Network File System (NFS) [3]

SG-2304 10.0.0.2

The UNICOS network file system (UNICOS NFS) is a Cray Research software
product that lets users share directories and files across a network of machines.
Users of UNICOS NEFS can use standard UNICOS I/0O system calls, commands,
and permission controls to access files from any file system. Similarly, other
users of NFS can make use of UNICOS file systems from anywhere in the local
network environment. UNICOS NFS can be used in diverse administrative
environments through the use of the ID mapping facility. This facility is on by
default in the UNICOS kernel. The user interface to UNICOS NFS is
transparent.

UNICOS NFS uses a server/client system to provide access to files on the
network. A server is any machine that allows a part of its local disk space to be
exported (made available for mounting on a host machine). A client is any
machine that makes a request for an exported file system. When a user of
UNICOS issues an I/O call (such as read (2), write (2), or create (2)) for a file
that resides on a file system mounted by NFS, the call is transmitted to the
server machine. When the server receives the request, it performs the indicated
operation. For read or write requests, the indicated data is returned to the client
or written to disk, respectively. This processing is transparent to users, and it
appears that the file resides on a disk drive that is local to the UNICOS
operating system.

The following sections explain various aspects of UNICOS NEFS:

® Section 3.1, page 244, provides system administrators with necessary
information on activating and configuring NFS, setting up servers and
clients, ID mapping, and security.

® Section 3.2, page 283, describes some common problems facing system
administrators and suggests solutions.

® Section 3.3, page 297, describes the test suite that provides for early
detection of UNICOS NFS problems.

e Section 3.4, page 303, describes factors that affect NFS performance, and
methods for obtaining performance figures.

243

UNICOS® Networking Facilities Administrator's Guide

3.1 Administering UNICOS NFS

3.1.1 Activ ating NFS

UNICOS NFS supports both NFS server and client capabilities. UNICOS NFS
servers allow remote systems to mount local UNICOS file systems or directories;
UNICOS NFS clients allow remote file systems or directories to be mounted
locally. Users can then access and manipulate files in the usual way, subject to
usual permission checks. The fact that parts of a file system might reside on
various machines around the network is transparent to users. As system
administrator, you control the use of these file systems. The following sections
provide the information you need to activate, configure, and maintain NFS.

If you are upgrading from UNICOS 9.0 and using the conversion utility, the
NFS feature is on or off, depending on whether the feature was turned on or off
in your UNICOS 9.0 configuration. Otherwise, the NFS feature is off by default.

If you are using the UNICOS Installation Configuration Menu System (ICMS)
for your configuration, consult the Configure ~ System -> Major software
configuration menu for the menu item that turns on the NFS feature.

If you are not using the UNICOS ICMS for your configuration, you can turn on
the NFS feature by modifying the /etc/config/config.mh file. Change the
line that reads

#define CONFIG_NFSO
to read
#define CONFIG NFS 1

After you make this change, follow the rest of the system build procedures
outlined in the UNICOS System Configuration Using ICMS, publication SG-2412.

3.1.2 Choosing a Configuration Method

The following sections describe three methods you can use to configure
UNICOS NFS. Details of NFS server and client configuration are described in
Section 3.1.3, page 246, and Section 3.1.4, page 249, respectively. Details of ID
map configuration are described in Section 3.1.6, page 254.

3.1.2.1 UNICOS ICMS Configuration Method

244

You can use the UNICOS ICMS to configure NFS servers and clients.

SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

Note: The UNICOS ICMS does not support configuration of NFS ID
mapping. Refer to Section 3.1.6, page 254, for details of ID mapping.

As you use the UNICOS ICMS, the scripts and files that the UNICOS system
supplies are updated for you.

Following is a description of the submenus that you can use to configure an
NFS server:

Configure system -> Network configuration -> NFS
configuration

This submenu lets you configure your system as an NFS server and create
an /etc/exports file.

Configure system -> System daemons configuration ->
System daemons table

This submenu configures daemons that are required for an NFS server by

updating the /etc/config/daemons file.
Following is a description of the submenus that you can use to configure an
NFS client:
e Configure system -> Network configuration -> NFS
configuration

This submenu lets you configure your system as an NFS client and create
automount maps.

Configure system -> File System (fstab) Configuration ->
NFS file systems

This submenu lets you configure the /etc/fstab file with a list of static
NFS mounts. The /etc/mountnfs file that is called within the
letc/nfsstart script can mount these NFS file systems or directories at
system startup.

Configure system -> System daemons configuration

This submenu lets you configure daemons required for an NFS client by
updating the /etc/config/daemons file.

The help menus provide further assistance for using the UNICOS ICMS to
configure NFS.

245

UNICOS® Networking Facilities Administrator's Guide

3.1.2.2 Manual Configuration Method

You can manually configure NFS by using the scripts and files that are supplied
with the UNICOS operating system. The /etc/nfsstart script, which is
called from the /etc/netstart script, is the script that allows manual
configuration. After you have activated UNICOS NEFS (see Section 3.1.1, page
244, for details of activating NFS), the /etc/nfsstart script performs the
following actions:

1. Executes the /etc/uidmaps/Set.domains script, which either enables or
disables ID mapping. See Section 3.1.6, page 254, for details on creating this
and other ID mapping scripts.

2. Calls the /etc/sdaemon script to start the necessary NFS daemons in the
/etc/config/daemons file. You must manually update this file. All
input required for this file is described in Section 3.1.3, page 246, and
Section 3.1.4, page 249.

3. Mounts selected remote NFS file systems or directories by calling the
/etc/mountnfs script. You must manually update this script. All input
required for this script is described in Section 3.1.4, page 249.

3.1.2.3 Local Script and File Configuration

You can configure UNICOS NEFS by using local scripts and files. Details of this
method of configuration are given in Section 3.1.3, page 246, Section 3.1.4, page
249, and Section 3.1.6, page 254.

3.1.3 Setting up a UNICOS NFS Server

246

A UNICOS NFS server is a machine that can export its own file systems and
directories to another machine (an NFS client). Following are the steps required
to configure your system as an NFS server:

1. Export file systems and directories

As super user, enter the mount-point path name of the file systems and
directory hierarchies that you want to export in the /etc/exports file.
(See exports (5) for the file format details.)

For example, to export /usr/src/mybin to machine7 and machine9 ,
and to export /usr/man to all machines, add the following lines to the
[etc/exports file (or use the UNICOS ICMS):

SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

Jusr/src/mybin -access=machine7:machine9
/usr/man

As shown, if no machines are specified for a file system, the file system is
exported globally (that is, any machine can mount it).

The exportfs (8) command activates export entries in the /etc/exports
files. By default, the exportfs ~ command reads the /etc/exports file
and puts an entry for each valid export in the /etc/xtab file. The
mountd (8) command reads the /etc/xtab file to determine access rights.

The exportfs ~ command is usually run during system startup from an
entry within the NFS group of the /etc/config/daemons file. However,
if a change is made to the /etc/exports file while the system is running,
the exportfs ~ command must be executed to make the changes effective.
For example, the following command activates or changes a single export in
the /etc/exports file:

exportfs pathname

The pathname variable specifies the full path name of the file system or
directory to be exported. Any options associated with this export are read
from the /etc/exports file.

The /etc/exports file must have unique entries for each file system; if
entries are repeated, only the last entry that is read is valid. For example,
consider the following commands:

/tmp orion, stardust
/tmp starship

In this example, only starship has access to /tmp .

. Set up NFS server daemons

The following daemons are required for an NFES server (this list assumes
that the /etc/portmap daemon for RPC was already started through the

TCP group in the /etc/config/daemons file):
Daemon Description
mountd The NFS mount daemon handles incoming

NFS mount requests from NFS clients. When
the NFS mount request is received, mountd
reads the /etc/xtab file to determine which
file systems and directories are available to

247

UNICOS® Networking Facilities Administrator's Guide

nfsd

cnfsd

pcnfsd

248

export and to determine the NFS client
systems to which these files can be exported
(see the preceding step regarding

letc/xtab). The mountd daemon is usually
run during system startup from an entry in
the NFS group of the

/etc/config/daemons file.

The NFS daemons handle NFS client file
access requests after an NFS file system is
mounted successfully. Typically, four nfsd
daemons are run; these daemons are usually
started during system startup from an entry
within the NFS group of the
/etc/config/daemons file, and it has no
options. Following is a sample command that
shows a request for four processes:

letc/nfsd 4

The cnfsd (Cray Research nfsd) daemon
starts NFS server daemons, which use a
modified NFS protocol that allows protocol
extensions and eliminates most eXternal Data
Representation (XDR) processing. One
advantage of using cnfsd is that it allows
Cray Research systems to communicate with
other Cray Research systems with 64-bit file
offsets; nfsd uses the NFS protocol standard
of 32-bit file offsets. cnfsd does not provide
a significant performance enhancement over
nfsd ; cnfsd is intended as an NFS
functionality enhancement between Cray
Research systems.

The cnfsd daemon is intended for use only
between Cray Research systems. For
additional NFS communication to systems
that are not Cray Research systems, nfsd
must also be started in conjunction with
cnfsd .

This daemon is required on an NFS server if
any NFS clients are personal computers
(PCs). Because PC users do not have user

SG-2304 10.0.0.2

Network File System (NFS) [3]

IDs, it is necessary to perform special user
authentication when an NFS request comes
from them. The pcnfsd daemon runs
continuously on an NFS server system to
service PC NFS requests for user
authentication and print spooling.

kerbd The kerbd daemon is required if AUTH_KERB
NEFS is configured. The daemon handles
requests from the kernel NFS and sends
requests to and from the Kerberos key
distribution center (KDC). kerbd also maps
Kerberos user names into local user and
group IDs.

Note: Remote Procedure Call (RPC) server applications (for example,
mountd and nfsd), communicate with portmapper on the last local
Internet interface that is up and running (usually loopback). With UNICOS
security, the application must be allowed to connect with a socket on this
interface. This is done by adding an explicit NAL entry in the spnet.conf
file for the corresponding host name or a default entry. You can use the
netstat -iv command to determine the IP address of the last up and
running interface connection.

3.1.4 Setting up a UNICOS NFS Client

A UNICOS NFS client is a machine that can mount remote file systems and
directories from another machine (an NFS server). To configure your system as
an NFS client, the system must gain access to an exported file system and files
must be set up to perform desired mounts during system startup. Automounter
maps can also be set up for dynamic mounting. The following sections describe
these procedures.

3.1.4.1 Mounting a Remote File System

SG-2304 10.0.0.2

To gain access to an exported file system, an NFS client simply mounts the file
system as if it were located on a local disk. By using the mount (8) command,
you can mount any exported file system or directory on your machine if you
can reach its NFS server over the network and if your machine is included in
the /etc/exports list for that file system, or the file system is exported
globally. Using the automount (8) command, you can cause specified file
systems to be automatically and transparently mounted whenever a file or

249

UNICOS® Networking Facilities Administrator's Guide

250

directory within that file system is opened (see Section 3.1.4.2, page 251, for
more details on automatic mounting).

After a file system is mounted, it is accessible to users as if it were a local
subdirectory.

To mount a file system or directory from an NFS server, become the super user
or activate one of the administrative categories with UNICOS security, and type
the mount (8) command with the desired options. For example, to mount the
man pages from remote machine elvis on the local directory /usr/man , you
can type the following;:

mount -t NFS -0 bg,soft,rsize=8192,wsize=8192,nreadah=2

elvis:/usr/pubs/man /usr/man

The bg argument indicates that if the NFS mount fails, the NFS mount request
should be tried repeatedly in the background. Without either the bg or the
soft arguments, failed NFS mount requests are retried up to the maximum
number of retries specified (or set by default) on the mount command; these
retries occur in the foreground.

The soft argument indicates that if the server does not respond to either an
NFS mount request or an NFS request to an already mounted file system, the
requested operation fails with an error. This argument prevents processes on
the client from hanging while waiting for the NFS server to respond. It is
strongly recommended that all NFS mounts from a Cray Research system be
soft mounts because hard mounts, indicated by the hard argument of the
mount command, continue to try either mounting the NFS file system or
accessing that mounted system in the foreground until the NFS server responds
to the NFS request. This can cause processes and especially system startups to
hang until the NFS server responds. The intr argument can be used with the
hard argument at mount time, which lets you interrupt a process that is hung
while waiting for the NFS server to respond.

The rsize and wsize arguments set the read and write buffer sizes,
respectively, to the specified number of bytes. The default value for both rsize
and wsize is 8192 (8 Kbytes). This value is adequate for most NFS servers.
However, when the server is also a Cray Research system running the UNICOS
system, setting rsize and wsize to 32768 improves NFS performance. The
nreadah argument sets the number of rsize asynchronous read-aheads. The
default value of this argument is 1. See “Section 3.4, page 303, for more details
on rsize and wsize .

