Writing Your Own Clients [3]

Compiling a client
3.1

SR-2101 8.0

This section describes the unique features of X programming on
the Cray Research system, and it offers programming techniques
to make the most efficient use of the Cray Research system. See
the preface for a list of references that describe general X
programming techniques.

The following topics are presented in this section:
+ “Compiling a client” shows how to write a client.

+ “Handling events,” page 10, describes how to minimize
network traffic, thus maximizing efficiency.

» “Using colors,” page 11, discusses issues that pertain to color
graphics.

« “Using fonts,” page 14, describes techniques for efficient use of
fonts.

» “Using images,” page 15, discusses the use of client-side raster
images.

+ “Debugging tools,” page 17, describes the use of the cdbx(1)
and Xxscope debugging tools.

When you build an X client on a Cray Research system, you
must load the correct X libraries with the user-written code to
create the executable binary file. The X11R5 libraries are as
follows:

i bXext.a (Extension library)

i bXaw. a (Athena widget library)
l'ibXt.a (Intrinsics toolkit)

l'i bX11.a (also known as Xl i b)

libXmu.a (MIT utility library)

Cray Research, Inc. 7

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

i bXau.a (sample authorization protocol for X)

I'i bXdntp. a (X display manager control protocol library)
libX.a (Xi nput extension library)

i bol dX. a (X10 compatibility library)

Figure 1 shows the relationship of the Xlib, toolkit, widget, and
extension libraries to each other.

Application (client)

Widget
(I'i bXaw. a)
Toolkit Extension
(l'ibXt.a) I'i bXext . a)
Xlib
(i bX11. a)

Server

Figure 1. X11RS5 libraries

You can use these same libraries when building a client on a
workstation.

8 Cray Research, Inc. SR-2101 8.0

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

SR-2101 8.0

For a simple X client, you can use the following makefile:

Set CFLAGS = —g for use with debugger
CFLAGS = —g -DSYSV -DUSG
xclient: xclient.c
cc $(CFLAGS) -0 $@xclient.c \n
-l Xaw —I Xt - Xmu —I X11 —| Xext

Notice that SYSV and USG are defined. This is always a good
practice when you are compiling applications that use X on the
Cray system. If you are using an Imakefile, the define process is
performed automatically. The i make(1) command takes an
architecture-independent segment of a makefile and adds the
architecture-dependent items to it. This provides an easy way to
write a portable program.

If the resulting binary file is used with the debugger cdbx(1),
you must use the —g option to cdbx to run the compile and load
steps.

You can use the i make(1X) or xmknf (1X) command to generate
makefiles from templates known as Imakefiles. The following
example shows a simple Imakefile:

DEPLI BS = $(DEPXLI B)
LOCAL_LI BRARI ES = $(XLI B)
Si mpl ePr ogr anTar get (test)

You can use either of the following commands to create a
makefile from an Imakefile:

xnknf
i make —DUsel nst al | ed —DCURDI R=

Imakefiles released by Cray Research with UNICOS 8.0 have
been upgraded to work with the Standard C preprocessor,
usually located in / | i b/ cpp. Imakefiles obtained from other
locations may still use the old format for comments and
concatenation and therefore require the portable C preprocessor
(pcpp). This preprocessor is located in/ | i b/ pcpp on the
UNICOS 8.0 operating system.

Cray Research, Inc. 9

Writing Your Own Clients [3]

UNICOS X Window System Reference Manual

Handling events
3.2

10

To designate a preprocessor other than the default (/| i b/ cpp)
for either i nake or xnknf | set the | MAKECPP environment
variable as follows:

setenv | MAKECPP /1i b/ pcpp (C shell)
| MAKECPP=/ | i b/ pcpp; (Bourne shell,
export | MAKECPP Korn shell)

The display server generates a packet of information for each
occurrence of a user action, such as a keystroke, button press,
mouse motion, window exposure, and so on, and each occurrence
of interaction among programs. Each packet of information,
called an event, is put into a protocol packet that consists of 32
bytes and is sent to each client that has requested that specific
type of event. Each X protocol packet is also put into a TCP/IP
packet, thus increasing the total number of bytes transferred. A
client can request a specific type of event to track device input,
another type of event to get mouse input, and so on. A client
responds to events to control the user interface and to control
communication among various clients. The processing that
occurs when events are being controlled is known as event
handling.

Keyboard input can generate a lot of network traffic. Each
keystroke generates events KeyPr ess and KeyRel ease, which
typically cause a client to tell the server which character to
display. The typing speed of individual users limits the network
traffic, which is well below the network bandwidth. However,
too many users typing into X clients on a Cray Research system
can stress the communication resources.

