Accounting [2]

The UNICOS operating system supports two types of accounting: Cray
Research system accounting and standard UNIX accounting. Both types of
accounting are described in this chapter.

2.1 Cray Research System Accounting (CSA)

SG-2302 10.0.0.2

Cray Research system accounting (CSA) is designed to meet the unique
accounting requirements of Cray Research sites. Like the standard UNIX
accounting package, CSA provides methods to collect per-process resource
utilization data, record connect sessions, monitor disk usage, and charge fees to
specific logins. CSA also provides other facilities that are not available from the
standard accounting package. These include the following:

® Per-job accounting
® Accounting for socket usage
® Device accounting

* Daemon accounting (for the Network Queuing System (NQS) and the
UNICOS tape subsystem)

¢ Disk accounting by account ID

® Arbitrary accounting periods

¢ Flexible system billing unit (SBU) system

* One file containing all data for an accounting period
¢ Off-line archiving of accounting data

Sites may run either the standard UNICOS accounting programs or the CSA
package by invoking the appropriate shell scripts and programs. Both packages
are installed with the UNICOS 10.0 release.

UNICOS system features in the CSA package include configurable parameters
located in a single file, /etc/config/acct_config , and a set of user-defined
exits that allows sites to tailor the daily run of accounting to their specific needs.

UNICOS Resource Administration

2.1.1 Concepts and Terminology

The following concepts and terms are important in CSA:

Term

Daily accounting

Periodic accounting

Recycled data

Session

Description

Unlike the standard daily accounting, CSA’s
accounting can be run as many times as necessary
during a day. However, this feature is still
referred to as daily accounting.

Accounting similar to the standard UNICOS
monthly accounting. CSA, however, lets system
administrators specify the time periods for which
“monthly” or cumulative accounting is to be run.
Thus, periodic accounting can be run more than
once a month.

By default, accounting data for active sessions is
recycled until the session terminates. CSA reports
only data for terminated sessions unless

csarun (8) is invoked with the -A option.

csarun places recycled data into data files in the
/usrfadm/acct/day directory. These data files
are suffixed with O; for example, per-process
accounting data for active sessions from previous
accounting periods is in the
/usr/adm/acct/day/pacctO file.

CSA organizes accounting data by sessions and
boot times and then places the data into a session
record file.

For non-NQS jobs, a session consists of all
accounting data for a given job ID during a single
boot period.

A session for an NQS job consists of the
accounting data for all job IDs associated with the
job’s NQS sequence number/machine name
identifier. NQS jobs may span multiple boot
periods. If a job is restarted, it has the same job
ID associated with it during all boot periods in
which it runs. Rerun NQS jobs have multiple job
IDs. CSA treats all phases of an NQS job as being
in the same session.

SG-2302 10.0.0.2

Accounting [2]

Uptime period or boot A period delineated by the system boot times
period found in /etc/csainfo . The csaboots (8)
command writes to this file during system boot.

2.1.2 Files and Directories Overvie w

This section provides a brief overview of the CSA file and directory structure.
A more complete description of the files and directories can be found in Section
2.1.7, page 23.

2.1.2.1 Structures of the acct and tmp Directories

The directory structure of /usr/adm/acct is set up so that it is easy to find
CSA data files and reports. The /tmp structure is also used while csarun (8) is
running. Figure 1 illustrates the directory structure for both directories.

SG-2302 10.0.0.2 5

UNICOS Resource Administration

/usr/fadm/acct
| | | |
day work sum fiscal nite
| | | |
Raw data MMDD ‘ ‘ Processing/
files data rpt error
messages
hhmm hhmm hhmm /—I—\ /—I—\
‘ ‘ ‘ MMDD MMDD MMDD MMDD
Raw and preprocessed ‘ ‘
data files . .
hhmm hhmm ° * hhmm hhmm
| | | |
‘ pdacct pdacct rprt rprt
daka ot cms cms
MMDD MMDD MMDD MMDD
| | |
T e T
hhmm hhmm hhmm hhmm hhmm hhmm
o .
caect caect caect rprt rprt rprt
dacct dacct dacct
cms cms cms

Figure 1. /usr/fadm/acct

tmp/AC .MMDD

hhmm

Super-record a10111

and tmp directory structures

SG-2302 10.0.0.2

Accounting [2]

Note: As distributed, only the directory /usr/fadm/acct/day is readable by
all users. Within the day directory, only the pacct* files are readable by all
users. This allows any user to examine the pacct* files by using the
acctcom (1) command. All other directories and files within

/usrfadm/acct are accessible only by root and users in the group adm

Warning: acctcom (1) on a Cray ML-Safe configuration of the UNICOS
system is considered to be a covert channel. You may want to consider
restricting access to this command to the adm group.

The following abbreviations have these meanings:

Abbreviation Definition

MMDD Month, day

hhmm Hour, minute

2.1.2.2 Shell Scripts and C Binaries

The /usr/lib/acct directory contains virtually all of the programs and
scripts used by both the standard accounting and CSA packages. The only CSA
program not located here is /etc/csaboots (see csaboots (8)), which records
boot times at system startup. Programs used only by CSA begin with the
characters csa.

2.1.2.3 Unprocessed Data Files

SG-2302 10.0.0.2

Both CSA and the standard accounting package expect most unprocessed
accounting files to be located in the /usr/adm/acct/day directory. The use of
this directory simplifies tracking of the current accounting files. The following
table shows the location of the raw data files.

Accounting file Description
/usr/adm/acct/day/dtmp Disk accounting data
/usr/adm/acct/day/ngacct* NQS daemon accounting data
/usrfadm/acct/day/pacct* Per-process accounting data
/usrfadm/acct/day/tpacct* Tape daemon accounting data
/usr/fadm/acct/day/soacct* Socket accounting data
letc/csainfo Boot times

UNICOS Resource Administration

letc/wtmp Connect time accounting data

Warning: On a Cray ML-Safe configuration of the UNICOS system,
letc/wtmp is considered a covert channel. You may want to consider
restricting access to this file to the adm group.

Accounting files in /usr/adm/acct/day whose names include the suffix 0
contain data from sessions that did not complete during the previous
accounting periods.

During CSA data processing, sites may select to archive the raw and/or
processed data off-line. Section 2.1.5, page 16, describes how to do this. By
default, all raw data files are deleted after use and are not archived.

2.1.2.4 Data Files Being Processed

At the start of a daily accounting run, CSA moves the raw data files from
/usr/fadm/acct/day to the appropriate

{usr/adm/acct/work/ MMDD/hhmm directory. The files in the work
directory are as follows:

File Description

Ever.tmp Data verification work file

Pctime* Preprocessed connect time data

Pngacct* Preprocessed NQS data

Puptime* Uptimes

Rctime0 Connect data to be recycled in the next
accounting run

Rngacct0 NQS data to be recycled in the next accounting
run

Rpacct0 Per-process accounting data to be recycled in the
next accounting run

Rtpacct0 Tape data to be recycled in the next accounting
run

Ruptime0 Uptimes to be recycled in the next accounting run

Woetime* Verified raw connect time data

Wdisktacct Disk accounting data (cacct.h format)

SG-2302 10.0.0.2

Accounting [2]

Wdtmp Disk accounting data from diskusg (8) or
acctdusg (8)

Whngacct* Raw NQS accounting data

Wpacct* Raw per-process accounting data

Wsoacct* Raw socket accounting data

Wtpacct* Raw tape accounting data

Wwtmp Raw connect time data

2.1.2.5 Processed Data Files
CSA outputs the following data files:
File Description
ftmp/AC. MMDD!/ hhmml/Super-record

Session record file; this file is usually deleted after it has been
used by CSA.

/usr/adm/acct/fiscal/data/ MMDDI/ hhmmlipdacct
Consolidated periodic data.

/usr/adm/acct/fiscal/data/ MMDD/ hhmmlcms
Periodic command usage data.

/usr/adm/acct/sum/data/ MMDD/ hhmmlcacct

Consolidated daily data; this file is deleted by csaperiod (8) if
the -r option is specified.

/usr/fadm/acct/sum/data/ MMDD/ hhmmlcms

Daily command usage data; this file is deleted by
csaperiod (8) if the -r option is specified.

SG-2302 10.0.0.2 9

UNICOS Resource Administration

/usr/fadm/acct/sum/data/ MMDD/ hhmmldacct

Daily disk usage data; this file is deleted by csaperiod (8) if
the -r option is specified.

2.1.2.6 Reports

CSA generates daily and periodic reports. The locations of these reports are as
follows:

File Description
/usr/adm/acct/fiscal/rpt/ MMDD/ hhmmirprt

Periodic accounting report

/usr/adm/acct/sum/rpt/ MMDD/ hhmmlrprt

Daily accounting report

2.1.3 Daily Operation Overview

When the UNICOS operating system is run in multiuser mode, accounting
behaves in a manner similar to the following process. However, because sites
may customize CSA, the following may not reflect the actual process at a
particular site:

1. System boot time is written to /etc/csainfo . Each time the system is
booted, the boot time is written to /etc/csainfo by the /etc/csaboots
command, which is invoked by rc (see brc (8)) during system startup.

2. Process accounting is enabled. When the system is switched to multiuser
mode, the /ust/lib/acct/startup (see acctsh (8)) script is called by
letc/rc and performs the following functions:

a. Writes an acctg on record to /etc/wtmp ; the acctwtmp program is
used to write this record.

b. Enables process accounting with the command line
{usr/lib/acct/turnacct on; turnacct (8) calls the accton
program with the argument /usr/adm/acct/day/pacct

¢. Removes lock files and saved pacct and wtmp files.
/usr/lib/acct/remove is invoked to clean up saved pacct and
wtmp files in /usr/adm/acct/sum . Unlike the standard accounting

10 SG-2302 10.0.0.2

Accounting [2]

package, CSA does not leave files in this directory. In addition, the lock
files are removed from /usr/adm/acct/nite

3. By default, daemon accounting for NQS, tape, and sockets is handled by
the /usr/lib/acct/startup script. However, in order to run NQS and
tape daemon accounting, you must modify the appropriate subsystem.
Section 2.1.4, page 11, describes this process in detail.

4. The amount of disk space used by each user is determined periodically.
{usr/lib/acct/dodisk (see dodisk (8)) is run periodically by cron to
generate a snapshot of the amount of disk space being used by each user.
dodisk should be run at most once for each time

{usr/lib/acct/csarun (see csarun (8)) is run. Multiple invocations of
dodisk during the same accounting period write over previous dodisk
output.

5. A fee file is created. Sites desiring to charge fees to certain users can do so
by invoking /usr/lib/acct/chargefee (see chargefee (8)). Each
accounting period’s fee file (/usr/adm/acct/day/fee) is merged into the
consolidated accounting records by /usr/lib/acct/csaperiod (see
csaperiod (8)).

6. Daily accounting is run. At specified times during the day, csarun is
executed by cron to process the current accounting data. The output from
csarun is a consolidated daily accounting file and an ASCII report.

7. Periodic accounting is run. At a specific time during the day, or on certain
days of the month, /usr/lib/acct/csaperiod (see csaperiod (8)) is
executed by cron to process consolidated accounting data from previous
accounting periods. The output from csaperiod is a consolidated periodic
accounting file and an ASCII report.

8. Accounting is disabled. When the system is shut down gracefully, the script
{usr/lib/acct/shutacct (see shutacct (8)) is executed by
/etc/shutdown (see shutdown (8)). shutacct writes an “acctg off”
record to /etc/wtmp . It then calls /usr/lib/acct/turnacct and
lusr/lib/acct/turndacct to disable per-process and daemon
accounting (see turnacct (8) and turndacct (8)).

2.1.4 Setting up CSA

The following is a brief description of setting up CSA. Site-specific
modifications are discussed in detail in Section 2.1.10, page 39. As described in
this section, CSA is run by a person with super-user permissions. CSA also can

SG-2302 10.0.0.2 11

UNICOS Resource Administration

be run by users who have acct permissions and are in the adm group. See
Section 2.1.10.7, page 54, for the necessary modifications.

1.

0 4 * * 1-6 /usr/lib/acct/csarun
0 3 * * 1-6 /usr/lib/acct/dodisk

12

Change the default system billing unit (SBU) weighting factors, if necessary.
By default, no SBUs are calculated. If your site wants to report SBUs, you
must modify the configuration file /etc/config/acct_config

Modify any necessary parameters in the /etc/config/acct_config file,
which contains configurable parameters for the accounting system. Ensure
that parameters, such as MEMINT reflect the needs of your site.

If you want daemon accounting, you must enable daemon accounting at
system startup time by performing the following steps:

a. Ensure that the variables in /etc/config/acct_config for the
subsystems for which you want to enable daemon accounting are set to
on. Set the NQS_STARJTTAPE_START and SOCKET_STARPparameters
to on to enable NQS, online tapes, and socket accounting, respectively.

b. If necessary, enable accounting from the daemon’s side. Specifically,
NQS and tape accounting must also be enabled by the associated
daemon. Use the gmgr(8) set accounting on command to turn on
NQS accounting. To enable tape daemon accounting, execute
tpdaemon (8) with the -c option. Socket accounting does not require
any additional processing.

Prior to setting up the following cron jobs, ensure that the

letc/checklist file exists. By default, dodisk (8) performs disk
accounting on the special files listed in checklist . For most installations,
entries similar to the following should be made in
{usr/spool/cron/crontabs/root so that cron (8) automatically runs
daily accounting;:

2> Jusr/adm/acct/nite/fd2log
-a -v 2> [usr/adm/acct/nite/dk2log

csarun (8) should be executed at such a time that dodisk has sufficient
time to complete. If dodisk does not complete before csarun executes,
disk accounting information may be missing or incomplete.

dodisk must be invoked with either the -a or the -A option. If it is not,
csaperiod (8) aborts when it attempts to merge the disk usage information
with other accounting data.

Periodically check the size of the acct files. Entries similar to the following
should be made in /usr/spool/cron/crontabs/root

SG-2302 10.0.0.2

Accounting [2]

0 * * * * Jusr/lib/acct/ckdacct ngs tape socket
0 * * * * Jusr/lib/acct/ckpacct

cron (8) should periodically execute the ckpacct (8) and ckdacct (8) shell
scripts. If the pacct file grows larger than 500 blocks (default), ckpacct
calls the command /ust/lib/acct/turnacct switch to start a new
pacct file. ckpacct also makes sure that there are at least 500 free blocks
on the file system containing /usr/adm/acct (lusr by default). If there
are not enough blocks, per-process accounting is turned off. The next time
ckpacct is executed, it turns per-process accounting back on if there are
enough free blocks.

ckdacct performs an analogous function for daemon accounting. If a
daemon’s accounting file is larger than 500 blocks (default), the command
{usr/lib/acct/turndacct switch is executed in order to start a new
accounting file. In addition, ckdacct also checks the amount of free blocks
on the ACCT_FSfile system (/usr by default).

Ensure that the ACCT_FSand MIN_BLKS variables have been set correctly
in the /etc/config/acct_config configuration file. ACCT_FSis the file
system containing /usr/adm/acct ; the default is /usr . MIN_BLKS s the
minimum number of free blocks needed in the ACCT_FSfile system. The
default is 500.

It is very important that ckpacct and ckdacct be run periodically so that
an administrator is notified when the accounting file system (/usr by
default) runs out of disk space. After the file system is cleaned up, the next
invocation of ckpacct and ckdacct enables per-process and daemon
accounting. You can manually reenable accounting by invoking

turnacct (8) and turndacct (8) with the on operand.

If ckpacct and ckdacct are not run periodically, and the accounting file
system runs out of space, an error message is written to the console stating
that a write error occurred and that accounting is disabled. If you do not
free disk space as soon as possible, a vast amount of accounting data can be
lost unnecessarily. Additionally, lost accounting data can cause csarun (8)
to abort or report erroneous information.

6. To run periodic accounting, an entry similar to the following should be
made in /usr/spool/cron/crontabs/root . This command generates a
periodic report on all consolidated data files found in
/usrfadm/acct/sum/data/* and then deletes those data files:

15 5 1 * * Jusr/lib/acct/csaperiod -r 2> /usr/adm/acct/nite/pd2log

SG-2302 10.0.0.2 13

UNICOS Resource Administration

14

This entry is executed at such a time that csarun (8) has sufficient time to

complete. This example results in the creation of a monthly accounting file
and report on the first day of each month. These files contain information

about the previous month’s accounting.

Update the holidays file. The /usr/lib/acct/holidays file contains
the prime/nonprime time table for the accounting system, which should be
edited to reflect your site’s holiday schedule for the year.

By default, the holidays file is located in the /usr/lib/acct directory.
You can change this location by modifying the HOLIDAY_FILE variable in
/etc/config/acct_config . If necessary, modify the NUM_HOLIDAYS
variable (also located in /etc/config/acct _config), which sets the
upper limit on the number of holidays that can be defined in
HOLIDAY_FILE. The format of this file is composed of the following types
of entries:

e Comment lines: These lines may appear anywhere in the file as long as
the first character in the line is an asterisk (*).

® Version line: This line must be the first uncommented line in the file and
must only appear once. It denotes that the new holidays file format is
being used. This line should not be changed by the site.

® Year designation line: This line must be the second uncommented line
in the file and must only appear once. The line consists of two fields.
The first field is the keyword YEAR The second field must be either the
current year or the wildcard character, asterisk (*). If the year is
wildcarded, the current year is automatically substituted for the year.
The following are examples of two valid entries:

YEAR 1997
YEAR *

* Prime/nonprime time designation lines: These must be uncommented
lines 3, 4, and 5 in the file. The format of these lines is as follows:

period prime_time_start — nonprime_time_start

The variable period is one of the following: WEEKDAYSATURDAYor
SUNDAYThe period can be in either upper or lowercase.

The prime and nonprime start time can be one of two formats:

— Both start times are 4-digit numeric values between 0000 and 2359.
The nonprime_time_start value must be greater than the

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

prime_time_start value. For example, it is incorrect to have prime time
start at 07:30 A.M. and nonprime time start at 1 minute after
midnight. Therefore, the following entry is wrong and can cause
incorrect accounting values to be reported.

WEEKDAY 0730 0001

It is correct to specify prime time to start at 07:30 A.M. and nonprime
time to start at 5:30 PM. on weekdays. You would enter the
following in the holiday file:

WEEKDAY 0730 1730

— Start times specify that the entire period is to be either all prime time
or all nonprime time. To specify that the entire period is to be
considered prime time, set prime_time_start to ALL and
nonprime_time_start to NONEISf the period is to be considered all
nonprime time, set prime_time_start to NONEand nonprime_time_start
to ALL. For example, to specify Monday through Friday as all prime
time, you would enter the following;:

WEEKDAY ALL NONE

To specify all of Sunday to be nonprime time, you would enter the
following;:

SUNDAY NONE ALL

Company holidays lines: These entries follow the year designation line
and have the following general format:

day-of-year Month Day Description of Holiday
The day-of-year field is a number in the range 1 through 366, indicating
the day for a given holiday (leading white space is ignored). The other

three fields are commentary and are not currently used by other
programs. Each holiday is considered all nonprime time.

If the holidays file does not exist or there is an error in the year
designation line, the default values for all lines are used.

If there is an error in a prime/nonprime time designation line, the entry
for the erroneous line is set to a default value. All other lines in the
holidays file are ignored and default values are used.

If there is an error in a company holidays line, all holidays are ignored.

15

UNICOS Resource Administration

The default values are as follows:

YEAR The current year.

WEEKDAY Monday through Friday is all prime time.
SATURDAY Saturday is all nonprime time.

SUNDAY Sunday is all nonprime time.

No holidays are specified

2.1.5 The csarun Command

2.1.5.1 Daily Invocation

16

The /ustr/lib/acct/csarun command is the primary daily accounting shell
script. It processes connect, disk, per-process, and daemon accounting files and
is normally initiated by cron (8) during nonprime hours.

csarun (8) also contains four user-exit points allowing sites to tailor the daily
run of accounting to their specific needs (see Section 2.1.10.3, page 51 for
information on setting up user exits callable from csarun and Section 2.2.3.1,
page 83, for information on setting up a user exit callable from runacct).

The csarun command does not damage files in the event of errors. It contains
a series of protection mechanisms that attempt to recognize an error, provide
intelligent diagnostics, and terminate processing in such a way that csarun can
be restarted with minimal intervention.

The csarun command is invoked periodically by cron (8). It is very important
that you ensure that the previous invocation of csarun completed successfully
before invoking csarun for a new accounting period. If this is not done,
information about unfinished sessions will be inaccurate.

Data for a new accounting period can also be interactively processed by
executing the following:

nohup csarun 2> /usr/adm/acct/nite/fd2log &

Before executing csarun in this manner, ensure that the previous invocation
completed successfully. To do this, look at the files active and statefile in
/usr/fadm/acct/nite . Both files should specify that the last invocation
completed successfully.

SG-2302 10.0.0.2

Accounting [2]

2.1.5.2 Error and Status Messages

2.1.5.3 States

SG-2302 10.0.0.2

The csarun error and status messages are placed in the

/usr/fadm/acct/nite directory. The progress of a run is tracked by writing
descriptive messages to the file active . Diagnostic output during the
execution of csarun is written to fd2log . The lock and lockl files prevent
concurrent invocations of csarun ; csarun will abort if these two files exist
when it is invoked. The clastdate file contains the month, day, and time of
the last two executions of csarun .

Errors and warning messages from programs called by csarun are written to
files that have names beginning with E and ending with the current date and
time. For example, Ebld.11121400 is an error file from csabuild (8) for a
csarun invocation on November 12, at 14:00.

If csarun detects an error, it sends an informational message to the operator
with msgi (1), sends mail to root and adm, removes the locks, saves the
diagnostic files, and terminates execution. When csarun detects an error, it
will send mail either to MAIL_LIST if it is a fatal error, or to WMAIL_LIST if it
is a warning message, as defined in the configuration file

/etc/config/acct _config

Processing is broken down into separate reentrant states so that csarun can be
restarted. As each state completes, /usr/adm/acct/nite/statefile is
updated to reflect the next state. When csarun reaches the CLEANUPtate, it
removes various data files and the locks, and then terminates.

