0)
ERREXIT("STARTSP failed " stat.sw_error);

/*

* Wewill write the last 2 blocks on this volume and the

* blocks that are buffered on the next volume.
* Position backward 2 blocks.

*/

settp.ffp_nbs _p = FP_TPOS_BACK;

settp.ffip _nb = 2;

settp.ffp_nvs_p = 0;

settp.ffp_nv = 0;

settp.ffp_vi = 0;

if (ffpos(ffd, FP_SETTP, &settp, 0, &stat) < 0)

ERREXIT("GETTP failed " stat.sw_error);
/*
* Read 2 blocks from tape + buffered blocks and store them
* in a temporary file that is memory resident.
*/
if ((fftmp = ffopens("tmpfile "O_RDWR | O_CREAT,0,0,&stat,
"mr.scr.novil")) < 0)
ERREXIT("Error ~ opening temporary file ",
stat.sw_error);

SG-2051 10.0

Tape Subsystem User’'s Guide

for (i = 0; i < bufcnt+2; i++) |
if (ffread(ffd,buf,BUFSIZ) 1= BUFSIZ)
ERREXIT("ffread failed " errno);
if (ffwrite(fftmp,buf,BUFSIZ) 1= BUFSIZ)
ERREXIT("ffwrite failed " errno);
}
/*
* Position back 2 blocks.
*/
settp.ffp _nbs_p = FP_TPOS_BACK;
settp.ffip _nb = 2;
settp.ffp_nvs_p = 0;
settp.ffp_nv = 0;
settp.ffp_vi = 0;
if (ffpos(ffd, FP_SETTP, &settp, 0, &stat) < 0)
ERREXIT("SETTP failed " stat.sw_error);
for (i =0; i <2; i ++) { /* write 2 tape marks */
if (ffweof(ffd) < 0)
ERREXIT("ffweof failed " errno);
/*
* Close this volume and mount the next one in volume identifier list
*/
if (fffentl(ffd, FC_CLOSEV, 0, 0, &stat) < 0)
ERREXIT("Closev failed " stat.sw_error);
/*
* End special processing.
*/
if (fffentl(ffd, FC_ENDSP, 0, 0, &stat) < 0)
ERREXIT("Endsp failed " stat.sw_error);
/*
* Disable special processing.
*/
if (fffentl(ffd, FC_SETSP, 0, 0, &stat) < 0)
ERREXIT("Setsp failed " stat.sw_error);
/*
* Write the data saved at eov. First rewind the temporary
* file.
*/
88

SG-2051 10.0

Writing C Applications Using Tapes [5]

if (ffseek(fftmp, 0, 0) <0
ERREXIT("Rewind of temporary file failed " errno);
for (i = 0; i < bufcnt+2; i++) |
if (ffread(fftmp,buf,BUFSIZ) 1= BUFSIZ)
ERREXIT("Ffread failed " errno);
if (ffwrite(ffd,buf,BUFSIZ) 1= BUFSIZ)
ERREXIT("Ffwrite failed " errno);
}
/*
* Write 5 more blocks of data.
*/
for (i =0; i <5 i+ {
if (ffwrite(ffd,buf,BUFSIZ) 1= BUFSIZ)
ERREXIT("Ffwrite failed " errno);
}
/*
* Close the tape file.
*/
ffclose(ffd);
}

Figure 42. Using C library routines for EOV processing

5.2 System call 1/0O

Tape I/0 at the system call level requires you to work with many details. You
have a choice of synchronous or asynchronous 1/0O, and buffered or unbuffered
I/0. You need to be concerned with buffer addresses, block size, number of
bytes, and exception conditions. You need to know about specific hardware
requirements of different Cray Research systems.

5.2.1 Cray Research systems

This section briefly describes system call level I/O concerns, and then describes
in detail transparent 1/0O.

IBM compatible tape devices support blocked I/O. ER90 tape devices support
blocked I/O and byte stream 1/0.

For synchronous read and write requests, you must specify the buffer address
and the number of bytes to read or write.

SG-2051 10.0 89

Tape Subsystem User’'s Guide

90

The block size for read and write operations restriction is based on a field size
of 48 bits for IBM compatible devices. The CRAY]90 series have a maximum
block size of 128 Kbytes except for the Small Computer System Interface (SCSI)
I/0 processor (IOP), which has maximum block size of 64 Kbytes minus 1 byte.

When a tape is read, the block size must be larger than or equal to the largest
block size on the tape. The block size is specified with the -b option on the
tpmnt (1) command or from the header label.

For ER90 devices, a blocked file section type consists of blocks of the size
specified by the -b option of the tpmnt (1)command. Blocks within the file
section, excluding the last block, must be the same length. The block size must
be in the range of 80 through 1,199,832 bytes in 8-byte increments.

ER90 file sections within a tape can have different block lengths. You can
change the block length for a file section from the value specified with the
tomnt (1) command by using the TPC_SDBSZoctl (2) request. The argument
to the ioctl (2) request is the new block length, which cannot exceed the value
specified with the -b option on the tpmnt (1) command. The block length can
be changed only when the tape is positioned at the beginning of a file section.

You can use transparent I/O requests for reading and writing tape files. When
you use transparent I/O, you do not need to be concerned with block size.
Your program treats the data as a stream of bytes. In addition, transparent I/O
allows you to specify either buffered or unbuffered I/0.