Mouse motion is more stressful on network and CPU resources
than keyboard input. Dragging the mouse across a window can
generate numerous Mot i onNot i fy events. The server bundles
together several Mot i onNot i f y events in one transmission to
the client. The receiving client can compress Mbti onNoti fy
events to appear as one event; however, because resources are
wasted in generating, transmitting, and discarding them, a
client should request Mbt i onNot i f y events only when
necessary. Alternatively, you can choose the

Cray Research, Inc. SR-2101 8.0

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

Poi nt er Mot i onHi nt s option, in which the server does the
compression for you. Motion events are generated only under
special circumstances, reducing the amount of data sent across
the network.

The Xlib library provides the XSel ect | nput call, a mechanism
that enables a client to choose the events it wants to see. One of
the parameters of XSel ect | nput specifies the events that the
server should generate for this client. Proper use of

XSel ect | nput is the key to reducing unnecessary traffic
between client and server. The following example shows the use
of XSel ect | nput, in which keyboard input does not generate
events, but mouse button activity does:

XSel ect | nput (di spl ay, w ndow,
But t onPressMask | ButtonRel easeMask);

The following example shows a method for compressing mouse
motion events in the client:

XEvent report;
whi |l e (XCheckTypedEvent (di spl ay, MtionNotify, & eport));

XCheckTypedEvent reads the next Mot i onNot i f y event from
the queue into the XEvent structure called r eport. If the event
was a Mot i onNot i fy event, XCheckTypedEvent returns TRUE.
The whi | e loop discards all but the last Mot i onNot i f y event.
This can be a great traffic reduction if the client has elected to
see Mot i onNot i f y events.

Using colors The visual impact of color allows you to convey a lot of

3.3 information in a clear, concise manner. A color image can
capture the large volume of numbers that a Cray Research
system can generate and display it clearly. In the X Window
System, colors can be used easily. However, if a client will be
communicating with more than one server, you must take great
care to ensure portability. The techniques described in this
subsection can also greatly decrease the amount of network
traffic that a client will generate when color is used.

Every X server has information about its particular color
characteristics in a visual structure that you can obtain by using
the Def aul t Vi sual macro instruction or the XGet Vi sual | nf o
or XMat chVi sual | nf o functions. Several visual types are
available; the most common are St ati cG ay (the typical visual

SR-2101 8.0 Cray Research, Inc. 11

Writing Your Own Clients [3]

UNICOS X Window System Reference Manual

for monochrome workstations) and PseudoCol or (a common
color visual in low-performance and medium-performance color
workstations). Advanced color workstations may use other
visuals, such as Tr ueCol or or Di r ect Col or.

To determine which visual is available for a client, you can use
code similar to the following:

int ny_visual;
Vi sual *vi sual ;

vi sual = DefaultVisual (display, screen);
switch (visual —>cl ass) {

case StaticG ay:

my_visual = StaticGay;
printf("This is a StaticGay device\n");

br eak;

case PseudoCol or:
my_vi sual = PseudoCol or;
printf(”This is a PseudoCol or device\n”);

br eak;
case TrueCol or:

my_vi sual = TrueCol or;
printf(”"This is a TrueCol or device\n”);

br eak;

case DirectCol or:
my_visual = DirectCol or;
printf(”"This is a DirectCol or device\n”);

br eak;
defaul t:

printf("ERROR in Visual. Call programer\n”);

exit(1l);
br eak;

12

To use colors in a client application, you can use the default
colormap, or you can define a colormap, allocate one or more
colors, and assign each color to a graphics context, which is then
used for any drawing. Usually, you can use the server’s default
colormap (which is preferable), although for some applications,
you might have to define a separate colormap; you should base
your decision on whether the number of colors available in the
default colormap is suffient for your application. A workstation
with an 8-bit-per-pixel PseudoCol or display is limited to 256

Cray Research, Inc. SR-2101 8.0

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

colors per colormap; a window manager might have allocated
colors, other clients might have allocated colors, running

xst dcmap might allocate colors, leaving a client with few colors
to allocate.