SG-2304 10.0.0.2

Network File System (NFS) [3]

titan:/usr2
venus:/usr/man

mount -t NFS -0
mount -t NFS -0

At system startup, you can mount frequently used file systems and directories
by placing mount entries for them in the /etc/fstab file (see fstab (5)) and
invoking the /etc/mountnfs script from within /etc/nfsstart . The
letc/nfsstart script is called from the /etc/netstart script. The
/etc/mountnfs file could contain, for example, the following lines:

mount /usr2 &
mount /usr/man &

The corresponding entries for the NFS file systems in the /etc/fstab file
might be as follows:

lusr2 NFS bg,soft,rw,rsize=8192,wsize=8192,nosuid

fusr/man NFS soft,nosuid
If no fstab entry exists, the /etc/mountnfs file could contain the following
lines:

bg,soft,rw,rsize=8192,wsize=8192,nosuid titan:/usr2 fusr2z &

soft,nosuid venus:/usr/man fusr/man &

Note: Performing NFS mounts in the background (this is done by starting
letc/nfsstart in the background or by using the & shown in the
preceding example) ensures that the remainder of system startup completes
in a timely manner, even if the remote NFS server systems do not respond to
the mount requests.

The biod client daemon handles asynchronous block I/O. The biod daemon
attempts to collect contiguous data from system buffers and write them to the
network in wsize length sections.

On Cray Research systems, the biod (8) daemon enables asynchronous
write-behind and read-ahead processes that can significantly improve read and
write performance. The biod daemon is usually run during system startup
from an entry within the NFS group of the /etc/config/daemons file, and it
has no options. For optimal performance, the number of biod daemons should
never exceed the total number of static client handles. Following is a sample
command that shows a request for four processes:

/etc/biod 4

3.1.4.2 Automount Facility

SG-2304 10.0.0.2

Note: The use of the automount facility is not supported with the Cray
ML-Safe configuration of the UNICOS system.

251

UNICOS® Networking Facilities Administrator's Guide

The automount facility automatically and transparently mounts and unmounts
an NFS file system as it becomes necessary. When a user on an NFS client
machine running the automount facility enters a command that accesses a file
or directory that belongs to a remote file system, the remote file system is
automatically mounted. When the automatically mounted remote file system
has not been accessed within a period of time, the file system is unmounted
automatically.

The automount (8) command does not consult the /etc/fstab file for a list of
remote file systems or directories to mount, but instead, has its own set of
configuration files known as maps. Therefore, to enable the automount facility,
you must first create map files. See automount for the format of these files and
a description of the command.

The automount daemon is required if the NFS client will be running the
automounter. The automount command is usually run during system startup
from an entry within the NFS group of the /etc/config/daemons file.
Following is a sample automount command:

/etc/automount -m -f /etc/auto/auto.master

This is a typical automount command because the UNICOS system requires
the -m option and the use of an automount master file.

Note: Any automount options listed within the indirect map entries override
all options listed in the master map for that entry. If you are using
automount when running ID mapping on an NFS client, you must define
loopback or localhost as an ID mapping domain.

3.1.4.3 Protocol between Cray Research Systems

252

When processing is between two Cray Research systems, you can use a
modified NFS protocol (which the cnfsd (8) daemon uses) to reduce the CPU
time required to process an NFS request. The removal of XDR processing
makes this reduction possible. You can access much larger files across NFS with
this protocol than with the standard NFS protocol because all file size and file
offset fields within the modified protocol are a full 64 bits. Another advantage
of using cnfsd is that it uses 32 Kbytes read and write sizes; nfsd defaults to 8
Kbytes. You can use the modified NFS protocol between Cray Research systems
by specifying the -0 option and cray operand with the mount (8) command on
the Cray Research NFS client when mounting a Cray Research NFS server.
Also, you must start at least one cnfsd process on the Cray Research NFS
server. See mount (8) and cnfsd (see nfsd (8)) for more information.

SG-2304 10.0.0.2

Network File System (NFS) [3]

3.1.5 Typical UNICOS NFS Layout

The following output from two mount (8) commands demonstrates the layout of
UNICOS NFS in a typical environment, showing both the Cray Research client
and a client that is not a Cray Research client. The first example is from a Cray
Research system called cray2 . It shows the local file systems and the NFS

mounted file system /nfs/titan

(exported from server titan). The

output

from the mount operation is followed by a listing of the mounted file system.

Example 1: cray2 as client, titan as server, as seen from the cray2 system:

cray2% /et c/ nount

/ on /dev/dsk/root read/write on Mon Apr 4 06:55:07 1988

/usr on /dev/dsk/usr read/write on Mon Apr 4 06:55:35 1988

/u on /dev/dsk/u read/write on Mon Apr 4 06:55:35 1988

Infs/titan on titan:/usr/titan read/write,rsize=8192,wsize=8192 on Mon

Apr 4 06:55:45 1988

cray2% |s -1 /nfs/titan

total 39

drwxr-x--- 22 btk network 1536 Mar 31 10:16 btk

drwxr-xr-x 9 common cray? 512 Feb 1 08:32 X

drwxr-xr-x 37 mer netga 2560 Mar 31 15:50 mer

drwxr-xr-x 5 prb cray?2 3072 Apr 1 2251 prb

drwxr-xr-x 23 wtg appl 1024 Mar 23 13:32 wtg

Example 2: titan as client, cray2 as server, as seen from the titan system:

titan% /et c/ nount
/devixy0a on / type 4.2 (rw)
/dev/ixylc on /Jusr.MC68020/titan type 4.2 (rw)
cray2:/u on /usr/cray2/u type nfs (rw,soft,bg)
titan% |s -1g /usr/cray2/u
total 32
drwxr-x--x 26 btk secure 1715 Jun 10 1984 btk
drwXxrwxr-x 59 common 0s 1089 Jan 7 1987 X
drwxr-xr-x 41 mer netga 3134 Apr 13 16:45 mer
drwxr-xr-x 12 pfh starter 557 Jun 2 1986 pfh
drwxr-x--- 2 slevy msc 512 Feb 18 2:11 slevy
drwxr-xr-x 35 wtg network 544 Apr 4 10:06 wtg

SG-2304 10.0.0.2

253

UNICOS® Networking Facilities Administrator's Guide

3.1.6 ID Mapping

254

UNICOS NFS includes an ID mapping facility that allows the use of NFS in
diverse administrative environments. Traditional NFS environments make use
of the Sun Microsystems network information service (NIS) distributed look-up
service to provide for various network management functions. The user space
that NIS provides is flat; that is, a given ID number always refers to the same
user or group. This flat user space is necessary because NFS transmits user and
group identifiers in binary form, and it provides no translation services for
these values.

Cray Research systems, however, are often shared by many different
administrative environments, making the creation of a single administrative
space for user and group identification technically or organizationally difficult,
if not impossible. A given ID number can refer to different users or groups in
different administrative environments. To meet the needs of these
environments, ID mapping was developed.

ID maps contain an equivalent remote ID for each local ID in a map. There are
two types of ID maps: user ID maps and group ID maps. For every user ID
map, a corresponding group ID map exists.

ID mapping domains associate Internet addresses with a particular pair of user
and group ID maps. When an NFS request is sent to or received from an
address within an ID mapping domain, the pair of ID maps associated with
that ID mapping domain can be used to replace the IDs in the request.

ID mapping can also be used to control access to the local Cray Research
system through NFS by allowing requests only from certain Internet addresses,
or by restricting permissions for certain users at these addresses.

Figure 17 is a diagram of the ID mapping function as it relates to UNICOS NFS
system interfaces.

SG-2304 10.0.0.2

Network File System (NFS) [3]

Client Server

System
call IIF

File system File system
switch switch

UNICOS Network
file system

UNICOS
file system

Network

file system file system

RPC/XDR L RPC/XDR

UDP/IP

Network

UDP/IP

Network

. .
—— > ID mapping location 210209

Figure 17. System interfaces and ID mapping

3.1.6.1 Disabling ID Mapping

ID mapping in the UNICOS kernel is on by default. The nfsidmap (8)
command disables the use of ID mapping at run time. NFS ID mapping is not

SG-2304 10.0.0.2 255

UNICOS® Networking Facilities Administrator's Guide

required when the Cray Research system and all other systems using NFS use
the same user ID space.

To disable NFS ID mapping, create an executable
letc/uidmaps/Set.domains script that contains the following line:

/etc/uidmaps/nfsidmap -d

3.1.6.2 Configuring and Using ID Mapping

256

Configuring and using NFS ID mapping is a site-dependent function. However,
you should always use the following basic steps to configure NFS ID mapping:

1. Obtain the passwd (5) and group (5) files from each remote administrative
environment for which IDs will be mapped.

2. Use the passwd and group files from the local Cray Research system,
along with those obtained from the remote systems, to create the user and
group ID map files between the remote domains and the local Cray
Research system.

3. Load the ID maps into the kernel, and define the ID mapping domains.

If a remote administrative environment is the same as that on the local Cray
Research machine, the creation of an ID map for use between these machines
(steps 1 and 2) is not necessary unless you are running with UNICOS security.
With UNICOS security, ID maps are required for all remote environments.

The /etc/uidmaps directory exists to store ID mapping commands and
associated files for ID mapping. In an environment without UNICOS security,
the password and group files can be collected into this directory and processed.
This directory also contains the ID mapping commands, the administrative shell
scripts, and files that contain the constructed ID maps that will be loaded into
the kernel. In a UNICOS security environment, the /etc/uidmaps directory is
created with a syshigh label to protect the commands and maps after they are
created. A directory with a syshigh label is unsuitable for remote copies from
the network, so a separate directory must be created for collecting password
and group files from remote systems.

There are two /etc/uidmaps subdirectories. The /etc/uidmaps/users

directory should contain all passwd files from the remote administrative
domains that are being mapped, and any exceptions files (explained in
"Exceptions file," page Section 3.1.6.4.4, page 261). The

/etc/uidmaps/groups directory should contain all group files from the
remote administrative domains that are being mapped, and any exceptions files.

SG-2304 10.0.0.2

Network File System (NFS) [3]

3.1.6.3 Network Description Example

SG-2304 10.0.0.2

The example used throughout this section shows how to configure and use the
UNICOS NFS ID mapping facility. The procedures (shell scripts) shown can be
used on all Cray Research machines in the example. Although the sequence of
the commands shown is common to any Cray Research system using ID
mapping, the specific contents of the procedures might vary according to site
standards.

Assume the following network consisting of three Cray Research machines
configured to perform various types of ID mapping, a single machine (not a
Cray Research machine) with its own administrative domain, and several
workstation networks using different NIS domains:

Name Description
groucho A Cray Research machine with its own

administrative domain.

chico A Cray Research machine with its own
administrative domain.

harpo A Cray Research machine with its own
administrative domain.

zeppo A different type of machine with its own
administrative domain; that is, the assigning of
login names and group names (and binary values
associated with those names) occurs separately
from those operations on other machines on the
network. This machine is also running a version
of UNIX, rather than another operating system.

nfl A network of workstations that share a single NIS
domain for both the /etc/passwd and
/etc/group files. The name nfl was chosen
because nfl is a fileserver that is the NIS master
for the password and group NIS databases.

disney A network of workstations similar to nfl , but
with separate administration using NIS.

Each machine name is the host name of a representative machine for its
administrative domain. It is also the name that is chosen for each ID mapping
domain.

257

UNICOS® Networking Facilities Administrator's Guide

3.1.6.4 Setup, Creation, and Maintenance of ID Map Files Example

User and group ID map files are built from the passwd and group files of the
local Cray Research system and of each remote administrative domain.
Mappings are created for each user or group on the Cray Research system that
matches a user or group on a remote administrative domain. Each mapping is
placed in either a user ID map file or a group ID map file.

ID map files are built by using the nfsmerge (8) utility. The Get.domains and
Merge.domains scripts control the creation of user maps. These scripts, which
you must configure for local systems, correspond to steps 1 and 2 of

configuring ID mapping domains, as described in Section 3.1.6.2, page 256. For
these two steps, it is not necessary to run a kernel with ID mapping configured.

Note: You must manually supervise the running of Get.domains and
Merge.domains to ensure that they actually work, because the scripts
contain no error handling of their own. If they are run automatically and they
encounter errors, the resulting user ID maps might not be valid or secure.

3.1.6.4.1 ID Map File Setup

The Get.domains script copies passwd and group files from the local system
and from a representative of each remote administrative domain to the local
system. You are free to use any utilities or mechanisms to create these files.
Usually, rsh (1), rcp (1), or ftp (1B) is used to copy files from the remote
systems. (If rsh (1) or rcp (1) is used, remote execution from the local Cray
Research machine must be allowed on all remote machines.) If a remote
machine has an operating system other than UNIX or one of its derivatives, the
administrator of that machine must construct the equivalent passwd and

group files to enable the nfsmerge (8) utility to create an ID map file.

The following Get.domains script should be run whenever you are notified
that users or groups were added to any of the remote domains:

Note: If your site uses ID mapping, root (uid equals 0) must be contained
in the passwd (5) files to be used for the mapping.

