Message System Design [2]

The UNICOS message system consists of a set of tools to build message text files into
catalogs, to retrieve messages from catalogs, and to format messages to be issued to
the user. Under the message system, all messages and explanations reside in a
binary message catalog maintained on disk. No messages need to appear within
program code.

This section describes each element of the message system from a design perspective.
All terms and concepts involved in the message system are introduced.

The procedures for using the message system in a product are described in Chapter 3,
page 27. That section presents a sample procedure for using message system tools in
a program.

2.1 Overview
The elements of the message system are as follows:
* Message text files (group.msg)
* Message and explanation catalogs (group.cat and group.exp)
¢ (Catalog creation utilities (caterr (1) and gencat (1))

¢ Message retrieval library functions (catopen (3), catclose (3), catgetmsg (3), and
catgets (3))

* Message formatting library function (catmsgfmt (3))
¢ Explanation viewing utility (explain (1))

¢ Explanation extraction utility (catxt (1))

¢ (Catalog search path utility (whichcat (1))

¢ User environment variables or locales for language, catalog path, and message
format (LANG NLSPATH MSG_FORMAEBnd CMDMSG_FORMAT

These elements are described briefly in the following paragraphs. Figure 1 shows the
relationships among these elements.

SG-2121 9.0 Cray Research, Inc. - Private 3
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

File system
group. msg
Standard input/output
caterr caterr
) gencat gencat
explain
¥

group. cat group. exp

User process Library routines
catopen —-—

—» catgetmsg

Utility, program,
application, or command

- > —> catgets

— catmsgfmt

catclose

User environment
NLSPATH —

LANG _—

L MSG_FORMAT

CMDMSG_FORMAT

all000

Figure 1. Message system overview

4 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

Under the message system, programs issue messages from catalogs. Each software
product has a catalog of messages and a catalog of explanations. The source format of
these catalogs is maintained in a message text file within the source directory tree for
the product. The message system contains tools to build a message catalog and an
explanation catalog from the message text file. The message text file and the two
catalogs all use the group code, which identifies the product or product group, as part
of the file name. Catalogs can be built from a message text file, either from the
command line or from within an nmake(1) makefile. Catalogs are installed in the

llib or /usr/lib directory trees.

Programs gain run-time access to the message catalogs through library functions.
These functions open and close catalogs, retrieve messages from a catalog, and format
messages according to a user-specified pattern.

Users receive information from the online explanation catalog by using the
explain (1) utility.

Users control the type and format of information output with an error message by
setting the MSG_FORMAdnd CMDMSG_FORMAiivironment variables. They control
the directory from which the error messages are retrieved by setting the NLSPATH
environment variable. Users can determine which catalogs are being accessed and
what catalog search path is being traversed by using the whichcat (1) utility.

If the messages are available in multiple languages, users control the language in
which they receive messages by setting the LANGenvironment variable or the
LC_MESSAGE%ocale.

Programmers, administrators, or support personnel who want to extract explanations
from the message source file for publication can use the catxt (1) utility to extract
explanations and to insert important message formatting macros.

For a complete description of the library functions, utilities, environment variables,
and files that constitute the message system, see the man pages.

Each of the following subsections describes part of the message system.

2.2 Message text files

The message text file contains the source text for both the messages issued to users
from a program and the message explanations available to users through the

explain (1) utility. The message text file is the source for all messages and
explanations to be processed and delivered by the rest of the message system. Figure
2 illustrates how the message text file is processed by and for other elements of the
message system.

SG-2121 9.0 Cray Research, Inc. - Private 5
Draft

Message System Design [2]

UNICOS® Message System Programmer’s Guide

Message text file

Run-time message

On-line explanation

The message text file should be named as follows:

group.msg

Explanation document

Figure 2. Processing the message text file

caterr -c caterr -e -c catxt -n
. Header Explanation Trailer
Message catalog Explanation catalog file file file
UNICOS
program explain troff

al1001

This name is required to satisfy rules for catalog names and nmake(1) implicit rules.
group is the group code that identifies your product. Several programs can use the
same group code or a single program can use several group codes. The group code
helps users determine the source of the message. The .msg suffix distinguishes a

message text file from a message catalog (.cat

suffix).

The group codes local

, Local , LOCAL and all group codes that begin with Z

suffix) or explanation catalog (.exp

(uppercase only) are reserved for site use. Catalogs that Cray Research supplies do
not use these group codes.