You can either define colors by specific red, green, and blue
intensities, or use any of several hundred predefined named
colors. If you need only a few separate colors, it is much easier
to use named colors to write a portable client program, although
these colors may look somewhat different on various servers.
The predefined named colors are defined in a dbm-format color
name database on the server. It defaults to
fusr/1ib/x11/rgb. To display the color database, use the
showr gb client or you may cat the database source file
lusr/1ibl/x11/rgb.txt. The following example shows a color
allocation and setting of a graphics context:

Col ormap mny_nap;
XCol or my_col or;

GC ny_gc;

my_gc = XCreat eGC(di splay, ny_wi ndow, 0, 0);
i f(ny_visual == PseudoCol or) ({

else { /* use black if not PseudoCol or device */

my_map = Def aul t Col or map(di spl ay, screen);

XPar seCol or (di splay, ny_map, "Red”, &my color);
XAl | ocCol or (di spl ay, ny_map, &my_color);

XSet For eground(di spl ay, my_gc, ny_col or. pi xel);
}

XSet For eground(di spl ay, ny_gc, Bl ackPi xel (di spl ay, screen));
}

SR-2101 8.0

If the graphics application uses only the X Window System
functions for line drawing, polygon drawing and filling, and text
drawing, the use of color graphics does not greatly increase
network usage. A simple drawing instruction that is sent from
the client to the server is the same number of bytes, whether
there is 1 bit per pixel, 8 bits per pixel, or 24 bits per pixel on the
server screen. Thus, you can quickly draw on a window or a
pixmap (a drawable mechanism that resides in the server
memory) on either a black-and-white (monochrome) or a color
workstation.

Cray Research, Inc. 13

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

The additional overhead for allocating colors should be incurred
only once during the client initialization. However, if you
generate graphics on the client by using an Xl mage structure
that resides in the client memory (see “Using images,” page 15),
and then copy this image to the server, the network traffic is
increased as the number of bit planes per pixel increases.
Therefore, to minimize network traffic, an XI mage structure
should be avoided unless complex pixel-by-pixel manipulations
are necessary.

Using fonts Fonts are server resources that specify the style and size of

3.4 print. Each server stores its own fonts. A remote client must be
able to adapt to the fonts available on any given server. For
example, because standard fonts and font names differ among X
Window system versions, you must write clients to accommodate
each potential server. A server can have both standard and
nonstandard fonts installed. To be truly portable, however, a
client should not depend on nonstandard fonts. To obtain a
listing of the fonts available on a given server, use the x| sf ont s
command.

A client can use XLoadQuer yFont to check the existence of a
font before it tries to use that font. If you use XLoadFont with
an unknown font name, an X protocol error occurs, but if you use
XLoadQuer yFont with an unknown font name, it does not. The
following example uses XLoadQuer yFont :

D splay *d;
XFont Struct *t heFont;

d = XOpenDi spl ay(argv[1]);

t heFont = XLoadQueryFont (d, "bad_font _nane”);
if (theFont == 0) {

printf(”font nanme = %, return = %l\n”, ”bad_font_nane”,
t heFont) ;

}

14 Cray Research, Inc. SR-2101 8.0

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

—adobe-t i nes—medi
—adobe-t i mes—medi
—adobe-t i mes—medi
—adobe-t i nes—medi
—adobe-t i mes—nedi
—adobe-t i nes—nedi

—adobe—t i nes—medi

Using images
3.5

SR-2101 8.0

When using XLi st Font s in a remote client, you should be
careful when using wildcard characters in a font name to match
any font with a specific character string in it. For example, the
string *—t i mes—nmedi um-r —nor mal —* matches the following
font names:

um-r —nor nmal ——10-100-75-75—p—-54—-i s08859-1
um-r —nor mal ——12-120-75-75-p—64—i s08859-1
um-r —nor mal ——14-140-75-75-p—74—i s08859-1
um-r —nor mal ——18-180-75-75-p—94—i s08859-1
um-r —nor mal —24-240-75-75-p—-124—i s08859-1
um-r —nor mal ——8-80-75-75-p—44—i s08859-1

However, the string *—t i nes—nedi um-r —nor mal —18-—*
matches only the following font name:

um-r —nor mal ——18-180-75-75-p—94—i s08859-1

If a client uses XLi st Font s to find all of the

—t i mes—nmedi um-r —nor mal — fonts, and then examines each
font by using XLoadQuer yFont, a lot of traffic is generated on
the network, because XLoadQuer yFont returns information on
every character in the font. Clients can experience several
seconds delay by using XLi st Font s and XLoadQuer yFont
inefficiently.

An image is a client-resident representation of a screen area, not
necessarily a window. Images differ from pixmaps or windows in
that the image is created and stored on the client side; pixmaps
and windows use server resources. The image, really a raster
image, is a pixel representation in memory. You must take care
when using images because various workstations interpret
pixels differently, especially on color displays. (Even the
definitions of black pixel and white pixel vary from
manufacturer to manufacturer.) Some workstations use bit and
byte ordering that is different from that used on other
workstations. This further complicates matters.