The following describes the events that occur in each state. MMDD refers to the
month and day csarun was invoked. hhmm refers to the hour and minute of
invocation.

State Description

SETUP The current accounting files are switched via turnacct (8) and
turndacct (8). These files are then moved to the
/usrfadm/acct/work/ MMDD/hhmm directory. File names are
prefaced with W /etc/wtmp and /etc/csainfo are also moved

to this directory.

WTMPFIX The wtmp file in the work directory is checked for accuracy by
wtmpfix (see fwtmp (8)). Some date changes cause csaline (8)
to fail, so wtmpfix attempts to adjust the time stamps in the
wtmp file if a date change record appears.

17

UNICOS Resource Administration

18

VERIFY

PREPROC

ARCHIVE1

BUILD

ARCHIVE2

CMS

REPORT

DREP

If wtmpfix is unable to fix the wtmp file, the wtmp file must be
manually repaired. This is described in Section 2.1.6.1, page 20.

By default, per-process and NQS accounting files are checked for
valid data. In addition, tape and socket accounting files are
verified. Records with invalid data are removed. Names of bad
data files are prefixed with BAD. in the /usr/adm/acct/work/*
directory. The corrected files do not have this prefix.

The NQS and connect time (wtmp) accounting files are run
through preprocessors. File names of preprocessed files are
prefixed with a P in the /usr/adm/acct/work/ MMDD/ hhmm
directory.

First user exit of the csarun script. If a script named
lusr/lib/acct/csa.archivel exists, it will be executed
through the shell . (dot) command. The . (dot) command will not
execute a compiled program, but the user exit script can. You
might use this user exit to archive the accounting files in
${WORK}.

The per-process, NQS, tape, socket, and connect accounting data
is organized into a session record file.

Second user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive?2 exists, it will be executed
through the shell . (dot) command. The . (dot) command will not
execute a compiled program, but the user exit script can. You
might use this exit to archive the session record file.

Produces a command summary file in cacct.h format. The
cacct file is put into the

/usr/fadm/acct/sum/data/ MMDD| hhmm directory for use by
csaperiod (8).

Generates the daily accounting report and puts it into

/usr/adm/acct/sum/rpt/ MMDD/ hhmmirprt . A
consolidated data file,
/usr/adm/acct/sum/data/ MMDD/ hhmml/cacct , is also

produced from the session record file. In addition, accounting
data for unfinished sessions is recycled.

Generates a daemon usage report based on the session file. This
report is appended to the daily accounting report,
/usr/adm/acct/sum/rpt/ MMDD/ hhmmlrprt

SG-2302 10.0.0.2

Accounting [2]

2.1.5.4 Restarting csarun

SG-2302 10.0.0.2

FEF

USEREXIT

CLEANUP

Third user exit of the csarun script. If a script named
lusr/lib/acct/csa.fef exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. csarun variables
are available, without being exported, to the user exit script. You
might use this exit to convert the session record file to a format
suitable for a front-end system.

Fourth user exit of the csarun script. If a script named
lusr/lib/acct/csa.user exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute
a compiled program, but the user exit script can. csarun
variables are available, without being exported, to the user exit
script. You might use this exit to run local accounting programs.

Cleans up temporary files, removes the locks, and then exits.

If csarun (8) is executed without arguments, the previous invocation is
assumed to have completed successfully.

The following operands are required with csarun if it is being restarted:

csarun

[MMDD [hhmm [state]]]

MMDD is month and day, hhmm is hour and minute, and state is the csarun

entry state.

To restart csarun , follow these steps:

1.

Remove all lock files by using the following command line:

rm

/usr/adm/acct/nite/lock*

Execute the appropriate csarun restart command, using the following
examples as guides:

a.

To restart csarun using the time and state specified in clastdate = and
statefile , execute the following command:

nohup csarun 0601 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be rerun for June 1, using the time and
state specified in clastdate and statefile

19

UNICOS Resource Administration

b. To restart csarun using the state specified in statefile , execute the
following command:

nohup csarun 0601 0400 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be rerun for the June 1 invocation that
started at 4:00 A.M., using the state found in statefile

c. To restart csarun using the specified date, time, and state, execute the
following command:

nohup csarun 0601 0400 BUILD 2> /usr/adm/acct/nite/fd2log &

In this example, csarun will be restarted for the June 1 invocation that
started at 4:00 A.M., beginning with state BUILD.

Before csarun is restarted, the appropriate directories must be restored. If the
directories are not restored, further processing is impossible. These directories
are as follows:

/usr/fadm/acct/work/ MMDD/ hhmm
/usr/fadm/acct/sum/data/ MMDD/ hhmm
/usr/fadm/acct/sum/rpt/ MMDD/ hhmm
Itmp/AC. MMDD/ hlimm

If you are restarting at state ARCHIVEZ CM$ REPORTDRER or FEF, the session
file must already exist in /tmp/AC. MMDD/ hhmm. If the file does not exist,
csarun will automatically restart at the BUILD state. Depending on the tasks
performed during the site-specific USEREXIT state, the session file may or may
not need to exist.

2.1.6 Verifying and Correcting Data Files

2.1.6.1 Fixing wtmp Errors

20

This section describes how to remove bad data from various accounting files.

The wtmp files generally cause the highest number of errors in the day-to-day
operation of the accounting subsystem. When the date is changed, and the
UNICOS system is in multiuser mode, a set of date change records is written
into the /etc/wtmp file. The wtmpfix (see fwtmp (8)) program is designed to
adjust the time stamps in the wtmp records when a date change is encountered.

SG-2302 10.0.0.2

Accounting [2]

Some combinations of date changes and reboots, however, slip by wtmpfix and
cause csaline (8) to fail. The following example shows how to repair a wtmp
file:

$ cd /usr/adm/acct/work/ MMDD/ hhimm

$ /usr/lib/acct/fwtmp < Wwtmp > xwtmp
$ ed xwtmp
(delete corrupted records)
$ /usr/lib/acct/fwtmp -ic < xwtmp > Wwtmp

(restart csarun at the WTMPFIXstate)

If the wtmp file is beyond repair, create a null Wwtmpfile. This prevents any
charging of connect time.
2.1.6.2 Verifying Data Files

You can verify data files with the csaedit (8), csapacct (8), and

csaverify (8) commands. csaedit and csapacct verify and delete bad data
records, while csaverify only flags bad records. By default, csaedit and
csaverify are invoked in csarun to verify the data files.

Note that these commands may allow files that contain bad data, such as very
large values, to be successfully verified.
2.1.6.3 Editing Data Files

You can use the csaedit (8) and csapacct (8) commands to verify and remove
records from various accounting files. The following example shows how you
can use csapacct to verify and remove bad records from a per-process

(pacct) accounting file.

In this example, csapacct is invoked with verbose mode enabled (valid data
records are written to the file pacct.NEW):

Justr/lib/acct/csapacct -v pacct pacct.NEW

The output produced by this command line is as follows:

SG-2302 10.0.0.2 21

UNICOS Resource Administration

Bad record - starting byte offset is 077740 (32736)
invalid pacct record - bad base parent process id 97867
Found the next magic word at byte offset 0100130, ignored 120 bytes

Found 394 BASE records

Found 4 EOJ records

Found 1 MTASK (multitasking) records

Found 0 ERRORrecords

Found 0 10 records

Found O SDS records # not on CRAY EL systems
Found O MPP records # not on CRAY EL systems
Found 0 PERFORMANCEecords

Outputted records for 398 processes
Ignored 120 bytes from the input file

You can use csaedit and csapacct in conjunction with csaverify , by first
running csaverify and noting the byte offsets of the first bad record. Next,
execute csaedit or csapacct and remove the record at the specified offset.
The following example shows how you can verify and then edit a bad pacct
accounting file:

1. The pacct file is verified with the following command line, and the
following output is received:

$ Jusr/lib/acct/csaverify -P pacct
lustr/lib/acct/csaverify: pacct: invalid pacct record - bad base parent process id 97867
byte offset: start = 077740 (32736) word offset: start = 07774 (4092)
lusr/lib/acct/csaverify: pacct: invalid pacct record - bad magic word 03514000
byte offset: start = 0100070 (32824) word offset: start = 010007 (4103)

2. The record found at byte offset 32736 is deleted as follows (valid records are
written to pacct. NEW):

Justr/lib/acct/csapacct -0 32736 pacct pacct.NEW

3. The new pacct file is reverified as follows to ensure that all the bad
records have been deleted:

/ustr/lib/acct/csaverify -P pacct.NEW

22 SG-2302 10.0.0.2

Accounting [2]

You can use csaedit to produce an abbreviated ASCII version of some of the
daemon accounting files and acctcom (1) to generate a similar ASCII version of
pacct files.

2.1.7 Files and Directories

This section describes the files and directories used by CSA.

2.1.7.1 /usr/adm/acct Directory

The /usr/adm/acct directory contains the following directories:

Directory Description

day Current accounting files

fiscal Periodic accounting data and reports

nite Processing messages and errors

sum Daily accounting data and reports

work Temporary work area

The /usr/adm/acct/day directory contains the current accounting files, as

shown in the following list. Files with names ending with 0 contain data for
uncompleted sessions from previous days.

File Description

dtmp Disk accounting data (ASCII) created by
dodisk (8)

ngacct* NQS daemon accounting data

pacct* Per-process accounting data

soacct* Socket accounting data

tpacct* Tape daemon accounting data

The /usr/adm/acct/fiscal/data/ MMDD/ hhmm directory contains

processed, periodic, binary accounting data in the form of the following files:

File Description

cms Periodic command usage data in command

summary (cms) record format

SG-2302 10.0.0.2 23

UNICOS Resource Administration

24

pdacct

The /usr/adm/acct/fiscal/rpt/

Consolidated periodic data generated on MMDD
at hhmm

MMDD! hhmm directory contains the

periodic accounting report, rprt , that was generated on MMDD at hhmm.

The /usr/adm/acct/nite

directory contains error messages and status

information about the accounting runs in the following files:

File
active
active MMDDhhmm

clastdate

disktacct

dk2log
E* MMDDhhmm
fd2log

lineuse
lock, lockl
pd2log

pdact
pdact MMDDhhmm

reboots

statefile
tmpwtmp

Description
Progress and status of csarun

Progress and status of csarun after an error has
been detected

Last two times csarun was executed; in MMDD
hhmm format

Disk accounting records in cacct.h format;
created by dodisk (8)

Diagnostic output created during execution of
dodisk

Error/warning messages for an accounting run
done on MMDD at hhmm

Diagnostic output created during execution of
csarun

tty line usage report
Controls simultaneous invocations of csarun

Diagnostic output created during execution of
csaperiod

Progress and status of csaperiod

Progress and status of csaperiod after an error
has been detected

The start and ending dates from wtmp and a
listing of reboots

Current state during csarun execution

The wtmp file corrected by wtmpfix (see
fwtmp (8))

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

wtmperror

The /usr/adm/acct/sum/data/

wtmpfix error messages

MMDD/ hhmm directory contains daily,

binary accounting data in the following files:

File

cacct

cms

dacct

The /usr/adm/acct/sum/rpt/

Description

Consolidated daily data generated on MMDD at
hhmm in cacct.h format

Command usage data in command summary
(cms) record format

Disk usage data in cacct.h format

MMDD/ hhmm directory contains the daily

accounting report, rprt , which was generated on MMDD at hhmm.

The /usr/adm/acct/work/

MMDDI hhmm directory is used as a work area

during the processing of the accounting data. It contains the following files:

File
BAD.Wngacct*

BAD.Wpacct*

BAD.Wtpacct*

Ever.tmp
Pctime*

Pngacct*
Puptime*

RctimeO

RngacctO

RpacctO

RtpacctO

Description

Unprocessed NQS accounting data containing
bad records (verified by csaedit)

Unprocessed per-process accounting data
containing bad records (verified by csaedit)

Unprocessed tape accounting data containing bad
records (verified by csaedit)

Data verification work file
Preprocessed connect time data
Preprocessed NQS data
Uptimes

Recycled connect data to be used in the next
accounting period

Recycled NQS data to be used in the next
accounting period

Recycled per-process accounting data to be used
in the next accounting run

Recycled tape data to be used in the next
accounting period

25

UNICOS Resource Administration

Ruptime0 Recycled uptimes to be used in the next
accounting period

Woctime* Verified, unprocessed connect time data

Wdisktacct Disk accounting data (cacct.h format) created
by acctdisk (8)

Wdtmp Disk accounting report (ASCII) created by
diskusg (8) or acctdusg (8)

Whngacct* Unprocessed NQS accounting data

Wpacct* Unprocessed per-process accounting data

Wtpacct* Unprocessed tape accounting data

Wsoacct* Unprocessed socket accounting data

Wwtmp* Unprocessed connect time data

The itmp/AC. MMDD/ hhmm directory contains the session record file,
Super-record , which is generated on MMDD at hhmm.

The /usr/lib/acct directory contains the following programs and shell
scripts used by CSA:

Program /script Description

csaaddc Merges consolidated (cacct) accounting files

csabuild Creates a session file

csacon Creates a consolidated (cacct) accounting file

csaconvert Converts UNICOS 8.0, 8.3, 9.0, 9.1, 9.2, and 9.3
accounting file(s), both System V and CSA, to a
10.0 format

csacrep Generates consolidated accounting reports

csadrep Reports daemon usage based on the session file

csaedit Verifies, deletes records, and prints various data
files

csafef Template to convert session files to an IBM

front-end format

csafef2 Template to summarize session file records by the
tuple user name, job ID, and account ID.

csagcon Consolidates accounting data for session and
pacct files

26 SG-2302 10.0.0.2

Accounting [2]

2.1.7.2 /etc Directory

SG-2302 10.0.0.2

csagfef

csaibm

csajrep
csaline
csanqgs
csapacct
csaperiod

csaperm

csarecy
csarun
csaswitch

csaverify

getconfig

The /usr/lib/acct

Formats consolidated accounting data

Template to convert session files to an IBM
front-end format

Generates job reports from a session file

Preprocesses connect time data (/etc/wtmp)

Preprocesses NQS accounting data
Verifies and deletes records from a pacct file
Performs periodic accounting

Changes the group ID and permissions on the
accounting files

Recycles session data for unfinished sessions

Performs daily accounting

Enables or disables kernel and daemon
accounting

Verifies various data files

Extracts values from the configuration file

directory may also contain the following programs if

your site uses the accounting user exits:

Program /script
csa.archivel
csa.archive?
csa.fef

cSsa.user

Description

Site-generated user exit for csarun
Site-generated user exit for csarun
Site-generated user exit for csarun

Site-generated user exit for csarun

The /etc directory contains uptime and connect time data in the following files:

File
csaboots
csainfo

Description
Captures system boot times

Output file of csaboots

27

UNICOS Resource Administration

wtmp Current connect time data

2.1.7.3 /etc/config Directory

The /etc/config directory is the location of the acct_config file that
contains the configurable parameters used by the accounting commands. These
parameters can be changed by using the UNICOS installation and configuration
menu system (the menu system). To see the acct_config file parameters, use
the following menu selection:

UNICOS 8.0 Installation | Configuration Menu System
->Configure System
->Accounting Configuration

The main menu for accounting configuration is as follows:

Mainframe Dependent Parameters ==>
Accounting Start Parameters ==>
Block Device SBUs ==>

Character Device SBUs ==>

Connect Time SBU ==>

Multitasking CPU SBUs=>

NQS SBUs ==>

Pacct File SBUs ==>

Tape SBUs ==>

Miscellaneous Settings = ==>
Parameters for CSARUNand CSAPERIOD==>
Site Defined Settings ==>

Import accounting configuration
Activate accounting configuration
Reload default accounting configuration

Online help for the acct_config ~ parameters is available through the menu
system.

The main menu for accounting configuration displays a table of acct_config
parameters and the current values.

The Import accounting configuration ... option gets the local site
accounting configuration.

28 SG-2302 10.0.0.2

Accounting [2]

2.1.8 CSA Data Processing

SG-2302 10.0.0.2

The Activate accounting configuration ... option rewrites the
/etc/config/acct_config file with the current values selected in the
menus.

The Reload default accounting configuration ... option reloads
the default values for the acct_config file from the released
lusr/src/skl/etc/config/acct _config file.

The flow of data among the various CSA programs is explained in this section

and is illustrated in Figure 2.

29

UNICOS Resource Administration

30

CSA system diagram

chargefee

diskusg

YN
]

csainfo
N —t

YN
—_

O)

ngacct

Session
record

usacct
v

Y
v

soacct

O)

csaline

7

)
EEN e

csabuild

csaaddc

Session
record

csarecy

o |

@

acctcms

__| csagcon I—-I csagfef Front-end
format

v ® Q@
Daemon

Daily usage

report | report

O]
-—
=

acctcms

csacrep

Periodic
report /

Figure 2. CSA program data flow

all1050

1. Generate raw accounting files. Various daemons and system processes write
to the raw accounting files. These accounting files include pacct , ngacct ,
soacct , usacct , tpacct , wtmp, and csainfo

2. Create a fee file. Sites that want to charge fees to certain users can do so

with the chargefee (8) command. chargefee
processed by csaaddc (8).

creates a fee file that is

3. Produce disk usage statistics. The dodisk (8) shell script allows sites to take
snapshots of disk usage. dodisk does not report dynamic usage; it only

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

reports the disk usage at the time the command was run. Disk usage is
processed by csaaddc .

. Preprocess selected raw accounting files. Generally, a data file that must be

preprocessed contains multiple records for a session. These records are
scattered throughout the file, and the processing of the records often
depends upon other events that are logged in the accounting file (for
example, system reboot). The preprocessor collapses information about a
session into one output record.

NQS and connect time accounting data are preprocessed by csangs (8) and
csaline (8), respectively.

. Organize the accounting data. csabuild (8) organizes the raw and

preprocessed accounting data by sessions and boot times. With the
exception of disk usage statistics and fees, the csabuild output file
contains all of the accounting data available about each session.

Sometimes data for terminated sessions is continually recycled. This can
occur when accounting data is lost. To prevent data from recycling forever,
edit csarun so that csabuild is executed with the -0 nday option, which
causes all sessions older than nday days to terminate. Select an appropriate
nday value (see the csabuild (8) man page for more information).

. Recycle information about unfinished sessions. Accounting data about

uncompleted sessions is saved and processed again during the next
accounting period. This information is recycled until the session completes
or until manual intervention occurs. Accounting data for unfinished
sessions is reported during each accounting period.

. Generate the daemon usage report, which is appended to the daily report.

csadrep (8) outputs information about interactive, NQS, tape, and socket
usage.

. Convert the session record file to a front-end format. Sites that process

UNICOS accounting data on a front-end system can convert the session file
to a format suitable for use on the front end by using the csafef (8),
csafef2 (8), or csaibm (8) command. These programs are templates, and
you must modify them to suit your site’s requirements. It is suggested that
you use the user exit in the FEF section of csarun (see Section 2.1.5, page
16 and Section 2.1.10.3, page 51) to convert the session record file to your
front-end format.

. Generate command usage data. The information output by acctems (8) is

reported in the daily and periodic reports.

31

UNICOS Resource Administration

32

10

11.

12.

13.

14.

15.

. Consolidate the session record file. Session files are too large to retain on
disk for any amount of time. Consequently, CSA consolidates the data and
keeps the condensed version on disk. The accounting reports are based on
the consolidated data. Data consolidation is done by csacon (8).

Generate an accounting report based on the consolidated data. csacrep (8)
outputs the report.

Create the daily accounting report. The daily accounting report includes the
following:

e Connect time statistics (step 4)

* Disk usage statistics (step 3)

e Unfinished session information (step 6)
e Command summary data (step 9)

e Consolidated accounting report (step 11)
* Last login information

¢ Daemon usage report (step 7)

Generate periodic accounting data. Periodic accounting data is an
accumulation of the consolidated data created in step 10. csaaddc (8)
merges condensed data files together. The resulting file contains accounting
information for numerous accounting periods.

Generate periodic command usage data. acctcms (8) merges command
usage data from multiple accounting periods. The usage information was
created in step 9. Both an ASCII and a binary file are created.

Produce a periodic accounting report. csacrep (8) is used to generate a
report based on a periodic accounting file.

Steps 4 through 12 are performed during each accounting period by csarun (8).
Periodic accounting (steps 13 through 15) is initiated by the csaperiod (8)
command. Daily and periodic accounting, as well as fee and disk usage
generation (steps 2 through 3), can be scheduled by cron (8) to execute
regularly. See Section 2.1.4, page 11, for more information.

SG-2302 10.0.0.2

Accounting [2]

2.1.9 Data Recycling

A system administrator must correctly maintain recycled data in order to ensure
accurate accounting reports. The following sections discuss data recycling and
describe how an administrator can purge unwanted recycled accounting data.

Data recycling allows CSA to properly bill sessions that are active during
multiple accounting periods. By default, csarun (8) reports data only for
sessions that terminate during the current accounting period. Through data
recycling, CSA preserves data for active sessions until the sessions terminate.

In the Super-record file, csabuild (8) flags each session as being either
active or terminated. csarecy (8) reads the Super-record file and recycles
data for the active sessions. csacon (8) consolidates the data for the terminated
sessions, which csaperiod (8) uses later. csabuild , csarecy , and csacon
are all invoked by csarun .

csarun puts recycled data in the /usr/adm/acct/day directory. Data files
with names suffixed with O contain recycled data. For example, ctimeO ,
ngacct0 , pacctO , tpacct0 , usacctO , and uptimeO are generally the
recycled data files that are found in /usr/adm/acct/day

Normally, an administrator should not have to manually purge the recycled
accounting data. This purge should only be necessary if accounting data is
missing. Missing data can cause sessions to recycle forever and consume
valuable CPU cycles and disk space.