The message text file can contain the following four basic types of information:

* Message text, preceded by the $msg tag

* Explanation text containing nroff formatting codes, preceded by the $nexp tag

Cray Research, Inc.
Draft

- Private

SG-2121 9.0

UNICOS® Message System Programmer’s Guide Message System Design [2]

* Plain ASCII explanation text, preceded by the $exp tag
* Comments, consisting of $<space > text, $<tab> text, or $<newline>

The following subsections describe the text associated with each type of tag.

2.2.1 Message text

A $msg tag precedes each message in the message text file. This tag is used by the
catalog utilities to identify the associated text as a user message to be included in the
message catalog. Each message entry must also include the message number.

The following subsections discuss these aspects of writing message text:
¢ Numbering of messages

* Ordering of messages

® Variables in messages

* Special characters in messages

2.2.1.1 Numbering of messages

Each message contained in the message text file must have a message number. The
two types of message numbers are as follows:

¢ Literal numbers
¢ Symbolic names

Literal message numbers are integers that follow the $msg tag. Combined with the
group code, the message number provides a unique message identifier for messages
issued using the message system.

A typical message with a literal number appears as follows:
$msg 6 The daemon is unable to migrate the file.

Rather than literal message numbers, it is recommended that you use symbolic
message names (that is, a symbol instead of a number). The purpose of symbolic
names is to provide a cross-reference capability between message names and numbers.

A typical message with a symbolic name appears as follows:
$msg DGRUTM The daemon is unable to migrate the file.

To use symbolic names, you must perform the following steps:

SG-2121 9.0 Cray Research, Inc. - Private 7
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

1. Create an include file to map the symbolic names to literal numbers.
2. Specify the include file in the message text file.

3. Use the -s option of the caterr (1) catalog generation utility when you generate
the message and explanation catalogs from the message text file. (For a complete
description of the caterr utility, see Section 2.3.3, page 18.)

Suppose you have a message text file (xyz.msg) that contains the following message
definitions:

$msg EMLEVPARMissing parameter to MLEV routine
$msg EMLEVPMI Parameter to MLEV routine must be a positive integer

An include file (xyzcodes.h) can be created to map the symbolic names to literal
numbers. This include file would appear as follows:

#define EMLEVPAR500 /* Missing parameter to MLEV routine */
#define EMLEVPMI 501 /* Parameter to MLEVroutine must be positive *

You must add the following line before the first message in the message text file:
#include "xyzcodes.h"

A message catalog (xyz.cat) can be created from the message text file that contains
the symbolic names by using the following utility:

caterr -s -c Xxyz.cat Xyz.msg

The -s option calls the cpp (1) C language preprocessor, which maps the symbols to
numbers based on the definitions in the include file. These include files also can be
included in C source code files to provide access to the same symbolic message names.

Symbolic error codes can be created in any language, if the compiler for that language
has a capability comparable to #include . In some cases, the cpp (1) utility might not
be appropriate to do the symbolic-to-numeric mapping, because it processes only
C-style include files; instead, a stand-alone program may be required to do the
mapping.

Whether you use literal or symbolic message names, separate the $msg tag from the
message number with at least one space or tab. If you use more than one space or
tab, the file is still processed correctly, but the extra spaces or tabs are removed
during text-to-catalog processing.

Separate the message number from the message text with one space. If you use more
than one space, all spaces after the first are processed as leading spaces in the
message text.

8 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

2.2.1.2 Ordering of messages

Messages must appear in ascending order, but they are not required to be consecutive.
For example, all three of the following message numbering systems are acceptable:

Example 1:

$msg 1 Message one
$msg 2 Message two
$msg 3 Message three

Example 2:

$msg 100 Message one
$msg 101 Message two
$msg 102 Message three

Example 3:

$msg 150 Message one
$msg 160 Message two
$msg 170 Message three

Space is not allocated in the message file for each possible number in the sequence.
Therefore, messages numbered as shown in example 2 or 3 require the same storage
space as messages numbered as shown in example 1.

2.2.1.3 Variables in messages

Many messages contain variables that are supplied at run time. Variables can be
included in messages by using the printf (3) format codes (for example, %s %d and
%f) in the message that appears in the message text file. The message is returned
from the catalog with the code embedded. You construct a print statement that
supplies the proper value for the variable at run time.

Note: Use single quotation marks (' ')to enclose user-supplied strings (such as
file names and user IDs) that are referred to as tokens. The use of quotation
marks highlights for users information that is specific to the situation and
reduces the possibility of variables being interpreted with a literal meaning. It is
not a requirement to use quotation marks to enclose numeric values, language
keywords, or other literal replacement strings.