%cat /etc/ui dmaps/ CGet. donmai ns

258 SG-2304 10.0.0.2

Network File System (NFS) [3]

#
Script

#

to collect
group files from

and sort password and
the various

This for loop collects
#

domains referenced.

information from non-NIS hosts

USERS=/etc/uidmaps/users
GROUPS=/etc/uidmaps/groups

for sv in groucho chico harpo zeppo

do
echo "Getting passwd from $sv"
remsh $sv cat /etc/passwd | sort -t +0 -1 -0 $USERS/passwd. $sv
echo "Getting group from $sv"

remsh $sv cat
done
#
#

do
echo "Getting

echo "Getting

done

/etc/group | sort -t +0 -1 -o $GROUPS/group.$sv

This loop collects
for yp in nfl disney

passwd from $yp"

passwd | sort -t +0 -1 -0 $USERS/passwd.$yp
group from $yp"

group | sort -t +0 -1 -0 $GROUPS/group.$yp

remsh $yp ypcat

remsh $yp ypcat

information from NIS hosts

The created files are called passwd. domain and group . domain. (As with the
copying of files, this procedure requires that each remote machine allow remote
execution from the local Cray Research machine.) Each of these files is sorted
on the user or group name. It is not necessary to sort the passwd or group
files before making the ID maps; however, sorting generally speeds the creation
of the maps.

3.1.6.4.2 ID Map File Creation

SG-2304 10.0.0.2

The Merge.domains script creates the ID map files. This script calls the
nfsmerge (8) utility to create the ID map files between the local Cray Research
machine and the remote administrative domains. The nfsmerge (8) utility uses
the passwd and group files (usually a copy of each) from the local Cray
Research machine and from a remote administrative domain to create a

259

UNICOS® Networking Facilities Administrator's Guide

mapping between the numerical user and group ID values on the two domains,
using login and group names for comparison. It expects, for example, that the
login name grumpy on the local Cray Research machine and on the remote
administrative domain refers to the same user. The same is true for groups.

3.1.6.4.3 ID Map File Maintenance

Rerun Get.domains periodically to update the map files (see Section 3.1.6.4.1,
page 258). The following Merge.domains script should be run after any
update of the local copies of the passwd and group files by the Get.domains
script. It should also be run when an exceptions file changes (see Section
3.1.6.4.4, page 261).

Note: With UNICOS security, NFS ID maps contain mandatory access control
(MAC) configuration information. Because these maps contribute to
enforcement of MAC policy, you must protect these maps and the scripts that
produce them by labeling them with the syslow label. To safeguard against
security risks, the maps must also be manually inspected each time they are
created. This is because the maps are constructed from password and group
files that might not be protected by the syslow label when they are collected
from the other systems on the network. The method of inspection and the
degree to which that process can be automated is site-dependent.

To meet this labeling requirement, every script or program used in ID map
generation must have a syslow label; they must be executed at syslow , and
the resulting map files must have a syslow label. The NFS commands in the
letc/uidmaps directory and the directory itself are automatically installed
with this label. These commands are privileged to access the syslow -labeled
ID map files and to load the maps into the kernel. To use these commands, you
must have the secadm category active. The nfsmerge (8) utility, which creates
ID map files, labels them with its process-execution label. However, existing ID
map files are overwritten without their label being changed. Therefore, you
should remove all existing ID map files at the start of the ID map generation
process.

260 SG-2304 10.0.0.2

Network File System (NFS) [3]

% cat /etc/ui dmaps/ Mer ge. domai ns

Script to create

H H K H

HOST=‘hostname’

ID maps from the sorted passwd and group files

for each administrative domain.

USERS=/etc/uidmaps/users
GROUPS=/etc/uidmaps/groups
CMD=/etc/uidmaps/nfsmerge

for cray in groucho
do

chico harpo

for domain in groucho chico harpo zeppo nfl disney

do
if ‘test $cray != $domain' then
echo "Creating user and group ID maps between $cray and $domain”
| tee I $cray.$domain
$CMD -l $USERS/e. $cray.$domain -u u.$cray.$domain

-e $GROUP/e.$cray.$domain -g g.$cray.$domain
$USERS/passwd.$cray $USERS/passwd.$domain
$GROUPS/group.$cray $GROUPS/group.$domain >> |.$cray.domain

done
fi
done

3.1.6.4.4 Exceptions File

SG-2304 10.0.0.2

Users are likely to have the same login name wherever possible, even though
they might use several machines from different administrative environments.
However, if a user has a login name in the remote administrative environment
that differs from that on the local Cray Research machine, that user ID can be
mapped into an exceptions file. The same applies to group ID mapping.

The exceptions file should contain a list of name pairs, one pair per line, the
names separated by white space. The name pairs are of the following form:

local name equivalent_remote_name

For example, user Big Bad Wolf has the login name bbw on machine groucho
and the login name wolf in the disney NIS domain. The exceptions file on

261

UNICOS® Networking Facilities Administrator's Guide

3.1.6.4.5 Map Files

262

groucho could be called /etc/uidmaps/users/e.groucho.disney and
could contain the following entry:

bbw wolf

Use of this exceptions file when making the map file between groucho and the
disney NIS domain would ensure that the user ID mapping for Big Bad Wolf
is placed in the map file.

If equivalent_remote_name is not specified in the exceptions file, it is considered
the same as local_name. This feature is useful for restricting maps to use only
the names in the exceptions files (see the -E or -L option of the nfsmerge (8)
command for details).

An exceptions file can be used to prevent user names from being mapped. You
can use a name that is not present in the remote passwd or group file as an
exception for each name that is to be restricted. For example, assume that NFS
access to a Cray Research system is to be restricted for login names

maleficent and stepmother from the disney NIS domain. Entries for these
users could be put into the exceptions file, as follows:

maleficent BogusUser
stepmother BogusUser

The login name BogusUser is not a valid login name in the disney NIS
domain or on the Cray Research system. Therefore, user IDs for these users are
not mapped between groucho and any machines using the disney NIS
domain.

Examine the passwd and group files for exceptions before running the
Merge.domains script, which is written to expect an exceptions file for all
mappings. If an exceptions file is not present, but specified on the command
line, the Merge.domains script issues a warning message.

The previous Get.domains and Merge.domains example scripts assume that
ID map files are maintained in the /etc/uidmaps directory.

The Merge.domains script creates map files only between the local Cray
Research machine and all remote administrative domains. A log file, user ID
file, and group ID file are created each time nfsmerge is called in the script.
These files are placed in the /etc/uidmaps directory.

The log files contain a line identifying the type of ID map, the names of the
local and remote passwd files, and a list of all names for which IDs were

SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

mapped. The example script is written so that it is obvious from the name of
the map file which user or group ID map was created.

The files involved in mapping user IDs between local machine harpo and the
NIS domain nfl in the example are as follows:

File Description
/etc/uidmaps/users/passwd.harpo

A copy of the local passwd file sorted on login name
/etc/uidmaps/users/passwd.nfl

A copy of the remote passwd file sorted on login name
/etc/uidmaps/users/e.harpo.nfl

A list of login name exceptions between the administrative
domains harpo and nfl

/etc/uidmaps/Il.harpo.nfi

A log file from the creation of the user and group ID map
between harpo and the nfl NIS domain

/etc/uidmaps/u.harpo.nfl

The user ID map file between harpo and the nfl NIS domain

Similarly, the files involved in mapping group IDs between harpo and the nfl
NIS domain are as follows:

File Description
/etc/uidmaps/groups/group.harpo

A copy of the local group file sorted on group name

/etc/uidmaps/groups/group.nfl

A copy of the remote group file sorted on group name

/etc/uidmaps/groups/e.harpo.nfl

A list of group name exceptions between the administrative
domains harpo and nfl

263

UNICOS® Networking Facilities Administrator's Guide

/etc/uidmaps/l.harpo.nfs

A log file from the creation of the group ID map between
harpo and the nfl NIS domain

3.1.6.5 Kernel Map Manipulation Example

264

Each ID map is given a name to use for display purposes and to use with some
commands related to ID mapping. A separate map should be created for each
autonomously administered system. For example, a map might be created for
each stand-alone mainframe system on the network; one map would be
required for a network of workstations in a single NIS domain.

Mapping in the kernel is a two-step process. The first step involves determining
the particular ID mapping domain, given an Internet address. The second step
uses the ID mapping domain, the type of map operation (user or group), and
the direction (into or out of the Cray Research system) to determine the
effective user or group identifier. Both of these operations occur in the UNICOS
kernel with NFS configured and are based on information inserted into the
kernel by the nfsaddmap (8) and nfsaddhost (8) utilities. See the UNICOS
Administrator Commands Reference Manual, publication SR-2022, for a complete
description of these commands.

Hosts are grouped into ID mapping domains based on sets of address, mask
pairs on nfsaddhost calls. Addresses can be specified in standard form (for
example, 128.1.0.1), as network names (names are found in /etc/networks),
or as host names (from /etc/hosts). Default masks for hosts and standard
forms are all 1's; for network names, the default masks are 1’s covering the
network part of the address (see the example of masks in the nfsaddhost (8)
command description).

User ID mapping is straightforward. Each user ID map entry contains the local
user ID and groups list and the remote user ID and groups list. When an NFS
request is sent to the Cray Research system and the Cray Research system is
mapping IDs for client-side requests, the Internet address to which the request
is sent determines the ID map to be used. The map is searched for the local
user ID; if it is found, the remote user ID and groups list is used in that request.
If the local user ID is not found in the ID map, the ID mapping domain is
checked to see what should be done (the nfsaddhost (8) command has options
that determine the action associated with a particular ID mapping domain).
There are three choices:

* The value for a bad user ID (-1) can be returned. In this case, the request
should be denied with an RPC authentication error. This is the default.

SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

* The value for the user "nobody" (-2) can be returned. In this case, the user
has access only to other-accessible files and directories on the server.

¢ The local IDs can remain unmapped and can be put into the request. Group
ID mapping is even simpler. The group ID map tables are used only to map
file attributes (that is, to map IDs associated with a file that is accessed
through NFS). Each group map entry contains a local group ID to
correspond to a remote group ID.

Kernel ID mapping tables and ID mapping domains are inserted by the
/etc/uidmaps/Set.domains script, called out of the /etc/nfsstart

script. The Set.domains script example corresponds to step 3 of configuring
ID mapping domains, as described in Section 3.1.6.2, page 256. This script
primarily uses three ID mapping commands, nfsclear (8), nfsaddmap (8), and
nfsaddhost (8). The nfsclear (8) command is called first to ensure that any
previous ID mapping information in the kernel is cleared out. The

nfsaddmap (8) utility is called to read a map file, previously created with the
nfsmerge (8) command, into the kernel. The nfsaddhost (8) utility defines the
ID mapping domains; it associates Internet addresses with the kernel ID maps
to use for mapping.

A special domain name, MAP_THRUis defined for systems known to share the
local Cray Research system’s user and name space. The MAP_THRWlomain
simply allows user and group identifiers to pass through, without modifying
them in any way.

Note: Do not use MAP_THRUvith UNICOS security because the security
information that NFS requires with UNICOS security will be missing.

The Set.domains example performs configurations, as follows:

Note: Your Set.domains file should contain the loopback entry as shown in
the example; it is required if you are running the automounter.

1. Cray Research hosts groucho and chico perform server ID mapping
between them.

2. Cray Research host chico performs all ID mapping between Cray Research
host harpo and itself.

3. Cray Research hosts harpo and groucho perform client ID mapping
between them.

4. Cray Research hosts groucho , chico , and harpo perform both client and
server mapping to all other hosts on the network. The Set.domains script
is as follows:

265

UNICOS® Networking Facilities Administrator's Guide

% cat /etc/ui dmaps/ Set . donai ns

#
Set
#

HOST='hosthame'MAPS=/etc/uidmaps
CMDS=/etc/uidmaps

#
Reinitialize kernel ID mapping information.

#

$CMDS/nfsidmap -d

sleep 3

$CMDS/nfsclear

$CMDS/nfsaddhost -I loopback

#

Set ID maps and ID mapping domains between all of

the Cray machines on the network.

#

if ‘test $HOST = groucho‘then

Groucho does server ID mapping only for chico
$CMDS/nfsaddmap -u $MAPS/u.$HOST.chico

-g $MAPS/g.$HOST.chico chico

$CMDS/nfsaddhost -d chico -s -l chico-inet
$CMDS/nfsaddhost -d chico -s -l chico-prod
$CMDS/nfsaddhost -d chico -s -l chico-Isp
$CMDS/nfsaddhost -d chico -s -l chico-hsx -u chico-hsx2

Groucho does client mapping only for harpo.

$CMDS/nfsaddmap -u $MAPS/u.$HOST.harpo
-g $MAPS/g. $HOST.harpo harpo

$CMDS/nfsaddhost -d harpo -c -l harpo-inet

$CMDS/nfsaddhost -d harpo -c -l harpo-vme24
$CMDS/nfsaddhost -d harpo -c -l harpo-vme26
$CMDS/nfsaddhost -d harpo -c -l harpo-vme32

$CMDS/nfsaddhost -d harpo -c -l harpo-Isp

266

SG-2304 10.0.0.2

Network File System (NFS) [3]

elif
#

elif
#

else

fi

‘test

‘test

Chico does server
$CMDS/nfsaddmap

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

Chico does both
$CMDS/nfsaddmap

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

Harpo does client
$CMDS/nfsaddmap

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

$HOST = chico‘then

mapping only for groucho.
-u $MAPS/u. $HOST.groucho

-g $MAPS/g.$HOST.groucho groucho

-d groucho -s -l groucho-inet
-d groucho -s -l groucho-Isp
-d groucho -s -l groucho-hsx

-u groucho-hsx2

client and server mapping to harpo.