2.1.9.1 How Sessions Are Terminated

SG-2302 10.0.0.2

Interactive sessions, cron jobs, and at jobs terminate when the last process in
the job exits. Normally, the last process to terminate is the login shell. The
kernel writes an end-ofjob (EOQJ) record to the pacct file when the session
terminates.

When the NQS daemon delivers an NQS request’s output, the request
terminates. The daemon then writes an NQ_DISPrecord type to the NQS
accounting file, while the kernel writes an EOJ record to the pacct file.

Unlike interactive sessions, NQS requests can have multiple EOJ records
associated with them. In addition to the request’s EOJ record, there can be EOJ
records for pipe clients, net clients, and checkpointed portions of the request.
The pipe client and net client perform NQS processing on behalf of the request.

The csabuild command flags sessions in the Super-record file as being
terminated if they meet one of the following conditions:

33

UNICOS Resource Administration

* The session is an interactive, cron , or at job, and there is an EOJ record for
the job in the pacct file.

® The session is an NQS request, and there is both an EOJ record for the
request in the pacct file and an NQ_DISPrecord type in the NQS
accounting file.

* The session is an interactive, cron , or at job and is active at the time of a
system crash.

¢ The session is manually terminated by the administrator using one of the
methods described in Section 2.1.9.3, page 34.

2.1.9.2 Why Recycled Sessions Should Be Scrutinized

Recycling unnecessary data can consume large amounts of disk space and CPU
time. The session file and recycled data can occupy a vast amount of disk space
on the file systems containing /tmp and /usr/adm/acct/day . Sites that
archive data also require additional offline media. Wasted CPU cycles are used
by csarun to reexamine and recycle the data. Therefore, to conserve disk space
and CPU cycles, unnecessary recycled data should be purged from the
accounting system.

Any of the following situations can cause CSA erroneously to recycle
terminated sessions:

* Kernel or daemon accounting is turned off. At boot time, the rc command
must execute /ust/lib/acct/startup in order to start kernel and
daemon accounting.

The kernel, ckpacct (8) command, or ckdacct (8) command can turn off
accounting when there is not enough space on the file system containing
/usr/fadm/acct/day

® Accounting files are corrupt. Accounting data can be lost or corrupted
during a system or disk crash.

e Boot times are not recorded in /etc/csainfo . The csaboots command
must be invoked by rc to write a boot time record to /etc/csainfo

* Recycled data is erroneously deleted in a previous accounting period.

2.1.9.3 How to Remove Recycled Data

Before choosing to delete recycled data, you should understand the
repercussions, as described in Section 2.1.9.4, page 36. Data removal can affect

34 SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

billing and can alter the contents of the consolidated data file, which is used by
csaperiod

You can remove recycled data from CSA in the following ways:

Interactively execute the csarecy -A command. Administrators can select
the active sessions that are to be recycled by running csarecy with the -A
option. Users are not billed for the resources used in the sessions terminated
in this manner. Deleted data is also not included in the consolidated data file.

The following example is one way to execute csarecy -A (which generates
two accounting reports and two consolidated files):

1.
2.

Run csarun at the regularly scheduled time.

Edit a copy of /usr/lib/acct/csarun . Change the -r option on the
csarecy invocation line to -A. Also, do not redirect standard output to
${CRPT}Hrecyrpt . The result should be similar to the following:

csarecy -A -s ${SESSION_FILE} \

-N ${WORK/Rngacct -P ${WORK}/Rpacct \
-T ${WORK}/Rtpacct -U ${WORK}/Ruptime \
-C ${WORK}/Rctime -u ${WORK}/Rusacct \
2> ${NITE}Erec.${DTIME}

Since both the -A and -r options write output to stdout , the -r option
is not invoked and stdout is not redirected to a file. As a result, the
recycled job report is not generated.

Execute the jstat command, as follows, to display a list of currently
active jobs:

jstat > jstat.out

Execute the gstat command to display a list of NQS requests. The
gstat command is used for seeing whether there are requests that are
not currently running. This includes requests that are checkpointed,
held, queued, or waiting.

In order to list all NQS requests, execute the gstat command, as
follows, using a login that has either NQS manager or NQS operator
privilege:

gstat -a > (qstat.out

35

UNICOS Resource Administration

5. Interactively run the modified version of csarun . If you execute
csarun soon after the first step is complete, this invocation of csarun
completes quickly because not very much data exists.

For each active session, csarecy asks you if you want to preserve the
session. Preserve the active and nonrunning NQS sessions found in the
third and fourth steps. All other sessions are candidates for removal.

e Execute csabuild with the -0 ndays option, which terminates all active
sessions older than the specified number of days. Resource usage for these
terminated sessions is reported by csarun , and users are billed for the
sessions. The consolidated data file also includes this resource usage.

To execute csabuild ~ with the -0 option, edit /usr/lib/acct/csarun .
Add the -0 ndays option to the csabuild invocation line. Specify for ndays
an appropriate value for your site.

Recycled data for currently active sessions will be removed if you specify an
inappropriate value for ndays.

* Execute csarun with the -A option. It reports resource usage for both
active and terminated sessions, so users are billed for recycled sessions. This
data is also included in the consolidated data file.

None of the data for the active sessions, including the currently active
sessions, is recycled. No recycled data files are generated in the
/usr/fadm/acct/day directory.

* Remove the recycled data files from the /usr/adm/acct/day directory.
You can delete data for all of the recycled sessions, both terminated and
active, by executing the following command:

rm /usr/adm/acct/day/*[a-z]0

The next time csarun is executed, it will not find data for any recycled
sessions. Thus, users are not billed for the resources used in the recycled
sessions, and this data is not included in the consolidated data file. csarun
recycles the data for currently active sessions.

2.1.9.4 Adverse Effects of Removing Recycled Data

CSA assumes that all necessary accounting information is available to it, which
means that CSA expects kernel and daemon accounting to be enabled and
recycled data not to have been mistakenly removed. If some data is
unavailable, CSA may provide erroneous billing information. Sites should be
aware of the following facts before removing data:

36 SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

® Users may or may not be billed for terminated recycled sessions.
Administrators must understand which of the previously described methods
cause the user to be billed for the terminated recycled sessions. It is up to
the site to decide whether or not it is valid for the user to be billed for these
sessions.

For those methods that cause the user to be billed, both csarun and
csaperiod report the resource usage.

¢ It may be impossible to reconstruct a terminated recycled session. If a
recycled session is terminated by the administrator, but the session actually
terminates in a later accounting period, information about the session is lost.
If a user questions the resource billing, it may be extremely difficult or
impossible for the administrator to correctly reassemble all accounting
information for the session in question.

* Manually terminated recycled sessions be improperly billed in a future
billing period. If the accounting data for the first portion of a session has
been deleted, CSA may be unable to correctly identify the remaining portion
of the job. Errors may occur, such as NQS requests being flagged as
interactive sessions, or NQS requests being billed at the wrong queue rate.
This is explained in detail in Section 2.1.9.5, page 38.

* CSA programs may detect data inconsistencies. When accounting data is
missing, CSA programs may detect errors and abort.

The following table summarizes the effects of using the methods described in
Section 2.1.9.3, page 34.

37

UNICOS Resource Administration

Table 1. Possible effects of removing recycled data

Method Underbilling? Incorrect billing? Consolidated data file
csarecy -A Yes. Users are not Possible. Manually Does not include data for
billed for the portion terminated recycled sessions terminated by
of the session that sessions may be billed csarecy -A.
was terminated by improperly in a future
csarecy -A. billing period.
csabuild -0 No. Users are billed =~ Possible. Manually Includes data for sessions
for the portion of the terminated recycled terminated by csabuild -0 .
session that was sessions may be billed
terminated by improperly in a future
csabuild -o0. billing period.
csarun -A No. All active and Possible. All active and Includes data for all active
recycled sessions are recycled sessions that and recycled sessions.
billed. eventually terminate may
be billed improperly in a
future billing period,
because no data is recycled.
rm Yes. All users are not Possible. All recycled Does not include data for

billed for the portion
of the session that
was recycled.

sessions that eventually
terminate may be billed
improperly in a future
billing period.

any recycled session.

By default, the consolidated data file contains data only for terminated sessions.
Manual termination of recycled data may cause some of the recycled data to be
included in the consolidated file. These cases are noted in the previous table.

2.1.9.5 NQS Requests and Recycled Data

38

In order for CSA to identify all NQS requests, data must be properly recycled.
When an administrator manually purges recycled data for an NQS request,
errors such as the following can occur:

e CSA flags the NQS request as an interactive session. This causes the request
to be billed at interactive rates.

* The request is billed at the wrong queue rate.

* The wrong queue wait time is associated with the request.

SG-2302 10.0.0.2

Accounting [2]

2.1.10 Tailoring CSA

SG-2302 10.0.0.2

These errors occur because valuable NQS accounting information was purged
by the administrator. Only a few NQS accounting records are written by the
NQS daemon, and all of the records are needed for CSA to properly bill NQS
requests.

NQS accounting records are only written under the following circumstances:
e The NQS daemon receives a request.
* A request is routed to a queue.

* A request executes. This includes executing a request for the first time, and
restarting and rerunning a request.

* A request terminates. A request can terminate because it is Completed,
requeued, preempted, held, checkpointed, or rerun by the operator.

® Output is delivered.

Thus, for long running requests that span days, there can be days when no NQS
data is written. Consequently, it is extremely important that accounting data be
recycled. If the site administrator manually terminates recycled sessions, care
must be taken to be sure that only nonexistent NQS requests are terminated.

This section describes the following actions in CSA:

e Setting up SBUs

® Setting up daemon accounting

e Setting up user exits

* Modifying the front-end formatting templates

* Modifying the charging of NQS jobs based on NQS termination status
¢ Tailoring CSA shell scripts

e Using at (1) instead of cron (8) to periodically execute csarun

e Allowing users without super-user permissions to execute CSA

¢ Using an alternate configuration file

39

UNICOS Resource Administration

2.1.10.1 System Billing Units (SBUSs)

40

A system billing unit (SBU) is a unit of measure that reflects use of machine
resources. You can alter the weighting factors associated with each field in each
accounting record to obtain an SBU value suitable for your site. SBUs are
defined in the accounting configuration file, /etc/config/acct_config . By
default, all SBUs are set to 0.0 .

The source code for the default SBU calculations is located in

lusr/src/cmd/acct/lib/acct/sbu.c . For sites that do not have source
code, the default algorithms are also defined in

lusr/src/cmd/acct/lib/acct/user _sbu.c . By modifying
lusr/src/cmd/acct/lib/acct/user _sbu.c , compiling, and relinking the

accounting programs, your site can use local SBU calculations.

Accounting allows different periods of time to be designated either prime or
nonprime time (the time periods are specified in /usr/lib/acct/holidays)-

Following is an example of how the prime/nonprime algorithm works:

Assume a user uses 10 seconds of CPU time, and executes for 100 seconds of
prime wall-clock time, and pauses for 100 seconds of nonprime wall-clock time.
Therefore, elapsed time is 200 seconds (100+100). If

prime = prime time | elapsed time

nonprime = nonprime time | elapsed time
cputime[PRIME] = prime * CPU time
cputime[NONPRIME] = nonprime * CPU time

then

cputime[PRIME] == 5 seconds
cputime[NONPRIME] == 5 seconds

Under CSA, an SBU value is associated with each record in the Session record
file when that file is assembled by csabuild (8). Final summation of the SBU
values is done by csacon (8) during the creation of the cacct record file.

Billing for SBU values is intended to be a combination of all the SBU values
from each record associated with a job, as follows:

Total SBU = (NQS queue SBU value) * (sum of all pacct record SBUs
+ sum of all tape record SBUs
+ sum of all ctmp record SBUs)

This allows a site to bill different NQS queues at differing rates. Again, if the
available formulas are insufficient to achieve the site’s requirements, a site can

SG-2302 10.0.0.2

Accounting [2]

2.1.10.1.1 pacct SBUs

SG-2302 10.0.0.2

modify the calculations found in the sbu library routine,
/usr/src/cmd/acct/lib/acct/user_sbu.c

The SBUs for pacct data are separated into prime and nonprime values. Prime
and nonprime use is calculated by a ratio of elapsed time. If you do not want
to make a distinction between prime and nonprime time, set the nonprime time
SBUs and the prime time SBUs to the same value. Prime time is defined in
lusr/lib/acct/holidays . By default, Saturday and Sunday are considered
nonprime time.

The following is a list of prime time pacct SBU weights. Descriptions and
factor units for the nonprime time SBU weights are similar to those listed here.

SBU weights are defined in /etc/config/acct _config
Value Description
P_BASIC Prime-time weight factor. P_BASIC is multiplied

by the sum of prime time SBU values to get the
final SBU factor for the pacct base record.

P_TIME General-time weight factor. P_TIME is multiplied
by the time SBUs (made up of P_STIME,
P_ITIME , P_SCTIME and P_INTTIME) to get the
time contribution to the pacct base record SBU
value.

P_STIME System CPU-time weight factor. The unit used for
this weight is billing units per second. P_STIME is
multiplied by the system CPU time to get the
system CPU factor.

P_UTIME User CPU-time weight factor. The unit used for
this weight is billing units per second. P_UTIME is
multiplied by the user CPU time to get the user
CPU factor.

User time is the sum of user times after
weighting for multitasking. Multitasking may
affect the user CPU cost if the MUTIME_WEIGHT
parameters have been set to values other than 1.0.
See the following explanation of these values.

P_ITIME This is the weight factor for the time spent
waiting in the kernel for I/O while the process is

41

UNICOS Resource Administration

P_SCTIME

P_INTTIME

P_MEM

P_XMEM

P_IMEM

P_BYTEIO

42

locked in memory. The unit used for this weight
is billing units per second. P_ITIME is multiplied
by the I/O wait time.

Weight factor for system call time. The unit used
for this weight is billing units per second.

Weight factor for interrupt time. The unit used
for this weight is billing units per second.

General-memory-integral weight factor. P_MEMs
multiplied by the memory SBUs (made up of
P_XMENand P_IMEM to get the memory
contribution to the pacct base record SBU value.

CPU-time-memory-integral weight factor. The
unit used for this weight is billing units per
Kword-minute. P_XMEMs multiplied by the
memory integral (see Section 2.1.12.1, page 62).
This value is affected by your site’s choice of
MEMINT(in the accounting configuration file
/etc/config/acct_config).

The weight factor used with the I/O wait time
memory integral. This integral includes the I/O
wait time while the process is locked in memory.
The unit used for this weight is billing units per
Kword-minute. P_IMEMis multiplied by the
I/O-wait-time memory integral.

General-1/0 weight factor. P_IO is multiplied by
the I/O SBUs (made up of P_BYTEIO, P_PHYIO,
and P_LOGIO) to get the I/O contribution to the
pacct base record SBU value.

Characters-transferred weight factor. The unit
used for this weight is billing units per character
transferred. P_BYTEIO is multiplied by the bytes
of I/O transferred.

If tape or device I/0 is to be charged at a rate
other than P_BYTEIQ, the tape and device weight
factors need to be adjusted accordingly. See
Section 2.1.11.1, page 56 (field ac_io), for more
information.

SG-2302 10.0.0.2

Accounting [2]

P_PHYIO Physical-1/O-request weight factor. The unit used
for this weight is billing units per physical 1/O
request. P_PHYIO is multiplied by the number of
physical I/O requests made. Physical requests are
the number of driver requests made.

P_LOGIO Logical-I/O-request weight factor. The unit used
for this weight is billing units per logical 1I/O
request. P_LOGIOis multiplied by the number of
logical I/O requests made. The number of logical
I/0 requests is the total number of read (2),
write (2), reada (2), and writea (2) system calls.
The number of strides, multiplied by the number
of requests processed by each listio (2) call, is
also added to the total.

2.1.10.1.2 Multitasking SBUs

2.1.10.1.3 SDS SBUs

SG-2302 10.0.0.2

The MUTIME_WEIGHT variables define the weighting factors that are used to
charge user CPU time for multitasking programs. It is used in conjunction with
the ac_mutime array (see /usr/include/sys/acct.h), which defines the
amount of CPU time the multitasking program spent with i + 1 CPUs connected.

MUTIME WEIGHT: defines the marginal cost of getting the i + 1 CPU at one
instant. If these values are set to less than 1.0, there is an incentive for
multitasking. If the values are set to 1.0, multitasking programs are charged for
user CPU time just as all other programs.

For more information on multitasking incentives, see Section 2.1.12, page 62.

(On all Cray Research systems except the CRAY EL series) Secondary data
storage (SDS) system billing units are calculated from the statistics on SDS use in
the pacct file. The SBU factors are defined in /etc/config/acct_config

The values are as follows:

Value Description
NP_SDSMEMr P_SDSMEM

SDS-memory-integral weight factor. The memory integral is
based on residency time and not on execution time. P_SDSMEM

43

UNICOS Resource Administration

2.1.10.1.4 MPP SBUs

44

or NP_SDSMENS multiplied by the SDS memory integral. The
unit used for this weight is billing units per Mword-second.

NP_SDSLOGIQor P_SDSLOGIO

SDS-logical-I/O-request weight factor. P_SDSLOGIOor
NP_SDSLOGIGs multiplied by the number of SDS logical I/0O
requests. The unit used for this weight is billing units per
logical I/0O request.

NP_SDSBYTEIOor P_SDSBYTEIO

SDS-characters-transferred weight factor. P_SDSBYTEIOor
NP_SDSBYTEIQis multiplied by the number of SDS characters
transferred. The unit used for this weight is billing units per
character transferred.

The SBU values should be very small. On Cray Research systems, it is possible
to submit a very large number of requests to SDS in a short time; therefore, to
prevent these numbers from dominating the SBU values, small weight factors
must be used. Values of 0 result in no charge.

Massively parallel processing (MPP) system billing units are calculated from the
statistics on MPP use in the pacct file. The SBU factors are defined in
/etc/config/acct_config

The P_MPPPEor NP_MPPPESBUs are the MPP processing elements (PEs)
weight factors, prime and nonprime charges. The prime time billing units for
PEs is calculated using the following equation:

of sessions

P_MPPPEDbilling units = P_MPPPE* # Z (no. MPP PEs used * MPP time used)

0

The nonprime time billing units for PEs is calculated using the following
equation:

of sessions

NP_MPPPEDbilling units = NP_MPPPE* (no. MPP PEs used * MPP time used)

0

The unit used for these weights is billing units per PE-second.

SG-2302 10.0.0.2

Accounting [2]

The P_MPPBBor NP_MPPBESBUs are the MPPbarrier bits weight factors, prime
and nonprime charges.! The prime time billing units for barrier bits is
calculated using the following equation:

of sessions

P_MPPBBbilling units = P_MPPBB* (no. MPP barrier bits used* MPP time used)

0

The nonprime time billing units for barrier bits is calculated using the following
equation:

of sessions

NP_MPPBBDbilling units = NP_MPPBB* (no. MPP barrier bits used* MPP time used)

o]
The unit used for these weights is billing units per barrier bit-second.

The P_MPPTIMEor NP_MPPTIMESBUs are the MPP time weight factors, prime
and nonprime charges. The prime time billing units for MPP time is calculated
using the following equation:

P_MPPTIME billin units = P_MPPTIME* # 22%°™ (MPD time used
g >

0

The nonprime time billing units for MPP time is calculated using the following
equation:

NP_MPPTIMEbiling units = NP_MPPTIME* #fz (MPP time used)

0
The unit used for these weights is billing units per second.
The SBU values should be very small, which will prevent these numbers from
dominating the SBU values. Values of 0 result in no charge.
2.1.10.1.5 Connect Time SBUs

There are SBUs for both prime- and nonprime-time connect data. The SBU
values should reflect the system billing units per second of connect time. The
weight factors, CON_PRIMEand CON_NONPRIMEre defined in
/etc/config/acct_config

2.1.10.1.6 NQS SBUs

The /etc/config/acct_config file contains the configurable parameters
that pertain to NQS SBUs.

1 Deferred implementation.

SG-2302 10.0.0.2 45

UNICOS Resource Administration

2.1.10.1.7 Socket SBUs

2.1.10.1.8 Tape SBUs

46

The NQS_NUM_QUEUFSrameter sets the number of queues for which you
want to set SBUs (the value must be set to at least 1). Each NQS_QUEUE
variable in the configuration file has a queue name and an SBU pair associated
with it (the total number of queue/SBU pairs must equal NQS NUM_QUEUBS
The queue/SBU pairs define weights for the queues. If an SBU value is less
than 1.0, there is an incentive to run jobs in the associated queue; if the value is
1.0, jobs are charged as though they are non-NQS jobs; and if the SBU is 0.0,
there is no charge for jobs running in the associated queue. SBUs for queues
not found in the configuration file are automatically set to 1.0.

The NQS_NUM_MACHINESrameter sets the number of originating machines
for which you want to set SBUs (the value must be at least 1). Each
NQS_MACHINE variable in the configuration file has an originating machine
and an SBU pair associated with it (the total number of machine/SBU pairs
must equal NQS_NUM_MACHINESBUS for originating machines not specified
in /etc/config/acct _config are automatically set to 1.0.

The queue and machine SBUs are multiplied together to give an NQS
multiplier. If the SBUs are set to less than 1.0, there is an incentive to run jobs
in these queues or from these machines. SBUs of 1.0 indicate that jobs in the
queues or from associated hosts are billed normally.

Currently, there is no way to charge for socket accounting. The socket
accounting records produced are only processed in order to make the data
available to the site-supplied user exits.

There is a set of weighting factors for each group of tape devices. By default,
there are only two groups, tape and cart . The TAPE_SBU parameters in
letc/config/acct _config define the weighting factors for each group.
There are SBUs associated with the following;:

e Number of mounts
e Device reservation time (seconds)

¢ Number of bytes read

Number of bytes written

SG-2302 10.0.0.2

Accounting [2]

2.1.10.1.9 Device SBUs

Device accounting system billing units are calculated from the device statistics
in the pacct file. SBUs can be set for both block and character devices in
/etc/config/acct_config . The fields in the acct _config file that affect
SBU factors for each device are as follows:

SBU factor Description
Logical 1/O Sbu Weight given to each logical

I/0 request.