For ER90 devices, a byte stream file type is composed of blocks that are 1 byte in
length. The ER90 device cannot access data that begins at an odd-byte memory
address, therefore, byte stream data must be input and output to the device in
even increments.

When using asynchronous 1/0O for transparent I/O or multilist I/O, you must
acknowledge any exceptional conditions returned by the reada (2) and

writea (2) system calls. When an exceptional condition occurs, the tape driver
removes your I/0O requests from the queue. When the driver receives
additional I/O requests, it cannot determine if the requests were issued before
or after an exceptional condition was returned; erroneous results may be
generated. For example, an error status is returned in the sw_error field of the
iosw structure for the reada (2) or writea (2) system call.

You may receive one of these exceptional conditions if you perform one of the
following actions:

* You use asynchronous multilist I/O while processing tape marks.

You must send an acknowledgment after each user tape mark is read.

SG-2051 10.0

Writing C Applications Using Tapes [5]

5.2.2 Transparent 1/O

* You use asynchronous multilist I/O while processing user end-of-volume.

You must send an acknowledgment after receiving the ENOSPGtatus from
the reada (2) or writea (2) system calls.

If you receive one of these exceptional conditions, but are able to continue
processing, you must acknowledge receiving the condition by issuing a
TPC_ACKERRoctl (2) call as shown in the following example:

iocti(fd, TPC_ACKERR, 0);
The fd option specifies the file descriptor.

All I/0 requests received by the driver in the time between returning the
exceptional condition and receiving the ioctl (2) acknowledgment are
terminated with the error code ETPDACKERRAfter the tape driver receives the
acknowledgment, all I/O requests are processed normally.

If you are using transparent 1/0O, data is treated as a stream of bytes. To specify
transparent 1/0O, open the tape file and issue read (2) or write (2) requests. If
you issue a read (2) or write (2) request without specifying transparent I/0,
the 1/0 is transparent by default. Transparent I/O can be either buffered or
unbuffered.

5.2.2.1 Transparent buffered 1/O

SG-2051 10.0

If transparent buffered I/0 is requested, user data is temporarily stored in a
system buffer. Transparent buffered 1/0 is the default I/O request type (do not
include the -U option on the tpmnt (1) command).

To read a tape file with transparent buffered 1/0, use the read (2) system call.
The tape driver reads data blocks into a system buffer before copying data into
a user buffer. The user may read any number of bytes. The tape driver copies
the same number of bytes from the system buffer to the user buffer.

The following example shows you how to read 100 bytes, followed by another
request to read the next 3 bytes from a tape file that has a maximum block size
of 10,000 bytes, using transparent buffered I/0. This example can be used on all
IOS systems.

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

tpmnt -b 10000 -v SCRSL-f FILE

91

Tape Subsystem User’'s Guide

2. Specify the open (2) and read (2) statements in your C program:

filedes = open("file",O0_RDONLY);
i = read(filedes, buf, 100); /* read 100 bytes */
i = read(filedes, buf, 3); /* read 3 bytes */

To write a tape file with transparent buffered 1/0O, use the write (2) system call.
The number of bytes requested to be written are copied into the system buffer.
For IBM compatible devices, when the number of bytes of data accumulated in
the system buffer is equal to the block size specified by the -b option of the
tpmnt (1) command, the block of data is written to tape. For ER90 devices,
when the buffer becomes full, the buffer is written to tape.

The following example shows you how to write a tape file that has a maximum
block size of 10,000 bytes, using transparent buffered 1/0. This example can be
used on all I0S systems.

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:
tpmnt -b 10000 -f FILE -v SCRSL-n

2. Specify the write statement in your C program:

filedes = open("FILE", O_RDWR);

write(filedes, buf, 20000);/*write 20000 bytes*/
/* 2 blocks will be written to tape */

write(filedes, buf, 20); /* write 20 bytes */

5.2.2.2 Transparent unbuffered 1/0

92

To request unbuffered 1/0, specify the -U option on the tpmnt (1) command.
No system buffer will be used for user I/O. All I/O operations are done to and
from your I/0 bulffer.

For ER90 byte stream requests, the byte count must be specified in even
increments (excluding the last I/O) and be less than or equal to the device
request limit, CE_ MAX_BLOCKS

For ER90 blocked requests, the byte count for reads must be greater than the
maximum block size. In addition, each read transfers one block. For writes, the
byte count must be a multiple of the block size, excluding the last I/O request.

To read a tape file with transparent unbuffered 1/0, use the read (2) system
call. A read (2) request transfers a tape block into your 1/O buffer. For IBM
compatible devices and ER90 blocked I/O requests, the number of bytes

SG-2051 10.0

Writing C Applications Using Tapes [5]

#include <fentl.h>

specified in the read (2) request must be larger than or equal to the maximum
block size specified by the -b option on the tpmnt (1) command, and it must be
a multiple of 4096 bytes. When a read (2) completes with no error, a tape block
is transferred into your I/O buffer, and the specified number of bytes is
returned.