-u $MAPS/u.$HOST .harpo
-g $MAPS/g. $HOST.harpo harpo

-d harpo -c¢c -s -l harpo-inet

-d harpo -c -s -l harpo-vme24
-d harpo -¢ -s -l harpo-vme26
-d harpo -¢ -s -l harpo-vme32
-d harpo -¢ -s -l harpo-lsp

-d harpo -c¢ -s -l harpo-hsx

$HOST = harpo‘then

mapping only to groucho.
-u $MAPS/u.$HOST.groucho

-g $MAPS/g.$HOST.groucho groucho

-d groucho -c -l groucho-inet
-d groucho -c -l groucho-Isp
-d groucho -c -l groucho-hsx

Harpo maps through to chico (MAP_THRU facility).

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

echo "don't know
exit

-l chico-inet

-l chico-prod

-l chico-Isp

-l chico-hsx -u chico-hsx2

how to set domains for $HOST

-u groucho-hsx2

SG-2304 10.0.0.2

267

UNICOS® Networking Facilities Administrator's Guide

The Cray machines necessarily do both client and server mapping for
all of the rest of the machines in the network.

#

zeppo

#

$CMDS/nfsaddmap -u $MAPS/u.$HOST.zeppo -g $MAPS/g.$HOST.zeppo zeppo

$CMDS/nfsaddhost -d zeppo -c -s -l zeppo-inet
#
Workstation network (nfl YP domain)
#

$CMDS/nfsaddmap -u $MAPS/u.$HOST.nfl -g $MAPS/g. SHOST.nfl nfl

#

Networks in the nfl YP domain

#

$CMDS/nfsaddhost -d nfl -¢ -s -l afc-eastnet -u afc-westnet
$CMDS/nfsaddhost -d nfl -¢ -s -l nfc-eastnet
$CMDS/nfsaddhost -d nfl -¢ -s -l nfc-centralnet
$CMDS/nfsaddhost -d nfl -¢ -s -l nfc-westnet

#

Explicit hosts in the nfl YP domain

#

$CMDS/nfsaddhost -d nfl -¢c -s -l nfl-gate
$CMDS/nfsaddhost -d nfl -c -s -l afc-gate
$CMDS/nfsaddhost -d nfl -c -s -l nfc-gate
$CMDS/nfsaddhost -d nfl -¢ -s -l nfc-east-server
$CMDS/nfsaddhost -d nfl -¢ -s -l nfc-central-server
$CMDS/nfsaddhost -d nfl -¢ -s -l nfc-west-server
$CMDS/nfsaddhost -d nfl -¢c -s -l afc-east-server
$CMDS/nfsaddhost -d nfl -¢ -s -l afc-central-server
$CMDS/nfsaddhost -d nfl -¢ -s -l afc-west-server
$CMDS/nfsaddhost -d nfl -c -s -l superbowl-server
$CMDS/nfsaddhost -d nfl -¢ -s -l bears-inet
$CMDS/nfsaddhost -d nfl -c -s -l colts-prod
$CMDS/nfsaddhost -d nfl -c -s -I giants-inet

$CMDS/nfsaddhost -d nfl -¢c -s -l redskins-prod

268

SG-2304 10.0.0.2

Network File System (NFS) [3]

$CMDS/nfsaddhost -d nfl -c -s -l broncos-inet

$CMDS/nfsaddhost -d nfl -c -s -I vikings-inet

$CMDS/nfsaddhost -d nfl -c -s -l niners-prod

$CMDS/nfsaddhost -d nfl -c -s -I raiders-inet

$CMDS/nfsaddhost -d nfl -c -s -I patriots-prod

$CMDS/nfsaddhost -d nfl -c -s -l saints-prod#

Workstation network (disney YP domain)

#

#$CMDS/nfsaddmap -u $MAPS/u. $HOST.disney -g $MAPS/g.$HOST.disney
#

Networks in
#

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

#
Hosts in
#

the

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s

disney YP domain

-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s

-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s
-d disney -¢ -s

the disney YP domain

snowwhitenet
junglebooknet
bambinet

disney-gate
disney-land
disney-world

snowwhite-server
snowwhite-inet
bashful-inet
sleepy-inet
sheezy-inet
dopey-prod
dopey-inet
happy-inet
grumpy-prod
doc-inet
doc-prod

disney

SG-2304 10.0.0.2

269

UNICOS® Networking Facilities Administrator's Guide

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost
$CMDS/nfsaddhost

$CMDS/nfsidmap

disney -c -s -l junglebook-server
disney -c -s -l junglebook-prod
disney -c -s -l mowgli-inet
disney -c -s -l hista-prod
disney -c -s -l sherkan-inet
disney -c -s -l baloo-inet
disney -c -s -l kinglouie-inet
disney -c -s -l bakkera-prod
disney -c -s -l bambi-server
disney -c -s -l bambi-inet
disney -c -s -l thumper-inet
disney -c -s -l flower-inet

3.1.6.6 Other Administrative Considerations

270

When ID mapping is configured, all server activity makes use of it. Most NFS
client systems pass the root user ID (0) for user identification on their mount
requests; these values are also subject to ID mapping.

You can remove kernel ID maps and ID mapping domains through the use of
the nfsrmmap (8) and nfsrmhost (8) commands. These commands, along with
nfsaddmap (8), nfsaddhost (8), nfsadduser (8), and nfsrmuser (8), give you
the ability to modify ID mapping at any time; it is not necessary to recompile
anything to modify the ID maps. To view the currently defined ID mapping
domains, use the nfslist (8) command.

The following is an abbreviated sample of the use of nfslist
groucho :

(8) on machine

SG-2304 10.0.0.2

Network File System (NFS) [3]

groucho%

nfslist

NFS ID Mapping is

NFS ID
Map
Name

nfs

zeppo

chico

chico

harpo

harpo

NFS ID

Mapping
Flags

CLIENT

CLIENT

CLIENT

CLIENT

ENABLED

SERVER BAD_ID
Addr(dec)
128.1.35.0
128.1.36.0
128.1.37.0

SERVER BAD_ID
Addr(dec)
128.1.14.90

SERVER BAD_ID
Addr(dec)
84.0.207.5

SERVER BAD_ID
Addr(dec)
92.0.0.5

BAD_ID
Addr(dec)
84.0.207.6

BAD_ID
Addr(dec)
92.0.0.6

Lower
Bound
Address

c0.09.23.00
Addr(hex)

c0.09.23.00
c0.09.24.00
c0.09.25.00

c0.09.0e.5a
Addr(hex)
c0.09.0e.5a

54.00.cf.05
Addr(hex)
54.00.cf.05

5¢.00.00.05
Addr(hex)
5¢.00.00.05

54.00.cf.06
Addr(hex)
54.00.cf.06

5¢.00.00.06
Addr(hex)
5¢.00.00.06

Upper
Bound
Address

c0.09.26.00
Host Name
afc-eastnet
afc-centralnet
afc-westnet

c0.09.26.5a
Host Name
zeppo-inet

54.00.cf.05
Host Name
chico

5¢.00.00.05
Host Name
chico-Isp

54.00.cf.06
Host Name
chico-Isp

5¢.00.00.06
Host Name
chico-Isp

Address
Mask

[fF.f£.1F.00]

[FF.fF.1F.f1]

[FF.fF.1F.f1]

[FF.fF.1F.f1]

[FF.fF.1F.f1]

[FF.fF.1F.f1]

SG-2304 10.0.0.2

To remove an ID mapping domain, the options of nfsrmhost

(8) must exactly

match the definition of the domain. You cannot remove part of a domain. Also,
to remove a kernel ID map, you must remove all ID mapping domains that
reference that map.

You must also be aware of hosts that are running NFS but are not UNIX

systems. For these hosts, the Get.domains

script used in the example must be

modified according to specific characteristics of the site’s network. For example,
the script run in the example in this section assumes that passwd and group
files exist on the remote system. This is not necessarily true for hosts that are

271

UNICOS® Networking Facilities Administrator's Guide

not UNIX systems. To create the map files necessary for mapping IDs through
NFS, you must construct files in passwd and group format for any
administrative domains that do not already have these files (that is, you must
create synthetic passwd and group files). If you create synthetic passwd and
group files for use with ID mapping, you must ensure that entries are present
for user root and group Sys , or whatever these entries are called on the local
Cray Research system.

3.1.6.7 Running pcnfsd with NFS ID Mapping Control

272

Note: The use of pcnfsd is not supported with the Cray ML-Safe
configuration of the UNICOS system.

If you have a PC NFS client, the pcnfsd (8) daemon runs on an NFS server.
When a PC NFS client connects to a pcnfsd , the client prompts for a login
name and password. After verifying the password for the given login name,
the pcnfsd daemon passes a user ID and a groups list back to the PC NFS
client. The PC uses the IDs it receives from pcnfsd for subsequent NFS
requests to that NFS server.

The pcnfsd daemon on a Cray Research system can use NFS ID mapping,
which makes PC NFS access more secure. After the password validation that
pcnfsd performs is complete, the user ID map entry for that user is added to
an ID map. Therefore, if pcnfsd on a Cray Research system is configured to
use an ID map, only users whose passwords were actually validated through
pcnfsd can access a Cray Research NFS server.

To use penfsd with NFS ID mapping, ensure that the following steps have
been taken:

1. Create an ID map file for a Cray Research system to the same Cray
Research system in the Merge.domains script, as follows:

nfsmerge -u /etc/uidmaps/u.cray.cray -g /etc/luidmaps/g.cray.cray
/etc/passwd /etc/passwd /etc/group /etc/group

Note: If you are also setting up a special MAP_THRUNFES ID map (see
Section 3.1.6.9, page 275), the nfsmerge command needs to be executed
only once because pcnfsd ID mapping and special MAP_THRUD
mapping use the same ID map file.

2. Add that ID map to the kernel with an appropriate name in the
Set.domains script. The following command adds an empty user ID map
and a group ID map called pcidmap to the kernel:

SG-2304 10.0.0.2

Network File System (NFS) [3]

nfsaddmap -g /etc/uidmaps/g.cray.cray pcidmap

The user ID map is empty so that pcnfsd can add user entries when the
user’s password validation succeeds.

Ensure that the network addresses of the PCs that will be accessing the NFS
server on the Cray Research system are in an ID mapping domain that uses
the ID map (called pcidmap in the previous examples), as follows:

nfsaddhost -d pcidmap -¢ -s - pc_addrl
nfsaddhost -d pcidmap -¢ -s -l pc_addr2

nfsaddhost -d pcidmap -¢ -s -l pc_addrN

Start pcnfsd with the name of the user ID map file and kernel map name,
as follows:

pcnfsd -u /etc/uidmaps/u.cray.cray -m pcidmap

The pcnfsd daemon does not remove entries that pcnfsd has added to
this map. Therefore, until the system administrator resets the ID maps in
the kernel by running the Set.domains script or until the system reboots,
any user validated through pcnfsd has NFS access to a Cray Research
system from the PC network addresses in the ID mapping domains that
reference pcidmap .

3.1.6.8 Deciding When to Use ID Mapping

SG-2304 10.0.0.2

Kernel ID maps contain the following information for each local user ID:

Default account ID (acid)

Security information (minimum and maximum security level and valid
security compartments)

Pointer to a list of optional Kerberos authenticated Internet addresses
Pointer to a list of client side auth_kerb validated structures

Pointer to a list of server side auth _kerb validated structures

Following is a description of circumstances in which it is desirable and
circumstances in which it is necessary for the Cray Research NFS server to
access this information:

When acids rather than user IDs are being used for disk accounting and/or
file quotas.

273

UNICOS® Networking Facilities Administrator's Guide

In this case, NFS ID mapping is desirable, but not necessary. Acids are
unique to UNICOS and therefore are not passed across the network as part
of the NFS protocol. When files are created on the NFS server through NFS,
the acid given to the file is the acid in the user structure of the nfsd process
that does the first write operation to the file. Because acids are not part of
the credentials in the NFS request, the acid attached to any file created
across NFS is the acid of the running nfsd process (root ’s default acid).
This defeats disk quotas and disk accounting based on acids. Because ID
maps contain the user’s default acid, the NFS server can use this information
when ID mapping occurs. A user cannot change the acid in the ID maps.

* When UNICOS security is enabled (with or without the IP security option
(IPSO) enabled).

In this case, NFS ID mapping is necessary. When UNICOS security
information is required on the Cray Research system, and is passed across
the network (through IPSO), the NFS server must validate the NFS requests
based on the security information for the user making the request. The ID
maps contain such security information.

Note: MAP_THRUD mapping domains do not contain the required
security information for UNICOS security, and cannot be used.

* When file systems or directories have been exported with the krb (Kerberos
authentication required) export option in the /etc/exports file.

In this case, NFS ID mapping is necessary. Users are required to run the
nfsid command from the NFS client machine to the Cray Research NFS
server machine to gain access to those file systems that have been exported
with the krb option. The information from which users have been validated
through Kerberos from certain Internet addresses is kept in the ID maps.

