Publishing Message Explanations [4]

This section describes the procedures and guidelines to follow when formatting and
processing message explanations for publication in a message document. Following
these procedures lets you produce a message document in the style of the Cray
Research message documentation. If you do not want to document your messages in
that style, you do not need to follow these procedures.

The following topics are discussed in this section:
e Summary of publication procedures

¢ Message style definition

e Message markup

* Header and trailer files

e Extraction and printing

¢ Testing online explanations

* Troubleshooting

4.1 Summary of publication procedures

This subsection briefly summarizes the general steps required to format a message
text file into both an explanation catalog accessible by using the explain (1) utility
and a printed document suitable for publication as part of a Cray Research manual.
This summary refers you to more detailed information that is contained in later
subsections. Use this summary as an overview of the message process or, after you
are familiar with the procedure, as a quick reference to the required steps.

1. Edit the message text file for content and format.

Make changes to the text of the messages and explanations to bring them into
conformance with the message guidelines (see Appendix A, page 55).

Be especially careful of changes that you make to the actual error messages (text
tagged with $msg). Do not change the order or number of variables in the
message without changing the code that passes parameters to the message
routines.

Format the message explanations in conformance with the message style using
the macros described on the msg(7D) man page. Make sure that the text of each

SG-2121 9.0 Cray Research, Inc. - Private 37
Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

explanation (text tagged with $nexp) contains a copy of the message it explains.
For a procedural guide to the message style, see Section 4.3, page 41.

2. Create or edit the header file for the message section. Create the trailer file.

Create a file named group.head that contains the manual title, manual number,
center footer, section title, and introductory paragraphs for the printed message
section. The last line of this file must be a .2S macro that begins the 2-column
format. See Section 4.4, page 45, for a description and an example of a header
file. If this file already exists, make any necessary editing changes.

Create a trailer file named group.trail that contains a .2E macro. This macro
must be present to end the 2-column formatting.

3. Extract the explanations from the message text file; place them in a separate file.

Use the catxt (1) utility to extract the explanations (text tagged with $nexp)
from the message text file. Place the resulting text in a file named group.nexp .
For example, the following command extracts the explanations for the data
migration messages (group code dm) from the message text file dm.msg and
places the result in the dm.nexp file:

catxt -n dm.nexp dm.msg

If you use symbolic names, you must use catxt with the -s option. For
example, the following command extracts the explanations for the data migration
messages (group code dm) from the message text file dm.msg; replaces the
symbolic names with numbers based on a list contained in an include file that is
specified in the dm.msg file; and places the result in the dm.nexp file:

catxt -s -n dm.nexp dm.msg

See Section 2.2.1.1, page 7, for a discussion of working with symbolic message
names.

4. Print the message section by using text processing utilities on the Cray Research
system or on your front end. Print the head, explanation, and trail files by using
one command.

See Section 4.5.2, page 49, for a sample command line to print the message
document.

5. Repeat steps 1 through 4 until you are satisfied with the output.

6. Build the explanation catalog from the message text file by using the -c and the
-e options of the caterr (1) utility.

38 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Publishing Message Explanations [4]

The caterr -c utility builds binary catalogs that the run-time parts of the
message system use. Specifically, a command of the following form builds an
explanation catalog called group.exp from a message text file named group.msg :

caterr -e -C group.exp group.msg

For more information about the caterr utility, see the man page for the caterr
utility or Section 4.6, page 49.

7. Set your NLSPATHenvironment variable to point to the explanation catalog you
created in the previous step.

The NLSPATHenvironment variable gives the file name of the catalog that the
message system uses to look up explanations. The last node of the path name
you specify with this variable must be %N.cat .

For example, if the explanation catalog dm.exp (created in the previous step by
using the caterr utility) is in the /home/messages/dm directory, set your
NLSPATHenvironment variable as follows:

setenv NLSPATH /home/messages/dm/%N.cat
For more information, see Section 4.6.2, page 51.

8. Test the explanation catalog by requesting to view the explanations with the
explain (1) utility.

For example, to view the explanation for the message with the ID dm-100, issue
the following command:

explain ~ dm100
For more information on the explain utility, see Section 4.6.3, page 51.