Figure 43 shows you how to read a tape file to an IBM compatible device using
transparent unbuffered 1/0:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv
tpmnt -v 123456 -1 sl -P x -b 10000 -U -g CART

2. Specify the read (2) statement in your C program:

char buf[4096*3]; /* need 3 x 4096 bytes to hold 10000 bytes */

main()

{
int fd;
int bytes;
fd = open("x "

O_RDONLY);

bytes = read(fd, buf, 4096*3);

SG-2051 10.0

/* must request multiple of 4096 bytes */

Figure 43. Reading from an IBM compatible device (unbuffered 1/0)

Figure 44 shows you how to read a tape file from an ER90 device using
transparent unbuffered blocked 1/0:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv CART
tpmnt -v 123456 -1 sl -P x -b 10000 -B -U -g CART

2. Specify the read (2) statement in your C program:

93

Tape Subsystem User’'s Guide

#include <fentl.h>

main()

{
char buf[4096*3]; /* 3 x 4096 bytes needed to hole 10000 bytes */
int fd;
int bytes;

94

fd = open("x", O _RDONLY);
bytes = read(fd, buf, 4096*3);}

Figure 44. Reading from an ER90 device (unbuffered blocked 1/0)

Note: If a tape is accessed as blocked I/O as in the previous example,
but is actually a byte stream file, 4096*3 bytes will be returned. An
error will not be returned on the I/O request, even though the actual file
type differs from the requested type.

Figure 45 shows you how to read a tape file from an ER90 device using
transparent unbuffered byte stream 1/0:

1. No block size is to be specified in the tpmnt (1) command:

rsv. ER90
tpmnt -v 123456 -1 sl -P x -U -g ER90

2. Specify the read (2) statement in your C program:

#include <fentl.h>

main()

{
char buf[10000];
int fd;
int bytes;

fd = open("x", O _RDONLY);
bytes = read(fd, buf, 10000);}

Figure 45. Reading from an ER90 device (unbuffered byte stream 1/0)
Note: If a tape is accessed as byte stream as in the previous example, but
is actually a blocked tape, an error will be returned on the I/O request as

the byte count is not a multiple of 4096 bytes.

SG-2051 10.0

Writing C Applications Using Tapes [5]

SG-2051 10.0

To write a tape file with transparent unbuffered I/0, use the write (2) system
call. For IBM compatible devices and ER90 blocked 1/0O, each write (2) request
results in a block written from your user buffer to tape. When the write (2)
returns with no error, the data in the user buffer is written to tape as a block.
For ER90, blocked I/0O requests must match the size specified with the -b
option on the tpmnt (1) command. Each ER90 byte stream request writes the
number of bytes requested.

Figure 46 shows you how to write a tape file to an IBM compatible device using
transparent unbuffered 1/0:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv. CART1
tpmnt -v ISCSL -l sl -P x -b 10000 -U -n -g CART

2. Specify the write (2) statement in your C program:

#include <fentl.h>

main()
{
char buf[10000]; /¥ write buffer */
int fd;
int bytes;
fd = open("x", O_WRONLY);
bytes = write(fd, buf, 10000); /* 10000-byte block */
bytes = write(fd, buf, 500); /* 500-byte block */
}

Figure 46. Writing to an IBM compatible device (unbuffered 1/0)

Figure 47 shows you how to write a tape file to an ER90 device using
transparent unbuffered byte stream 1/0O:

1. Specify the block size as 10,000 bytes in the tpmnt (1) command:

rsv. ER90
tpmnt -v 123456 -l sl -P x -B -U -n -g ER90

2. Specify the write (2) statement in your C program:

95

Tape Subsystem User’'s Guide

#include <fentl.h>

main()

{
char buf[10000]; /¥ write buffer */
int fd;
int bytes;

fd = open("x", O_WRONLY);
bytes = write(fd, buf, 10000); /* 10000-byte block */

Figure 47. Writing to an ER90 device (unbuffered byte stream 1/0)

5.3 Tape information requests

A C program can obtain tape subsystem information using system calls or tape
daemon requests. This section discusses obtaining tape subsystem information
from the tape information table, a tape daemon request, and several ioctl (2)
requests.

5.3.1 Tape information table

The tape information table holds information about the tape system and is
available to tape users. It is initialized by the tape driver when the system is
started. When the tape daemon starts, it updates the table with information
from its startup file.

The tape information table is defined in the tapetab.h file and included in a
program by using the following preprocessor statement:

#include <sys/tapetab.h >

The tape information table is defined so that it is not necessary to recompile if
new fields are added to it in the future. It consists of a header with fixed length
fields, followed by a variable length section. Figure 48 shows the format of the
header:

96 SG-2051 10.0

Writing C Applications Using Tapes [5]

typedef struct tapetab_struct {
word tape_tabsize; /* size of table in bytes *
word tape_hdrsize; /* size of tapetab header in bytes */
word tape_maxsize; /* max size allocated to hold tapetab */
word tape_ios_model; /* model E ios */
word tape _flag; /* flags indicating various status */
word tape _dev_major; /* major device number of tape devices */
word tape_dev_driver; /* tape device driver name */
word tape_file_major; /* user tape files major device number */
word tape _file_driver; /* tape file driver name */
word tape _max_dev; /* maximum number of tape devices */
word tape_conf_up; /* maximum number of devices configured up */
word tape_max_per _dev; /* max bytes for buffers per device */
word tape_max_bufs; /* max buffers per device *
word tape_bmx_max_cmdlist; /* max cmds in a bmx cmdlist request */
} tapetab;
Figure 48. Tape information table header
New fixed length fields may be added at the end of the header section. Offsets
of variable fields are included in the fixed length fields.
Variable length fields follow the header with offsets defined in the header.
Offsets are measured in words from the beginning of the table. These fields
contain data, such as names. Fields of character strings must be null
terminated. Variable length fields always start on word boundaries.
There are two types of variable length fields: single-item fields and a list of
fields. Single-item fields, such as the daemon request pipe name, require a
word in the header to hold its offset. A list of fields consists of a variable length
list of offsets pointing to the corresponding field and requires two words in the
header to hold the number of items in the list and the offset of the list.
The example, shown in Figure 49, accesses the tape information table, extracting
the maximum number of tape drives:
SG-2051 10.0 97