A typical message text entry might appear as follows:

$msg 100 Unknown account name ’'%s’.

SG-2121 9.0 Cray Research, Inc. - Private 9
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

When printed at run time for a user who has entered abcd as an account name, the
message appears as follows:

Unknown account name ’'abcd’.

For an example of code to retrieve a message and modify it, see Section 3.3, page 30.

2.2.1.4 Special characters in messages

10

Messages that extend past the length of one physical line in the message text file
must contain a continuation character (\) at the end of each continued line of
message text source. The last line of the message text must not end with a \
character because it is not continued.

The following example illustrates a message whose source exceeds one line:

$msg 104 A report modification option was used \
in the command line, but a report was not \
requested.

You can embed special characters within the text of the message by using escape
sequences (initiated with the \ character). Table 1 lists the escape sequences that are
allowed in messages and unformatted explanation text.

Table 1. Special characters used in messages and explanations

Sequence Character

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\ nnn ASCII character corresponding to the octal value nnn

Use newline characters within a multiline message to indicate where the lines should
break on the screen.

Any characters other than those listed in Table 1 are passed through without the
backslash (for example, \q produces Q).

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

Although special characters are sometimes necessary in the message text, they make
it difficult for users to control the layout of the error message through the
MSG_FORMAdnd CMDMSG_FORMAivironment variables. For more information
about how the message system formats messages, see Section 2.5, page 21.

2.2.2 Explanation text

Each message entry should have a corresponding explanation. The message system
accepts the following two types of explanations:

* Formatted explanations that contain formatting macros
* Unformatted explanations that consist of plain ASCII text

Note: Message explanations originating within the Cray Research Software
Division (as opposed to on site) are formatted using the nroff message macros
contained in the tmac.sg file (see msg(7D)). The option to use unformatted
ASCII message explanations exists for the convenience of customer programmers
who want to use the message system, but do not want to typeset the
explanations for hard-copy printing.

The following subsections discuss details specific to formatted and unformatted
explanation text.

2.2.2.1 Formatted explanation text

An $nexp tag at the beginning of the text identifies formatted explanation text. Each
formatted explanation text entry must include the message number and the text of
the message with variable names inserted in place of variable symbols.

Use the message macros provided with the message system tools to mark up the
explanation text. (The message macros are defined in the /usr/lib/tmac/tmac.sg

file and are described on the msg(7D) man page.) The message macros are collections
of nroff (1) and troff (1) text formatting directives defined for use with the message
system.

It is a convention to use italics for variable names in formatted message text. (Italic
characters usually appear as underscored or reverse video text online.)

An nroff explanation does not require continuation characters at the end of lines.

An explanation might appear after markup as follows:

$nexp 100
The account name \&*Vacid*C’ is not recognized.
PP
SG-2121 9.0 Cray Research, Inc. - Private 11

Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

The account ID (Mflacid \fR) specified with the
-a option is not a known account name. Verify
that the ID you entered is a valid account ID on
the system.

.ME

For instructions on marking up explanations for publication in the format of Cray
Research message documentation, see Chapter 4, page 37.

2.2.2.2 Unformatted explanation text

Sites that elect not to typeset their explanations, but that want to create a message
catalog for site-specific software, can use unformatted message explanations.

Each unformatted explanation text entry begins with an $exp tag and includes the
message number and the text of the message, with variable names inserted in place
of variable symbols. A continuation character (\) must appear at the end of each
continued line of a multiline unformatted explanation. The last line of the
explanation must not end with a \ character because it is not continued. Use angle
brackets (< >) for variable names in unformatted explanation text. (Italics are usually
used for variables, but italics are not available in unformatted text.)

You must specify the locations of newline and other special characters in an
unformatted explanation. Table 1, page 10, summarizes the special characters. If you
do not specify newline characters, none are used. This could render the explanation
unreadable.

The unformatted version of the explanation presented on page 11 would appear in the
text file as follows:

$exp 100 The account name '<acid>’ is not recognized.\n\
\n\

The account ID (acid) specified with the\n\

-a option is not a known account name. Verify\n\

that the ID you entered is a valid account ID on\n\
the system.\n

2.2.3 Comment text

The $ tag indicates that all remaining text on the source file line is a comment. A
space or tab must appear between the $ and the first character of the comment, or
the $ must appear as the only character on the line. Comments cannot consist of
more than one line.

12 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

The following example shows four comment lines:

$ The following text contains the messages
$ and explanations for the ja(l) command.
$ These messages are part of the "acct"

$ software group.