Note: The kerberos and krb operands used with the exportfs
command are not supported on the Cray ML-Safe configuration of the
UNICOS system.

* When file systems or directories in the /etc/exports file have been
exported by using the exportfs ~ command with the -0 option and the
kerberos operand (auth_kerb RPC authentication required). In this case,
NFS ID mapping is necessary.

Following is a description of circumstances in which it is necessary for a Cray
Research NFS client to access information contained in ID maps.

274 SG-2304 10.0.0.2

Network File System (NFS) [3]

* When the mount (8) command with the -0 option and kerberos operand
(auth_kerb RPC authentication required) is used to mount an NFS file
system. In this case, NFS ID mapping is necessary.

3.1.6.9 Special MAP_THRWFS ID Map

If you need access to the information kept in ID maps (see the circumstances
listed in the previous section), you must create a special ID map called a
MAP_THRUnap if one of the following situations is true:

* You have been running with NFS ID mapping and you have MAP_THRUD
mapping domains.

* You were not previously running with NFS ID mapping. In this case, you
must also set up MAP_THRUD mapping domains for all hosts and networks
that are using the Cray Research system as an NFS server or client.

Typically, MAP_THRUD mapping domains do not use a kernel ID map.
However, if the MAP_THRUD map is defined in the kernel, all MAP_THRUD
mapping domains use it. The special MAP_THRUD map is built from the
letc/passwd file and /etc/group file from the local machine only.
Following is a sample nfsmerge command to be added to the
Merge.domains script that builds the ID map file:

nfsmerge -u /etc/uidmaps/u.cray.cray -g /etc/luidmaps/g.cray.cray /etc/passwd
/etc/passwd /etc/group /etc/group

The ID map file built by this command is the same ID map file that can be used
with pcnfsd as described in Section 3.1.6.7, page 272). Therefore, if you are
running pcnfsd with NFS ID mapping and you are using the special MAP_THRU
NEFS ID map, you need to execute the nfsmerge command only once.

To add the special MAP_THRUD map to the kernel, add the following to the
Set.domains file:

/etc/uidmaps/nfsaddmap -M /etc/uidmaps/u.cray.cray

To determine whether the MAP_THRUD map is defined in the kernel, use the
following command:

nfsidmem -v | grep MAP_THRU

If there are MAP THRUID mapping domains defined when the MAP_THRUD
map is loaded into the kernel, those ID mapping domains are also converted to
use the MAP THRUID map. Conversely, if the MAP_THRUD map is removed
from the kernel, all MAP THRUID mapping domains (which point to the

SG-2304 10.0.0.2 275

UNICOS® Networking Facilities Administrator's Guide

MAP_THRUD map) are converted back to standard MAP_THRUD mapping
domains (which do not point to an ID map). The special MAP_THRUD map is
the only ID map that can be removed from the kernel with the nfsrmmap
command while ID mapping domains are referencing it. The following
command adds the host address to the ID mapping domain:

/etc/uidmaps/nfsaddhost -l hostname

3.1.7 Configuring NFS Parameters

You can change NFS configuration parameters, such as the size of the rnode
table, in several ways. All configurable NFS parameters appear in the
lusr/srcluts/cf. xxxx /config.h file; you can change them by editing
this file and building a new kernel. You can change the NFS parameters at boot
time by entering appropriate entries in the network section of the system
parameter file. You can use the UNICOS ICMS to make these changes, or you
can make them manually.

3.1.7.1 Changing the config.h File

Table 3, Configurable NFS parameters, lists and describes the configurable
parameters in the config.h file:

Table 3. Configurable NFS parameters

Default
Name value Description
NFS_MAXDATA 32768 Maximum number of bytes of user data read or written.
NFS_NUM_RNODES 256 Number of NFS rnodes. Each active NFS file or directory
requires an rnode.
NFS_PRINTINTER 0 Time interval in tenths of seconds between service not
responding messages appearing on the console.
NFS_STATIC_CLIENTS 8 Number of permanently allocated client handles. Each
NFS request to a server requires a client handle.
NFS_TEMP_CLIENTS 8 Number of temporarily allocated client handles. These

276

client handles are destroyed when freed.

SG-2304 10.0.0.2

Network File System (NFS) [3]

Default

Name value Description

CNFS_STATIC_CLIENTS 8 Number of permanently allocated client handles for
sending requests to a server whose file system is mounted
with the cray mount option.

CNFS_TEMP_CLIENTS 8 Number of temporarily allocated Cray NFS client handles.

NFS_MAXDUPREQS 1200 Number of entries in the duplicate request cache. This
value should be large enough so that the request entry is
still present when the first retry of that request arrives.

NFS_DUPTIMEOUT 3 Time interval in seconds after the original request, during

which duplicate requests received by the server are not
reprocessed.

3.1.7.2 Changing the NFS Parameter File

You can change the configurable NFS parameters at boot time by placing entries
in the network section of the system parameter file, /etc/config/param . The
parameter names are the same as in the config.h file, except that they appear

in lowercase.

Following is an example of the network section of a system parameter file:

network {

512 nfs_num _rnodes;
16 nfs_static_clients;
16 nfs_temp_clients;

3.1.8 General Security Concerns

SG-2304 10.0.0.2

Although UNICOS NFS is an excellent tool for sharing files between computer
systems, it also makes the files on a server vulnerable to unauthorized access. A

277

UNICOS® Networking Facilities Administrator's Guide

278

user with root access on a workstation and a knowledge of how UNICOS NFS
works can pretend to be any user on the network and thereby gain access to
server files that would not otherwise be accessible to that user. For example, the
letc/exports file and the /etc/mountd process are convenient mechanisms
for providing the information needed by legitimate NFS clients. However, this
information can usually be obtained by other means, making it possible to
bypass the access controls that the /etc/exports file provides.

ID mapping provides some additional security by restricting access to NFS to
those network addresses specified in the ID maps.

Because the standard NFS protocol was not designed with the use of access
control lists (ACLs) in mind, access across NFS to files that use ACLs can be
denied unexpectedly. (This does not occur if you use the cray option of the
mount (8) command when processing between two Cray Research systems.) The
NEFS client checks the UNICOS permissions and sends the request to the server
based on those permissions. However, the NES server checks the ACL entries
and grants or denies the request according to the procedures provided in the
description of the UNICOS security feature in General UNICOS System
Administration, publication SG-2301.

An additional security concern is the execution of setuid programs. An
individual with root permission on a workstation or fileserver can create a
setuid root program that can then be executed on a UNICOS NFS client.
The nosuid argument to the -0 option on the UNICOS mount (§) command
prevents this operation.

The basic security mechanisms in UNICOS NFS are as follows:

Security Description
mechanism
Export control Administrators can choose to restrict the list of

hosts allowed to mount Cray Research file
systems through the exports (5) file.

Mount control Administrators control both the remote systems
from which they import file systems and the
permissions used on the UNICOS directories on
which mounting is done through mount (8)

options.
Standard UNICOS file User and group ownerships and read, write, and
permission checking execute-search permissions operate the same way

on UNICOS NFS file systems as they do on
UNICOS file systems. Users and administrators

SG-2304 10.0.0.2

Network File System (NFS) [3]

concerned about security should fully understand
these mechanisms.

Kerberized NFS Each NFS request is sent using the AUTH_KERB
flavor of RPC. This RPC flavor protects packets
by including an encrypted time stamp and other
information on each packet. Users must have a
valid Kerberos granting ticket prior to making
NFS AUTH_KERBransactions.

Another level of security can be implemented through the ID mapping facility
of UNICOS NFS. Administrators who elect to make exported file systems
globally accessible (in the /etc/exports file) can impose restrictions through
selective inclusion of remote addresses in the ID mapping domains, and they
can further restrict access on those systems by the inclusion or exclusion of
users in a particular domain’s user or group ID map. (See Section 3.1.6.4.4, page
261, for more details.)

For information regarding avoiding mandatory access control (MAC) violation
risks in the creation and use of NFS ID maps, see “ID map file maintenance,”
Section 3.1.6.4.3, page 260.

3.1.8.1 NFS and UNICOS Security

SG-2304 10.0.0.2

Note: This section describes NFS in a UNICOS security environment;
however, no additional considerations exist for NFS with a secure
environment, except that if you are running the Cray ML-Safe configuration
of the UNICOS system, you must enable the Internet Protocol Security
Option (IPSO).

When you are running UNICOS with UNICOS security, information about the
sensitivity label of client users and server files must be communicated between
the client and server hosts. No provision exists for this communication in the
NFS protocol that UNICOS uses. To solve this problem, UNICOS places an
interpretation on the labels of the datagrams that contain the NFS requests and
responses.

When an NFS request is required, the client sends it at the label of the process
that is attempting to access the file. The server uses the label of the request to
perform mandatory access checks. The label must be a valid label for both the
client host (through the NAL), and the user making the request. Valid user
label ranges are stored in the kernel NFS ID maps. For this reason, ID mapping
is required on UNICOS systems that run UNICOS security. See Section 3.1.6,
page 254, for information on setting up ID maps.

279

UNICOS® Networking Facilities Administrator's Guide

280

After the server processes the request, the response packet is sent labeled with
the sensitivity label of the file being accessed. If this label is invalid for the
client host, the response is dropped.

When the client receives a response from the server, the label on the datagram
is used as the sensitivity label of the file for any mandatory access checks that
the client NFS software performs.

It is important to note that this scheme works only if both the client and the
server can unambiguously determine the labels on datagrams passed between
them. They can do this only if the systems use IP security labeling or the hosts
are single-label hosts. If you are running with the NETW_STRICT_BIkernel
option, NFS access is supported with any system that uses IP security options.

Warning: If you are running UNICOS security without the
NETW_STRICT_BIkernel option (thus allowing multilabel ranges for hosts
that do not use IP security options), do not export file systems to or mount
file systems from any host that does not use IP security options and has a
multilabel range in the NAL. UNICOS NFS is unable to correctly enforce
MACs with such a configuration.

Note: Do not hard-mount file systems if one of the following is true:

® The Cray Research system is a system with UNICOS security and an NFS
client.

* The NFS client system is mounting from a Cray Research NFS server system
with UNICOS security.

With UNICOS security, requests that fail MAC do not receive responses;
therefore, NFS requests on hard-mounted file systems hang.

Parameters in the config.h file that are supported with UNICOS security and
NFS are as follows:

NFS_SECURE_EXPORT_OK When set to a nonzero value, this parameter
allows labeled file systems to be exported (used
by the NFS server).

NFS_REMOTERW_OK When set to a nonzero value, this parameter
allows a Cray Research NFS client to mount a
remote file system in read-write mode. When set

SG-2304 10.0.0.2

Network File System (NFS) [3]

to 0, NFS mounts the file system in read-only
mode.

Note: If you are running NFS with SECURE_MAE@nabled, the address
associated with the localhost interface must be defined as syslow to
syshigh levels and all compartments are in the Network Access list (NAL)
(see spnet (8)). If SECURE_MAG not enabled, the address associated with
the localhost interface must be defined as 0 through 16 and all
compartments are in the NAL. Under the Cray ML-Safe configuration of the
UNICOS system, SECUREMACis enabled.

3.1.8.2 Kerberos Authentication

3.1.8.3 Kerberized NFS

SG-2304 10.0.0.2

Note: Kerberos authentication is not supported with the Cray ML-Safe
configuration of the UNICOS system.

Kerberos authentication can be required for NFS access to exported UNICOS
file systems through the krb operand of the exports (5) command. This export
option requires users to register with mountd , using the nfsid (1) command on
the client machine from which they want NFS access to exported UNICOS file
systems. ID maps are required to support the krb export option and are
described in Section 3.1.6, page 254. For more information, see the nfsid (1)
command.

The following examples show the mapping option (-m), which registers the
user with mountd and the unmapping option (-u), which removes the user’s
registration:

nfsid -m remote_host_name
nfsid -u remote_host_name

Users who have not executed the nfsid command are granted only others
access to files in file systems exported with the Kerberos option.

Kerberized NFS uses the AUTH_KERBkernel RPC for NFS requests. Each NFS
request contains additional information, which is validated by the NFS server’s
kernel.

UNICOS file systems may be exported by using the exportfs (8) command
with the -0 option and the kerberos operand. These exported file systems are
mounted by using the mount (8) command with the -0 option and kerberos
operand. The super user, or user as root, must have an unexpired Kerberos

281

UNICOS® Networking Facilities Administrator's Guide

3.1.9 UDP Checksum

282

Ticket Granting Ticket (TGT) before executing the mount command. A TGT is
obtained by using the kinit (1) command.

Note: The krb and kerberos operands of the exportfs ~ command may
not be used at the same time.

Machines running Kerberized NFS must have an NFS principal entry in the
letc/srvtab file. Your Kerberos database must contain a principal of nfs
and an instance of hostname . You must install a new /etc/srvtab file with
the nfs principal prior to running Kerberized NFS.

The following guidelines must be understood in order to run Kerberized NFS:

* Your Kerberos database must contain specific information. For example, if
your host name is harpo , you must have a principal of nfs and an instance
of harpo in your Kerberos database. The srvtab entry would list nfs as
the service and an instance of harpo .