Tape Subsystem User’'s Guide

#include <sys/table.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/tapetab.h >
main()
{
word tabsize; /* size of table */
tapetab_struct *tblp; /* pointer to tape information table */
/*
* get the size of tapetab.
*/
if (tabread(TAPETAB, (char *)&tabsize, sizeof(word), 0) {
perror("can’t read TAPETAB size");
exit(1);
}
tblp = (tapetab_struct *)calloc(tabsize, 1);
if (tabread(TAPETAB, (char *)tblp, tabsize)) {
perror("cant read TAPETAB table");
exit(1);
}
printf(*max buffer size = %d bytes\n ", tblp->tape_max_per_dev);
}
Figure 49. Using the tape information table
The tabinfo (2) and tabread (2) (see tabinfo (2)) system calls let you read a
system table without reading /devikmem . The tabinfo (2) call describes table
characteristics: location, header length, number of entries, and size of entry.
Using the information returned by tabinfo (2), you can create a user buffer
into which tabread (2) will read all or part of a table.
98

SG-2051 10.0

Writing C Applications Using Tapes [5]

5.3.2 Tape daemon requests

SG-2051 10.0

The tape daemon request, called TR_INFQO, lets you perform a tape status
inquiry from within a C program. You must perform the following steps to
send a tape daemon request and receive a reply.

1. Determine the request pipe name.

The request pipe is automatically created for you when you issue the

rsv (1)) command. Also, it is automatically deleted when you release all of
your reservations by using the rls (1) command. The request pipe name
must be the absolute path name, not just the file name portion. The
directory of the request pipe is determined through the #define
USER_DIRdirective in file tapedef.h , which is set up at installation time
to be the environment variable. The default is your environment variable
$TMPDIR For the file name portion, the #define ~ U_REQPIPEdirective in
file /usr/include/tapedef.h defines the first part of the file name,
which is appended by the job ID of your job. The default is TAPE_REQ.

The #define ~ MAXPATHlirective in file tapedef.n defines the longest
path name minus one that the requests may use. If any path name is larger
than MAXPATH-1 you must have the value of MAXPATHncreased by your
system administrator.

. Build a reply pipe by using the mknod(2) system call. Open a pipe with an

open (2) system call, keeping the pipe open until a reply returns.

You can either build a reply pipe for each request and delete it after a reply
has returned, or build a single reply pipe, using it for all of your requests.
Regardless of the option you use, it is important to keep the reply pipe
open until all replies have returned.

. Place the reply pipe name in the request header. You must supply the

absolute path name of the reply pipe.

. Write the request into the pipe.

Use the write (2) system call to write your request into the request pipe.

. Read the reply header from the reply pipe.

For each request submitted, the tape daemon sends a reply. Depending on
the request you send, the reply may be just the reply header, or the reply

header along with its data. To determine whether data has been returned,
read the reply header from the reply pipe; if the size of the reply is larger

than the reply pipe header, read in the rest of the reply.

99

Tape Subsystem User’'s Guide

You may use the echo field in the request and reply headers to help keep track
of requests. The system copies what you input to the echo field of the request
and reply headers.

Figure 50 shows a TR_INFO tape daemon request:

100 SG-2051 10.0

Writing C Applications Using Tapes [5]

#include <fentl.h>
#include <stdio.h>
#include <tapedef.h>
#include <tapereq.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sysl/jtab.h>
extern char *calloc();
extern char *getenv();
main()
{
char *dirptr;
char *req_pipe _nhame;
char *rep_pipe _name;
struct jtab jobtab;
struct stat status;
int req_fd;
int rep _fd;
int tape_fd,;
struct trinfo info _req;
struct trinfor info _rep;
struct rephdr *rh;
int cC;
int size;
/*
* Check the status of the
* performed a tpmnt with
* and open the tape file
*/
c = stat("tapefile”,&status);
if (¢ <0) {
perror("Stat failed for
exit(1);
}
SG-2051 10.0

/*
/*

/*
/*

/*

/*

/*
/*

/*
/*

/*

tape file (this

-P or -p to a file

tapefile ");

name */
name */

request pipe file
reply pipe file

structure for job table info */

structure to stat tape file */
request pipe file descriptor */
reply pipe file descriptor */

tape file file descriptor */

tape info structure */

tape info reply structure */
reply header */

total size of reply *

assumes you have
"tapefile")