Use comments rather than blank lines to create white space in the source file. Blank
lines are significant to the nroff and troff text formatters and can create extra
vertical spacing in online and printed explanations.

2.2.4 Combining text types in a file

The only rule governing how you can combine the four types of text in a message file
is that messages and explanations must appear in ascending numerical order. One
common arrangement is for messages and explanations to appear in an alternating
order.

The following example illustrates this arrangement:

$msg 100 Text of message 1

$nexp 100

Text of message 1 with variables inserted
PP

The explanation for message 1

.ME

$

$msg 101 Text of message 2

$nexp 101

Text of message 2 with variables inserted
PP

The explanation for message 2

.ME

Another possible arrangement is to group all of the messages together, followed by all
of the explanations.

The following example illustrates this arrangement:

$ Messages
$msg 100 Text of message 1
$msg 101 Text of message 2

$
$ Explanations
$nexp 100
Text of message 1 with variables inserted
SG-2121 9.0 Cray Research, Inc. - Private 13

Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

.PP

The explanation for message 1

.ME

$nexp 101

Text of message 2 with variables inserted
PP

The explanation for message 2

.ME

Any other arrangement in which messages and explanations are presented in
ascending order can be processed successfully by the catalog generation tools. For the
purposes of arranging the catalog, formatted and unformatted explanations are
interchangeable.

Comments can appear before, after, or between any of the other text types (that is,
$msg, $nexp , and $exp) but cannot appear within them.

2.3 Message and explanation catalogs

The message system uses message catalogs and explanation catalogs. Message
catalogs contain the text of user messages issued by the program or programs of a
particular software group. The message catalog is the run-time source of messages
issued to users. Typically, explanation catalogs contain copies of each message in the
message catalog, along with an accompanying explanation of the cause of the
message, and actions suggested to remedy the error condition.

Both types of catalogs are generated from the message text file. When you have
created a message text file, run the caterr (1) utility, using the message text file as
input, to convert the message text file into the form that is used by the message
system library functions. When invoked with the -c option, caterr calls a utility
named gencat (1) to build a binary message catalog or a binary explanation catalog.
(For more information on caterr and gencat , see Section 2.3.3, page 18.) To
produce a message catalog and an explanation catalog from one message text file, you
must run caterr twice.

The following subsections discuss the location of message and explanation catalogs
and explain how to use caterr to build them.

2.3.1 Catalog search path

The LANGand NLSPATHenvironment variables and the LC_MESSAGES8ategory
determine the search path on the disk for the message and explanation catalogs. (The

14 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

acronym NLS refers to the X/Open Native Language System on which the UNICOS
message system is based.)

The use of environment variables and categories to determine the catalog search path
gives users and program developers control over which catalogs the message system
library functions access.

2.3.1.1 The LANG variable

The LANGenvironment variable and the LC_MESSAGESategory identify the user’s
requirements for native language, territory, and coded character set. These
components are specified in a string of the following form:

language[_ territory[. codeset]]

The string En is the designation for the English language. Other language, territory,
and code set designations (if any) are defined and supported locally.

The value of language is part of the internal value of the NLSPATHenvironment
variable.

2.3.1.2 The NLSPATH variable

The NLSPATHenvironment variable contains the message system search path; that is,
the message system searches for catalogs in the directories specified by the value of
NLSPATH If the catalog is not found on the user search path (or if the user does not
define NLSPATH, the internal value of NLSPATHis searched.

In addition to string literals, NLSPATHcan contain any of the following variable fields:

Field Description

%N The value of the name parameter passed to catopen . This is the
same as the group code.

%L The value of the LANGenvironment variable or the LC_MESSAGES
category.

%l The language component of the LANGenvironment variable or the

LC_MESSAGES8ategory. This component determines the language in
which messages are displayed.

%t The territory component of the LANGenvironment variable or the
LC_MESSAGES®ategory.

SG-2121 9.0 Cray Research, Inc. - Private 15
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

16

%cC The code set component of the LANGenvironment variable or the
LC_MESSAGESategory.