Characters ~ Xfer Sbu Weight given to the amount
of data transferred.

Device Name Device type name (see
Section 2.1.14, page 65).

The Logical 1/O Sbu factor is multiplied by the number of system calls that
initiated I/O on a device type. The Characters Xfer Shu factor is
multiplied by the number of bytes of data transferred to a device type.

The SBUs for block devices are labeled BLOCK_DEVICEx, where x is a number
from 0 to MAXBDEVNO-1Character devices are labeled CHAR_DEVICEx, where
x is a number from 0 to MAXCDEVNO-1The numeric suffixes for the
CHAR_DEVICEx variables must match the minor numbers in /dev , which are
defined in /usr/src/uts/c1/cf/devsw.c in the cdevsw[] array.

MAXBDEVN@nd MAXCDEVNE@re located in the /usr/include/sys/param.h
include file and have default values of 10 and 35, respectively.

Device accounting is also discussed in Section 2.1.14, page 65.

The SBU values should be very small. On Cray Research systems, it is possible
to perform a very large number of I/O requests very quickly; therefore, to
prevent these numbers from dominating the SBU values, a small weight factor
must be used. A value of 0 results in no charge.

2.1.10.1.10 Example SBU Settings

SG-2302 10.0.0.2

The following section provides an example showing how you could set up the
SBU system. This example is restricted to pacct base records (you should also
consider pacct multitasking, pacct 1/O (device accounting), and all the
daemon records). In this example, it is assumed that an SBU is equal to one
dollar of charge.

47

UNICOS Resource Administration

The formula for calculating the whole pacct base record SBU value is as
follows:

PSBU = ((P_TIME * (P_STIME * stime + P_UTIME * utime + P_ITIME *
iowtime)) + (P_MEM* (P_XMEM* cpumem + P_IMEM * iowmem)) +
(P_IO * (P_BYTEIO * bytes + P_PHYIO * phy + P_LOGIO * lo0g)));

NSBU = ((NP_TIME * (NP_STIME * stime + NP_UTIME * utime + NP_ITIME
* iowtime)) + (NP_MEM* (NP_XMEM* cpumem + NP_IMEM* iowmem)) +
(NP_IO*(NP _BYTEIO * bytes + NP_PHYIO * phy + NP_LOGIO * log)));

SBU = P_BASIC * PSBU + NP_BASIC * NSBU;

The variables in this formula are as follows:

Variable Description
stime System CPU time in seconds.
utime User CPU time in seconds. User CPU time is the sum of user

times after weighting for multitasking.

iowtime Time (in seconds) spent waiting in the kernel for I/O while the
process is locked in memory.

cpumem Memory integral (see Section 2.1.12.1, page 62).
iowmem I/O-wait-time memory integral.

bytes Number of bytes of data transferred.

phy Number of physical I/O requests made.

log Number of logical I/O requests made.

All time is considered prime time. Therefore, the nonprime time SBUs should
be set to the same values as their prime time counterparts.

In order to produce a billing that is somewhat repeatable, this example omits
various values, such as physical I/O (set P_PHYIO to 0.0), that depend on the
state of the machine at run time. In particular, system time varies greatly due to
system load and will cause this example to be nonrepeatable. Information on
which fields generate repeatable values is contained in Section 2.1.11.1, page 56.

In this example, users are charged for each logical request (P_LOGIO) and the
total data moved (P_BYTEIO). This provides users with an incentive to use
larger I/0O requests, which may be more efficient. Processes that perform I/0O

48 SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

that locks them into memory are penalized (P_IMEM), because this may result
in memory fragmentation.

In this example, users are charged the following amounts for time (the
accounting record fields associated with the charge are also identified):

$100 per hour of user CPU time. This is equal to $100 per 3600 seconds,
which is $0.02777777 per second (P_UTIME). To produce repeatable billing,
system time must be excluded. Thus, P_STIME is set to 0.0 .

$25 for each megaword of memory per hour of CPU time. The memory
integrals are in units of Kword-minutes, so the weighting factor is $25/(60
minutes * 2!° Kwords) or 0.0004069010 (P_XMEMW

$3 for each hour spent waiting on I/O while locked into memory. The wait
time is in units of seconds. so the weighting factor is $3/3600 seconds or
.0008333333 (P_ITIME).

$25 for I/O wait time (locked in memory) per hour. This is the same value
as the memory charge because the process is using memory during this time
in the same way it would when executing. The weighting factor is $25/(60
seconds * 2!0 Kwords) or 0.0004069010 (P_IMEM.

A DD-49 disk drive can perform I/O at a maximum rate of 9.6 Mbytes per
second. Assume that the original cost of the drive was $125,000, and it will
be paid for in 2 years. Also assume that it is busy 5% of the time (63072000
seconds * 5% = 3153600 seconds). The amount of I/O that can be completed
in 2 years is 31745177026560 bytes (9.6 Mbytes/second * 3153600 seconds).
Thus, you would charge $125,000/31745177026560 bytes or
$0.00000000393760 per byte, which is approximately $0.33/10 Mwords
(P_BYTEIO).

$0 for physical I/O requests. This charge makes the billing more repeatable.
The byte I/O charge covers this activity (P_PHYIO).

$0.01 per thousand logical I/O requests. This charge encourages the user to
perform larger I/O requests by charging less for a lower number of larger
I/0 requests (instead of a lot of small I/O requests). The weighting factor is
computed as $0.01/1000 I/O requests or 0.00001 (P_LOGIO.

Therefore, in this example, the pacct base record charges are as follows (the
nonprime time SBUs are set to the same value as their prime time counterparts):

Weight factor Charge
P_BASIC 1.0

49

UNICOS Resource Administration

50

P_TIME
P_UTIME
P_STIME
P_ITIME
P_MEM
P_XMEM
P_IMEM

P IO
P_BYTEIO
P_PHYIO
P_LOGIO

1.0
0.02777777777777
0.0
0.00083333333333
1.0
0.00040690104166
0.00040690104166
1.0
0.00000000393760
0.0
0.00001000000000

P_BASIC, P_TIME, P_MEMand P_|O are used to weight different factors of the
equation; you can use these depending on how your other groups of weighting
factors are picked. For example, you could change the P_IO and P_BYTEIO

factors as follows and receive the same results:

Weight factor
P_BASIC

P_TIME
P_UTIME
P_STIME
P_ITIME
P_MEM
P_XMEM
P_IMEM

P IO
P_BYTEIO
P_PHYIO

Charge
1.0

1.0
0.02777777777777
0.0
0.00083333333333
1.0
0.00040690104166
0.00040690104166
0.00001
0.000393760

0.0

SG-2302 10.0.0.2

Accounting [2]

P_LOGIO 1.0

2.1.10.2 Daemon Accounting

Accounting information is available from NQS, online tapes, and sockets. Data
is written to the ngacct , tpacct , and soacct files, respectively, in the
/usr/fadm/acct/day directory.

In most cases, daemon accounting must be enabled by both the CSA subsystem
and the daemon. Section 2.1.4, page 11, describes how to enable daemon
accounting at system startup time. You can also enable daemon accounting
after the system has booted.

You can enable accounting for a specified daemon with the turndacct (8)
command. For example, to start tape accounting, you would execute the
following:

Jusr/lib/acct/turndacct on tape

The NQS and online tape daemon also must enable accounting. Use the gmgr
set accounting on command to turn on NQS accounting. Tape daemon
accounting is enabled when tpdaemon (8) is executed with the -c option.

Daemon accounting is disabled by shutacct (8) at system shutdown (see
Section 2.1.4, page 11). It can also be disabled at any time by the turndacct (8)
command when used with the off operand. For example, to disable NQS
accounting, execute the following command:

Jusr/lib/acct/turndacct off ngs

New daemon accounting files can be started when turndacct is invoked with
the switch operand. No data is lost when files are switched. For example, to
start a new NQS accounting file, execute the following command:

Jusr/lib/acct/turndacct switch ngs

2.1.10.3 Setting up User Exits

SG-2302 10.0.0.2

CSA accommodates the following user exits, which can be called from certain
csarun states:

csar un state User exit
ARCHIVE1 lusr/lib/acct/csa.archivel
ARCHIVE2 lusr/lib/acct/csa.archive2

51

UNICOS Resource Administration

FEF lusr/lib/acct/csa.fef
USEREXIT lusr/lib/acct/csa.user

These exits allow an administrator to tailor the csarun procedure to the
individual site’s needs by creating scripts to perform additional site-specific
processing during daily accounting.

While executing, csarun checks in the ARCHIVE], ARCHIVEZ FEF, and
USEREXIT states for a shell script with the appropriate name.

If the script exists, it is executed via the shell . (dot) command. If the script
does not exist, the user exit is ignored. The . (dot) command will not execute a
compiled program, but the user exit script can. csarun variables are available,
without being exported, to the user exit script. csarun checks the return status
from the user exit and, if it is nonzero, the execution of csarun is terminated.

If CSA is run by a user without super-user permissions, the user exits must be
both readable and executable by this user (see page Section 2.1.10.7, page 54).

2.1.10.4 Charging for NQS Jobs

52

By default, SBUs are calculated for all NQS jobs regardless of the job’s NQS
termination code. If you do not want to bill portions of an NQS request, set the
appropriate NQS_TERM xxxx variable (termination code) in
/etc/config/acct_config to 0, which sets the SBU for this portion to 0.0 .
By default, all portions of a request are billed.

The following table describes the termination codes:

Code Description
NQS TERM_EXIT Generated when the request finishes running and

is no longer in a queued state. At NQS shutdown
time, requests that specified both the -nc (no
checkpoint) and -nr (no rerun) options for gqsub
also have NQS_TERM_EXITrecords written. In
addition, this record is written for requests that
specified the -nr option for gsub and were
running at the time of a system crash.

NQS_TERM_REQUEUE Written for running requests that are
checkpointed and then requeued when NQS
shuts down.

NQS_TERMPREEMPT Written when a request is preempted with the
gmgr preempt request command.

SG-2302 10.0.0.2

Accounting [2]

NQS_TERM_HOLD

NQS_TERM_OPRERUN

2.1.10.5 Tailoring CSA Shell Scripts and Commands

Written for a request that is checkpointed with
the gmgr hold request command. The hold
request command differs from the checkpoint
done at daemon shutdown time because a “hold”
keeps the job from being scheduled until a gmgr
release command is executed.

Written when a request is rerun with the gmgr
rerun request command.

At NQS shutdown time, jobs that cannot be
checkpointed and do not have the -nr (no rerun)
option for gsub specified have this type of
termination record written. The requests are
requeued with this status.

Modify the following variables in /etc/config/acct_config if necessary:

Variable Description

ACCTFS File system on which /usr/adm/acct resides.
The default is /usr .

MAIL_LIST List of users to whom mail is sent if fatal errors
are detected in the accounting shell scripts. The
default is root and adm

WMAIL_LIST List of users to whom mail is sent if warning
errors are detected by the csarun script at
cleanup time. The default is root and adm

MIN_BLKS Minimum number of free blocks needed in

2.1.10.6 Using at to Execute csarun

${ACCT_FS} to run csarun or csaperiod . The
default is 500 free blocks.

You can use the at (1) command instead of cron (8) to execute csarun
periodically. If your Cray Research system is down when csarun is scheduled
to run via cron , csarun will not be executed until the next scheduled time.
On the other hand, at jobs execute when the machine reboots if their scheduled
execution time was during a down period.

SG-2302 10.0.0.2

53

UNICOS Resource Administration

You can execute csarun with at in several ways. For instance, a separate
script can be written to execute csarun and then resubmit the job at a specified
time. Also, an at invocation of csarun could be placed in a user exit script,
/usrl/lib/acct/csa.user , that is executed from the USEREXIT section of
csarun . See Section 2.1.10.3, page 51, for more information.

2.1.10.7 Allowing Nonsuper Users to Execute CSA

54

Your site may want to allow users without super-user permissions to run CSA
accounting. CSA can be run by users who are in the group adm and have
permission bit acct set in their UDB entries.

Note: If root has run CSA, you must execute the shell script
lusr/lib/acct/csaperm (see csaperm (8)) to change the group ID and
file permissions of all accounting files in /usr/adm/acct so they can be
accessed by a nonsuper user running CSA.

The following steps describe the process of setting up CSA so it is executed
automatically on a daily basis by a user without super-user permissions. In this
example, the user without super-user permissions is adm

1. Ensure that user admis a member of group admand has the permission bit
acct set in its UDB entry (see udbgen (8)).

2. Asroot , execute the shell script csaperm to change the group ID and file
permissions of all accounting files in /usr/adm/acct so they can be
accessed by a nonsuper user.

3. Ensure that, if they exist, the user exits /ust/lib/acct/csa.archivel ,
lusr/lib/acct/csa.archive2 , lusr/lib/acct/csa.fef , and
lusr/lib/acct/csa.user have the group ID admand are both readable

and executable by group adm

4. Follow steps 1 through 5 of Section 2.1.4, page 11, to set up system billing
units, record system boot times, and turn off accounting before system
shutdown.

5. Include an entry similar to the following in

{usr/spool/cron/crontabs/root so that cron (8) automatically runs
dodisk (8):
0 3 * * 1-6 /usr/lib/acct/dodisk -a -v 2> [usr/adm/acct/nite/dk2log

dodisk must be executed by root , because no other user has the correct
permissions to read /dev/dsk/*

SG-2302 10.0.0.2

Accounting [2]

6. Include entries similar to the following in
/usr/spool/cron/crontabs/adm so that user adm automatically runs
daily accounting by using cron :

0 4 * * 1-6 /usr/lib/acct/csarun 2> Jusr/fadm/acct/nite/fd2log
0 * * * * Jusr/lib/acct/ckdacct ngs tape
0 * * * * Jusr/lib/acct/ckpacct

csarun (8) should be executed at a time that allows dodisk to complete. If
dodisk does not complete before csarun executes, disk accounting
information may be missing or incomplete.

7. To run periodic accounting, place an entry similar to the following in

/usr/spool/cron/crontabs/adm (this command generates a periodic
report on all consolidated data files found in

/usr/adm/acct/sum/data/* and then deletes those data files):

15 5 1 * * [usr/lib/acct/csaperiod -r 2>/usr/fadm/acct/nite/pd2log

8. Update the holidays file as described in Section 2.1.4, page 11.

2.1.10.8 Using an Alternate Configuration File

By default, the /etc/config/acct_config configuration file is used when
any of the CSA commands are executed. You can specify a different file by
setting the shell variable ACCTCONFIGo another configuration file, and then
executing the CSA commands.

For example, you would execute the following commands in order to use the
configuration file /tmp/myconfig while executing csarun (8):

ACCTCONFIG=/tmp/myconfig /usr/lib/acct/csarun 2> [usr/adm/acct/nite/fd2log

2.1.10.9 Disk Usage Reporting (diskusg)

SG-2302 10.0.0.2

The diskusg (8) command can be configured at your site. The site.c module
of diskusg contains an example to help you in customizing a report for your
site. You can delete your choice of comment-protection characters in the
example, compile the routine, relink diskusg , then print a sample report of
disk usage for your site. You can execute your modified diskusg command in
the USEREXIT state in csarun or runacct scripts.

55

UNICOS Resource Administration

2.1.11 Per-process Accounting Data

This section describes some of the fields found in the pacct file.
{usrfinclude/sys/acct.h defines the structure of this file.

2.1.11.1 Base Accounting Record

One base accounting record per process is written; each record contains the
following fields:

Table 2. Base accounting record fields by function

Type Field Description
Header ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)
ac_flag Accounting flags.
Identifiers ac_acid Account ID.
ac_gid Real group ID.
ac_jobid Job ID.
ac_pid Process ID.
ac_ppid Parent process ID.
ac_uid Real user ID.
Process Information ac_btime Start time of the process.
ac_comm Command name (first 8 characters).
ac_etime Elapsed time while process executed (in clocks).
This number is not repeatable.
ac_himem Memory-use high water mark in words.
ac_nice Nice value, measured at the end of 1 second of

56

system and user time or the most expensive
value used thereafter. This allows a process to
set the value at which most of its work should be
done; only charges for increased cost are levied.

ac_stat Low-order 8 bits from process’s exit value. See
the wait (2) man page for more information.

SG-2302 10.0.0.2

Accounting [2]

Type

Field

Description

Counters

SG-2302 10.0.0.2

ac_tty

ac_ctime

ac_io

ac_iobtim

ac_iosw

Controlling tty device.

Process raw connect time in clocks. For
multitasking jobs, ac_ctime is a sum of the
connect time across all CPUs used by the job.

Number of characters transferred by the process.
If any tape accouting information existed for this
process, the number of tape bytes read and
written is included in the ac_io field. Thus, the
amount of tape I/0 is reported twice: once in
the ac_io field and again in the tape accounting
record. The ac_io field generally is larger,
because it includes additional I/O performed by
the process. This number is repeatable.

Device accounting I/O information is also
reported twice: by ac_io and in the device
accounting record field acd_ioch

Charges for doing I/0O to tape or to a particular
device can be adjusted by setting the SBU weight
factors for tape and device I/O. These weights
are defined in /etc/config/acct_config

The tape SBUs are labeled TAPE SBUx, and the
device SBUs are BLOCK_DEVICEx and
CHARDEVICE x.

Set the weight factors relative to P_BYTEIO. The
ac_io value is multiplied by P_BYTEIO. The
tape or device I/0 value is multiplied by the
appropriate tape or device weight factor.

For example, if a surcharge is to be applied to
tape 1/0O, the read and write values for the
TAPE_SBUx variables must reflect the amount
over P_BYTEIO that should be charged.

I/0 wait time in clocks measured while the
process is not locked in memory (unlike
ac_iowtime). System buffer I/O accumulates
here. This number may vary due to system load.

Swap count. This number may vary due to
system load.

57

UNICOS Resource Administration

Type Field

Description

ac_iowtime

ac_lio

ac_rw

ac_sctime

ac_stime

ac_utime

Integrals ac_iowmem

ac_mem

58

I/0 wait time (in clocks) measured while the
process is locked in memory. This means that
system buffered I/O does not appear here. Also,
this is a measure of the time elapsed from when
a process is removed from the run queue until
the process is reconnected to a CPU; therefore, it
may vary due to system load.

Logical I/O request count; this is a count of the
read , write , reada , writea , and listio (list
entries) system calls made. This number is
repeatable.

Number of physical I/O requests initiated by the
process. This number varies due to conditions in
the system buffer cache. Therefore, if repeatable
billing is desired, this number cannot be used.

System call time in clocks.

System CPU time used (in clocks). This number
is not repeatable, because it varies with system
load.

User CPU time used (in clocks). For
nonmultitasked processes, this number does not
include semaphore wait time and is repeatable
(within the limitations caused by memory
conflicts).

I/O-wait-time memory integral measured while
the process is locked in memory (in click-ticks).
This number may vary due to system load.

Memory integral selected when MEMINT= 1 (in
clicks-ticks). (MEMINTis located in
/etc/config/acct_config .) This is the only
constant memory integral available (within the
limitations caused by memory conflicts);
therefore, if repeatable billing is required, this
number must be used.

SG-2302 10.0.0.2

Accounting [2]

Type Field Description
ac_mema2 Memory integral selected when MEMINT= 2 (in
clicks-ticks). (MEMINTis located in
/etc/config/acct_config .) This integral is
not constant and varies with machine load.
ac_mem3 Memory integral selected when MEMINT= 3 (in

clicks-ticks). (MEMINTis located in
/etc/config/acct_config .) This integral is
not constant and varies with machine load.

2.1.11.2 End-of-job Accounting Record

There is one end-of-job record per job. The record is written when the last
process of a job is terminated. The record contains the following fields:

Table 3. End-of-job accounting record fields by function

Type Field Description
Header ac_header Accounting header record word (see
/usr/include/sys/accthdr.h)
ac_flag Accounting flags.
Identifiers ace_jobid Job ID of the job to which this record belongs.
ace_uid User ID from the job table.
Job Information ace _etime End time of the job (in seconds).

SG-2302 10.0.0.2

ace _fshlkused

ace_himem

Sum of the file system storage used. This value
may be negative if more space was freed up than
was consumed.

High-water memory use of job; sum of all
processes in a job at any given time (in clicks).
this can vary because of scheduling differences.

59

UNICOS Resource Administration

Type

Field

Description

ace_nice

ace _sdshiwat

Last nice value of the job.

Secondary data segment high-water use; sum of
all processes in a job at any given time (in SDS
units). This can vary because of scheduling
differences.

2.1.11.3 Multitasking Accounting Record

60

If a process is multitasked, a multitasking accounting record is written when
the last member of the multitasked group is terminated. The record contains

the following fields:

Field

ac_header

ac_flag

ac_smwtime

ac_mutime[MUSIZE]

Description

Accounting header record word (see
/usr/include/sys/accthdr.h)

Accounting flags.

(Not on CRAY C90 systems.) Semaphore wait
time (in clocks).

Time a process was connected to exactly (i + 1)
CPUs (in 1/100ths of a second format). The CPU
time used when the process was connected to (i +
1) CPUs is ac_mutime [i] * (i + 1) 1/100ths of a
second. For example, ac_mutime [1] is the time a
process was connected to two CPUs, and
ac_mutime [1] * 2) is the CPU time used while
connected to two CPUs.

ac_mutime [] includes wait semaphore time.

Prior to UNICOS release 8.3, the multitasking
CPU times were stored as 21-bit pseudo-floating
point numbers. Beginning with release 8.3, these
values are in 1/100ths of a second and are
compressed as 16-bit pseudo-floating point
numbers. The compression and unit changes
were made so that multitasking information for a

SG-2302 10.0.0.2

Accounting [2]

2.1.11.4 SDS Accounting Record

maximum of 32 CPUs can be stored in the pacct
file without changing the size of the records.

(Not on CRAY EL systems.) If a process utilizes SDS, an SDS accounting record
is written. The record contains the following fields:

Field

ac_header

ac_flag

acs_mem

acs_lio

acs_ioch

2.1.11.5 MPP Accounting Record

Description

Accounting header record word (see
/usr/include/sys/accthdr.h)
Accounting flags.