9. Correct any problems in the explanation catalog by editing the message text file
and building a new explanation catalog.

10. Repeat steps 6, 8, and 9 until you are satisfied that the online and printed
message information is complete, consistent, and correct.

4.2 Message style definition

The following subsections provide information about the style used in message
documentation. The message style consists of the following elements:

¢ Page layout

* Section heading

SG-2121 9.0 Cray Research, Inc. - Private 39
Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

* Font and point size usage

Section A.2.2, page 63, contains an example of a document section formatted
according to the message style.

4.2.1 Page layout

Messages are printed in a 2-column format. The page is divided into 2 columns that
are 3.3 inches wide. A 0.25-inch gutter separates the columns vertically. A message
ID bar appears at the beginning of each message. This bar, set off by horizontal lines,
gives the message ID. The message ID consists of the group code, a dash, and the
message number. Message text is in 9-point type.

4.2.2 Section heading

The section title of a message section is formatted the same as a section title in most
Cray Research manuals. Introductory information that appears after the title and
before the first message begins 1.375 inches below the bar under the section title.
This text is in 11-point type and spans the width of the page. (The message style does
not use the standard Cray Research publications modified 2-column format.)

4.2.3 Font and point size usage

The message system uses fonts in a manner consistent with the style used in other
Cray Research manuals. Different font sizes are used because of the two-column
format. Fonts are used as follows:

Font Description

New Century The default font. The body of the message explanation is
Schoolbook set in 9-point New Century Schoolbook.

Courier Used for all literals, including the copy of the error

message that appears in the message explanation. Literals
in the body of the explanations (commands, options, file
names, and so on) are also in Courier.

40 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Publishing Message Explanations [4]

Italic Used to denote variables. Variables in messages are
discussed in greater detail in Section 4.3.4, page 43.

4.3 Message markup

The message style is achieved by using a set of nroff (1) and troff (1) macros called
message macros. The following subsection describes how to use these macros to mark
up a section of message documentation correctly.

The markup of a message section is different from that of other nroff and troff
documents, because the message source file is processed not only by nroff and

troff , but also by the caterr (1) and catxt (1) utilities. Because one of these
utilities always processes the message text file before it is piped to nroff or troff |
you must mark up the file to be acceptable to these utilities. This markup is then
changed by the utility to be acceptable to nroff and troff

4.3.1 Message text file

The message text file contains the marked-up messages and explanations. This file
consists of messages, explanations, and comments. Each type of information is
denoted by the use of a tag in the file. Messages are tagged with the string $msg.
Explanations are tagged with either string $nexp or $exp. Comments are tagged
with a dollar sign ($), followed by a space, tab, or carriage return.

4.3.2 Messages
Each message in the file must conform to the following rules of formatting:

* Begins with the string $msg followed on the same line by the message number (or
symbolic name).

* Appears as a single logical line of text. If the message occupies more than one
physical line, each physical line except the last must end with a continuation
character (\) to make the message one logical line.

¢ Conforms to the guidelines for good messages as outlined in Appendix A, page 55.

The following example shows a message in the message text file that is identified by
the msg tag and a message number:

$msg 6 The daemon is unable to migrate the file.

SG-2121 9.0 Cray Research, Inc. - Private 41
Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

4.3.2.1 Symbolic message names

Instead of using a number to identify each message, you can use a symbolic name.
For example, the following message is written using the name DGR_UTMo identify
the message in place of the number 6.

$msg DGR_UTMThe daemon is unable to migrate the file.

A header file is used to create a mapping between the symbolic names and the
message numbers. For example, the following line could be used in a header file to
map the name DGR UTMto the number 6. The comment indicates the content of the
message.

#define DGR_UTM 6 /* unable to migrate file*/

The name of the header file that contains the mapping must appear in the message
text file so that the C language preprocessor (cpp (1)) can replace the symbolic names
with the associated numbers before the catalog is generated by the caterr utility.
For example, the following line is needed in the dm.msg file to include the dm_msg.h
header file:

#include "dm_msg.h"

For information about printing a message text file that uses symbolic names, see
Section 4.5, page 48. For information about creating an explanation catalog from a
message text file that uses symbolic names, see Section 4.6, page 49.