The file name specified in the NLSPATHenvironment variable must be the name of
the message catalog (not the explanation catalog) to be referenced. For example, to
specify that the message system should search the group .cat file in the /usr/tmp
directory, specify the following NLSPATHdefinition:

/usr/tmp/%N.cat

The message system replaces %Nwith the group code you pass to catopen (3) or
explain (1). For example, if your group code is lib , the message system would
search for a message catalog called /usr/tmp/lib.cat

The explain utility changes the .cat suffix to .exp before searching for the
explanation catalog. Therefore, using the NLSPATHdefined in the previous example
and a group code of lib , explain would search for the explanation catalog named
lusr/itmpl/lib.exp

Note: You must always use %Nfor the catalog name in the definition of the
NLSPATHenvironment variable. If you hard code the catalog name, the message
system tries to retrieve all messages from the catalog you specify. For example, if
you set the NLSPATHenvironment variable to /usr/tmp/lib.cat , the message
system searches this catalog for errors from any product. This could cause a
library message to be issued in a situation in which another product’s message
should have been issued. Using the %Nvariable as the catalog name prevents
this error.

Also, you must never specify the explanation catalog in the NLSPATH
environment variable. If you specify the path name /usr/tmp/%N.exp in
NLSPATH the message system will access the explanation, rather than the
message when it retrieves the message by using the catgetmsg (3) or catgets (3)
function. Use the .cat (not the .exp) suffix in NLSPATHdeclarations.

If the message system searches the paths specified by the NLSPATHvariable and does
not find the file it is looking for, or if the user has not defined NLSPATH the message
system searches its internally specified path. This path is defined as follows:

lusr/lib/nls/%I/%N.cat:/lib/nls/%I|/%N.cat:/usr
Nlib/nls/En/%N.cat:/lib/nls/En/%N.cat

Most message and explanation catalogs are located on disk in the /usr/lib/nis/En
directory. Catalogs that must be present for the system to work when the /usr/lib

file system is not mounted are located in the /lib/nils/En directory. Thus, if the
LANGor LC_MESSAGE%anguage designation variable is set to an unsupported value,
the English catalog is still searched. Users with an unset or incorrectly set LANG
environment variable or LC_MESSAGES8ategory always receive messages in English.

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

To determine which catalog is returning a message or explanation, use the
whichcat (1) utility. This utility verifies that the expected catalog is being referenced.

The syntax whichcat -I returns a list of the path names that are searched when
looking for the catalog. If no message or explanation catalog is found, this usage can
help you to determine why.

2.3.2 Catalog names

Message catalogs are named by group code with a .cat suffix added (for example, the
messages for the library group are in a catalog named lib.cat). Explanation
catalogs are named by group code with a .exp suffix added (for example, the
explanations for the lib group are in a catalog named lib.exp). This naming
convention is required to satisfy rules for catalog names and nmake(1) implicit rules.

The catopen (3) function references the NLSPATHenvironment variable when
determining the message catalog to open. For example, if the user has not set
NLSPATH and neither LANGnor LC_MESSAGESs set, and you pass the catalog name
lib to catopen , catopen tries to open the catalog named

{usr/lib/nls//lib.cat . If that catalog does not exist, catopen tries to open the
catalog named /lib/nls//lib.cat , lust/lib/nis/En/lib.cat , and then
/lib/nls/En/lib.cat . If no catalog exists, an error condition has been

encountered. For information about the different types of catalog errors you may
encounter and recommendations for handling them, see Section 2.4.1, page 20.

The explain (1) user utility references the NLSPATHenvironment variable when
determining the explanation catalog to open. For example, a user enters one of the
following utilities:

explain lib1001

explain lib-1001

Using the internal values of NLSPATHand either LANGor LC_MESSAGE%or %l, the
explain utility searches for the following catalogs in succession:

/usr/lib/nls/%l/lib.cat
/lib/nls/%l/lib.cat
/usr/lib/nls/En/lib.cat
/lib/nis/En/lib.cat

You can change the value of NLSPATHso that the message catalogs can be located in
any directory. You may want to change the value of NLSPATHwhen you are
developing code, locate the message catalog in a local directory, and change NLSPATH
to point to that local directory.

SG-2121 9.0 Cray Research, Inc. - Private 17
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

2.3.3 Generating catalogs

18

Use the caterr (1) utility to convert your message text file to a binary message
catalog and a binary explanation catalog. You must invoke caterr twice to generate
both types of catalogs.

The syntax for caterr is as follows:

caterr [-c catfile] [-€] [-S[-P cpp_opts]] [-Y «x, pathname] [msgfile]

The caterr utility processes the message text file (msgfile) to prepare it for
conversion to a catalog. (If msgfile is not specified, the input is read from stdin .) The
conversion to a catalog is actually performed by a second utility called gencat (1).
However, you can use the -c option to caterr to instruct caterr to call gencat
automatically. If you use the -c option, caterr outputs the catalog and names it
catfile.