¢ The kerbd (8) daemon must be running. kerbd handles requests from
kernel level NFS and sends the requests to and from the Kerberos key
distribution center (KDC).

¢ The user must have an unexpired TGT prior to attempting access to a
Kerberos NFS mounted file system.

* A root user ticket must be regenerated every 21 hours. This is due to a
limitation in the current implementation. All file systems mounted with the
automounter and Kerberos NFS mount options are affected by this limitation.

The standard NFS implementation does not calculate user datagram protocol
(UDP) checksums for the packets exchanged between NFS clients and servers.
However, situations occur in which checksumming might be desirable, such as
when the network is suspected to be error prone. Therefore, on UNICOS
systems, checksumming for NFS is implemented in two parts: client and server.

To enable client-side checksumming, use the cksum argument on the mount (8)
command. This argument causes the client to calculate and verify the
checksums for all UDP packets sent to the server of this file system. However,
this does not ensure that the server will also calculate and verify the checksum.
You should confirm that the server in question verifies incoming checksummed
packets.

SG-2304 10.0.0.2

Network File System (NFS) [3]

3.2 Troubleshooting

SG-2304 10.0.0.2

The UNICOS NFS server automatically calculates and verifies the checksum for
incoming checksummed packets. To enable server-side checksumming for
outgoing packets, use the cksum export option within the /etc/exports

file. However, this argument does not ensure that the NFS client that receives
the packet will calculate and verify the checksum.

When a network service is not performing properly, the trouble usually lies in
one of the following areas (listed from most likely to least likely):

* The network access control policies do not allow the operation, or
architectural constraints prevent the operation.

¢ The NFS client software or environment is malfunctioning.
* The NFS server software or environment is malfunctioning.
* The network between the NFS server and client is malfunctioning.

The following sections offer a checklist for determining the location of the
problem, some common problems, and a list of mount (8) command error
messages.

Before trying to debug UNICOS NFS, read the man pages from the following
lists that are relevant to your NFS environment:

Table 4. NFS man pages

Server Client ID mapping
mountd (8) mount (8) nfslist (8)
nfsd (8) automount (8) nfsidmem (8)
exports (5) biod (8) nfsuid (8)
exportfs (8) fstab (5) nfsckhash (8)

portmap (8) portmap (8) nfsmerge (8)
rpcinfo (8)

pcnfsd (8)

rpcinfo (8)
nfsid (1)

nfsidmap (8)
nfsaddmap (8)
nfsaddhost (8)

283

UNICOS® Networking Facilities Administrator's Guide

Server Client ID mapping

nfsclear (8)
nfsadduser (8)
nfsgid (8)
nfsrmhost (8)

nfsrmmap (8)

3.2.1 Isolating the Problem

The following sections contain a checklist to help you either resolve the
problem or isolate the problem (that is, help identify the environment in which
the problem occurred). This checklist is sequential, and it verifies whether all of
the basic functions required for NFS are working. Use this checklist as a
starting point if you have no idea where the NFS problem is occurring.

The checklist is grouped into the following topics:
¢ NFS mounting problems

* Problems accessing NFS mounted files

® Problems with ID mapping

If you are having problems configuring NFS for the first time, use the complete
checklist. Individual items within the checklist can be used at any time to help
isolate or resolve problems when NFS is already up and running.

This checklist assumes that an NFS client is having problems mounting or
accessing NFS files from an NFS server.

3.2.1.1 NFS Mounting Problems

284

If the mount (8) command times out, perform the following steps:

1. Ensure that the NFS server machine is up and that you can access the NFS
server from the NFS client. On the NFS client, use the ping (8) command,
as follows:

ping server_hostname

SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

2. Ensure that the NFS server machine is at least running either portmap (8)

or rpchind (8), mountd (8), and nfsd (8) daemons. On the NFS server
machine, use the ps(1) command, as follows:

ps -ae | egrep ’'portmap |rpcbind|mountd|nfsd’

Following is sample output from the ps command:

668 - 0:02 portmap
1347 - 0:00 mountd
1343 - 0:00 nfsd
1341 - 0:00 nfsd
1342 - 0:00 nfsd
1344 - 0:00 nfsd

Only one portmap and mountd daemon should be running at any one
time, but one or more nfsd daemons can be running at one time (a typical
number is 4).

If more than one mountd daemon is running, conflicts regarding the
mountd requests can occur and the client mount requests will not be
serviced.

If portmap or rpcbind (8) is not running, stop the mountd , nfsd , and
pcnfsd (8) daemons. You must also stop any other RPC registered servers
that are running. Then start the portmap or rpchind daemon. After this
daemon is started (the ps -ae command shows portmap or rpcbind
running), start mountd and the nfsd daemons.

Note: If the NFS server is a Silicon Graphics (SGI) system and the Cray
Research system is the client, the mountd daemon on the SGI system
must be started with the -n option. Sun Microsystems has the -n option
set by default within their startup scripts; other systems may vary.

. Ensure that portmap (8) or rpchind (8), mountd (8), and nfs (4P) are

registered RPC services on the NFS server machine. On the client, use the
rpcinfo (8) command, as follows:

rpcinfo -p server_hostname
Following is partial sample output from the rpcinfo command:

program vers proto port

100005 1 tcp 678 mountd
100005 1 udp 676 mountd
100003 2 udp 2049 nfs

285

UNICOS® Networking Facilities Administrator's Guide

286

100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper

There are two entries for mountd and portmapper , one for udp, and the
other for tcp . NFS has only one entry, because it uses only udp as the
transport protocol.

If one or more of these programs are not registered RPC programs, either
step 2 has failed, or you should kill the portmap or rpcbind , mountd , and
nfsd daemons (along with any other RPC registered programs) and restart
them. Start portmap or rpcbind first; after it has begun, start the mountd
and nfsd daemons, along with any other RPC daemons.

The -u option of the rpcinfo command can also be run on the client to
determine whether these servers are registered and responding through
portmap . The -u option uses user datagram protocol (UDP) to the
specified server on the specified program, as in the following example:

rpcinfo -u server_hostname 100005 1
The program number for mountd is 100005.
Following is sample output from the rpcinfo command:

program 100005 version 1 ready and waiting

. Ensure that the file system or directory you are trying to mount is exported

on the NFS server giving the client permission to mount. Use the following
command only if you are running as root :

/etc/exportfs

The exportfs ~ command without options prints the currently exported file
systems or directories.

If you are not running as root , use the following command:
cat /etc/xtab

This file is updated by exportfs ; thus, it also shows the current list of
exported file systems or directories.

SG-2304 10.0.0.2

Network File System (NFS) [3]

Note: Viewing the /etc/exports file does not necessarily show the
currently exported file systems or directories; therefore, it should not be
used to determine whether something is exported.

5. Ensure that the /etc/hosts files are accurate on both the NFS server and

client. Check to verify that the entry in the /etc/hosts file for the server
is the same on both systems (that is, the server’s host name used on both
systems points to the same Internet address), and perform the same check
with the entry for the client on both systems.

Note: If you are running the domain name server, using the named(8)
daemon, the /etc/hosts file is not accessed and you should use either
the nslookup (1) or the host (1B) command to identify the host entry.
See the man pages for details. If you are using NIS, use the ypcat
HOSTS| grep host command, where host is the name of the host or
machine you want to access.

See the troubleshooting steps in Section 3.2.1.3, page 290, if you are using
ID mapping and either the NFS server or client has multiple network
interfaces (therefore, multiple /etc/hosts file entries).

3.2.1.2 Problems Accessing NFS Mounted Files

SG-2304 10.0.0.2

After the NFS system is mounted, do the following if you cannot access these
files:

1. Ensure that the file system or directory is still mounted on the NFS client.

Use the following mount (8) command without options to list all currently
mounted local and NFS file systems:

/etc/mount

The rsize and wsize options of the mount command specify the number
of bytes in the read buffer and the write buffer, respectively (they are
typically set to the same value). Ensure that these options are correct.

To determine these values, check the exact mount command used (you may
need to look in /etc/fstab to determine the exact options used). If an
rsize or wsize option is not used with the mount command, these values
are set to a default size. On UNICOS systems, the default size is 8 Kbytes.
However, the maximum size, 32 Kbytes, is set by the NFS_MAXDAT Aernel
variable in the config.h file. A similar variable should exist on systems
that are not UNICOS systems. Contact the appropriate vendor for this
information.

287

UNICOS® Networking Facilities Administrator's Guide

Following are some suggestions for setting rsize and wsize on the mount
command under various configurations:

¢ Cray-to-Cray NFS environment

For UNICOS systems, the default value for read and write buffers is 8
Kbytes, which is the maximum buffer size for many other systems.
However, if you are running UNICOS NFS between two Cray Research
systems, you should set rsize and wsize to the maximum value of 32
Kbytes. With Cray Research systems running earlier releases of
UNICOS, it is not necessary to specify rsize and wsize , because the
default is 32 Kbytes.

e Cray Research NFS client and other vendor’s NFS server

The rsize and wsize values set on the Cray NFS client, or the default
value set if these options were not specified, must not exceed the
maximum read or write buffer size of the NFS server. A typical
maximum value for other vendors is 8 Kbytes. If you are running
UNICOS 9.0 or later, the client default value is 8 Kbytes; therefore, it is
not necessary to specify the rsize and wsize options, unless the NFS
server’s limit is less than 8 Kbytes. However, if you are running an
earlier UNICOS release, the default value is 32 Kbytes; therefore, you
must specify appropriate values for rsize and wsize .

For example, if a UNICOS 6.0 system is the NFS client and a Sun system
is the NFS server, you could use the following mount command:

/etc/mount -t NFS -0 bg,soft,rsize=8192,wsize=8192 sun:/usr Jusr/sun

Contact your vendor for the maximum buffer size (NFS_MAXDATA
supported. See Section 3.4, page 303, for more details.

® Cray Research NFS server and other vendor’s NFES client

In this configuration, the limiting factor is again the other vendor’s
maximum buffer size (NFS_MAXDATRA See Section 3.4, page 303, for
more details on rsize and wsize .

2. Ensure that the access options and the directory and file permission settings
on the NFS server and client are not the problem.

288 SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

On the NFS server, check the following exportfs (8) or exports (5)
options to see whether the file system or directory was exported with any
options that affect permissions:

Option Description

ro Export read-only.

rw= hostname Export read-write to hostname only.

anon= uid User ID for unknown user.

root= hostname Give root access to hostname only.

krb Kerberos authentication required for access.

See the exportfs (8) and exports (5) man pages for more detail.
On the NFS client, check the permissions of the following;:

* The mount point. If the file system or directory is already mounted, you
must unmount it to obtain the actual mount point directory permission
settings. At a minimum, the mount point directory permissions should
be set to 555.

* The mounted files or directories that are having trouble being accessed.
Check the owner and group name and permission settings to see
whether this might be the problem.

Ensure that you have a flat administrative environment in which all user
IDs are the same across all systems, or that you are running NIS, or that
you have UNICOS ID mapping set up and running. See the following
section for more information on ID mapping troubleshooting). If you are
not using UNICOS ID mapping (that is, you do not have map-through
ID mapping domains), ensure that ID mapping is disabled by using the
[etc/uidmaps/nfsidmap -d command. You must have root
permission to use this command.

. Ensure that enough memory buffers (mbufs) are available. Use the

following command to obtain an mbuf count:
letc/netstat -m

See Chapter 2, page 3, and netstat (1) for more details on mbufs and their
use.

289

UNICOS® Networking Facilities Administrator's Guide

3.2.1.3 Problems with ID Mapping

290

If the Cray Research system is an NFS server or NFS client, UNICOS ID
mapping can occur. It is recommended that if both server and client are Cray
Research systems, ID mapping should occur on the NFS server. You can
perform the following troubleshooting steps on either an NFS server or client,
depending on where the ID mapping is occurring.

1.

Ensure that ID mapping is enabled. Output from the following command
(without options) specifies whether ID mapping is enabled or disabled:

/etc/uidmaps/nfsidmap

. Ensure that an ID mapping domain exists for the system experiencing

problems. Use the following command to list the ID mapping domains that
contain the hostname address:

/etc/uidmaps/nfslist -a hostname

The host name specified in this command should be the same host name
specified on the mount (8) command.

If multiple network interfaces (that is, multiple network paths) are between
the NFS server and client systems, ensure that an ID mapping domain is set
up for the correct interface or for all such interfaces, if routing is not static.

Ensure that ID maps and corresponding hash tables are accurate. Use the
following command (without options) to check the consistency of the user
ID and group ID maps in the kernel:

/etc/uidmaps/nfsckhash

If this command indicates any problems, follow the procedure to rebuild
your ID maps, as previously described.

Ensure that the user(s) are set up correctly. During the actual mount
command operation, root is the user. If the Cray Research system is
experiencing access problems when trying to mount an NFS file system,
root is the affected user. You should not have any exceptions listed in an
exceptions file for user root . For example, although root must be present
in an exceptions file for mounting, you should not attempt to map root to
the bad user ID.