Memory integral based on residency time, not
execution time (in click-ticks).

Logical I/O request count; this count is the
number of ssread and sswrite system calls
made.

Number of characters transferred to and from the
SDS, stored in bytes.

If a process uses a Cray MPP system, an MPP accounting record is written that

contains the following fields:

Field

ac_header

ac_flag
ac_mpppe
ac_mppbe

ac_mpptime

2.1.11.6 Performance Accounting Record

Description

Accounting header record word (see
/usr/include/sys/accthdr.h)

Accounting flags.

Number of MPP processor elements used.
Number of MPP barrier bits used.

Number of clocks that the MPP has been used.

When the optional performance accounting feature is enabled (by using the
devacct (8) command with the -b option), a performance accounting record is
written at the end of each process. Each record contains the following fields:

SG-2302 10.0.0.2

61

UNICOS Resource Administration

Field

ac_header

ac_flag

acp _rtime

acp_tiowtime

acp_srunwtime

acp _swapclocks

acp_rwblks

acp_phrwblks

2.1.12 Multitasking Incentives

2.1.12.1 Memory Integrals

62

Description

Accounting header record word (see
/usr/include/sys/accthdr.h)

Accounting flags.

The process start time offset (in clocks) from the
previous second (reported in the ac_btime field
of the base accounting record). This field allows
you to trace start times of processes that are
spawned in the same second.

The terminal I/O wait time (in clocks); in other
words, the period of time starting when a process
performing I/0 to a tty or pseudo-tty is removed
from the run queue and ending when the process
is reconnected to a CPU. This number may vary
due to system load.

This field is currently disabled.

The time (in clocks) that a process spends on the
swap device.

The number of physical blocks transferred by the
process using the system buffer I/O interface.
This number varies due to conditions in the
system buffer cache.

The number of physical blocks transferred by the
process using the raw 1/0 interface.

Some sites may want to provide accounting incentives for the use of
multitasking. Several of these are available through the appropriate setting of

installation parameters.

Three different memory integrals are available to the accounting software. The
differences among them are important to those sites that want to give incentives

for use of multitasking.

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Memory integral #1 - At each change in memory size, memory integral #1 is
incremented by the total CPU time used since the last memory change, times
the memory size, as follows:

MI #1: memory size * (total CPU time since last size change)

Thus, a program that is connected to two CPUs for some period will pay twice
the memory cost for that period. When using memory integral #1, a
multitasking program incurs the same charges, no matter how many CPUs it
gets. This is helpful if consistent billing is important to your site, but not as
helpful if incentives for multitasking are important.

Memory integral #2 - The calculations for memory integral #2 are similar to those
for #1, except that the increment is the sum of times when at least one CPU was
connected, times the memory size, as follows:

MI #2: memory size * (total time when program was connected
to at least one CPU since last size change)

A multitasking program pays (in memory charges) only for the first CPU it
receives; additional CPUs do not increase the memory charge. Using memory
integral #2, a multitasking program can potentially decrease its memory charge
by a factor equal to the number of CPUs in the machine. This is an incentive
for using multitasking. However, because the amount of time a program is
connected to a number of CPUs varies from run to run, memory integral #2 is
not consistent. The maximum value for #2 is equal to #1 (if no connect time
overlap occurs). Note that this also means that #1 is equal to #2 for
single-tasked programs.

Memory integral #3 - Some sites with multi-CPU machines may wish to allow an
individual program to use a proportionally large amount of memory only if it is
also able to use more than one CPU. For instance, in a four-CPU machine,
allowing one program to use 90% of memory may idle some CPUs if the
program uses only one CPU.

Memory integral #3 allows the site to control this aspect of CPU use by adding
an extra factor into the calculation for memory integral #2. The total memory
available to user programs is divided by the number of CPUs to derive the
value of “one CPU worth of memory.” The memory size of the program is then
divided by the “CPU worth” factor to get the extra factor in memory integral
#3, as follows (this extra factor cannot be less than 1):

MI #3: memory size * (total time when program was connected
to at least one CPU since last size change) *
(memory size / "one CPU worth of memory”)

63

UNICOS Resource Administration

2.1.12.2 Reducing Charges

64

Memory integral #3 provides an incentive for single-tasked programs to limit
themselves to one CPU worth of memory. Multitasked programs will also pay
more in memory charges for lots of memory, but they can reduce their memory
charges by using multiple CPUs. However, memory integral #3 is as inconsistent
as #2, and it can also affect the memory charges for single-tasked programs.

Note that the changes from #1 to #2 and #2 to #3 are, in a sense, opposite for
multitasking programs. The changes from #1 to #2 reward multitasking
programs by a factor of up to the number of CPUs. The changes from #2 to #3
penalize large-memory programs by up to the number of CPUs. Thus, if a
multitasking program has used all memory (on a four-CPU machine), memory
integrals #1 and #3 would be nearly equal, and the value of #2 would be
approximately one-quarter the value of #1 or #3.

The accounting software is released with memory integral #2 as the default.
The MEMINTvariable in /etc/config/acct _config can be changed to
match the site’s needs.

Another incentive you can provide for the use of multitasking is to reduce the
charges for CPU time for multitasking programs. This can be accomplished
with weighting factors. The operating system kernel maintains counters of the
length of time spent by a user program with one processor connected, two
processors connected, and so on.

By default, the charges for a multitasking program would be calculated as
follows:

sum = O;
for (i=0; i < ncpu; i++)
sum += ac_mutime[i * (i+1);

This calculation assumes that all CPU time is charged equally. With the
weighting factors, the site can specify, for instance, that a second CPU should
be only 75% as expensive as the first CPU. Therefore, a program that gets two
CPUs as it executes would have its CPU time charges reduced. Note that,
because this charge depends on how much overlap a program gets, charges
may vary from execution to execution. However, charges are never more than
the full price for all CPUs.

The accounting software is released with all CPUs having a cost of 1. The
MUTIME WEIGHTx variables, defined in /etc/config/acct_config , can be
changed to meet the site’s needs.

SG-2302 10.0.0.2

Accounting [2]

2.1.13 Socket Accounting

2.1.14 Device Accounting

Note that the user time reported by the time (1) command is adjusted so that
there is no charge for wait-semaphore time. (This is in order to provide
consistent CPU time charges.) The multitasking overlap times do not adjust for
wait-semaphore times and, hence, may actually calculate to a greater CPU time
than the sum of the user times. In this case, the CPU charge is limited to the
sum of the user times.

Socket accounting tracks network usage from the perspective of sockets,
wherein one process may use several sockets, and several processes may use
the same socket.

The recorded accounting information tracks all of a socket’s usage, but it can
only be linked to the process that most recently closed the socket. This
information can help you resolve network problems and/or monitor system
network usage.

You can use the csasocket (8) command to summarize and process the socket
data; csaswitch (8) can be used to check the status of, enable, and disable
accounting methods, including socket accounting. See the csasocket (8) and
csaswitch (8) man pages for more information.

This section describes device accounting. On large computer systems with
expensive peripheral devices, it may be useful to associate device usage with
the user who initiated the I/O. Cray device accounting allows a system
administrator to specify the accounting data that should be collected for device
use. This system allows a site to individually label each mounted disk’s
partitions and so enables the site to charge each type of secondary storage at a
different rate. For example, the amount of I/O on a high-speed storage device
such as an SSD may be charged at a different rate than I/O on a disk device.

2.1.14.1 Categories of Devices

SG-2302 10.0.0.2

The following three categories of devices under the UNICOS operating system
are important in device accounting;

® Character special devices, which are devices such as terminals, pseudo tty
devices, and the HSX channel.

e Block devices, which are devices such as disks, BMR, and the SSD.

65

UNICOS Resource Administration

* Logical devices, for device accounting, which are the individual file systems.
Such devices do not always correspond to a single device, but are treated as
such by device accounting.

The device accounting system accounts for device I/O by device type. For a
character device, device type is equivalent to its major number. For example, tty
devices are major number 1 (in the default system), so they are accounted for as
character device 1 (ios-tty). No accounting is performed for block devices,
because block devices are used to create file systems; instead, they are treated as
logical devices. Logical devices consist of one or more partitions of disk, SSD,
and BMR storage. Each logical device is formatted by the mkfs (8) command,
which provides it with a superblock. The devacct (8) program allows you to
write an accounting device type into the superblock of each logical device.

2.1.14.2 Structures and Device Names

66

The BLOCKDEVICE x and CHAR_DEVICEx parameters in

[etc/config/acct _config contain the SBU values and names for device
accounting. Refer to Section 2.1.10.1.9, page 47, for an explanation of
configuring these parameters.

Device accounting uses arbitrary ASCII names for the user interface to
accounting; internally, these names are mapped by the accounting library
routines typetonam and namtotype . To be useful, these names should be
meaningful to even the beginning user, because the ja (1) (job accounting)
command displays these names when invoked with the -d option. The ASCII
names are defined in the device name field of the BLOCK_DEVICEx and
CHAR_DEVICEx parameters.

Logical device accounting names are displayed to the user by ja and the
accounting programs, and are used by devacct (8) to determine the numeric
values the kernel uses.

Logical and character device names should not match; in fact no two names
should match, because the user cannot distinguish between them.

If names contain spaces (the shell field separator (SHELL IFS)), double quotes
must be used around the device type names during command invocation.

Device names are used as output by ja and the accounting programs; therefore,
keeping the names fairly short (less than 40 characters) will make them more
readable.

System billing units (SBUs) have the following meanings:

SG-2302 10.0.0.2

Accounting [2]

SBU Description
Logical 1/O Sbu The total number of system

calls made to this type of
device is multiplied by
Logical /O Sbu to
determine the SBU cost. This
value should be nonnegative.

Characters Xfer Sbu The total number of
characters transferred to this
device type is multiplied by
Characters Xfer Sbu to
determine the SBU cost. This
value should be nonnegative.

2.1.14.3 Configuration Changes

The system is released with the character devices configured to match the
released configuration; any changes to /usr/src/uts/c1/cf/devsw.c
should be reflected in the configuration file.

The block device configuration is released with a simple configuration. Several
extensions are possible, although some may require altering the values of
MAXBDEVN@nd MAXCDEVNQ@nd rebuilding the system and accounting
commands. First, if a site has a special temporary device that is restricted to a
set of users, a special type might be placed on that device to allow the billing
process to increase the cost of use, offsetting the lower rate of use. Second, SSD
or BMR allocated to logical device cache may be reflected in the configuration.

2.1.14.4 System Header Files

The system header files discussed in this section are important in device
accounting.

2.1.14.4.1 param.h Header File

SG-2302 10.0.0.2

The values MAXBDEVN@nd MAXCDEVNG@xe contained in the
{usrfinclude/sys/param.h file; they set the maximum size of the
accounting structures in the user structure and the maximum size of the
accounting data written. It is recommended that they not be increased beyond
the current values unless necessary (although making MAXCDEVNEmaller and
MAXBDEVNQ@rger by the same amounts is acceptable).

67

UNICOS Resource Administration

MAXBDEVNG@ the maximum number of block (logical) device accounting types.
This number can be changed from the current value of 10.

MAXCDEVNG® the maximum number of character device accounting types. This
number can be changed from the current value of 35.

2.1.14.4.2 acct.h Header File

The /usr/include/sys/acct.h header file contains all the kernel structures
for accounting and sets the following values related to device accounting:

Value Description
NODEVACCT The number of devio entries per accounting

record. This value is the number of device
accounting entries that fit into one accounting
record.

ACCT_CHSP A marker combined by an ORoperation into the
type field (acd_type) to indicate that the devio
entry is for a character device.

_MAXDEVIOREC The maximum number of device accounting
records that can be written for any individual
process.

2.1.14.5 Using Device Accounting (Devacct(8))

68

Use the devacct (8) command to label file systems with accounting types while
they are mounted. If a file system does not contain a device type label, device
accounting ignores it.

In order to enable device accounting, the system may be built to automatically
enable specific device types. However, an easier solution is to insert lines into
the system startup procedure (/etc/config/daemons) to enable device
accounting when bringing the system to multiuser mode. The following
example shows a line that can be added to the daemons file
(etc/config/daemons) to enable device accounting (remember the device
type name is a single argument and so it may need to be enclosed in double
quotation marks if it contains shell separators):

SYS1 devacct YES - /usr/lib/acct/devacct -b " device type name"

The devacct command with the -I option may be used to label file systems
(file systems may be labeled only while mounted). The names of device types

SG-2302 10.0.0.2

Accounting [2]

are defined in the BLOCK_DEVICE and CHAR_DEVICE variables located in
/etc/config/acct_config . Some of the default names include spaces; such
names must be enclosed in double quotation marks on the command line.

For example, to label the device /dev/dsk/root with the label "dd49 with
Idcache" , the command would be as follows:

/usr/lib/acct/devacct -l "dd49 with Idcache" /dev/dsk/root

Device accounting for any device type may be turned on at any time by
invoking the devacct command with the -b option. While device accounting
is on, no records are written unless per-process accounting is enabled.

For example, to enable accounting for the devices labeled "dd49 with
Idcache" , the command is as follows:

{usr/lib/acct/devacct -b "dd49 with Idcache"
You can turn on performance accounting using the following command:
Justr/lib/acct/devacct -b perfOl

Device accounting for any device type may be turned off at any time by
invoking the devacct command with the -t option. While accounting is
disabled, those processes that have already accumulated data will report that
data at termination if per-process accounting is enabled. For example, to disable
accounting for the devices labeled "dd49 with Idcache" , the command is as
follows:

/usr/lib/acct/devacct -t "dd49 with Idcache"

To determine the current label for a device, use the devacct command with
the -L option. For example, to list the current label of /dev/dsk/root , you
would execute the following command:

/usr/lib/acct/devacct -L /dev/dsk/root

2.1.14.5.1 Implications of Device Accounting

SG-2302 10.0.0.2

The system overhead for device accounting is fairly low. However, the amount
of accounting data produced in the worst cases is more than double that
produced by standard accounting. The more device accounting data kept, the
more file system space that is required. If one device is accounted for, processes
that use that device generate twice as much accounting data as a process that
did not use the device or the same process without device accounting. However,

69

UNICOS Resource Administration

for 1 to NODEVACCievice types, the maximum size of the accounting data
does not increase, except that more processes may use one of the devices.

2.1.14.5.2 Tape Device Accounting

To enable or disable tape device accounting, use the device type name associated
with the CHAR_DEVICE15parameter in /etc/config/acct _config . By
default, this device name is "bmx daemon".

The device name associated with CHAR_DEVICE11(the default is "bmx tape ")
controls device accounting only for tape diagnostics.

To enable device accounting for the tapes, execute the following command:

/usr/lib/acct/devacct -b "bmx daemon"

2.1.15 Switching / and /usr File Systems

Occasionally, sites run on numerous / and /usr file systems and want to
maintain the same accounting files throughout. The easiest way to accomplish
this is to put /usr/fadm or /usr/adm/acct on a separate file system and
mount this file system along with each different system.

In addition, two other files, /etc/csainfo and /etc/wtmp , must be copied
from the previously booted /. These files must be copied to the new root file
system before it is brought up. Failure to correctly copy /etc/csainfo to the
new / can cause csarun to abort abnormally. Incorrect connect time data is
reported when /etc/wtmp is not copied.

2.1.16 Logging Information

2.1.16.1 Boot Log

70

The following sections describe log files found in the UNICOS operating
system.

The boot log contains the date and time the system was booted. It is located in
letc/boot.log and can be accessed through normal file manipulations such
as tail (1), cat (1), pg(1), and more (1). The /etc/rc (see brc (8)) script
appends the record to the boot.log . The format is as follows:

date, uname -a
yyl mml dd hh: mm system node release version hardware

SG-2302 10.0.0.2

Accounting [2]

2.1.16.2 cron Log

2.1.16.3 Dump Log

SG-2302 10.0.0.2

Example:

93/05/10

08:07 snl1703c cool 8.0.0tk

dev.6 CRAY Y-MP

See date (1) and uname(1) for further information. See also who(1), and the
sample wtmp and utmp files in this chapter.

The cron log contains the history of all actions taken by the cron (8) command.

It is located in /ust/lib/cron/log
manipulations such as tail

file is as follows:

and can be accessed by using normal file
(1), cat (1), pg(1), and more(1). The format of this

CMD: command_executed username process _id job_type
start_time username process_id job_type
end_timerc= error return code

job_type can have one of the following values:

a at job

b Batch job

c cron job

Example:

> CMD: 645827040.a

> userl 7191 a Tue Jun 19 15:24:00 1990

> CMD: /usr/lib/sa/sal 120 1

> root 7192 c Tue Jun 19 15:24:00 1990

< root 7192 c Tue Jun 19 15:24:00 1990

< userl 7191 a Tue Jun 19 15:24:00 1990

> CMD: 645827059.b

> wuserl 7273 b Tue Jun 19 15:24:19 1990

< userl 7273 b Tue Jun 19 15:24:20 1990 rc=1

The dump log contains the time and a reason for each dump. The system
supplies the time and the user supplies the reason. By default, the dump is

located in /etc/dump.log
manipulations such as tail

and can be accessed using the normal file
(1), cat (1), pg(1), and more (1). When the system is

changing out of single-user mode, brc (8) calls coredd (8) to copy a dump file
to a file system. The location of the dump can be reconfigured by using the

71

UNICOS Resource Administration

2.1.16.4 New User Log

2.1.16.5 su Log

72

install tool. Note that the user may also change the location of the log file by
using the -| option with the cpdmp command.

Example of /etc/dump.log

cpdmp: 035120 blocks on dump device - waiting to be copied
04/26/93 07:27:09 coredd: Copying system dump into /core//04260727.
Unicos-E dump copied to=/core//04260727/dump

dump taken: 04/26/93 at 07:18:51

reason: PANIC: master.s: EEX interrupt in UNICOS kernel

The new user log contains information on new users given logins on the
system; this data includes who added the users, the times at which they were
added, and information about their environment defaults and IDs. This log is
located in /usr/adm/nu.log and can be accessed using normal file
manipulations such as tail (1), cat (1), pg(1), and more(1). It is created by the
nu(8) command. An example of the format follows:

userl:co:user login #1
user1:ui:10702:di:/j/luserl:sh:/bin/csh:dr:/:pw:qQfHS6B8XYdzg
userl:gi:128,129,130,131,132
userl:ai:0
userl:dl:0:mx:0:mn:0:1k:0:tp:0
userl:dc:default:cm:default:pm:default

added by adml on Wed Jul 20 08:43:20 1988

The su log records su (1) attempts for the current day. It is located in the
/usr/fadm/sulog file and can be accessed using normal file manipulations
such as tail (1), cat (1), pg(1), and more(1). It is written by the su(1)
command. The format of the log is as follows:

SU MM/DD hh:mm flag tty olduser-newuser
flag can have the following values:
+ su was successful.

- su was not successful.

SG-2302 10.0.0.2

Accounting [2]

2.1.16.6 OLDsu Log

2.1.16.7 System Logs

SG-2302 10.0.0.2

olduser is the login name of the user executing su, and newuser is the name of
the user the executing user is becoming. For example:

SU 06/19 15:13 + console operator-root SU 06/19 15:13 + ttyp025 \n
userl-root SU 06/19 15:14 + ttyp021 user2-adm SU 06/19 15:19 - ttyp026 \n
user3-root SU 06/19 15:19 - ttyp022 user4-root

The OLDsu log is a directory containing all files of daily su(1) attempts. It is
located in /usr/fadm/OLDsu/* and can be accessed using normal file
manipulations such as tail (1), cat (1), pg(1), and more(1). The /etc/rc

script moved the /usr/fadm/sulog file to the /usr/fadm/OLDsu directory at
system startup. An example of the format follows:

$ Is -al OLDsu

-"W-TW-rw- 1 root 2864 Oct 31 19:02 Oct31
-rW-rW-rw- 1 root 20211 Sep 12 09:15 SepOl
-rW-rW-rw- 1 root 938 Sep 12 09:15 Sep02
$ cat SepOl

SU 09/01 16:29
SU 09/01 16:30
SU 09/01 16:32
SU 09/01 16:32
SU 09/01 16:34
SU 09/01 16:35
SU 09/01 16:36

tty?? root-root
tty?? root-sys
tty?? root-sys
tty?? root-root
tty?? root-sys
tty?? root-root
tty?? root-sys

+ + + + + + o+

The system logs are files into which the syslogd (8) command has logged
messages. They are located in the /usr/adm/syslog/* directory. Note that
these files are described by the configuration file /etc/syslog.conf . They
can be accessed using normal file manipulations such as tail (1), cat (1),
page (1), and more(1). They are written by the /etc/syslogd command; the
logger (1B) command also makes entries in the system logs.

These logs consist of ASCII messages, which may include debug messages,
kernel messages, and so on.

73

UNICOS Resource Administration

The following example is the configuration file for /etc/syslogd

(these fields

are described on the syslogd (8) and syslog (3) man pages):

$ cat /etc/syslog.conf

USMID @(#)man/2302/02.accounting
#

This
#

#*.debug

#

mail.debug

#

kern.debug

#
daemon,auth.debug

#
#*.err;kern.debug;auth.notice
#

is a configuration

file

for

92.2 02/05/96 13:26:44
/etc/syslogd
/usr/adm/syslog/debug
/usr/spool/mqueue/syslog
/usr/adm/syslog/kern

/usr/adm/syslog/auth

/dev/console

*.err;kern.debug;daemon,auth.notice; /usr/adm/syslog/daylog
#
#*.alert;kern.err;daemon.err operator
* alert root
Note: The /etc/syslogd.conf file does not work if spaces are in it; only
tabs can be used to separate items in this file.
The following example shows a listing of the files in the /usr/adm/syslog
directory:
$ Is -l /usr/adm/syslog
total 10
-rW-r--r-- 1 root root 168 Jun 19 15:35 auth
-PW-r--r-- 1 root root 5164 Jun 19 15:45 daylog
-rW-r--r-- 1 root root 4107 Jun 19 15:45 Kkern
drwxr-xr-x 2 root root 16864 Jun 19 15:09 oldlogs

2.1.16.8 Error Log

The error log is a file containing error records from the operating system. The

default error file is /usr/adm/errfile

74

. There are two facilities available for

SG-2302 10.0.0.2

Accounting [2]

generating reports from the data collected by the error-logging mechanism. The
first is errpt (8), which processes error reports from the data, and the second is
olhpa , a hardware performance analyzer that reports the hardware errors and
statuses recorded in the system error log.