It is recommended that you use caterr with the -c option. (The gencat utility
exists as a separate utility to maintain compatibility with the X/Open standards for
message catalog processing. There is no advantage in calling gencat separately.) By
default, caterr looks for gencat in the /usr/bin/gencat file.

By default, the caterr utility generates a message catalog. To generate the
explanation catalog, use the -e option.

Message text files can contain symbolic message codes instead of message numbers.
(For a definition of symbolic message codes, see Section 2.2.1.1, page 7.) The -s
option to caterr calls the C preprocessor (cpp (1)) to process the symbolic codes in
the message text file into message numbers according to a mapping defined in an
include file specified in the message text file. The -P suboption to the -s option
passes the contents of a string enclosed in quotation marks to cpp for processing. Use
the -P suboption if you need to pass options and parameters to cpp from the caterr
command line.

If $nexp explanation tags are encountered in the message text file, the caterr

utility calls the text formatting utility nroff as part of its processing of the message
text file. nroff uses message macro definitions to format the explanation text. By
default, caterr looks for nroff in the /usr/bin/nroff file and for the message
macros in the /usr/lib/tmac/tmac.sg file.

The -Y option lets you specify the version of nroff | gencat , and the tmac.sg
message macros that caterr calls. This option is needed primarily when caterr is
used in the system generation environment. For examples of using the -Y option, see
the caterr (1) man page.

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

The following example uses caterr to generate a message catalog named lib.cat
from the message text file lib.msg

caterr -c lib.cat lib.msg

The following example uses caterr to generate an explanation catalog named
lib.exp from the message text file lib.msg

caterr -e -c lib.exp lib.msg

Remember to invoke caterr twice to generate both a message and an explanation
catalog. For more information about generating catalogs, see the caterr (1) and
gencat (1) man pages.

2.4 Retrieving messages

To access the message catalog from your program, use the catopen (3), catclose (3),
catgetmsg (3), and catgets (3) library functions. For the details of calling these
functions, see the man pages.

To retrieve a message from the catalog, open the catalog by using catopen and then
retrieve the message by using either catgetmsg or catgets . The nature of your
program and the type of messages it issues determines which of these two functions
you use. If the program usually issues fatal messages and then aborts, you should
use catgetmsg . If the program issues many messages and continues processing, you
should use catgets

The two functions are used in separate situations because they use system resources
differently. catgetmsg reads into a user buffer the message corresponding to the
message ID that you pass to it. catgets reads the entire set into an internal buffer.
This has the effect of reading in the entire catalog, because Cray Research message
catalogs are structured as a single set.

Because of this difference, catgetmsg is more efficient in situations in which only a
few messages are issued, where error conditions are usually fatal, or where there are
many messages and a program cannot afford the increased size at run time. Library
functions and most utilities are examples of programs that should use catgetmsg

The catgets function is more efficient in situations in which many messages are
issued during the execution of the program. It is unnecessary to access the disk each
time a message is read from the catalog, because all of the messages are in a buffer.
Compilers are an example of programs that can gain an advantage from using
catgets

SG-2121 9.0 Cray Research, Inc. - Private 19
Draft

Message System Design [2 UNICOS® Message System Programmer’s Guide
ge oy g

If catgetmsg or catgets fails because the message catalog identified by the catalog
descriptor is not available or because the requested message is not in the catalog, a
pointer to a null ("") string is returned.

When you are finished with a message catalog, close it by using the catclose library
function.

2.4.1 Retrieval errors

20

It is possible that an error might occur during your attempt to open the message
catalog or to retrieve a message. The message system library functions let you write
your code assuming that the message retrieval will succeed. If the retrieval does not
succeed, your program can continue processing despite the failure.

You do not need to perform a specific check to determine whether a catopen function
fails, because the next catgets or catgetmsg will fail if the catalog is not available.

If you issue a correct catgetmsg or catgets function, you can encounter only two
types of errors:

¢ The catalog is unavailable.
¢ The catalog is available, but the requested message is not available.

The catgets function returns a pointer to the default string s, which you passed to
catgets , in response to either of these errors.

"nn

The catgetmsg function returns a pointer to a null ("") string in response to either of
these errors. You can create a default message by placing it into the buffer used by
catgetmsg . If the catgetmsg function fails, your default message will be
undisturbed.

This default message capability allows (but does not require) your program to
distinguish between these two types of failures. As with almost any call to a library
function, you must decide on the level of fault tolerance or error recovery appropriate
to your program.