After the file system is mounted, any user can try to access that file system.
Ensure that the user entries, such as group lists, are in the required ID map
and that the entries contain the most current information. Use the following
command to print the user entries:

SG-2304 10.0.0.2

Network File System (NFS) [3]

3.2.2 NFS Mount Failure

/etc/uidmaps/nfsuid -m map_name list_of _user_names

The specified map name should be the map listed as output from the
nfslist command described in step 2.

If a map-through map was created for the domain in question and you are
not running UNICOS security, you do not need to perform this command.

5. Because the UDB allows user entries with no group ID, it creates password
files with empty group ID fields. Because the nfsmerge (8) command does
not accept an entry without a group ID field, you might receive the
following message if you execute nfsmerge :

nfsmerge: WARNING!! Could not read entire password file.
There is probably an invalid entry (no gid?).
The resulting ID map file may be incomplete.

For mapping to work, a user must have a group ID. If this error occurs,
assign the user a group ID.

This section consists of an example of an NFS mount, followed by a list of error
messages with explanations. If your mount (8) command fails for any reason,
check the generated error messages for information about possible solutions.

3.2.2.1 NFS Mount Example

SG-2304 10.0.0.2

The mount (8) command can get its parameters from the command line or from
the /etc/fstab file. The following example assumes command-line
arguments, but the same debugging techniques work if /etc/fstab is used.
Look at a sample mount request made from a client machine:

mount -t NFS krypton:/usr/src /krypton.src

The example asks the server machine called krypton to return a file handle for
the /usr/src directory. This file handle is then passed to the kernel in the
NEFS mount (2) system call. The kernel looks up the /krypton.src directory; if
everything is working properly, it ties the file handle to the directory in a
mount record. From now on, all file system requests to that directory, and any
subdirectories, will go through the file handle to krypton

The following is a list of steps the mount command takes to mount a remote
file system, as in the previous example:

201

UNICOS® Networking Facilities Administrator's Guide

1. The mount (8) command parses the first argument into host krypton and

remote directory /usr/src

2. The mount command determines the Internet Protocol (IP) address of

krypton

3. The mount command calls the krypton mountd (8) program and passes

lusr/src to it.

4. The krypton server’s mountd command reads /etc/exports
for the exported file system that contains /usr/src

and looks

5. The krypton server’s mountd command expands the host names and

network groups in the export list for /usr/src

6. The krypton server’s mountd command gets a file handle for /usr/src

from the operating system.

7. The krypton server’s mountd command returns fhandle.

8. The mount (8) command performs an NFS mount (2) system call with the

file handle and the /krypton.src directory.

9. The NFS mount (2) system call determines whether the caller is a super user

and whether /krypton.src is a directory.

10. The NFS mount (2) system call does a statfs (2) system call to krypton ’s

UNICOS NFS server (nfsd).

11. The mount command opens the /etc/rmtab file and appends an entry to

it.

3.2.2.2 NFS Mount Failure Error Messages

292

Any one of the steps in the previous section can fail, some of them in more than
one way. Following are specific error messages, along with descriptions of the

failures associated with each.
/etc/fstab: No such file or directory

The mount (8) command tried to search for the name in /etc/fstab
/etc/fstab did not exist.

mount: Block device required
You probably omitted the krypton : part of the following request:

mount krypton:/usr/src /krypton.src

, but

SG-2304 10.0.0.2

Network File System (NFS) [3]

mount -t NFS -0

SG-2304 10.0.0.2

The mount (8) command assumes that you are doing a local mount, unless there
is a colon in the file system name or the file system type is NFSin /etc/fstab

mount: directory path must begin with /

The second parameter to mount identifies the path of the specified directory.
This must be a full path name beginning with /.

mount: No such file or directory

Either the remote directory or the local directory does not exist. Check the
spelling, and use Is (1) to request a listing of each directory.

mount: Not a directory

Either the remote path or the local path specified is not a directory. Check the
spelling, and use Is (1) to request a listing of each directory.

mount: not found in /etc/fstab

If mount is called with either a directory or a file system name, but not both, it
looks in /etc/fstab for an entry whose file system or directory name field
matches the argument on the command line. For example, the following entry
results in a search of /etc/fstab for a line that has a directory name field of
/krypton.src

mount /krypton.src
Assume that an entry such as the following is found:
krypton:/usr/src /krypton.src NFS rw,soft,rsize=8192,wsize=8192

The mount is then performed as though you had typed the following;:

rw,soft,rsize=8192,wsize=8192 krypton:/usr/src /krypton.src

If you see this message, it means that a match for the argument you gave to
mount was not found in any of the entries in /etc/fstab

mount: not in export list for

In the /etc/exports file, your machine name is not included in the export list
for the file system you want to mount. You can look at the file either by logging
in to the server system or by using remsh (1B). If you are to mount the system,
add your machine names to the relevant exports list, or the list of machine
names should be null, indicating that any machine can mount the file system.

mount: Not owner

293

UNICOS® Networking Facilities Administrator's Guide

294

You must do the mount as super user on your machine because it affects the
file system configuration for the whole machine, not just for you.

mount: Permission denied

This message generally indicates that some authentication failed on the server.
It could simply be that your machine name is not included in the appropriate
letc/exports list (see the preceding message) or that the server could not
determine who you are. Possibly, the server does not acknowledge that you are
who you say you are. Check the server’s /etc/exports file.

mount: server not responding: RPC PMAP_FAILURE -
RPC_TIMED_OUT

Either the server from which you are trying to mount is down, or its
portmapper is dead or hung. Try logging in to that machine. If you can log in,
enter the following;:

rpcinfo -p hostname

You should see a list of registered program numbers. If you do not, you might
have to restart the portmap (8) daemon. If you cannot perform a remote login
to the server, but the server is up, you should check your network connection
by trying a remote login to some other machine. You should also check the
server’s network connection.

mount: server not responding: RPC_PROG_NOREGISTERED

This message indicates that mount got through to the portmapper, but the NFS
mount daemon (mountd) was not registered.

amp;... unknown host

The host name you supplied could not be found in /etc/hosts . First check
the spelling and the placement of the colon in your mount call. If the spelling
and syntax are correct, try ping (8) on the local machine (client) and on another
machine to determine whether the remote host is responding.

For UNICOS, mountd (8) is typically started from /etc/netstart . Use
sdaemon(8) to start it manually. Generally, it can be restarted by simply
entering the following command:

/etc/mount mountd

SG-2304 10.0.0.2

Network File System (NFS) [3]

3.2.3 Hanging Programs

If programs hang while they are performing file-related work, your server might
be dead. In this case, you might see the following message on your console:

NFS server Internet address not responding, still trying

This problem originates with either one of your servers or the network. If the
problem is with a server, you can determine which server is malfunctioning by
locating the address provided in the message in /etc/hosts . If your machine
hangs completely, check the server(s) from which you have mounted. If one (or
more) of them is down, your programs will continue automatically when the
server comes back up. There will be no indication that the server died, and no
files will be destroyed.

If a soft-mounted server dies, other work should not be affected. Programs that
time out while trying to access soft-mounted remote files will fail with the
ermo external variable set to ETIMEDOUT, but you should still be able to
work on your other file systems.

If all servers are running, check to see whether anyone else using the server or
servers in question is having trouble. If more than one machine is having
problems getting service, it is probably a problem with the server’s daemon
(nfsd (8)). Log in to the server and execute the ps(1) command to see whether
nfsd is running and accumulating CPU time. If not, you might be able to
terminate and then restart nfsd . If this does not work, you must reboot the
server.

If no one else is having problems, check the network connection and the
connection of the server.

If your machine comes up partially after a boot, but it hangs where it would
usually be doing NFS mounts, one or more servers is probably down or a
problem exists with your network connection.

3.2.4 No Super-user Access over the Network

SG-2304 10.0.0.2

Under UNICOS NFS, a server exports the file systems it owns so that clients
can mount them remotely. When you become a super user on a client, you are
denied access on remotely mounted file systems. Consider the following
example:

295

UNICOS® Networking Facilities Administrator's Guide

296

% cd

% touch testl test2
% chnod 777 testl
% chnod 700 test2

%ls -1 test*
-PWXIWXIWX 1 jsbach 0 Mar 24 16:12 testl
-PWX------ 1 jsbach 0 Mar 24 16:12 test2

Now, retry it as super user.

% su

Password:

touch testl

touch test2

touch: test2: Permission denied

#1s -1 test*
-PWXIWXIWX 1 jsbach 0 Mar 21 16:16 testl
-PWX------ 1 jsbach 0 Mar 21 16:12 test2

The problem usually appears during the execution of a setuid root program.
Programs that run as root cannot access files or directories, unless the
permission for other allows it.

Also, if the server is not an NFS server and the export (5) file or the export
option on the exportfs (8) command does not allow your workstation root
access, you cannot change ownership of remotely mounted files. Because, in
this case, users cannot perform a chown(1l) command, and the super user is
treated as a standard user on remote access, no one but the super user on the
server can change the ownership of remote files. For example, if you try to
execute chown as yourself on new program a.out , which must be setuid
root , it will not work, as demonstrated in the following example:

% chnod 4777 a. out
% su

Password:

chown root a.out
a.out: Not owner

SG-2304 10.0.0.2

Network File System (NFS) [3]

To change the file ownership, you must log in to the server as a super user and
then make the change. Alternatively, you can move the file to a file system
owned by your machine (for example, /usr/tmp is always owned by the local
machine) and make the change there.

3.2.5 File Operations Not Suppor ted

Remote file systems support file locking if the daemons lockd (8) and statd (8)
are running. By default, file locking is supported.

If you do not want file locking, mount the file system using the nolock option
on the mount (8) command.

Append mode and atomic writes are also not ensured to work on remote files
that are accessed simultaneously by multiple clients.

3.2.6 Remote Device Access Not Suppor ted

Under UNICOS NFS, you cannot access a remotely mounted device or any
other character or block special file, such as a named pipe.

3.3 Confidence Testing

SG-2304 10.0.0.2

The UNICOS NFS confidence test suite is provided to ensure the proper
installation of UNICOS NFS. These tests are used by system analysts and
administrators. Two types of test groups are included in the test suite:
functional and performance.

Functional tests verify that specific features are working as expected. If the
functional tests fail, you should look for errors in installation or configuration.
The functional test group includes the following groups of tests:

Test group Description
Basic Determines whether UNICOS NFS is providing

basic functionality

General Checks some commonly used applications such
as compiles, nroff (1), and thl (1)

Special Analyzes specific facilities that have required
special attention in the past

297

UNICOS® Networking Facilities Administrator's Guide

3.3.1 Installation

298

Cray Research client Analyzes facilities that have required special
attention on Cray Research systems as NFS clients

After the functional tests pass, you can look at performance to determine
whether the system can be fine-tuned to run faster. The performance test
provides file transfer rate measurements.

All confidence tests are self-checking. Error messages are provided to help you
determine the source of a problem. The tests described in this section are
designed to be compiled and executed on client machines running the UNICOS
operating system. No test suite software runs on the server.

During the execution of the test suite on a client machine, directories and files
are created along a separate path called the test directory. The test directory
usually consists of the path to a remote directory that was mounted on the
client from a server. Optionally, the test suite can mount a remote directory on
the local machine.

The /usr/src/net/nfs/tests directory contains the confidence test suite
source code. This source code should be copied to a user directory before it is
compiled. The /usr/src/net/nfs/tests/Makefile makefile can be used
to distribute the test source code to a new location, as follows:

su root
make dist DESTDIR=destination_path_for_test_source

After placing the source tree in the desired location, use the Makefile makefile
to compile the tests. Execute the following command in the destination
directory:

cd destination_path_for_test_source
make all

To move the compiled tests to a new location, use the following makefile:

su root
make copy DESTDIR=destination_path_for_compiled_tests

When the test suite is created successfully and is in its execution location, the
permission mode and ownership of binary file domount , which exists in the
root of the test suite tree, must be changed. The super user must own domount ,
and the setuid bit must be set. As super user, enter the following commands:

SG-2304 10.0.0.2

Network File System (NFS) [3]

chown root domount
chmod 4555 domount

3.3.2 Test Execution
Execute the test suite as follows:
1. As super user, mount the desired NFS directory.
Example:
mount -t NFS -0 rw,soft,wsize=8192,rsize=8192 cray2:/tmp Jusr/tmp/mount

2. As a standard user, set the NFSTESTDIRenvironment variable to a
subdirectory of the mounted directory. For example, use the mount point in
the previous example, as follows:

setenv. NFSTESTDIR /usr/tmp/mount/craytest

If the test directory already exists, the test suite deletes it and its contents
(craytest , in this example).

3. Modify the TESTSand TESTARGvariables in the tests.init file to
indicate the type of functional test you want to run, as follows:

* Set the TESTSvariable to indicate which of the following tests you want

to run:

Variable Test type

TESTS="-b" Runs the basic tests

TESTS=-g" Runs the general tests

TESTS="-s" Runs the special tests

TESTS="-c " Runs the Cray Research client tests
TESTS="-a " Runs all of the preceding tests (default)

* Set the TESTARGvariable (which affects only the basic tests) to run an
abbreviated functional test, as follows:

Variable Test type
TESTARG:{" Causes the basic tests to run a shorter

functional test. Use this variable in

SG-2304 10.0.0.2 299

UNICOS® Networking Facilities Administrator's Guide

300

conjunction with TESTS="b" to run a
quick-look test of NFS.