Note: The olhpa facility is only available on IOS-E based systems. It is not
available on GigaRing based systems.

The /etc/errdemon command (see errdemon (8)) reads /dev/error and
places the error records from the operating system into either the specified file,
or errfile , by default. The /etc/rc (see brc (8)) script starts

/etc/lerrdemon , and /etc/mverr is used to start a new errfile

The following example shows sample errpt output:

Tue Jun 7 12:01:49 1988
Error reported from 10S 0 for device S49-0-21

Major:0 Minor:6 Block:140868 status: Recovered
lop:0 Channel:21 Unit:0
Cylinder:1156 Head:5 Sector:0

Function:Read Requested:344064 bytes Received:344064 bytes

I0S 0 ERRORLOGGINGENABLED

See errpt (8) for further information. See the Online Maintenance Tools Guide for
Cray PVP Systems, publication SD-1012, or the olhpa (8) man page for
information concerning olhpa . 2

2.1.16.9 Multilevel Security (MLS) Log

The multilevel security (MLS) log is a file containing security-relevant event
loggings. The security log, /usr/adm/sl/slogfile , can be analyzed by
using the reduce command. reduce extracts, formats, and outputs entries
from UNICOS security event files. The security event logging daemon,
slogdemon (8), collects security-relevant records from the operating system by
reading the character special pseudo device /dev/slog . For more information
regarding the format of the security log and on the UNICOS MLS feature, see
the reduce (8) man page and General UNICOS System Administration,
publication SG-2301.

2 CRAY RESEARCH PRIVATE. This document contains information private to Cray Research, Inc. It can be
distributed to non-CRI personnel only with approval of the appropriate Cray manager.

SG-2302 10.0.0.2 75

UNICOS Resource Administration

2.1.16.10 System Activity Log

2.1.16.11 Message Log

2.1.16.12 Accounting Logs

76

The system activity report facility provides commands for generating various
system activity reports. Two reporting capabilities exist (one automatic and one
user-driven); however, the actual reports are created by the sar (8) program in
either case. The system activity log is located in /usr/fadm/sa/sa DD and can
be accessed with sar .

Warning: The log files located in /usr/adm/sa/sa DD on a Cray ML-Safe
configuration of the UNICOS system are considered to be covert channels.
You may want to consider restricting access to these files to the adm group.

With this command, you can generate system activity reports in real time and
save system activities in a file for later use. The sal, sa2, and sadc commands
(see sar (8)) generate system activity data on a routine basis, with sa2 calling
sar to generate the report.

UNICOS counters are incremented as various system actions occur. These
counters provide system-wide measurements. sadc accesses /devikmem to
read these system activity counters.

Refer to the sar (8) man page for more information on the format of the system
activity log.

The message log contains messages and replies to the operator. It is located in
{usr/spool/msg/msglog.log and can be accessed using normal file
manipulations, such as tail (1), cat (1), pg(1), and more (1). All messages and
replies to and from the operator console are put into this file by the console. An
example of the file format follows:

Apr 1 07:11:06 Message daemon stopped

Apr 1 09:36:54 Message daemon started

Apr 1 08:09:49 Message 1: TM122 - mount tape WK1102(sl) on a CART
device for wuserl 50, () or reply cancel / device name

Warning: The msglog.log file is considered a covert channel on a Cray
ML-Safe configuration of the UNICOS system. You may want to consider
restricting access to this file to the adm group.

The accounting logs are files containing various accounting information, as
follows:

SG-2302 10.0.0.2

Accounting [2]

3

csainfo

utmp

wtmp

pacct

SG-2302 10.0.0.2

Description

A file containing boot times. It can be accessed with the od(1)
command (the -d option will give the seconds). Each time the
system is booted, the boot time is written to /etc/csainfo by
the /etc/csaboots (see csaboots (8)) command. csaboots is
invoked by /etc/rc (see brc (8)). See also the description of the
boot log in Section 2.1.16.1, page 70.

A file containing active system and terminal connection
information. This log is used by write (1), who(1), wall (8), and
mail (1) in getting user information. It is located in /etc/utmp

and can be accessed using the who(1l) and last (1B) commands. It
is written to by init (8), date (1), login (1), and getty (8). For
information on the format of utmp, see utmp (5).

Warning: On a Cray ML-Safe configuration of the UNICOS
system, utmp and wtmp are considered to be covert channels.
You may want to consider restricting access to these files to the
adm group.

A file containing a system and terminal connection history record.
This log includes usage statistics for each terminal, date change,
time stamp, boot records, reboots, shutdowns, and state changes.
wtmp must exist; programs that access it do not create it (the
letc/lrc script creates /etc/wtmp by default).

Records are in the form of utmp (5); acctcon (8) and csaline (8)
convert /etc/wtmp into session and charging records. This data
is merged into the system accounting reports. wtmp can also be
accessed using the who(1) and last (1) commands.

wtmp is written by init (8), date (1), login (1), and getty (8).
For information on the format of wtmp, see utmp (5).

Files containing per-process accounting data; these are located in
/usr/adm/acct/day/pacct* and can be accessed using the
acctcom (1) command. Note that these files are read by system
accounting programs, and the information appears in the
accounting reports. pacct is written by the kernel, and its format
is described in /usr/include/sys/acct.h

77

UNICOS Resource Administration

2.1.16.13 NQS Log

78

Warning: On systems running a Cray ML-Safe configuration of
e the UNICOS system, access to pacct* files should be
restricted to the adm group.

The following data files are accessed by system accounting programs, and their
information appears in the accounting reports:

Log Description

disktacct A file containing disk accounting data, located in
/usr/adm/acct/nite/disktacct . The
{usr/lib/acct/dodisk (see dodisk (8))
command writes this file.

fee A file containing user fees for accounting data,
located in /usr/adm/acct/day/fee . This file
is written by /usr/lib/acct/chargefee (see
chargefee (8)).

ngacct A file containing NQS daemon accounting data,
located in /usr/adm/acct/day/ngacct* . This
file is written by /usr/lib/ngs/ngsdaemon
See /usr/include/acct/dacct.h for the
format.

soacct A file containing socket accounting data, located
in /usr/adm/acct/day/soacct* . This file is
written by the kernel. See
{usrfinclude/sys/acct.h for the format.

tpacct A file containing tape daemon accounting data,
located in /usr/fadm/acct/day/tpacct* . This
file is written by /usr/lib/tp/tpdaemon (see
tpdaemon (8)). See
Jusr/include/acct/dacct.h for the format.

The NQS log contains NQS information. Its default location is the ASCII file

lusr/spool/ngs/log (you can change the location of the log file with the
gmgr set log_file command; to see where the current log file resides, use
the gmgr show parameters command). Access to /usr/spool/ngs is

restricted; however, if you have the correct permissions, you can access the
NQS log file using normal file manipulations, such as tail (1), cat (1), pg(1),
and more(1). This log is created by the NQS log daemon.

SG-2302 10.0.0.2

Accounting [2]

05/13
05/13
05/13
05/13
05/13
05/13
05/13
05/13
05/13

system, access to the NQS log should be restricted to the adm group.

e Warning: On systems running a Cray ML-Safe configuration of the UNICOS

08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00
08:00:00

An example of the log file’s format is as follows:

getpkt(): Received packet from local process: <89775>.
getpkt(): Client process real UID=<900>.
getpkt(): Packet type=<PKT_QUEREQVLPQ(30)>.

getpkt(): Packet contents are as follows:

getpkt(): Pkt_str[1] = <batnam1l >.

getpkt(): Pkt_int[1] = <40>.

getpkt(): Pkt_int[2] = <119>.
T nqgs_quereq(): Request <40.cool>: Attempting to read request.
T nqgs_quereq(): Request <40.cool >: Request was read.

2.2 Standard UNIX Accounting

SG-2302 10.0.0.2

The standard UNIX accounting feature of the UNICOS system provides
methods for collecting resource use data per process, recording connect
sessions, monitoring disk usage, and charging fees to specific logins. A set of C
language programs and shell procedures is provided to reduce this accounting
data into summary files and reports. This section describes the structure,
implementation, and management of the accounting system; it also describes
the reports generated and the meaning of the columnar data.

The following list is a synopsis of the standard accounting actions:

® At process termination, the UNICOS system kernel writes one record per
process in /usr/fadm/acct/day/pacct

e Thelogin (1) and init (8) programs record connect sessions by writing
records into /etc/wtmp . Date changes, reboots, and shutdowns are also
recorded in this file. The wtmp file is described in utmp (5).

e The programs acctdusg (8) and diskusg (8) break down disk usage by
login.

® Fees can be charged to specific logins with the chargefee (8) shell
procedure.

e FEach day the cron (8) shell procedure executes the runacct (8) shell
procedure, which reduces accounting data and produces summary files and
reports.

79

UNICOS Resource Administration

2.2.1 Files and Directories

80

* The monacct (8) procedure can be executed on a monthly or fiscal period
basis. It saves and restarts summary files, generates a report, and cleans up
the sum directory. These saved summary files could be used to charge users
for UNICOS system usage.

The /usr/lib/acct directory contains all the C language programs and shell
procedures necessary for running the accounting system. The adm login is used
by the accounting system and has the login directory structure shown in Figure
3.

Jusr/fadm

acct

day nite sum fiscal

al0113

Figure 3. Directory structure of the adm login

The /usr/adm/acct/day directory contains the active data collection files.
The nite directory contains files that are reused daily by the runacct (8)
procedure. The sum directory contains the cumulative summary files updated
by runacct (8). The fiscal directory contains periodic summary files created
by monacct (8).

In addition, configurable parameters are located in
letc/config/acct _config . You should modify these parameters to meet
your site’s needs.

SG-2302 10.0.0.2

Accounting [2]

2.2.2 Daily Operation

SG-2302 10.0.0.2

When the UNICOS system is switched into multiuser mode,
Jusr/lib/acct/startup is executed, as follows:

1. The acctwtmp (8) program adds a boot record to /etc/wtmp . This record
is signified by use of the system name as the login name in the wtmp record.

2. Process accounting is started with turnacct (8). The turnacct command
specified with the on argument, as follows, executes the accton (8)
program with the /usr/adm/acct/day/pacct argument:

/usr/lib/acct/turnacct on

3. The remove shell procedure is executed to clean up the saved pacct and
wtmp files left in the sum directory by runacct (8).

The ckpacct (8) procedure is run with cron (8) every hour to check if there is
enough space on the current file system (the default is /usr). If there are fewer
than MIN_BLKS free blocks (by default 500), accounting is stopped, and the
system administrator is notified about the action. MIN_BLKS is defined in the
configuration file /etc/config/acct _config . The ACCT_FSvariable in
letc/config/acct_config must be set to the file system containing
Jusr/fadm/acct . If the free space increases to 500 free blocks at a later time,
accounting is restarted, again with notification to the system administrator.

You can use the chargefee (8) program to bill users. It adds to
/usr/adm/acct/day/fee records that are picked up and processed by the
next execution of runacct and merged into the total accounting records.

The runacct command is executed with cron each night. It processes the
following active accounting files:

/usr/adm/acct/day/pacct
letc/wtmp
/usr/adm/acct/day/fee
/usr/fadm/acct/nite/disktacct

It produces command summaries and usage summaries by login. When the
system is shut down with shutdown (8), the shutacct (8) shell script is
executed. It writes a shutdown reason record into /etc/wtmp (see utmp (5))
and turns process accounting off.

81

UNICOS Resource Administration

2.2.3 Setting up the Accounting System

82

This section explains how to automate the operation of the accounting system.
It also contains information on converting UNICOS 8.0, 8.3, 9.0, 9.1, 9.2, and 9.3
standard UNIX accounting files to UNICOS 10.0 CSA format.

To automate the operation of the accounting system, complete the following
steps:

1.

Modify any necessary parameters in the file /etc/config/acct_config ,
which contains configurable parameters for the accounting system. Ensure
that the parameters, such as MEMINT reflect the needs of your site. You can
specify an alternate configuration file when running any of the accounting
commands. See Section 2.1.10.8, page 55, for more information.

If you maintain startup options with the Installation Configuration Menu
System (ICMS), configure RC_ACCTto have a value of YES Otherwise, edit

the /etc/config/rcoptions file to set RC_ACCTio a YESvalue.
Add an entry similar to the following to

/usr/spool/cron/crontabs/root so that cron automatically runs
dodisk :

0 2 * * 4 Jusr/lib/acct/dodisk

dodisk must be executed by root , because no other user has the correct
permissions to read /dev/dsk/*

. For most installations, you should make entries similar to the following in

/usr/spool/cron/crontabs/adm so that cron will run the daily
accounting automatically:

0 4 * * 1-6 /usr/lib/acct/runacct 2>/usr/adm/acct/nite/fd2log
50 * * * * Jusr/lib/acct/ckpacct

The runacct (8) command should be run at a time when the dodisk (8)
routine has had sufficient time to complete. If dodisk has not completed
before runacct executes, disk information may be missing.

To facilitate monthly merging of accounting data, make an entry similar to
the following in /usr/spool/cron/crontabs/adm

15 5 1 * * Jusr/lib/acct/monacct

This entry allows the monacct (8) procedure to clean up all daily reports
and daily total accounting files and to deposit one monthly total report and
one monthly total accounting file in the fiscal directory. It takes

SG-2302 10.0.0.2

Accounting [2]

advantage of the default action of monacct , which uses the current
month’s date as the suffix for the file names. The entry is executed when
the runacct (8) procedure has sufficient time to complete. This results in
the creation of monthly accounting files on the first day of each month
containing the entire previous month’s data.

6. Set the PATHshell variable in /usr/adm/.profile to the following:

PATH=/usr/lib/acct:/bin:/usr/bin

2.2.3.1 Setting up a User Exit

Daily accounting provides one user exit, /usr/lib/acct/run.user , that you
can call from the runacct command. This user exit allows you to tailor the
runacct procedure to your site’s needs by creating a shell script to perform
any additional processing during the daily run of accounting. You do not have
to modify the runacct script.

While executing, runacct checks in the USEREXIT state for a shell script
named /ust/lib/acct/run.user . If the script exists, it is executed via the
shell . (dot) command. If the script does not exist, the user exit is ignored. The .
(dot) command will not execute a compiled program, but the user exit script
can. runacct variables are available, without being exported, to the user exit
script. runacct checks the return status from the user exit and, if it is nonzero,
the execution of csarun is terminated.

2.2.3.2 Converting Standard UNIX Accounting to CSA Accounting

SG-2302 10.0.0.2

If your site decides to run CSA instead of standard UNIX accounting, you
should wait until the start of an accounting period before implementing CSA.
(An accounting period usually begins on the first day of a month.) Before
switching to CSA, use the standard UNIX accounting package to process the
previous month’s accounting data.

Follow these steps to convert from standard UNIX accounting to CSA:

1. Run the current version of UNICOS standard UNIX accounting programs
until the first day of the next month. Use the runacct (8) command to
process the daily accounting data.

2. On the first day of the month, use the monacct (8) command to generate an
accounting report for the previous month.

3. On the first day of the month, switch from running the standard UNIX
accounting package to CSA.

83

UNICOS Resource Administration

2.2.4 the runacct

84

4. (Optional step) The daily tacct files must be converted to cacct format if
you later want to summarize this data by using csaperiod (8). The
conversion should be done by using the csaconvert (8) command. Refer
to the csaconvert (8) man page and the UNICOS Installation Guide,
publication SG-2112, for more information on conversion.

For details on how to set up CSA, see Section 2.1.4, page 11.

Command

The runacct (8) command is the main daily accounting shell procedure. It
processes connect, fee, disk, and process accounting files and prepares daily and
cumulative summary files for use by prdaily (8) or for billing purposes.
runacct also contains one user exit point that allows you to tailor the daily
accounting run to your site’s needs. It is normally initiated with the cron (8)
command during nonprime hours.

The following files in /usr/adm/acct , which are produced by runacct , are
of particular interest:

File Description
nite/daytacct The total accounting file for the previous day in

tacct.h format.

nite/lineuse Produced by acctcon (8). It reads the wtmp file
and produces usage statistics for each terminal
line on the system. This report is not especially
useful, but is a carryover from traditional UNIX
systems.

sum/cms The accumulation of each day’s command
summaries. It is restarted by the execution of
monacct (8). The ASCII version of this file is
nite/cms

sum/daycms Produced by the acctcms (8) program. It
contains the daily command summary. The ASCII
version of this file is nite/daycms

sum/loginlog Produced by the lastlogin (8) shell procedure.
This file contains a record of the last time each
login was used.

sum/rprt MMDD Each execution of runacct (8) saves a copy of the
daily report as produced by prdaily (8).

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

sum/tacct The accumulation of each day’s nite/daytacct
It can be used for billing purposes and is
restarted each month or fiscal period by the
monacct (8) procedure.

The runacct command does not damage files in the event of errors. It
contains a series of protection mechanisms that attempt to recognize an error,
provide intelligent diagnostics, and terminate processing in such a way that
runacct can be restarted with minimal intervention.

The runacct command records its progress by writing descriptive messages
into the file active . (Files used by runacct are assumed to be in the
/usrfadm/acct/nite directory unless otherwise noted.) All diagnostic
output during the execution of runacct is written into fd2log . runacct
terminates execution if the lock and lockl files exist when it is invoked. The
lastdate file contains the month and day runacct was last invoked and is
used to prevent more than one execution per day. If runacct detects an error,
it writes a message to /dev/console , sends mail to root and adm, removes
locks, saves diagnostic files, and terminates execution.

Processing is broken down into separate reentrant states so that runacct can
be restarted. The last state completed is recorded in a file. As each state
completes, statefile is updated to reflect the next state. When runacct
reaches the CLEANUPstate, it removes the locks and terminates. States are
executed as follows:

State Description

SETUP The turnacct (8) command switch is executed.
The process accounting files,
/usr/adm/acct/day/pacct* , are moved to
/usr/adm/acct/day/Spacct* .MMDD. The
letc/wtmp file is moved to
/usr/fadm/acct/nite/wtmp. MMDD, with the
current date added at the end.

WTMPFIX The wtmpfix (see fwtmp (8)) program checks the

wtmp file in the nite directory for accuracy.
Some date changes cause acctconl (see
acctcon (8)) to fail, so wtmpfix attempts to
adjust the time stamps in the wtmp file if a date
change record appears.

85

UNICOS Resource Administration

86

CONNECT1

CONNECT2

PROCESS

MERGE

FEES

DISK

MERGETACCT

CMS

If wtmpfix is unable to fix the wtmp file, the
wtmp file must be manually repaired. Refer to
Section 2.2.5.1, page 89.

Connect session records are written to ctmp in
the form of ctmp.h . The lineuse file and the
reboots file are created, showing all of the boot
records found in the wtmp file.

The ctmp file is converted to ctacct. MMDD,
which is comprised of connect accounting records.
(Accounting records are in tacct.h format.)

The acctprcl and acctprc2 programs (see
acctprc (8)) are used to convert the process
accounting files,

/usr/adm/acct/day/Spacct*. MMDD, into
total accounting records in ptacct*. MMDD.
The Spacct and ptacct files are correlated by
number so that, if runacct fails, the Spacct
files are not reprocessed. One precaution should
be noted: when restarting runacct in this state,
remove the last ptacct file, because it will not
be complete.

The process accounting records are merged with
the connect accounting records, the output going
to daytacct

Any ASCII tacct records from the file fee are
merged into daytacct

On the day after the dodisk (8) procedure runs,
disktacct is merged with daytacct

The daytacct file is merged with sum/tacct
the cumulative total accounting file. Each day;,
daytacct is saved in sum/tacct. MMDD so
that sum/tacct can be recreated if it becomes
corrupted or lost.

Today’s command summary is merged with the
cumulative command summary file sum/cms.
ASCII and internal format command summary
files are produced.

SG-2302 10.0.0.2

Accounting [2]

USEREXIT User exit point. If a script named
/usr/lib/acct/run.user exists, it will be
executed via the shell . (dot) command. The .
(dot) command will not execute a compiled
program, but the user exit script can. runacct
variables are available, without being exported, to
the user exit script. You might use this user exit
to run local accounting programs.

CLEANUP Clean up temporary files, run prdaily (8) and
save its output in sum/rprt MMDD, remove the
locks, and then exit.

2.2.4.1 Failure Recovery for runacct

SG-2302 10.0.0.2

The runacct (8) program can fail for a variety of reasons; the most common
reasons are a system crash, a lack of space in the file system containing
/usr/adm/acct , and a corrupted wtmp file. If the active ~MMDD file exists,
check it first for error messages. If the active file and lock files exist, check
fd2log for messages.

The following are error messages produced by runacct and the recommended
recovery actions:

ERROR: locks found, run aborted

The lock and lockl files were found. These files must be removed before
runacct can restart.

ERROR: acctg already run for date: check
/usr/fadm/acct/nite/lastdate

The date in lastdate and today’s date are the same. Remove lastdate
ERROR: turnacct ~ switch returned rc=?

Check the integrity of turnacct (8) and accton (8). The accton program
must be owned by root , and the setuid bit must be set.

ERROR: Spacct?.MMDD already exists

File setups have probably already been run. Check status of files, then run
setups manually.

ERROR: /usr/fadm/acct/nite/wtmp.MMDD already exists, run
setup manually.

87

UNICOS Resource Administration

2.2.4.2 Restarting runacct

This message is self-explanatory.
ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

The wtmpfix (8) program detected a corrupted wtmp file. Use fwtmp (8) to
correct the corrupted file.