4.3.3 Explanations

42

Each explanation in the file must conform to the following formatting rules:

* Begins with the string $nexp , which must be followed on the same line by the
message number (or symbolic name).

¢ Contains a copy of the message. Like the message itself, the copy of the message
must appear as one logical line. If the message occupies more than one physical
line, each physical line except the last must end with a continuation character (\)
to make the message a single logical line.

¢ Contains a .PP macro after the copy of the message and before the body of the
explanation.

* (Contains any of the macros and strings defined on the msg(7D) man page for use
within explanations.

¢ Uses fonts and point sizes as described in Section 4.2.3, page 40.

¢ Ends with a .ME (message end) macro.

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Publishing Message Explanations [4]

The following example illustrates the markup of one message and explanation pair. A
symbolic message name is used in this example.

$msg DGR_URHThe specified fle is not a migrated file.
$nexp DGR_URH

The specified file is not a migrated file.

PP

The data migration daemon received a request that applies
only to migrated files, but the requested file is not
migrated. This error usually indicates that the file's
status has been changed by a process other than data
migration. Perform an *Cls -\MMR command and examine
the first character in the entry for the file. If that
character is an "m", the file is migrated. Inform your
system support staff.

.ME

4.3.4 Variables

Many error messages contain variables that contain contextual information when
they are issued to the user. For example, the following messages each contain a
variable that is supplied at run time:

A keep file is not present for wuser ID ’'mike’.
An attempt to allocate 512 bytes has failed.

Required option -t not specified.

In the first message, the user name at the end of the message is a variable. In the
second message, the number of bytes is a variable. The option in the third message is
a variable.

These messages would appear as follows in the message text file:

$msg 100 A keep file is not present for user ID '%s'.
$msg 200 An attempt to allocate %d bytes has failed.

$msg 300 Required option -%s not specified.

Use single quotation marks (' ')around user-supplied strings that are referred to as
tokens. Examples of such strings include file names and user IDs. The use of
quotation marks highlights the literal information specific to the situation and
reduces the possibility of variables being interpreted with a literal meaning. The user

SG-2121 9.0 Cray Research, Inc. - Private 43
Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

44

ID in the first example in the preceding messages is in quotation marks because it is
a token that is read from the user’s environment. The quotation marks help the user
to understand that the value should not be confused with standard text.

Not all variables should be enclosed in single quotation marks. Numbers do not need
to be quoted (see the second example in the preceding messages). Strings that are to
be interpreted literally by the user do not need to be in quotation marks. For

example, the option in the third example message does not require quotation marks.

In situations where single quotation marks are used, it is necessary to precede the
leading quotation mark with the troff string \& . This code protects the string from
interpretation by troff as the beginning of a comment.

In the explanation of messages that contain variables, it is not possible to show the
string or value that users see when they receive the message from the program. That
value is unknown until the error occurs.

When you mark up the explanation, choose a word that indicates the nature of the
information to be supplied at run time. Put that word in the message in place of the
C language variable designator. Knowing the type of the variable will help you to
choose an appropriate variable name. The most common variable designators and
their variable types are listed in the following table:

Table 3. C language variable designators

Character Type

%dor %i Signed decimal

%f Floating point

%0 Unsigned octal

%s String (character pointer)
%X Unsigned hexadecimal

Place the variable name in italic font to indicate that it does not appear literally in
the message. Use the *V string to change to italic font (instead of the \fl string).
The *V string improves the spacing between the Courier and the italic words.

For example, the markup of the three messages shown previously and their
explanations might appear as follows:

$msg 100 A keep file is not present for \&'%s'.

$nexp 100
A keep file is not present for *Vuser\fC.
PP

Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide

Publishing Message Explanations [4]

The *Cdmlim\fR*(11 command did not find

a file

named *C.keep\fR in

the home directory of the specified user. To exempt files from
migration, you must create a file named *C.keep\fR in your home
directory. It should contain the names of the files that you wish
to exempt from migration. The file names in this file may contain
standard wildcard characters.

.ME

$msg 200 An attempt to allocate %d bytes has failed.

$nexp 200

An attempt to allocate *VnumbenfC bytes has failed.