101

Tape Subsystem User’'s Guide

tape_fd = open("tapefile", O_RDWR);

if (tape_fd < 0) {

perror("Unable to open tapefile ");
exit(1);
}
/*
* Make the named reply pipe and open it
* Use tempnam() to get a unique temporary file name
*
/
rep_pipe_name = tempnam(NULL, NULL);
¢ = mknod(rep_pipe_name, 010700);
if (¢ <0) {
perror("Unable to mknod reply pipe ");
close(req_fd);
close(tape _fd);
exit(1);
}
rep _fd = open(rep_pipe_name, O_RDWR);
if (rep_fd < 0) {
perror("Unable to open reply pipe");
close(req _fd);
close(tape_fd);
exit(1);
}
/*
* Construct request pipe file name and open it
*
/
dirptr = calloc(1, MAXPATH);

req _pipe_name = calloc(1, MAXPATH);

dirptr = getenv(USER_DIR);
c = getjtab(&jobtab);

sprintf(req _pipe_name, "%s/%s%d",dirptr, U_REQPIPE, jobtab.j_jid);
req_fd = open(req_pipe_name, O_WRONLY);

102 SG-2051 10.0

Writing C Applications Using Tapes [5]

if (req_fd < 0) {

perror("Unable to open request pipe");
close(tape_fd);
exit(1);
}
info_req.rh.size = sizeof(struct trinfo);
info_req.rh.code = TR _INFO;
info_req.rh.jid = jobtab.j _jid;
info_req.st_dev = status.st _dev;
info_req.st_ino = status.st _ino;
strepy(&(info_req.rh.rpn),rep_pipe _hame);
¢ = write(req_fd, &info_req, info_req.rh.size);

if (c <0) {
perror("Unable to write to daemon’s request pipe");
close(reqg_fd);
close(rep_fd);
unlink(rep _pipe_name);
close(tape_fd);

exit(1);
}
close(req_fd);
req_fd = 0;
/*
* Now read the reply back from the tape daemon from
* the reply pipe
*/
rh = (struct rephdr *)calloc(1, sizeof(struct rephdr));
¢ = read(rep_fd, (char *rh, sizeof(struct rephdr));
if (c <0) {

perror("Read of reply pipe failed");
close(rep_fd);

unlink(rep_pipe_name);

close(tape _fd);

exit(1);

SG-2051 10.0 103

Tape Subsystem User’'s Guide

size = rh->size;
¢ = read(rep_fd, &info_rep, size);
if (c <0) {
perror("Read of trinfor failed");

close(rep_fd);
unlink(rep_pipe_name);
close(tape _fd);

exit(1);
}
/*
* Program can go on to print out selected fields of the tsdata
* structure returned, or use them for another purpose.
*/
printf("ts_fcn (last function) = %o\n", info_rep.tsdata.ts _fen);
printf("ts_dst (device status) = %o\n", info_rep.tsdata.ts _dst);
/*
* Close remaining open files and clean up.
*/

close(rep_fd);

unlink(rep _pipe_name);
close(tape_fd);

exit(0); }

Figure 50. Using the TR_INFO request

Figure 51 shows the information that is returned from the #define TR_INFO
directive:

104 SG-2051 10.0

Writing C Applications Using Tapes [5]

struct tsdata {
/*
* Device status information
*/

int ts_ord;

int ts _fcn;

int ts_dst;

int ts_dtr;

int ts _bmblk;

int ts_bmsec;

int ts_pbmcent;

int ts_orsc;

int ts_orbc;

int ts_bnum;

int ts_utmnum;

int ts_tmdir;

/*
* Tape file
*/

information

char ts_path[MAXPATH]J;
char ts_dgn[16];

char ts_dvn[16];

int ts_year;

int ts _day;

char ts_fid[48];

char ts_rf[8];

int ts_den;
int ts_mbs;
int ts_rl;

int ts_fst;

SG-2051 10.0

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Device ordinal */

Last device function *

Last device status */

Data transfer count */

Buffer memory block count */

Buffer ~memory sector count */

Partial block bytes in buffer memory */

Outstanding sector count */

Outstanding block count */

Block number: Block number */

relative to tape mark */

User Tape Mark number: */

This only includes */

tape marks embedded */

in the users data *

Direction from tape mark */
0 : after tape mark */
1 : before tape mark */

Path name */

Device group name */
Device name */
Today's vyear */
Today's day */

File id */
Record format */
Density: */

1: 1600 bpi */
2: 6250 bpi */
Max block size */
Record length */
File status: */
1 : new */
2 : ol */
3 : append *

105

Tape Subsystem User’'s Guide

int ts_Ib;

int ts_fsec;
int ts _fseq;
int ts_ffseq;
int ts_ring;

int ts_xyear;

int ts _xday;
int ts_first;

char ts_v1[80];
char ts_h1[80];
char ts_h2[80];
int ts_numvsn;
int ts_vsnoff;

int ts_cvsn;
int ts_eov;

int ts_eovproc;

int ts_urwtm;

char ts_ba[8];
int ts _blank4;
int ts_blank5;

106

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Label type: */
: no label */
ANSII label */
IBM label */
bypass label */
: single tape mark label */
File section number */
File sequence number */
Fseq of 1st file on tape */
Write ring status:*/
0 : ring out *
1: ring in */
Expiration year */
Expiration day */
First vsn of file */
Voll label */
Hdrl label */
Hdr2 label */
Number of vsn */
Offset to wvsn list */
from beginning of */
struct tsdata */
Current vsn index */
User eov selected: */
0 : eov processing off */
1 : eov processing on *
If user is currently in */
special user EOV processing,*/
field is set to 1. Otherwise*/
field is 0. ts_eov would be 1%
User read/write tape mark */
0 : not requested */
1 : requested by -T *
option of tpmnt command */
block attribute */
Unused */
Unused */

a b wWwNPE

SG-2051 10.0

Writing C Applications Using Tapes [5]

* of variable length.