The __catopen_error _code () internal routine also is available to help you diagnose
the cause of a failed catopen call. (A failed catopen call is one which returns a
value of -1.)

The __catopen_error_code routine returns a nonzero value indicating the reason
for the failure. A return value less than 0 indicates that the problem is an error
internal to the program. A return value greater than 0 indicates that the problem is
a system error.

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

The internal error codes have symbolic names defined in the nl_types.h header file.
These names and definitions are as follows:

Error name Description

NL_ERR_ARGCNT catopen was called with less than two arguments.

NL_ERR_ARGNULL The name argument to catopen is NULL.

NL_ERR MALLOC catopen was unable to allocate memory (using malloc (3))
for internal structures.

NL_ERR_HEADER catopen was unable to validate the message catalog file

header as a valid message catalog file.

NL_ERR_VERSION catopen found an invalid version number in the message
catalog file header.

System error codes are the system return values defined in the errno.h header file.
(These codes are documented on the intro (2) man page.) System error codes are
generated in the following cases:

* catopen was unable to successfully open (using open(2)) any of the message
catalog files specified in the NLSPATHenvironment variable search path.

e catopen was unable to successfully read from (using read (2)) or set the read/write
file pointer to (using Iseek (2)) the message catalog file header and set directory.

2.5 Formatting messages

The message system can format a message before you print it. The message is
formatted according to the format pattern specified by the user in the MSG_FORMAT
and CMDMSG-ORMATenvironment variables. For details about the difference between
these two message formatting environment variables, see the explain (1) man page.

The MSGFORMATand CMDMSG_FORMAivironment variables hold a pattern
constructed from the following replaceable characters:

Character Description
%C Command name
%D Debugging information
%G Group code
%M Message text
%N Message number
SG-2121 9.0 Cray Research, Inc. - Private 21

Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

22

%P Position of the error
%S Severity
%T Time stamp

If any of the %fields is not present in the variable definition, the corresponding
message field is not printed.

The format of the time stamp (%7) is equivalent to that produced by the cftime (3)
function and can be overridden by the CFTIME environment variable. For details
about time-stamp formats, see the stritime (3) man page, which documents the
cftime function.

The MSG_FORMAdnd CMDMSG_FORMAiivironment variables also accept printf (3)
escape sequences. Table 2 lists these special character sequences.

Table 2. Special characters accepted by MSG_FORMAdnd CMDMSG-ORMAT

Description Symbol Sequence
Newline character NL (LF) \n
Horizontal tab HT \t
Vertical tab VT \v
Backspace BS \b
Carriage return CR \r
Form feed FF \f
Audible alert BEL \a
Backslash \ \\
Question mark ? \?
Single quote ’ \
Double quote ! \"
Octal number 000 \ 000
Hexadecimal number hh \X hh

The escape \ooo consists of the backslash followed by 1, 2, or 3 octal digits, which are
taken to specify the value of the desired character. A common example of this
construction is \0, which specifies the null character. The escape \x hh consists of the
backslash, followed by X, followed by hexadecimal digits, which are taken to specify
the value of the desired character. There is no limit on the number of digits, but the
behavior is undefined if the resulting character value exceeds that of the largest
character.

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

Any characters other than those listed in Table 2 are passed through without the
backslash (for example, \q produces Q).

In most cases, end your MSG_FORMAdZnd CMDMSG&ORMATspecification with a
newline character (\n) so that any output that follows begins on a new line.

If MSG_FORMAE not defined, messages are formatted according to the following
default format:

%G-%N%C: %S %P\n %Nh

For the default format of the CMDMSG_FORMAdriable and the order of precedence of
variable evaluation, see the explain (1) man page.

This pattern produces a message of the following format:

groupname-msgnumber command: severity position
The text of the message

For example, library message number 1001, which is in the lib group and has a
severity level of unrecoverable, would print as follows:

lib-1001 a.out: UNRECOVERABLE
A READ operation tried to read past the
end-of-file

Because no position is specified, %Pis replaced with a null ("") string.

Use of MSG_FORMAdnd CMDMSG_FORMAeEs users control the message format. This
gives users a common format to work with from product to product and allows the
construction of more robust scripts to process messages. Users can format messages
in a way that a script accepts, rather than changing the script to use the message
format imposed by the program.

If you issue a message with replaceable parameters embedded in it, substitute the
parameters in the message before passing it to the catmsgfmt (3) message formatting
function. For example, the following message:

The account name ’'account’ is not recognized.
might be returned from the catalog as follows:
The account name '%s’ is not recognized.