PP

The command was unable to allocate additional memory. This message

indicates that your run-time memory allocation is too small to
process the command. Your system support staff may be able to
increase your run-time memory limit.

.ME

$msg 300 Required option -%s not specified.

$nexp 300

Required option -*Voption\fC not specified.

PP

The *C-t \fR and *C-\fR options to the *Cdmdjournal\fR command
are required. See the man page for a complete description of the

options to the command.

.ME

*Cdmdjournal\fR

4.4 Header and trailer files

Header and trailer files contain macros that are needed for the printed version of the
messages, but not for the online version. Because no place exists for these macros in
the message text file, they are placed in two special files. The first file is a header file

that contains the macros and text that must be processed by troff

before processing

the text of the explanations. The second file is a trailer file that contains a single

macro to end the 2-column formatting.

4.4.1 Header file

The header file must contain the following macros and text:

SG-2121 9.0 Cray Research, Inc. - Private

Draft

45

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

Item Description

.MT macro Specifies the title of the manual in which the messages are
published. The manual title is printed as the inner page
header.

.MN macro Specifies the manual number of the manual in which the

message are published. The manual number is printed as
the inner page footer.

.CF macro Specifies the text that you want to have appear as the
center page footer.

.GC macro Specifies the group code for your messages. The argument
to this macro appears in the message ID bar as part of the
message identifier.

.ST macro Specifies the title of the section you are formatting. The
section title appears in large type at the beginning of the
section and as the outer page header on all succeeding
pages of the section.

Intro text Text that explains the content of the section. This text
usually includes the following information:

* List of the programs, commands, or routines from which
the messages documented in the section are issued.

¢ Significance of the message numbers. For example, if
three commands share a catalog, a block of numbers
may be assigned to each of the three commands. Thus,
messages 1 through 999 are for command 1, messages
1000 through 1999 are for command 2, messages 2000
through 2999 are for command 3. If your messages
numbers are divided in this or any other significant
way, describe the division in the introductory text.

* Sources of additional information about the product or
feature.

.2S macro Starts 2-column format. This macro must be the last macro
in the header file.

The following example shows the source markup of a message header file.

.MN "SG\-9999"

.MT "*u Message System Exmple Manual"

.CF "Cray Research, Inc."

.GC "dm"

ST "*(Cbdm\fR Messages"

This section documents all error messages issued by the data migration

46 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide

Publishing Message Explanations [4]

feature of UNICOS. The group code for
Each message is listed, along with
are arranged by message number,
PP

The message number helps to
issuing
.CH 12 "Range"
TL

1\-99

Data migration
TL

100\-199
*Cdmget\fR(1)
TL

200\-499
*Cdmput\fR(1)
TL

500\-999
*Cdmlim\fR(1)

TL

1000\-1299
*Cdmdalter\fR(8)
TL

1300\-1499
*Cdmdjournal\fR(8)
TL

1500\-1599
*Cdmdstat\fR(8)
\&.TL

1600\

Any data migration
.PP

The explanation that

indicate

"Message

source

daemon

command

command

command

command

command

command

command

accompanies

this feature
an extended
in ascending

the part
the error. The message numbers are assigned

each message describes

is *Cdm\fR.
explanation. The messages
order.

of data migration that is
as follows:

the error in greater

detail and suggests actions for solving the problem. The explanation may
refer you to documentation that discusses topics related to either the

problem or the solution. You can also refer to \IUNICOS System Administration\fR,
publication SG\-2113, for a description of the data migration feature, its
configuration, and its administration.

.2S

4.4.2 Trailer file

The trailer file must contain one 2E macro to end 2-column format.

SG-2121 9.0

Cray Research, Inc. - Private a7

Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

4.5 Extraction and printing

When you have a properly marked-up message text file, you are ready to extract the
explanations from it and print the resulting message section.

The following subsections provide detailed steps that you must perform to produce a
hard-copy message section.

45.1 Extracting the explanations

The message text file contains messages and explanations. Because the
documentation that is being produced includes only the explanations, a process is
required for extracting the explanations from the message text file. Use the catxt (1)
utility to perform this extraction.