/* Following the tsdata structure is the wvsn list. It is
The tsdata.ts_numvsn field is the number
list. The tsdata.ts_vsnoff field is the offset

* of wvsns in the

* (in bytes) to the beginning of the vsn list from the beginning of
* the tsdata structure. The vsns are of the form char[8]. */

5.3.3 i oct | (2) requests

Figure 51. TR_INFO information

The ioctl (2) system call requests of TPC_EXTSTSand TPC_RDLOGioctl (2)
let you request information about the tape subsystem. The TPC_EXTSTS
request lets you obtain information on ER90 devices and the TPC_RDLOG
request can be used to obtain information on ER90 and IBM compatible devices.

5.3.3.1 ER90 TPC_EXTSTSrequest

SG-2051 10.0

To obtain the extended status of an ER90 device, use the TPC_EXTSTS ioctl
request. The extended status consists of the following responses to device
commands: report addressee status, attribute, operating mode, and report
position.

The report addressee status response gives the state of the ER90 device
(ready/not ready or online/offline), a description of the mounted volume, and
the ER90 detailed status.

The attribute response returns the operational characteristics of the ER90 device
(for example, the data block size, burst size, early end-of-media warning (EEW),
location, and so on).

The operating mode response describes those attributes that were temporarily
defined for the time the tape was positioned within the current partition.

The report position response contains the current absolute track address, the
remaining partition capacity, and other tape location information (for example,
at beginning-of-tape, past the EEW location, at a system zone, and so on).

Refer to the ER90 Interface Control Document provided by E-Systems, Inc., for a
complete description of the command responses.

The extended status is obtained by issuing an ioctl (2) system call with a
request code of TPC_EXTSTS to either the tape path or to file TPDDEM_REQ
The tape path is the path specified on the tpmnt (1) command. TPDDEM_RE®@

107

Tape Subsystem User’'s Guide

108

a pseudo device used to issue requests to a device without users having to have
the device assigned to them. If the request is issued to the pseudo device, the
device name must be specified in the request. (TPDDEM_REG} defined in the
tapedef.h file.)

The argument of the ioctl (2) call must be a pointer to structure ctl_extsts
This structure is defined in Figure 52:

struct ctl_extsts {
int device;
char *rep_addr;
int len_rep_addr;
char *attributes;
int len_attributes;
char *oper_mode;
int len_oper_mode;
char *report _pos;
int len_report_pos;
}

Figure 52. ctl_extsts structure

Set rep_addr , attributes , oper_mode , and report_pos to pointers to
memory in which the response packets will be copied to receive responses to all
of the commands. Set to NULL the memory pointers of the response packets
that are not to receive only selected portions of the extended device status. Set
the amount of memory allocated for the command in the len_rep_addr ,
len_attributes , len_oper_mode , or len_report_pos for each command
requested. If the request is made to TPDDEM_REQlevice must be set to the
device name. The length of each response packet is returned in the variables
len_rep_addr , len _attributes ,len_oper_mode , and len_report_pos

The following restrictions apply to the ER90 TPC_EXTSTSrequest:
¢ The format or asynchronous 1/O requests cannot be outstanding.
* Only the super user can issue this request through a pseudo device.

e The device must be configured up.

SG-2051 10.0

Writing C Applications Using Tapes [5]

Note: If the operating mode response is requested and a cassette is not
loaded, the cassette is blank, or the logical position has not been
established, an operating mode response will not be returned.

Issuing requests to a device through the pseudo device suspends the
current device activity until the extended status has been obtained.

Figure 53 shows how to obtain the extended status of an ER90 device by
issuing a TPC_EXTSTSrequest using the tape path:

SG-2051 10.0 109

Tape Subsystem User’'s Guide

110

[* Get the extended device status.

*/

#include <stdio.h>

#include <sys/types.h >

#include <sys/fcntl.h>

#include <errno.h>

#include <sys/sysmacros.h>

#include <sys/tpdctl.h >

#include <sys/epack.h>

#include <sys/epacki.h>

main()

{
struct ctl_extsts ctl;
char rep_addr [MAX_IPI3 _RESP_B];
char attributes [MAX_IPI3_RESP_B];
char oper_mode [MAX_IPI3_RESP_B];
char report _pos [MAX_IPI3_RESP_B];
extern int errno;
int fd;
int c;
/*
* Open the tape device path
*/
fd = open("tape _path", O_RDWR);
if (fd <0) {

perror("Unable to open the device
exit(errno);

}
ct.rep _addr = rep_addr;
ctl.len_rep _addr = MAX IPI3_RESP_B;
ctl.attributes = attributes;
ctl.len _attributes = MAX_IPI3_RESP_B;
ctl.oper_mode = oper_mode;
ctl.len_oper_mode = MAX IPI3_RESP_B;
ctl.report_pos = report _pos;

ctl.len_report_pos =
/*

MAX IPI3_RESP_B;

path"

);

SG-2051 10.0

Writing C Applications Using Tapes [5]

* Issue the request for the extended device status.
*/
c = ioctl(fd, TPC_EXTSTS, &ctl);
if (c<0) {
perror(“ioctl TPC EXTSTS");
exit(errno);

Figure 53. Using the ER90 TPC_EXTSTSrequest (tape path)

Figure 54 shows how to obtain the extended status on an ER90 device by
issuing a TPC_EXTSTSrequest using a pseudo device:

SG-2051 10.0 111

Tape Subsystem User’'s Guide

/*

Get the current position and remaining partition capacity

mounted volume.