TESTARG="-t" Causes the basic tests to run a longer test
with timing functions (default).

Run the functional tests with the runtests command, as follows:
runtests

The runtests script (located in the root directory of the test tree) is
invoked on the client machine. If the test directory exists, you are given
the following message and choice:

The NFSTESTDIR directory /usr/tmp/mount/craytest exists.
The NFS tests expect to create this directory.

Remove the existing directory (and its contents!)

and continue with the NFStests (n[y])?

To delete the directory and continue, type y; to abort the test and leave
the directory intact, type n. n is the default.

Run the performance test as a separate test. For meaningful
performance numbers, the client machine, the network, and the server
machine must be dedicated to the test. Run the test as follows:

nfsperf [l num_times_to_loop_thro_test]
[-d results_directory]
[N num_of _concurrent_tests]
[-s file_size]
[-f num_of files)

testdir

Option Description

-l Determines the number of times to repeat
each test; default is 1.

-d Indicates that the results_directory
directory is to be used to store the results
files.

-n Indicates the number of concurrent tests;
default is 1.

-S Indicates the size of files that will be

created during the tests in multiples of 32
Kbyte blocks; default is 50.

SG-2304 10.0.0.2

Network File System (NFS) [3]

3.3.3 Test Configurations

-f Indicates the number of files to create for
each test; default is 5.

testdir Name of directory that contains the tests.
This parameter is optional if the
NFSTESTDIRenvironment variable has
been set.

The following test configurations are suggested for UNICOS NFS confidence
testing in a Cray Research environment:

1. Run the test suite on a Cray Research machine, specifying NFSTESTDIRas
a local (not remotely mounted) directory. This provides a baseline set of
results (and timings if the -t option is selected for the basic tests).

With this configuration, the tests run against standard file space, providing
baseline timings (speed of the Cray Research file system).

2. Make the Cray Research machine both the server and the client machine by
mounting a local file system onto another local directory, using localhost
as the server_name argument on the mount (8) command.

3. Mount a file system from a remote server machine onto the Cray Research
system. The test directory then exists on a remote machine.

3.3.4 Executing Individual Tests

SG-2304 10.0.0.2

You can execute any individual test by setting the NFSTESTDIRenvironment
variable to the name of a directory within the mounted directory. For example,
if a remote directory is mounted on local test directory /usr/tmp/mount
specify a new subdirectory, such as /usr/tmp/mount/craytest . Then
execute the following command:

setenv. NFSTESTDIR /usr/tmp/mount/craytest

To run a basic test, change to the basic test directory, check the specific test for
required arguments, and then run the test, as follows:

test_name arguments

For example, to run functionality test test3 from the basic section, execute the
following commands:

301

UNICOS® Networking Facilities Administrator's Guide

3.3.5 Cleaning up

3.3.6 Test Contents

302

cd basic
test3 -f

To run any of the tests other than the basic tests, you must first copy the tests to
the mounted test directory.

Example:

mkdir $NFSTESTDIR

make copy DESTDIR=$NFSTESTDIR
cd $NFSTESTDIR

rename 100

If the runtests script is used to run the test suite, all files and directories
created in the test directory are removed at the completion of testing. However,
the tester must clean up the test directory after running an individual test.

The executable files in the test suite can be removed by using the following
command:

rm -rf $NFSTESTDIR

The super user must remove executable file domount .

Basic tests create and remove files and directories, obtain and set file attributes,
perform look-up functions, read and write files, read directory entries, and
obtain file system statistics.

Special test functions include checking access to open files that have had their
modes changed, checking replies lost on nonidempotent requests, performing
exclusive create functions, performing seeking functions to a negative offset,
repeatedly renaming files, creating and accessing files with holes (data blocks
not allocated), and taking proper umask(1) action on remote files.

Performance tests provide a file transfer rate benchmark. Several files are
created from the mounted file system, and then data is written to and read from
those files.

General file system tests include compiles, simultaneous compiles, doing a
makefile , nroffing a file, or using tbl . They also provide timing information
for performance measures.

SG-2304 10.0.0.2

Network File System (NFS) [3]

Cray Research client tests include tests of special areas that are unique to
UNICOS, including asynchronous I/0, truncation tests, and additional umask
tests.

Please send comments and suggestions concerning the UNICOS NFS test suite
to the following:

Cray Research, Inc. Software Division Network and Communications Quality
Group 655F Lone Oak Road Eagan, MN 55121

Additional tests to be added to the suite are welcome.

3.4 Performance and Tuning

NES is a synchronous protocol designed for reliable remote access. The
synchronous characteristic means that for each NFS request sent, a response
must be received (indicating the completion of the request) before another NFS
request can be sent. This characteristic is one of the primary reasons NFS is not
as fast as other TCP/IP applications. NFS uses UDP/IP, which is a
connectionless, unreliable transport protocol (NFS does not use TCP). Therefore,
NFS runs best over reliable local area networks.

Many NEFS performance factors are related to the manner in which UNICOS
TCP/IP networking parameters were tuned or optimized. Particularly affecting
performance are maximum transmission units (mtus) (see Section 2.3.1, page
128); memory buffers (mbufs) (see Section 2.3.2, page 133); and network routing
(see Section 2.3.3, page 154).

The following sections describe factors that affect NFS performance and
methods for obtaining performance figures.

3.4.1 Factors That Affect NFS Performance

The following sections describe factors that can affect NFS performance and
offer guidelines for increasing performance.

3.4.1.1 NFS_MAXDAT&Rarameter

SG-2304 10.0.0.2

The NFS_MAXDAT Avarameter (defined in the config.h file) defines the
maximum size of the data part of a remote NFS request. By default,
NFS_MAXDATAs set at 32 Kbytes (32,768 bytes) on UNICOS systems. This
parameter has the greatest effect on NFS servers, but it also affects NFS clients.
For example, a Cray Research system acting as an NFS server can receive a

303

UNICOS® Networking Facilities Administrator's Guide

maximum of 32 Kbytes of data from an NFS client request. However, the
maximum amount of data an NFS client can send is determined by the value of
its NFS_MAXDAT Aariable. This makes the limiting factor the system with the
smallest NFS_MAXDATAize. Generally, the more data that can be sent and
received at one time, the better the performance. Therefore, it may be
advantageous to increase NFS_MAXDATAN systems that are not Cray Research
systems.

Note: It is not known how all other systems define this parameter, or
whether the parameter can be changed on all of these systems. Contact the
appropriate vendor for such information.

3.4.1.2 mount Command Arguments

3.4.1.3 NFS Daemons

304

The mount (8) arguments rsize and wsize can have a direct effect on NFS
performance. You can set these parameters when issuing the mount command
on the NFS client. However, rsize and wsize cannot be set above the client’s
NFS_MAXDATAize, and they should not be set greater than the server’s
NFS_MAXDATAalue.

The rsize parameter specifies the read buffer size in bytes (the maximum
amount of data the NFS client can accept from an NFS read request); the wsize
parameter specifies the write buffer size in bytes (the maximum amount of data
the NFS client will send in an NFS write request). Generally, rsize and wsize
are set to the same value. A guideline to use in setting these parameters is to
set them as large as possible, but not to exceed the smaller of the
NFS_MAXDATAize of the client or server. If these mount parameters are not
specified, the default used is based on the client’s default buffer size.

For Cray Research systems running UNICOS 8.0, the default buffer size (default
rsize and wsize) is 8 Kbytes, with a maximum of 32 Kbytes (NFS_MAXDATA
Most systems that are not Cray Research systems have both their default and
maximum buffer sizes set to 8§ Kbytes. Therefore, generally, NFS client systems
do not need to specify rsize and wsize ; instead, the default of 8 Kbytes is
used. One exception to this is when NFS is being run between two Cray
Research systems; for better performance, you should set rsize and wsize on
the mount command to 32 Kbytes instead of using the default of 8 Kbytes.

Other factors that affect NFS performance are the number of NFS daemons
(nfsd (8)) running on the NFS server and the number of block I/O daemons
(biod (8)), if any, running on the NFS client. The nfsd s daemons are used on
the NFS server to respond to requests from NFS clients for access to exported

SG-2304 10.0.0.2

Network File System (NFS) [3]

file systems. The biod daemons are used on the NFS client to allow for
applications to use asynchronous block I/O. The biod daemons on the
UNICOS system provide write-behind capabilities on behalf of the application.

The typical number of nfsd daemons running on a UNICOS NFS server system
is 4; the typical number of biod daemons running on a UNICOS NFS client
system is 4. If your system, acting as an NFS server, is going to be used as a
fileserver for the rest of the network, more nfsd daemons may be required.
However, it is not clear how to determine whether you are running enough of
these daemons. You must use a trial-and-error method in which you determine
whether adding more daemons makes any improvements to NFS performance.

Note: Adding more nfsd or biod daemons does not improve performance
of a single stream, but it does affect the overall performance of multiple
users. However, you should run some biod daemons, because running biod
daemons increases the performance of a single write stream. You should also
note that biod daemons do use mbufs (see Chapter 2, page 3, for details on
setting the number of mbufs).

3.4.1.4 File System Configuration and Idcache (8)

SG-2304 10.0.0.2

One of the major limiting factors for any NFS server is its performance in
accessing data (disk I/O performance). Many times this is the only limiting
factor and therefore, performance never improves above the NFS server’s disk
I/0 performance. For Cray Research systems acting as NFS servers, disk I/O
performance is affected by whether Idcache (8) is configured and how it is
used. If a Cray Research system is acting as an NFS server with a heavy NFS
access load, using ldcache can greatly increase performance.

However, you should be aware of some factors. Ensure that using ldcache for
NFS data access does not negatively affect local I/O performance (see the
UNICOS Configuration Administrator’s Guide, publication SG-2303, for more
information on ldcache and configuring disks). Also, Idcache violates the
NES stateless protocol. For example, if the NFS server goes down, it should not
affect the NFS client, except for a delay in processing until the NFS server
comes back up. However, if the NFS server uses ldcache and the NFS server
goes down, it may affect the NFS client, in that any NFS data that was changed
or added by the client may not have been written to disk before the crash; the
NFEFS client will not be aware that the changes were not made to the disk. Of
course, similar concerns also affect local 1/0O requests using Idcache .

305

UNICOS® Networking Facilities Administrator's Guide

3.4.1.5 Network Speed

The network speed of channel devices such as the 10 Mbit/s Ethernet, 100
Mbit/s FDDI, 50 Mbit/s HYPERchannel, or 800 Mbit/s HIPPI affects
performance. Generally, the faster the network, the better the performance.
However, there can be exceptions because network speed is not the only factor
that affects performance. One network can be faster than another network, but
it can have higher overhead that decreases performance.

3.4.1.6 Network Configuration and Load

Performance is poor for any network application if the network is overloaded
or poorly configured. You should check your networks for signs of overload
(for example, a high number of collisions) by using such utilities as

netstat (1B) to evaluate the state of your network, and netperf (8) and
nfsstat (8), which display NFS/RPC statistics.

You should also try to configure your networks to reduce the number of
gateway hops that are required to get from an NFS client to an NFS server.

3.4.1.7 NFS Server/client Configuration and Load

If a system will be an NFS server for several NFS clients with heavy access, it
should be configured as a dedicated NFS server system and be used only
minimally for other purposes. If an overloaded system is acting as either an
NES server or client, performance will be poor.

3.4.2 Obtaining NFS Performance Figures

306

NFS performance figures can be obtained by running the NFS performance test,
fileperf , included in the NFS source directory,

lusr/src/net/nfs/tests/nfsperf . Tests should be run with the Cray
Research system acting as an NFS server and run again with the Cray Research
system acting as an NFS client. See Section 3.3.6, page 302, for more details.

If possible, you should run the same tests through a similar network
configuration, between two systems that are not Cray Research systems, to
obtain figures that can be compared to the Cray Research system performance
figures.

To obtain peak performance numbers for a particular configuration, follow
these guidelines:

SG-2304 10.0.0.2

Network File System (NFS) [3]

SG-2304 10.0.0.2

Use the fastest networks available for NFS access (see the previous section
for exceptions to this guideline).

Ensure that the client machine, the network, and the server machine are
dedicated for the test.

Eliminate (or at least reduce) gateway hops.

Set the value of NFS_MAXDATAN the NFS server and client to the optimal
size. By default, Cray Research systems set NFS_MAXDATAo 32 Kbytes; it is
desirable, but not always possible, to match this value on the other system.
See Section 3.4.1.1, page 303, for more information on setting this value.

Set the mtu for the interface to the optimal size (see Chapter 2, page 3, for
details on setting the mtu size).

Use Idcache (8) on Cray Research systems, or comparable caching methods
on other systems, for the file systems on the NFS server.

Run biod (8) daemons on the NFS client system.

NFS peak performance figures are usually no better than 50% of peak
performance rates obtained with ftp (in some cases, NFS figures may be
considerably less than 50%). One of the major factors for these statistics is that
NES is a synchronous protocol.

307