The syntax of the catxt utility is as follows:

catxt -n outfile [-S[-P cpp_opts]] infile

For example, if you have a marked-up message text file called dm.msg, you could
extract the explanations from that file and put them in a file called dm.nexp , using
the following command.:

catxt -n dm.nexp dm.msg
It is a convention to use the suffix nexp for explanation files.

If the message text file, dm.msg in this example, contains symbolic message names,
use the -s option as shown in the following command to call cpp (1) to map those
names to numbers.

catxt -n dm.nexp -s dm.msg
For more information about using catxt , see the catxt man page.

In addition to extracting the explanations, the catxt utility also replaces the $nexp
tag with a .MS macro (message start). While it is performing this replacement, catxt
checks that every .MS macro has a corresponding .ME macro. This pairing is required
to ensure proper printing.

If catxt finds a missing .ME macro, it issues a warning message. The following is an
example of the warning message:

**\WARNING: nexp number 38 does not
have an ending ".ME"***

48 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Publishing Message Explanations [4]

If you receive this message, add a .ME macro to the indicated message in the input
file and rerun catxt . Do not make the correction in the output file. All corrections
must be made to the message text file so that they are propagated to the online
version of the messages, as well as to the hard copy.

4.5.2 Printing the explanations

When you have created the following files, you are ready to print your hard-copy
message section:

¢ Header file (see Section 4.4.1, page 45, for the recommended content of this file)

e Explanation file (see Section 4.5.1, page 48, for a discussion of the utility to create
this file)

e Trailer file (see Section 4.4.2, page 47, for the recommended content of this file)

Use the troff (1) text formatting utility to print these files as a hard-copy message
section. The troff utility on Cray Research systems is a device-independent text
processor (ditroff) that produces output suitable for a PostScript laser printer.

Use the -msg option of the troff utility to use the message macro definitions (see
msg(7D)) during text formatting. The troff output can be printed using the Ilpr (1B)
utility with the -n option. The -n option identifies ditroff as the source of the
input to Ipr .

For example, to print the data migration messages from the dm.head header file,
dm.nexp explanation file, and dm.trail trailer file, use the following command.:

troff -msg dm.head dm.nexp dm.trail | Ipr -n

Appendix B, page 65, contains an example of the data migration message section that
is printed as the result of these commands.

4.6 Testing online explanations

To test that a message text file produces a working explanation catalog, perform the
following steps:

1. Build the explanation catalog from the message text file by using the -c and -e
options of the caterr (1) utility. (In addition, use the -s option if your message
text file uses symbolic message names as described in Section 2.2.1.1, page 7.)

SG-2121 9.0 Cray Research, Inc. - Private 49
Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

2. Set your NLSPATHenvironment variable to point to the directory that contains
the explanation catalog that you created in the first step.

3. View the explanations in the catalog by using the explain (1) utility.

The following subsections describe these three steps in greater detail.

4.6.1 Building the explanation catalog

The online explanations that a user sees are drawn from a file called the explanation
catalog, which is a binary file built from the message text file. The explanation
catalog is in a form that can be read by the explain (1) utility, which users use to
retrieve an online explanation.

The caterr utility builds the explanation catalog from the message text file. Use the
-e and -c options of caterr to build an explanation catalog. The -e option specifies
that you are building an explanation catalog and not a message catalog. The -c
option lets you specify the name of the explanation catalog to be built.

In addition, use the -s option if the message text file contains symbolic message
names. The -s option calls the C preprocessor (cpp (1)). The cpp utility, using the
include file referenced in the message text file, replaces the symbolic names in the file
with the appropriate numbers. (For more information on using symbolic names, see
Section 2.2.1.1, page 7.)

The syntax of the caterr utility with these options is as follows:

caterr [-s] -e -Cc catfile infile

The catfile argument specifies the name of the catalog to be output, and infile
specifies the name of the message text file to be read as input.

The following example builds an explanation catalog named dm.exp from the
message text file dm.msg:

caterr -e -c dm.exp dm.msg

The following example builds an explanation catalog named dm.exp from the
message text file dm.msg, which contains symbolic message names:

caterr -s -e -c dm.exp dm.msg

50 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide Publishing Message Explanations [4]

4.6.2 Setting the NLSPATH variable

After you have created an explanation catalog, you must tell UNICOS the location of
the catalog by setting the NLSPATHenvironment variable. This variable gives the
search path that the explain utility (used in the next step) uses to find an
explanation catalog.