ERROR: Connect acctg failed: check /usr/adm/acct/nite/log

The acctconl (8) program encountered a bad wtmp file. Use fwtmp to correct
the bad file.

ERROR: Invalid state, check /usr/adm/acct/nite/active

The statefile file is probably corrupted. Check statefile and read the
active file before restarting.

If you invoke runacct (8) without arguments, the invocation is assumed to be
the first one of the day. The MMDD argument is necessary if runacct is being
restarted. It specifies the month and day for which runacct is to rerun the
accounting. The entry point for processing is based on the contents of

statefile . To override statefile , include the desired state on the
command line. For each case, see the appropriate example, as follows:

To start runacct

nohup runacct 2> /usr/adm/acct/nite/fd2log&

To restart runacct using the state specified in statefile
nohup runacct 0601 2> /usr/adm/acct/nite/fd2log&

To restart runacct at a specific state, overriding statefile

nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd2log&

2.2.5 Fixing Corrupted Files

88

When file corruption occurs, some files can be ignored or restored from the file
save backup. Certain files, however, must be fixed in order to maintain the
integrity of the accounting system.

SG-2302 10.0.0.2

Accounting [2]

2.2.5.1 Fixing wtmp Errors

The wtmp files generally cause the highest number of errors in the day-to-day
operation of the accounting system. When the date is changed, and the
UNICOS system is in multiuser mode, a set of date change records is written
into the /etc/wtmp file. The wtmpfix program (see fwtmp (8)) is designed to
adjust the time stamps in the wtmp records when a date change is encountered.

Some combinations of date changes and reboots, however, slip through
wtmpfix and cause acctconl (see acctcon (8)) to fail.

The following example shows how to repair a wtmp file:

$ cd /usr/adm/acct/nite

$ /usr/lib/acct/fwtmp < wtmp. MMDD > xwtmp
$ ed xwtmp
(Delete corrupted records)
$ /usr/lib/acct/fwtmp -ic < xwtmp > wtmp. MMDD

(Restartrunacct at the WTMPFIX state)

If the wtmp file is beyond repair, create a null wtmp file, which prevents any
charging of connect time. The acctprcl program (see acctprc (8)) cannot
determine which login owned a particular process, but the process is charged to
the first login in the /etc/udb file for that user ID.

2.2.5.2 Fixing tacct Errors

SG-2302 10.0.0.2

If your installation is using the accounting system to charge users for system
resources, the integrity of sum/tacct is quite important. Occasionally, tacct
records appear with negative numbers, duplicate user IDs, or a user ID of
65535 . First, check the sum/tacctprev file with prtacct (8). If it looks
correct, the latest sum/tacct. MMDD should be corrected; sum/tacct must
then be recreated. A correctional procedure is as follows:

$ cd /usr/adm/acct/sum

$ /usr/lib/acct/acctmerg -v tacct. MMDD xtacct
$ ed xtacct
(Remove the bad records, write duplicate user ID records to another file)
$ /usr/lib/acct/acctmerg -i xtacct tacct. MMDD
$ /usr/lib/acct/acctmerg tacctprev tacct. MMDD tacct

The monacct (8) procedure removes all tacct. ~ MMDD files; therefore, you
can recreate sum/tacct by merging these files.

89

UNICOS Resource Administration

2.2.6 Updating Holidays

2.2.7 Reports

90

The /usr/lib/acct/holidays file contains the prime/nonprime time table
for the accounting system. You should edit the table to reflect your site’s
holiday schedule for the year. By default, the holidays file is located in the
lusr/lib/acct directory. You can change the location of this file by
modifying the HOLIDAY_FILE variable in /etc/config/acct _config . If
necessary, you should modify the NUMHOLIDAYS variable (also located in
acct_config), which sets the upper limit on the number of holidays that can
be defined in HOLIDAY_FILE.

The format is composed of three types of entries:

1. Comment lines: These lines may appear anywhere in the file as long as the
first character in the line is an asterisk.

2. Year and time designation line: This line should be the first data line
(noncomment line) in the file and must appear only once. The line consists
of three fields of 4 digits each (leading white space is ignored). For
example, to specify the year as 1982, prime time at 9:00 A.M., and nonprime
time at 4:30 P.M., the following entry would be appropriate:

1982 0900 1630

As a special condition for the time field, the time 2400 is automatically
converted to 0000.

3. Company holidays lines: These entries follow the year designation line and
have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1 through 366, indicating
the day for a given holiday (leading white space is ignored). The other
three fields are commentary and are not currently used by other programs.

The runacct (8) program generates five basic reports upon each invocation.
These reports cover the areas of connect accounting, usage by user on a daily
basis, command usage reported by daily totals, command usage reported by
monthly totals, and last login time by user. The diskusg command can be
configured at your site; see Section 2.1.10.9, page 55, for a description of how to
customize a report for your site.

SG-2302 10.0.0.2

Accounting [2]

2.2.7.1 Daily Report

2.2.7.2 Daily Usage Report

SG-2302 10.0.0.2

The following sections describe the reports and interpretation of their tabulated
data.

In the first part of the report, the from/to banner alerts you to the time period
being reported. The specified times are the time the last accounting report was
generated until the time the current accounting report was generated. This
banner is followed by a log of system reboots, shutdowns, power failure
recoveries, and any other record dumped into the /etc/wtmp file by the
acctwtmp (8) program.

The second part of the report is a breakdown of line usage. The TOTAL
DURATIONvalue is the difference between the time stamps of the first and the
last record found in the wtmp file. The columns are as follows:

Column Description

LINE The terminal line or access port

MINUTES The total number of minutes the line was in use during the
accounting period

PERCENT The total number of MINUTESthe line was in use, divided into
the TOTAL DURATION

#SESS The number of times this port was accessed for a login (1) session

The daily usage report gives a breakdown of system resource usage by user. Its
data consists of the following:

Heading Description
ACCOUNTNAME If the UNICOS user-information database is

enabled, this field contains the account name;
otherwise, it contains default

uiD User ID.

LOGIN NAME Login name of the user; there can be more than
one login name for a single user ID (although this
is not recommended); this identifies the user.

CPU SECS The amount of time in seconds the user’s process
used the CPU.

91

UNICOS Resource Administration

92

KCORE-MINS

CONNECTMINS)

DISK BLOCKS

OF PROCS

OF JOBS

DISK SAMPLES

FEE

SBU

A cumulative measure of the amount of memory
a process used while running. The amount
shown reflects kiloword segments multiplied by
minutes used.

The real time used. Real time is the amount of
time that a user was logged in to the system. If
this time is rather high, and column # OF PROCS
is low, this person probably logs in first thing in
the morning and rarely uses the terminal the rest
of the day. This type of user can be a system
resource problem. If this user is logged in and is
not using the system at all, he or she may be
using a line to the system that someone else
needs.

Output from the disk accounting programs after
that output has been merged into the total
accounting record (tacct.h). Disk accounting is
accomplished by the acctdusg (8) program.

The number of processes invoked by the user.
Large numbers indicate an uncontrolled user shell
procedure.

Number of times the user logged in to the system
(interactive or batch).

Number of times disk accounting was run to
obtain the average number of DISK BLOCKS
listed earlier.

The total accumulation of billing units charged
against the user by the chargefee (8) shell
procedure. The chargefee procedure is used to
levy charges against a user for special services
(such as file restores) performed. This field is
often unused.

A site-specific system billing unit (SBU); default is
0. You can modify the SBU calculation for your

SG-2302 10.0.0.2

Accounting [2]

site by editing the source and recompiling the
accounting software (see Section 2.1.10.1, page 40).

2.2.7.3 Daily Command and Monthly Total Command Summaries

SG-2302 10.0.0.2

The daily command and monthly total command summaries are virtually the
same, except that the daily command summary reports only on the current
accounting period, while the monthly total command summary reports on the
time from the start of the fiscal period to the current date. That is, the monthly
report reflects the data accumulated since the last invocation of the monacct (8)
procedure.

The data included in these reports tells you which commands are used most
often. Based on this information, you can identify areas of the system using a
majority of system resources.

These two reports are sorted by TOTAL CPU-MIN. The following categories are
used:

Heading Description
COMMANDNAME The name of the command. All shell procedures

are under the name sh, because only object
modules are reported by the process accounting
system. The acctcom (1) program is a good tool
to use for identifying a user who executed a
suspiciously named command and also for
determining whether super-user privileges were

used.

NUMBERCMDS The total number of invocations of this particular
command.

TOTAL KCOREMIN The total cumulative measurement of the number

of kiloword segments of memory used by a
process per run-time minute.

TOTAL CPU-MIN The total processing time this program has
accumulated.

TOTAL REAL-MIN The total real-time (wall-clock) minutes this
program has accumulated.

MEANSIZE-K The mean of the TOTAL KCOREMINover the
number of invocations reflected by NUMBER
CMDS

93

UNICOS Resource Administration

2.2.7.4 Last Login Report

2.2.8 Accounting Files

94

MEAN CPU-MIN The mean derived between the NUMBERCMDS
and TOTAL CPU-MIN.
HOGFACTOR A relative measurement of the ratio of system

availability to system usage. It is computed by
the following formula:

(total CPU time) [/ (elapsed time)

This gives a relative measure of the total available
CPU time consumed by the process during its

execution.

K-CHARS TRNSFD The total number of characters moved by the
read (2) and write (2) system calls.

/O BUFS RD/WR The total number of physical reads and writes

that a process performed.

The last login report provides the date on which a particular login was last
used. You can use this report as a source of likely candidates to be moved to
the archives, or, of unused logins and login directories to be deleted.

This section lists files relevant to the accounting system in the

/usr/fadm/acct/day , lusr/adm/acct/nite , lusr/adm/acct/sum , and

{usr/fadm/acct/fiscal directories.

Files in the /usr/adm/acct/day directory are as follows:

File Description

dtmp Output from the acctdusg (8) program.

fee Output from the chargefee (8) program (ASCII
tacct records).

pacct Active process-accounting file.

pacct* Process-accounting files switched using

turnacct (8).

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Spacct*. MMDD

Files in the /usr/adm/acct/nite

File

active

cms

ctacct. MMDD

ctmp

daycms

daytacct

disktacct

fd2log

lastdate

lineuse
lock lockl

log
log MMDD

reboots

statefile

tmpwtmp

wtmperror

Process-accounting files for MMDD during
execution of runacct (8).

directory are as follows:

Description

Used by runacct to record progress and print
warning and error messages. The active MMDD
file is the same as active after runacct detects
an error.

ASCII total command summary used by
prdaily (8).
Connect accounting records in tacct.h format.

Output of acctconl program (see acctcon (8));
connect session records in ctmp.h format.

ASCII daily command summary used by
prdaily

Total accounting records for one day in tacct.h
format.

Disk accounting records in tacct.h format;
created by dodisk (8) procedure.

Diagnostic output during execution of runacct

Last day runacct executed in date +%m% d
format.

The tty line usage report used by prdaily
Used to control serial use of runacct
Diagnostic output from acctconl

Same as log after runacct detects an error.

The beginning and ending dates from wtmp, and
a listing of reboots.

A record of the current state during execution of
runacct

The wtmp file corrected by wtmpfix (see
fwtmp (8)).

Place for wtmpfix error messages.

95

UNICOS Resource Administration

wtmperror MMDD

wtmp. MMDD

Files in the /usr/adm/acct/sum

File

cms

cmsprev

daycms

loginlog
pacct. MMDD

rort MMDD

tacct

tacctprev

tacct MMDD
wtmp. MMDD

Files in the /usr/adm/acct/fiscal

File

cms

fiscrpt

96

Same as wtmperror after runacct detects an
error.

Previous day’s wtmp file.

directory are as follows:

Description

Total command summary file for current fiscal
year in internal summary format.

Command summary file without latest update.

Command summary file for yesterday in internal
summary format.

Login record file created by lastlogin (8).

Concatenated version of all pacct files for
MMDD; removed after reboot by remove (8)
procedure.

Saved output of prdaily (8) program.

Cumulative total accounting file for current fiscal
period.

Same as tacct without latest update.

Total accounting file for MMDD.

Saved copy of wtmp file for MMDD, removed
after reboot by remove (8) procedure.

directory are as follows:

Description

Total command summary file for the fiscal period
in internal summary format.

Report similar to prdaily (8) for fiscal period.

SG-2302 10.0.0.2

Accounting [2]

tacct* Total accounting file for fiscal period.

2.3 Front-end Formatting

Front-end formatting facilities let you customize accounting reports and
generate output files that can be processed on a front-end computer system.
The front-end formatting process consists of two main parts:

Consolidating the accounting data you have collected to select useful
information and to reduce it to a manageable amount of data for the
front-end system.

Formatting the consolidated data into meaningful reports and files for
further processing on the front-end system.

Accounting data is consolidated using identifier keys. These keys may include
user ID (uid), account ID (acid), job ID (jid), group ID (gid), and job class
(class). The front-end formatters then can send the consolidated data output
to either an ASCII report or to a binary file.

Note: Disk usage information is not available on a job basis in the UNICOS
operating system; thus, it cannot be consolidated by job ID or job class.
However, output from the dodisk (8) utility can be used for billing disk
usage on a user ID or account ID basis.

2.3.1 Why Use Front-end Formatting

SG-2302 10.0.0.2

Sites may want to use a front-end formatter to customize Cray Research
accounting data in the following situations:

All billing is done on a single system. When accounting data from several
systems are processed on a single system, the units of measure may need to
be standardized. For example, all CPU time should be expressed in
milliseconds.

The front-end system is an IBM machine that requires character fields to be
in EBCDIC format.

Only a few fields are important to the billing system; these usually include
CPU time, memory use, disk use, and swap use.

Cray Research accounting products let you choose from two types of front-end
formatting:

97

UNICOS Resource Administration

¢ Cray Research system accounting (CSA) front-end formatters are templates

of C programs that show you how to consolidate session file records and
delivers output in VM, MVS, or ASCII format.

* The generic front-end formatter, csagfef (8), accepts as input a generic
consolidated data file or multiple pacct (per-process accounting data) files.
It delivers output as either an ASCII report or a Cray Research binary file.
csagfef cannot convert output to VM or MVS format.

You should consider several factors when deciding which front-end formatter to
use:

e The CSA front-end formatters require a source license, while the generic
formatter does not.

* The generic front-end formatter delivers either ACSII or Cray binary data
output, where binary numbers are always written as a 64-bit word. CSA
formatters can be modified to write 32-bit numeric values or EBCDIC output.

* Both types of formatters process session record files, which are created by
csabuild (8). However, the generic formatter is also capable of processing
multiple pacct files.

2.3.2 Preparing to Use a Formatter

Before you attempt either to modify a CSA formatter or to execute the generic
formatter, you must make several decisions based on what you want the final
report or data file to contain. The issues you must decide upon include the
following:

e Identifying the data that needs to be reported.

A multitude of data can be extracted from a session or a pacct file. For
efficiency and the conservation of disk space, only the necessary data should
be consolidated by the CSA formatters or by csagcon (8).

* Selecting the consolidation keys.

You can use various keys to consolidate the data. Both types of formatters
support data consolidation by account ID, group ID, job ID, and user ID or
some combination thereof. csagcon also supports data consolidation by job
class, which is either interactive or batch through the Network Queuing
System (NQS).

® Determining which sessions should be consolidated when the input is a
session file.

98 SG-2302 10.0.0.2

Accounting [2]

You can consolidate data for only terminated sessions, only active sessions,
or both terminated and active sessions.

¢ Selecting the format of the ASCII report or binary data file.

Among the things to be decided are the units of the various fields, the
precision, the order of the data, the character set, the length of character
strings, and the size and format of binary integer and floating point numbers.

After making these decisions, you should modify or set up the front-end
formatter to generate reports or data files based on these specifications.
Normally, front-end formatters are executed by csarun in either the FEF or the
USEREXIT state. See Section 2.1.10.3, page 51, for more information on these
user exits.

2.3.3 CSA Front-end Formatting

All CSA front-end formatters contain code both to consolidate session record
data and to send consolidated data to a report or file. You must modify one of
these templates in order to consolidate and send the data output specifically
needed by your site.

Note: csafef (8), csafef2 (8), and csaibm (8) are templates; if you execute
them as released, they produce a message stating that they are templates. If
your site wants to use one of these programs, you must have a source license
and you must make modifications to the code. Any local changes made to
these templates are not supported by Cray Research.

2.3.4 Generic Front-end Formatting

SG-2302 10.0.0.2

The generic accounting data consolidator csagcon (8) and the generic front-end
formatter csagfef (8) are more flexible versions of the csacon (8) and
csacrep (8) utilities. They let you do the following tasks:

* Consolidate a session file
¢ Consolidate one or more pacct accounting files
* Generate an ASCII report or a binary file based on a file created by csagcon

The csagcon and csagfef utilities let you specify the fields to be
consolidated and the format of the report. In contrast, csacon and csacrep
have hardcoded data specifications and formats that cannot be changed without
source code and local modifications.

99

UNICOS Resource Administration

2.3.4.1 Data Consolidation

Administrators who execute csagcon may need privilege to access the the
/dev/kmem file. If this privilege is needed and you do not possess it, csagcon
will terminate with an error.

The csagcon and csagfef utilities can be executed from the csarun user exit
scripts. Both commands can be invoked from either the FEF or USEREXIT state
of csarun . See Section 2.1.10.3, page 51, for more information on user exits.

To invoke csagcon and csagfef from the FEF state, put these or similar
commands in the file /usr/lib/acct/csa.fef

csagcon -S ${SESSION_FILE } -s username -0 ${SESSION_DIR}/gacct
csagfef -f ${SESSION_DIR}Ygacct source_file > ${CRPT_DIR}/site.rpt

Alternately, the same two commands can be placed into the
lusr/lib/acct/csa.user file; then, csagcon and csagfef will execute
from the csarun USEREXIT state.

The csagcon command consolidates data either from a session file, which is
created by csabuild (8), or from pacct files. You can choose the data that is to
be consolidated by using the csagcon -R option. If a data list is not specified,
a set of default variables is selected. In addition, some variables are always
selected.

The variable names listed throughout this section are used by both csagcon
and csagfef

2.3.4.2 Required Data Variables

100

The following table lists the required variables that are always included in the
consolidated data file. You must not include any of these variables in a
csagcon request file (-R option). If you do, csagcon will terminate with an
erTor.

SG-2302 10.0.0.2

Accounting [2]

Table 4. Required data variables

Variable Type or Value Description

acid * Integer Account ID.

con_key Integer csagcon consolidation option(s) you specify. If you specify
multiple options, the values are added together.
Value csagcon consolidation option
0001 -a (consolidate by the account ID (acid)

variable)
0002 -C (consolidate by the job class (jclass)
variable; job class is either interactive or NQS)

0004 -g (consolidate by the group ID (gid) variable)
0010 -j (consolidate by the job ID (jid) variable)
0020 -u (consolidate by the user ID (uid) variable)
0040 -N (consolidate NQS requests strictly by job ID)
0100 -A (consolidate active and terminated sessions)
0200 -C (consolidate only active sessions)

creatime Integer Creation time of the file in seconds since 00:00:00 GMT,
1 January 1970.

file _end Integer If the input was a pacct file, this is the latest process end time
found in the file. If the input was a session file, this is the end
time of the last uptime period. Measured in seconds.

file_start Integer If the input was a pacct file, this is the earliest process end
time found in the file. If the input was a session file, this is the
start time of the first uptime period. Measured in seconds.

gid * Integer Group ID.

ios Integer I/0 subsystem type.
Value I/0 subsystem type
1 Model E

jclass * Integer Job class.
Value Job class
1 Interactive job

SG-2302 10.0.0.2

101

UNICOS Resource Administration

Variable Type or Value Description
2 NQS job

jd - * Integer Job ID.

ncpus Integer Number of CPUs started.

njobs Integer Number of jobs. Calculated as the number of pacct end-of-job
records found.

nproc Integer Number of processes.

nsess Integer Number of sessions. This is meaningful only when the input
was a session file.

num_datarec Integer Number of data records in the file.

sort _opt Integer csagcon sort option used.
Value csagcon sort option
0 None (unsorted)
1 -s acid (sorted by account ID then user ID)
2 -s acname (sorted by account name then user

name)

-s jclass (sorted by job class then job ID)

4 -s uid (sorted by user ID then account ID)
5 -s uname (sorted by user name then account
name)
tp_devgrp String An array that is indexed by 0 through (tp_ndevgrp -1) and

contains the names of the tape device groups. The names are
prefixed with tp_ . If there are fewer than tp_ndevgrp tape
device groups, the unused entries have values of tp_null0
tp_nulll , and so on. This field is reported when the input

was a session file and tape information was requested.

tp_ndevgrp Integer Number of tape device groups. This field is reported when the
input was a session file and tape information was requested.

uid * Integer User 1ID.

us_nttype Integer Number of UNICOS station call processor (USCP) transfer

types. This field is reported when the input was a session file
and USCP information was requested.

102 SG-2302 10.0.0.2

Accounting [2]

Variable Type or Value Description

us_tname String An array that is indexed by 0 through (us_nttype -1) and
contains the names of the USCP transfer types. The names are
prefixed with us_. This field is reported when the input was a
session file and USCP information was requested.

BYTE_CLICK Integer Number of bytes per click.

BYTE_WORD Integer Number of bytes per word.

CLK_TCK Integer Number of clocks per second.

FPTYPE String Floating point type: Cray or IEEE.

HARDWARE String Machine identification. Includes serial number and mainframe
type.

MACHINE String Machine name.

MAXBDEVNO Integer Maximum number of block devices.

MAXCDEVNO Integer Maximum number of character devices.

MAXCPUS Integer Maximum number of CPUs for this mainframe type and
subtype.

MEMORY String Memory configuration.

MEMORY_NWORD Integer Total system and user memory in words.

NODENAME String Network node name.

OS_Hz Integer Clock rate (the frequency per second with which the clock
routine is called); usually 60 or 100.

RELEASE String Release of the operating system.

SDS_WGHT Integer Number of clicks per SDS allocation unit.