Fortunately, Xlib provides all of the mechanisms necessary to
convert images from client format to server format, so that an
image can be sent to the server and displayed properly.

Cray Research, Inc. 15

Writing Your Own Clients [3] UNICOS X Window System Reference Manual

To overcome the problem of which pixel value represents black
and which pixel value represents white, Xlib provides the

Bl ackPi xel and Whi t ePi xel macros. In the following
example, XCr eat ePi xmapFr onBi t mapDat a requires values for
the foreground and background pixel values. Using the

Bl ackPi xel and Wi t ePi xel macros, you can ensure that the
image will be correct, regardless of the server.

Di spl ay *dp;
W ndow wi np;
Pi xmap pi xmapp;

dp = XtDi spl ay(topl evel);

wi np = Def aul t Root W ndow(dp) ;

pi xmapp = XCreat ePi xmapFronBi t mapDat a(dp, wi np, mandel brot _bits,
mandel brot _wi dt h, mandel br ot _hei ght,
Bl ackPi xel (dp, DefaultScreen(dp)),
Whi t ePi xel (dp, DefaultScreen(dp)), depth);

16

Overcoming the problem of byte and bit ordering requires that
you modify the Xl mage structure, which is returned from the
XCr eat el mage function call. The byt e_or der and

bi t map_bi t _or der fields each contain a value that indicates
most-significant bit first (MSBFirst) or least-significant bit first
(LSBFirst) ordering. These refer to how programmers chose to
represent the image in memory, not to the bit and byte ordering
of the client or server hardware. Therefore, an image can be
LSBFirst in the client and MSBFirst in the hardware.

Cray Research, Inc. SR-2101 8.0

UNICOS X Window System Reference Manual Writing Your Own Clients [3]

You must know the contents of the Xl nage structure because the
default values for byt e_order and bi t map_bi t _order are
those of the server hardware, and the program must set these
values to correspond to the actual byte order and bit order of the
image. This can be done immediately after the XCr eat el mage
call, as follows:

static Xlmage *xip = NULL;
Di spl ay *draw d;

Vi sual *draw v;

static char *dp = NULL;

dp=mal l oc (wi dth * height);
Xi p = XCreatel mage(draw_d, draw v,
dept h, ZPi xmap, 0, dp, wi dth,
hei ght, bitmap_pad, byte_per _line);
Xi p—>byte_order = MSBFirst;
Xi p—>bitmap_bit _order = MSBFirst;

Debugging tools One of the best tools available for debugging application

3.6 programs on a Cray Research system is the cdbx(1) program. It
has an X Window System interface, which displays the text
being debugged, and it has command buttons for common
operations such as run, st op at, st ep, next, and so on. If the
DI SPLAY environment variable is set to your display server, or
the —di spl ay option is found on the cdbx command line, the X
interface is enabled automatically. See cdbx(1) for details of its
use.

Note

Reaching a breakpoint in cdbx during a server grab (a time

when only the X program can use the server) hangs your display
server. This happens only when cdbx and the X client are
connected to the same server. I

SR-2101 8.0 Cray Research, Inc. 17

Writing Your Own Clients [3]

UNICOS X Window System Reference Manual

Another powerful tool for debugging X applications is xscope.
This tool, which is in the public domain, traces all traffic
between client and server. To the client, xscope appears as a
separate display server because it uses a unique display number,
then passes the protocol to the proper display.

A typical way of using xscope is to start it on your workstation
with no parameters. This defaults to display 1 of the
workstation. You must then set the DI SPLAY environment
variable to display 1 of the workstation and start the client.

The xscope tool intercepts each packet and displays it in an
easy-to-read format. The following example shows this process.
You can find an example of xscope output in “Example xscope
Output,” page 53.

Workstation Cray system

xscope -

- setenv DI SPLAY mirror:1
- xcl i ent

Protocol is traced here -

xcl i ent displays here -

Sometimes it is difficult to determine the protocol request that
actually caused a problem, because the client requests are
buffered up; that is, several requests can be sent in the same
transmission. To force Xlib to send requests in synchronous
mode (as soon as they are built), you can issue the

XSynchroni ze call from the xcl i ent program. Using
XSynchr oni ze can make the xscope output easier to read, but
this technique should be used only for debugging; unbuffered
traffic increases network congestion. The following example
shows the use of XSynchr oni ze:

Di spl ay *di spl ay;

XSynchr oni ze(di spl ay,

di spl ay = XOpenDi spl ay(argv[1]);

1); /* force synchronous node */

18

X toolkit clients can use the —sync command-line option to force
synchronous mode, without editing or recompiling source code.

Cray Research, Inc. SR-2101 8.0