The NLSPATHenvironment variable must be of a very specific format to work
correctly. The file name (last part of the path name after the final slash) must be
(literally) %N.cat . (When UNICOS parses this string, the %Nis replaced by the group
code of the message.)

For example, to test explanations in a catalog named dm.exp in the
/home/messages/dm directory, set the NLSPATHvariable to the following value:

/home/messages/dm/%N.cat

In the standard shell, the following statements set NLSPATHto include this string and
export the value of NLSPATH

NLSPATH=/home/messages/dm/%N.cat
export NLSPATH

In the C shell, the following statement sets NLSPATHto include this string:
setenv NLSPATH /home/messages/dm/%N.cat

The explain utility reads the NLSPATHvariable to determine the name of the
message catalog for the file (of the form group.cat). It then substitutes the .exp
suffix for the .cat suffix in the message catalog name to determine the explanation
catalog name. The utility tries to open the file to retrieve the explanation.

4.6.3 Viewing the explanations

Verify that the explanations are displayed correctly for the user by viewing the
explanations through the explain utility. Issue the explain utility once for each
explanation you want to view.

For example, to view the explanation for the message with the ID dm-100, issue one
of the following commands:

explain ~ dm100

explain dm-100

The explain utility retrieves the explanation and displays it. The following example
illustrates how such a session might appear on your screen.

SG-2121 9.0 Cray Research, Inc. - Private 51
Draft

Publishing Message Explanations [4] UNICOS® Message System Programmer’s Guide

% expl ai n dmL0O
A keep file is not present for ' user.

The dmlim(1) command did not find a file named
.keep in the home directory of the specified user.

To exempt files from migration, you must create a
fle named .keep in your home directory. It should
contain the names of the files that you wish to

exempt from migration. The file names in this file

may contain standard wildcard characters.

Issue successive explain commands until you have tested at least a representative
sample of the explanations in the file. Always test the first explanation and the last
explanation.

Check the output for correct line breaks, highlighting and underlining (if your
terminal is enabled to display them), and completeness of the text (no text missing).

If you find a problem with the catalog, return to the message text file, edit it to
eliminate the problem, regenerate the explanation catalog, and test the explanation
again. Remember that any change to the message text file is propagated to both the
online explanation catalog and the hard-copy message section. After you make a
change, check both outputs. Repeat this process until you are satisfied that the
message text file is producing usable online text and hard copy.

4.7 Troubleshooting

Table 4 lists common problems that you might encounter when working with the
message macros and procedures. The cause of these problems is identified.

52 Cray Research, Inc. - Private SG-2121 9.0
Draft

UNICOS® Message System Programmer’s Guide

Publishing Message Explanations [4]

SG-2121 9.0

Table 4. Common formatting problems and their solutions

Problem

Cause

Output is formatted incorrectly;
only one word appears on each
line.

Only part of the copy of the
message that appears in the
explanation is in Courier font;
the remainder is in New
Century Schoolbook.

The message font changes from
Courier to New Century
Schoolbook, a blank line is
inserted, and the point size gets
smaller, even though no font
code appears in the source file.

A message or explanation is
truncated where a variable
occurs in the text. Some portion
of the source text is missing in
the output.

No header bar is appearing on
the first page of the section and
many messages are being
continued over columns and

pages.

Verify that there is a .2S macro in the
group.head file. The absence of this macro
will cause this problem.

You have used a \fR font instead of a \fC
font after changing fonts for a variable in
the copy of the message. Change the \fR
font code to \fC .

The copy of the message exceeds one logical
line. Either join the lines into one or use a
continuation character (\) at the end of each
physical line except the last one.

Check for an unprotected single quotation
(). Single quotation marks that appear
after a space must be preceded by the
characters backslash ampersand (\&) to
protect them from interpretation by troff
as the beginning of a comment.

Either you do not have a header file or your
header file does not contain a .ST macro.
Create a header file and include a .ST

macro or add a .ST macro to your existing
header file.

Cray Research, Inc. - Private

Draft

53