#include <stdio.h>

#include <sys/types.h>
#include <sys/fcntl.h >
#include <errno.h>
#include <sys/sysmacros.h>
#include <sys/tpdctl.h>
#include <sys/epack.h >
#include <sys/epacki.h>

main()

{

112

struct ctl _extsts ctl;

char report_pos[MAX _IPI3_RESP_B];

extern int errno;

int fd;

int C;

/*

* Open the pseudo device

*/

ctl.device = 0;

strncpy((char *)&ctl.device, "devname",strlen("devname"));

fd = open(TPDDEM_REQ,O0_RDWR);
if (fd <0) {
perror("Unable to open the device path");

exit(errno);
}
bzero((char *)&ctl, sizeof(struct ctl_abspos));
ctl.len _report_pos = MAX_IPI3_RESP_B;
ctl.report_pos = report_pos;
/*
* Issue the request for the extended device status.
*/

c = ioctl(fd, TPC_EXTSTS, &ctl);
if (c<0) {
perror(“ioctl TPC_EXTSTS);
exit(errno);

Figure 54. Using the ER90 TPC_EXTSTSrequest (pseudo device)

of

the

SG-2051 10.0

Writing C Applications Using Tapes [5]

5.3.3.2 ER90 read of the buffer log using TPC_RDLOG

SG-2051 10.0

The ER90 error log can be obtained by issuing an ioctl (2) system call, with a
request code of TPC_RDLOGto either the tape path or to file TPDDEM_REQIhe
tape path is the path specified on the tpmnt (1) command. TPDDEM_REG a
pseudo device used to issue requests to a device without the users having to
have the device assigned to them. If the request is issued to the pseudo device,
the device name must be specified in the request. (TPDDEM_REG defined in
the tapedef.h file.)

The argument of the ioctl (2) call must be a pointer to structure ctl_rdlog
This structure is defined in Figure 55:

struct ctl_rdlog {
int device;
char *device_log;
int length;

}

Figure 55. ctl _rdlog structure

The device_log field must be set to a pointer to the memory in which the
ER90 error log will be copied. length must be set to the amount of memory
allocated for the device log. If the request is made to TPDDEMREQ device
must be set to the device name. The length of the device log will be returned in
length

The following restrictions apply to the TPC_RDLOGequest:

¢ The format or asynchronous I/O requests cannot be outstanding.

* Only the super user can issue this request through a pseudo device.
* The device must be configured up.

Note: Issuing requests to a device through the pseudo device suspends
the current device activity until the extended status has been obtained.

Figure 56 shows how to read the ER90 error log by issuing a TPC_RDLOG
request:

113

Tape Subsystem User’'s Guide

#include
#include
#include
#include
#include
#include
#include
#include

main()

{

/*

*/

114

<stdio.h>

<sys/types.h>
<sys/fentl.h>
<sys/sysmacros.h >
<sys/tpdctl.h>
<sys/epack.h>
<sys/epacki.h>
<sys/er90 _cmdpkt.h>

struct ctl_rdlog ctl;

char device_log[MAX_IPI3_RESP_B];
int fd;

int c;

/*

* Open the tape device path

*/

fd = open("tape_path", O_RDWR);

ctl.device =0;
strncpy((char *)&ctl.device, "devhame”, strlen("devname"));
fd = open(TPDDEM_REQ,0_RDWR);

if (fd <0) {
perror("Unable to open the device path");
exit(1);
}
/*
* Issue the request for the ER90 Error Log.
*/
ctl.length = MAX_IPI3_RESP_B;
ctl.device _log = device_log;
c = ioctl(fd, TPC_RDLOG,&ctl);
if (c<0) {
perror("ioctl TPC_RDLOG");
exit(1);
}

Figure 56. Using the ER90 TPC_RDLOGequest

SG-2051 10.0

Writing C Applications Using Tapes [5]

5.3.3.3 IBM compatible read of the buffer log using TPC_RDLOG

SG-2051 10.0

Note: The TPC_RDLOGequest returns zeros on SCSI devices. It does not
return an error code.

The IBM compatible buffer log can be obtained by issuing an ioctl (2) system
call using the TPC_RDLOGequest, as shown in Figure 57:

int buflog[8] ={0 0 0 O 0 0, O, O}
int i;

if (ioctl(fd, TPC_RDLOG,buflog) < 0) {
perror("Error reading buf log"),

exitt 1);
}
for (i =0; i <8; i+t) {

printf("0x%16.16x\n ", buflog]i]);
}

Figure 57. Using the TPC_RDLOGequest (IBM compatible)

The TPC_RDLOGequest may be made after any read, write, or position request.
It may be used to calculate compression ratio on the tape.