Before passing the message string to catmsgfmt , replace the %scharacter with its
value. One way this can be done is by using the sprintf ~ function (see printf (3)).

In the following example, the first line of code inserts the value of the parameter
variable into the message in the buffer to which p is a pointer. The result is placed in
buf2 . The second line resets the pointer p to point to the modified string.

SG-2121 9.0 Cray Research, Inc. - Private 23
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

(void) sprintf(buf2, p, parameter);
p = buf2;

After parameter replacement, you can call catmsgfmt to format the message.
catmsgfmt returns a pointer to the buffer that contains the formatted message. You
can then print the message in any way and to any device that you choose.

The catmsgfmt function exists as a convenience to those who want to issue messages
in the format specified by MSG_FORMATS you have a need for complex or
program-specific formats, you can control the message formatting yourself with the
output functions for the programming language you use.

Note: Be cautious in creating hard-coded message formats. Users quickly grow
accustomed to the flexibility of an environment variable and may create software
that depends on a particular message format under the assumption that they can
control message formats by using the MSG_FORMAdnvironment variable.

2.6 Special message types

Special considerations exist for working with certain types of messages. The following
subsections discuss issuing the following message types by using the message system:

* System messages
* Version messages

¢ Usage messages

2.6.1 System messages

24

System messages are drawn from the sys_errlist [1 structure. These messages are
indexed by error number (errno) and are used by many programs throughout the
system. The sys_errlist [1 structure also is contained in a message catalog with the
group code of sys . The text of standard system error messages appears in this catalog.
An explanation catalog that contains explanations for the system messages also is
provided. Your program can draw the text for system error messages from the catalog
by using sys as the group code and the value of errno as the message number.

Note: Be sure to save the value of errno to a variable before calling the
message system. Otherwise, the value of errno may be reset during message
processing and you could issue an inappropriate error message.

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Message System Design [2]

2.6.2 Version messages

A version message states the version of the product issuing the message. When
issuing a version message from the message system, observe the following rules:

1. Pass the version number to be stated in the message from the calling program
rather than coding it into the message text file. This is important; if the version
number is coded into the message text file, the version message will return the
version of the message catalog, rather than the version of the product.

2. Use the techniques described in Section 2.4.1, page 20, to ensure that the version
message is always issued, even if the message catalog is unavailable for some
reason. This is important because a discrepancy between the version of the
product and the version of the message catalog cannot be investigated unless the
version of the product is accurately reported by the code.

2.6.3 Usage messages

A usage message provides a summary of the correct syntax for a utility. The
explanation for a usage message does not have to describe the utility’s syntax in full
detail. Instead, it is sufficient to refer the reader to the man page for the utility. The
man page describes the syntax of the utility in complete detail.

If the usage message contains a complex syntax that is difficult to reproduce in the
explanation, it is acceptable to restate the message simply as "Usage error" in the
explanation. For example, the following portion of a message text file defines the full
usage message to be issued by the docexec code, but abbreviates the message to
"Usage error" in the explanation.

$msg 100 Usage: \n\
docexec \n\
docexec -i\n\

docexec -b ffile [-o docname] [-[]\n\
docexec -a docname -t doctitle -n number [-c catname] [-[] \n\
docexec -d docname [-]] \n\

docexec -g\n

docexec -I\n\
$nexp 100
Usage error
PP
Either an incomplete = command line or an unrecognized option
was entered. For details about the *Cdocexec\fR options, enter
the following command line:
.CS

man docexec

SG-2121 9.0 Cray Research, Inc. - Private 25
Draft

Message System Design [2] UNICOS® Message System Programmer’s Guide

.CE
.ME

2.7 User access to the message system

The message system provides users with online access to message explanations
through the explain (1) utility. The syntax of the explain utility is as follows:

explain msgid

The user supplies the msgid (group code and message number) of the message to be
expanded. The explain (1) utility retrieves the message explanation from the
appropriate message catalog and outputs it to standard output.

A sample user session with explain appears as follows:

% expl ai n dmL0O
A keep file is not present for ' user.

The dmlim(1) command did not find a file named
.keep in the home directory of the specified user.

To exempt files from migration, you must create a
fle named .keep in your home directory. It should
contain the names of the files that you wish to

exempt from migration. The file names in this file

may contain standard wildcard characters.

The output of explain is piped through the pager specified in the PAGER
environment variable. If PAGERIis not specified, the default pager more -s is used.

For a complete description of the explain (1) utility, see the explain (1) man page.

26 Cray Research, Inc. - Private SG-2121 9.0
Draft