It is necessary to examine the sense information returned by the read buffer log
request to determine compression ratios and distance from the end of the tape at
any point while using the tape. The IBM Hardware Reference Manual, publication
GA32-0127, provides detailed information on sense bytes and their formats.

Format 30 of sense bytes 32 through 43, provide counts for bytes processed by
the channel and device. Channel counts reflect the number of bytes requested
for the I/O operation, while the device counts reflect the number of bytes
actually read or written by the device. The difference between the counts is the
compression ratio achieved for the I/O operation.

Format 30 of sense byte 31 gives information about the length of the tape. It is
possible to use this information in combination with the compression ratio
information to determine approximately how much tape is used or remaining.

115

Tape Subsystem User’'s Guide

5.4 Tape positioning requests

C programmers use the ffpos (3) and ffseek (3) routines to implement tape
positioning. For more information on positioning, see Section 5.1, page 81.
Fortran programmers can position by using blocks and volumes as shown on
Section 4.1.3, page 44 and Section 4.1.4, page 46.

5.5 End-of-v olume requests

For information about user EOV processing from a Fortran program, see Section
4.1.7, page 65. Usually, volume switching is handled by the tape subsystem and
is transparent to you. However, when user EOV processing is requested, you
gain control at the end-of-tape and your program may perform special
processing.

5.6 Tape contr ol requests

You can use ioctl (2) system calls to control some characteristics of tapes. For
ER90 devices, you can control the data block size and synchronize your
program with the tape.

5.6.1 ER90 set data block size request

The data block size of a file section can be set by issuing an ioctl (2) system
call TPC_SDBSZrequest to a tape path. The tape path is the path specified on
the tpmnt (1) command.

The argument of the ioctl (2) call is the data block size. The data block size
must be in the range of 80 to 1,199,832 byes, and must be a multiple of eight.

The following restrictions apply to the TPC_SDBSZrequest:
e The tape mount, format, or asynchronous request cannot be outstanding.
¢ The tape must be positioned at the beginning of a file section.

* The data block size cannot exceed the maximum block size specified by the
-b option of the tpmnt (1) command.

Figure 58 shows how to set the data block size on an ER90 device:

116 SG-2051 10.0

Writing C Applications Using Tapes [5]

#include <sys/types.h>
#include <sys/fcntl.h>
#include <errno.h>
#include <sys/tpdctl.h>
main()
{
extern int errno;
int fd;
int c;
/*
* Open the tape device path
*/
fd = open("tape_path", O_RDWR);
if (fd <0) {
perror("Unable to open the tape path");
exit(errno);
}
/*
* Issue the request to set the DataBlock size.
*/

c = ioctl(fd,
if (c<0) {
perror(

exit(errno);

TPC_SDBSZ, 32768);

"TPC_SDBSZ error");

Figure 58. Setting data block size

5.6.2 ER90 synchr onize request

Synchronizing your program with the tape is accomplished by issuing an

ioctl

(2) system call TPC_DMN_REG@quest to a tape path. The tape path is the

path specified on the tpmnt (1) command.

The argument of the ioctl

(2) call must be a pointer to structure dmn_comm

This structure is defined in Figure 59:

SG-2051 10.0

117

Tape Subsystem User’'s Guide

struct dmn_comm/{
int POS_REQ;
int POS_ABSADDR;
int POS_COUNT;
int POS_REP;

}

Figure 59. dmn_commstructure (synchronizing request)

There cannot be any outstanding asynchronous 1/O requests for the
TPC_DMNREQsynchronize request to complete.

Note: If the previous request was a write request, data in the driver’s buffer
will be flushed to the tape. A synchronize request is then issued to the
device, flushing the contents of the device’s buffer to the tape. If the data in
the system buffer is not a multiple of the data block size, a short block is
output to the tape.

If the previous request was a read request and data is in the driver’s buffer,
the driver will backspace over the read ahead blocks. If there is a partial
block in the buffer, the tape position is left after this block but the remainder
of the block is deleted from the bulffer.

Figure 60 shows how to synchronize your program with a tape on an ER90
device:

118 SG-2051 10.0

Writing C Applications Using Tapes [5]

SG-2051 10.0

#include
#include
#include
#include
#include

main()

{

<sys/types.h>
<sysl/fentl.h>
<errno.h>
<tapereg>
<sys/tpdctl.h>

struct dmn_comm pos;
extern int errno;
int fd;
int c;
/*
* Open the tape device path
*/
fd = open("tape_path", O_RDWR);
if (fd <0) {
perror("Unable to open the tape

exit(errno);
}
pos.POS_REQ = TR_SYNC;
/*
* Issue the sync request
*/

c = ioctl(fd, TPC DMN_REQ,&pos);
if (c<0) {
perror("TPC_DMN_REQerror ");
exit(errno);
}
/*
* Get the reply
*/
c = ioctl(fd, TPC_DMN_REP,&pos);
if (c<0) {
perror("TPC_DMN REP failed");
exit(errno);

path"

);

119

Tape Subsystem User’'s Guide

if (pos.POS_REP) {
printf("SYNC error = %d", pos.POS_REP);
exit(1);

Figure 60. Synchronizing your program with a tape

120 SG-2051 10.0