SOFTWARE String Software release information.

SYSNAME String Operating system name.

VERSION String Release version of the operating system.

WORD_CLICK Integer Number of words per click.

SG-2302 10.0.0.2

* If this variable is not selected as a consolidation key, its value is -2. For

example, the following command consolidates session record file by job ID:

csagcon -jN -S Session-Record.0928

-0 gacct.0928

103

UNICOS Resource Administration

In the file gacct.0928 the values for the acid , gid , jclass , and uid
variables will be -2 for records. This is because these variables were not selected
as consolidation keys on the command line.

2.3.4.3 Default and Optional Data Variables

104

The following sections describe the data that you can specify in a csagcon
request file (-R option). The request file contains a list of variables that will be
consolidated by csagcon . By default, csagcon consolidates the same data as
csacon (8).

The csagcon utility gets the default and optional data variables from the file
/usr/lib/acct/table_init . Specifying a different file using the -T option
is not recommended because csagcon expects the data variable names given in
this file. Use caution in specifying the -T option; normally it is used only for
debugging source code.

The column headings are defined as follows:

Heading Meaning

Variable The name that csagcon and csagfef use for the data item. This
name, except where noted, should appear in the request file when
you use the csagcon -R option.

Type The data type of the variable. Valid types are integer , float ,
and string

Unit The unit, if any, of the data item. The item can be converted to
another unit by csagfef (see Section 2.3.4.5.7, page 126).

Default Specifies whether a data item is consolidated when the csagcon
-R option is omitted.

Yes The data item is consolidated by default.
No The data item is not consolidated by default.

Job Specifies whether the csagcon -j option must be used when
the data item is consolidated.

Yes The csagcon -j option must be used. For this
data item to be consolidated when -j is specified,
either the -R option is not used and this is a default
item, or the -R option is used and this item is listed
in the request file.

SG-2302 10.0.0.2

Accounting [2]

No The csagcon -] option does not have to be used.

2.3.4.3.1 Pacct Record Variables

This section describes the variables that contain pacct process information.
These variables are available when the csagcon input is either a session file or
one or more pacct files.

Note: The values in Table 5 are only available when using the csagcon -
option.

Table 5. pacct base record variables — per-process values

Variable Type Unit Default Job Description

pp_p_cmd String - No No Command name (first 8
characters).

pp_p_flag Integer - No No Record flags (See ac_flag in
/user/include/sys/acct.h).

pp_p_nice Integer - No No Nice value.

pp_p_pid Integer - No No Process ID.

pp_p_ppid Integer - No No Parent process ID.

pp_p_stat Integer - No No Exit status.

ps_p _tty String - No No Controlling tty device

(maximum of 8 characters).

Table 6. pacct base record variables - total values

Variable Type Unit Default Job Description

pb_t btime Integer Seconds No Yes Process start time.

pb_t_ctime Integer Clocks No No Process connect
time.

pb_t etime Integer Clocks No No Elapsed time.

SG-2302 10.0.0.2 105

UNICOS Resource Administration

Variable Type Unit Default Job Description
pb_t io Integer Bytes No No Number of
characters
transferred.
pb_t_iobtime Integer Clocks No No I/0 wait time.
pb_t iosw Integer No No I/0 swap count.
pb_t iowmem Integer Click- No No I/0 wait time
ticks memory integral
while locked in
memory.
pb_t_iowtime Integer Clocks No No I/0 wait while
locked in memory.
pb_t kcore Float Kiloword-No No Kcore-minutes.
minute
pb_t lio Integer No No Number of logical
I/0 requests.
pb_t mem Integer Click- No No Memory integral.
ticks
pb_t phimem_max Integer Words No No Maximum process
highwater memory
mark.
pb_t phimem_min Integer Words No No Minimum process
highwater memory
mark.
pb_t_rw Integer No No Number of physical
I/0 requests.
pb_t sctime Integer Clocks No No System call time.
pb_t stime Integer Clocks No No System CPU time.
pb_t utime Integer Clocks No No User CPU time.

106 SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Table 7. pacct base record variables - prime time values

Variable Type Unit Default Job Description
pb_p_ctime Float Clocks No No Process connect time.
pb_p_etime Float Clocks No No Elapsed time.
pb_p_io Float Bytes Yes No Number of characters
transferred.
pb_p_iobtime Float Clocks Yes No I/0O wait time.
pb_p_iosw Float No No I/0 swap count.
pb_p_iowmem Float Click- Yes No I/0 wait time memory
ticks integral while locked
in memory.
pb_p_iowtime Float Clocks Yes No I/0O wait while locked
in memory.
pb_p_kcore Float Kiloword-Yes No Kcore-minutes.
minute
pb_p_lio Float Yes No Number of logical I/O
requests.
pb_p_mem Float Click- No No Memory integral.
ticks
pb_p_rw Float Yes No Number of physical
I/0 requests.
pb_p_sctime Float Clocks Yes No System call time.
pb_p_stime Float Clocks Yes No System CPU time.
pb_p_utime Float Clocks Yes No User CPU time.

Table 8. pacct base record variables - nonprime time values

Variable Type Unit Default Job Description
pb_n_ctime Foat Clocks No No Process connect time.
pb_n_etime Float Clocks No No Elapsed time.

107

UNICOS Resource Administration

108

Variable Type Unit Default Job Description
pb_n_io Float Bytes Yes No Number of characters
transferred.
pb_n_iobtime Float Clocks Yes No I/0 wait time.
pb_n_iosw Float No No I/0 swap count.
pb_n_iowmem Float Click- Yes No I/0 wait time memory
ticks integral while locked
in memory.
pb_n_iowtime Float Clocks Yes No I/0 wait while locked
in memory.
pb_n_kcore Float KilowordYes No Kcore-minutes.
minute
pb_n_lio Float Yes No Number of logical I/O
requests.
pb_n_mem Float Click- No No Memory integral.
ticks
pb_n_rw Float Yes No Number of physical
I/0 requests.
pb_n_sctime Float Clocks Yes No System call time.
pb_n_stime Float Clocks Yes No System CPU time.
pb_n_utime Float Clocks Yes No User CPU time.

Table 9. pacct secondary data storage (SDS) record variables - total values

Variable Type Unit Default Job Description

ps_t memsw Integer Click- No No SDS execution
ticks memory integral.

ps_t sdioch Integer Bytes No No Number of bytes

transferred to or from
SDS.

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Variable Type Unit Default Job Description

ps_t_sdlio Integer No No Number of logical SDS
170 requests.

ps_t sdsmem Integer Click- No No SDS residency

ticks

memory integral.

Table 10. pacct SDS record variables - prime time values
Variable Type Unit Default Job Description
ps_p_memsw Float Click- No No SDS execution
ticks memory integral.
ps_p_sdioch Float Bytes Yes No Number of bytes
transferred to or from
SDS.
ps_p_sdlio Float Yes No Number of logical
SDS 1/0 requests.
ps_p_sdsmem Float Click- No No SDS residency

ticks

memory integral.

Table 11. pacct SDS record variables - nonprime time values

Variable Type Unit Default Job Description
ps_n_memsw Float Click- No No SDS execution
ticks memory integral.
ps_n_sdioch Float Bytes Yes No Number of bytes
transferred to or from
SDS.
ps_n_sdlio Float Yes No Number of logical SDS
I/0 requests.
ps_n_sdsmem Float Click- No No SDS residency

ticks

memory integral.

109

UNICOS Resource Administration

Note: All of the variables in Table 12 are available when -E is specified.
Job-specific variables (the Job value is Yes) are also accessible when the

csagcon -j option is used.

Table 12. pacct end-of-job record variables

Variable Type Unit Default Job Description

pe_t fsblkused Integer No Yes Number of file system
blocks used.

pe_t _jetime Integer Seconds No Yes Time the job ended.

pe_t_jhimem Integer Clicks No Yes Job highwater
memory mark.

pe_t_jnice Integer - No No Nice value at job
termination.

pe_t sdshiwat Integer SDS No Yes Job SDS highwater

allocation mark.

units

In Table 13, the pd_t_b xxxx variables are arrays that are indexed by 0 through
(MAXBDEVNOL1). The pd_t_c xxxx variables are arrays that are indexed by 0

through (MAXCDEVNG 1).

Table 13. pacct device I/O record variables - total values

Variable Type Unit Default Job Description

pd_t_bioch Integer Bytes No No Number of bytes
transferred to or from
the block device.

pd_t blio Integer No No Number of logical I/O

110

requests for the block
device.

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Variable Type Unit Default Job Description

pd_t btype Integer No No Major device number
for block devices. A
device number of -1
indicates that there is
no accounting
information for the
array index.

pd_t_cioch Integer Bytes No No Number of bytes
transferred to or from
the character device.

pd_t clio Integer No No Number of logical I/O
requests for the
character device.

pd_t_ctype Integer No No Major device number
for character devices.
A device number of -1
indicates that there is
no accounting
information for this
array index.

In Table 14, the pd_p_b xxxx variables are arrays that are indexed by 0 through
(MAXBDEVNO1). The pd_p_c xxxx variables are arrays that are indexed by 0
through (MAXCDEVNG 1).

Table 14. pacct device I/O record variables - prime time values

Variable Type Unit Default Job Description

pd_p_bioch Float Bytes Yes No Number of bytes
transferred to or from
the block device.

pd_p_blio Float Yes No Number of logical I/O
requests for the block
device.

111

UNICOS Resource Administration

Variable

Type Unit

Default

Job

Description

pd_p_btype

pd_p_cioch

pd_p_clio

pd_p_ctype

Integer

Float Bytes

Float

Integer

Yes

Yes

Yes

Yes

no

Major device number
for block devices. A
device number of -1
indicates that there is
no accounting
information for the
array index.

Number of bytes
transferred to or from
the character device.

Number of logical I/O
requests for the
character device.

Major device number
for character devices.
A device number of -1
indicates that there is
no accounting
information for this
array index.

In Table 15, the pd_n_b xxxx variables are arrays that are indexed by 0 through
(MAXBDEVNO1). The pd_n_c xxxx variables are arrays that are indexed by 0
through (MAXCDEVNG 1).

Table 15. pacct device I/0O record variables - non-prime time values

Variable Type Unit Default Job Description

pd_n_bioch Float Bytes Yes No Number of bytes
transferred to or from
the block device.

pd_n_blio Float Yes No Number of logical I/O

112

requests for the block
device.

SG-2302 10.0.0.2

Accounting [2]

Variable Type Unit Default Job Description

pd_n_cioch Float Bytes Yes No Number of bytes
transferred to or from
the character device.

pd_n_clio Float Yes No Number of logical I/O

requests for the
character device.

Table 16. pacct massively parallel processing (MPP) record variables - total

values

Variable Type Unit Default Job Description

pmt pe Integer No No Number of MPP
processing elements.

pm_t_pe_max Integer No No Largest number of
MPP processing
elements used by a
single process.

pm_t_pe_time Integer Clocks No No Sum of (number of
PEs used multiplied
by time used).

pm_t_time Integer Clocks No No MPP time used.

pm_t_time_max Integer Clocks No No Greatest amount of

MPP time used by a
single process.

SG-2302 10.0.0.2

113

UNICOS Resource Administration

Table 17. pacct MPP record variables - prime time values

Variable Type Unit Default Job Description

pm_p_pe Float Yes No Number of MPP
processing elements.

pm_p_pe_time Float Clocks Yes No Sum of (number of

PEs used multiplied
by time used).

pm_p_time Float Clocks Yes No MPP time used.

Table 18. pacct MPP record variables - nonprime time values

Variable Type Unit Default Job Description
pm_n_pe Float Yes No Number of MPP
processing elements.
pm_n_pe_time Float Clocks Yes No Sum of (number of
PEs multiplied by
time used).
pm_n_time Float Clocks Yes No MPP time used.

Note: Each item in the following multitasking tables is an array that is
indexed by 0 through (MAXCPUS- 1).

Table 19. pacct multitasking record variables - total values

Variable Type Unit Default Job Description

pu_t_mutime Integer Clocks No No Time connected to [i+1]
CPUs.

pu_t _smwtime Integer Clocks No No Semaphore wait time.

114 SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Table 20. pacct multitasking record variables - prime time values

Variable Type Unit Default Job Description

pu_p_mutime Float Clocks Yes No Time connected to [i+1]
CPUs.

pu_p_smwtime Float Clocks No No Semaphore wait time.

Table 21. pacct multitasking record variables - nonprime time values

Variable Type Unit Default Job Description

pu_n_mutime Float Clocks Yes No Time connected to
[i+1] CPUs.

pu_n_smwtime Float Clocks No No Semaphore wait time.

Table 22. pacct performance record variables - total values

Variable Type Unit Default Job Description

pp_t phrwblks Integer No No Number of raw
physical blocks
moved.

pp_t_rwblks Integer No No Number of buffered
physical blocks
moved.

pp_t_rtime Integer Clocks No No Process start time past
pb_t btime

pp_t_srunwtime Integer SecondsNo No SRUN wait time.

pp_t_swapclocks Integer Clocks No No Swapped time.

pp_t_tiowtime Integer Clocks No No Terminal I/O wait

time.

115

UNICOS Resource Administration

116

Table 23. pacct performance record variables - prime time values

Variable Type Unit Default Job Description
pp_p_phrwblks Float No No Number of raw
physical blocks
moved.
pp_p_rwblks Float No No Number of buffered
physical blocks
moved.
pp_p_rtime Float Clocks No No Process start time past
pb_t btime
pp_p_srunwtime Float Seconds No No SRUN wait time.
pp_p_swapclocks Float Clocks No No Swapped time.
pp_p_tiowtime Float Clocks No No Terminal I/O wait

time.

Table 24. pacct

performance record variables - nonprime time values

Variable Type Unit Default Job Description
pp_n_phrwblks Float No No Number of raw
physical blocks
moved.
pp_n_rwblks Float No No Number of buffered
physical blocks
moved.
pp_n_rtime Float Clocks No No Process start time past
pb_t btime
pp_n_srunwtime Float Seconds No No SRUN wait time.
pp_n_swapclocks Float Clocks No No Swapped time.
pp_n_tiowtime Float Clocks No No Terminal I/O wait

time.

SG-2302 10.0.0.2

Accounting [2]

2.3.4.3.2 Daemon Accounting Variables

The accounting variables that contain daemon usage information are available
only when the csagcon input file is a session file.

In Table 25 each item is an array that is indexed by the tape device group
names prefixed by tp_ (see the tp_devgrp array in Table 14, page 111) or by 0
through (tp_ndevgrp - 1).

Table 25. Tape accounting variables

Variable Type Unit Default Job Description

tp _nmount Integer Yes No Number of volumes
mounted.

tp_nread Integer Bytes Yes No Number of bytes read.

tp _nwrite Integer Bytes Yes No Number of bytes
written.

tp_rtime Integer Seconds Yes No Reservation time.

tp_stime Integer Clocks Yes No System CPU time.

tp_utime Integer Clocks Yes No User CPU time.

In Table 26, the values for ng_init , ng_disp , and ng_term are found in
Jusr/include/acct/dacct.h

Table 26. NQS accounting variables

Variable Type Unit Default Job Description

ng_btime * Integer Seconds No Yes Start time of the
request.

ng_disp * Integer No Yes Dispose subtype
(NQ_DISP).

ng_elapse ** Integer Seconds No Yes Wall-clock time used
while the request was
running.

no_init * Integer No Yes Initiation subtype
(NQ_INIT).

SG-2302 10.0.0.2 117

UNICOS Resource Administration

118

Variable Type Unit Default Job Description

ng_machname String No Yes Originating machine
name (16 characters).

ng_mid * Integer No Yes Originating machine
ID.

ng_nreq Integer Yes No Number of NQS
requests.

ng_gquename String No Yes Name of the last

queue in which the
request was located
(16 characters).

ng_qwtime Integer Seconds No No Queue wait time.

ng_regname String No Yes Request name (16
characters).

ng_seqno * Integer No Yes Sequence number.

ng_stime Integer Clocks Yes No Shepherd system CPU
time.

ng_term * Integer No Yes Termination subtype
(NQ_TERM

ng_utime Integer Clocks Yes No Shepherd user CPU
time.

ng_wallclock Integer Seconds No Yes Total wall-clock time

o for the request to
complete.

* If the value for this field is unknown, or if this is an interactive session, this
field is set automatically to -9.

** ng_elapse is the amount of wall-clock time which elapsed while the request
was running on a CPU. This does not include queue wait time, system down
time, or the period when the request was suspended, checkpointed, or held.

*** ng_wallclock is the total amount of wall-clock time it took the request to
complete. This includes queue wait time and system down time. This value is

reported only once for a request. It is possible that the amount of CPU time the
request uses is greater than the wall-clock time, because the request could have
created additional processes, been multitasked, or done work in the background.

SG-2302 10.0.0.2

Accounting [2]

Table 27. Connect time accounting variables

Variable Type Unit Default Job Description

ct_con_n Integer Seconds Yes No Nonprime time
connect time.

ct _con_p Integer Seconds Yes No Prime time connect
time.

ct_nlogin Integer Yes No Number of interactive
logins.

2.3.4.3.3 System Billing Units (SBU) Variables

The following table describes the variables that contain information about the
system billing units (SBUs). If the input to csagcon is a session file, all the
SBUs are multiplied by the appropriate NQS weighting factor. The NQS
weighting factors are defined in the accounting configuration file
/etc/config/acct_config

Table 28. System billing units (SBU) variables

Variable Type Unit Default Job Description

sb_pacct Float Billing No No pacct SBUs.
units

sb_tape Float Billing No No Tape SBUs.
units

sb_uscp Float Billing No No USCP SBUs.
units

sb_ctime Float Billing No No Connect time SBUs.
units

sb_total Float Billing Yes No Total SBU value.
units

SG-2302 10.0.0.2 119

UNICOS Resource Administration

2.3.4.4 Data File Format

2.3.4.4.1 Header Records

120

The csagcon consolidated data file consists of header and data records. The
header records describe both the machine on which the data was collected and
the data records.

The csagfef -h option displays some of the information found in the header
records.

The file is organized as follows:

Record Type Description
Header word File identifier that is defined in

/usr/include/sys/accthdr.h

gc-defs Definitions record.

gc-imeta Meta record for integer data.

gc-fmeta Meta record for floating point data.

gc-cmeta Meta record for character string data.

gc-data Indicator for the start of data record 1.

gc-int Data record 1 containing integer data.

gc-float Data record 1 containing floating point data.
gc-char Data record 1 containing character string data.
gc-data Indicator for the start of data record 2.

gc-int Data record 2 containing integer data.

gc-float Data record 2 containing floating point data.
gc-char Data record 2 containing character string data.

(Additional gc-data , gc-int , gc-float , and gc-char records for each data
record.)

Header records appear only once, at the beginning of the consolidated data file.
There are three types of header records:

SG-2302 10.0.0.2

Accounting [2]

Header Record Type

Header word

Definitions record

Meta record

2.3.4.4.2 Data Records

Description

Identifies the file according to
the format specified in the file
/usr/include/sys/accthdr.h

This word allows other
accounting programs to check
for a valid input file type
before attempting to process
the file.

Contains constants and
character strings that describe
the machine on which the
data was consolidated and
array element names. These
variables can be accessed by
csagfef (8) and are listed in
Section 2.3.4.2, page 100.

Describes the data in the data
records. A meta record lists
the name, type, and size of
each item or array in the data
records and the order of the
data found in the data
records. There is a separate
meta record for integer data,
floating point data, and
character string data.

Data records follow the header records in a file. The gc-data record denotes
the start of the data for a unique consolidation identifier.

2.3.4.5 csagfef Source Scripts

The csagfef (8) command is a translator that formats csagcon (8) output into
an ASCII report or a binary file according to the directives found in a source

script.

SG-2302 10.0.0.2

121

UNICOS Resource Administration

2.3.4.5.1 BEGIN Section

2.3.4.5.2 ENDSection

The csagfef scripts are based on four sections including the body, any of
which may be empty or missing. Scripts can contain any of the following
sections in any order:

BEGIN { statements }

END { statements }

function name (arglist) { statements }
statements

The csagfef command can process multiple source scripts, and one script can
contain multiple BEGIN, END or body sections. In these cases, csagfef

executes the statements for all like sections in the order that they appear in the
scripts or script.

For example, all statements in the various BEGIN sections will be combined into
one BEGIN section. The statements will be in the same order as they appear in
the scripts or script.

The statements associated with BEGIN comprise the preamble. The preamble is
executed once after the definition and meta-data records are read. The preamble
can be used to print report headings and to initialize variables used in the body

The statements associated with ENDcomprise the postamble. The postamble is
executed once after all the records in the data file have been read. You can
instruct csagfef in this section to process and print summary data.

2.3.4.5.3 function Section

122

The statements in the function section of csagfef define functions as
specified by you. Functions always begin with the word function followed by
the function name and the argument list. The arglist ~ consists of names
separated by commas. These argument names are the formal parameters of the
function and the variables that are local to the function. Function calls may be
nested and recursive. The return statement can be used to return a value.

SG-2302 10.0.0.2

Accounting [2]

2.3.4.5.4 Body

Statements that are not in any of the above sections form the body of the
csagfef source script. Typically, these statements print out information from
the data records. This section is executed once for each data record encountered.

2.3.4.5.5 Example Source Scripts

2.3.4.5.6 csagfef

SG-2302 10.0.0.2

Examples of csagfef source scripts can be found in the
lusr/src/cmd/acct/src/csa/csagfef/examples directory.

Language Description

The csagfef language is the action language of nawk without the string
processing operations. If you are familiar with nawk, you will have little
difficulty writing and understanding csagfef scripts. The pattern part of
nawk is unnecessary in csagfef , because the data format is defined in the data
file. You merely select the data items to process by name.

csagfef implements a version of the awk language (new awk, or nawk)
described in The AWK Programming Language, by Alfred Aho, Brian Kernighan,
and Peter Weinberger (1988).

A csagfef script can include any of the following statements:

if (expression) statement [else statement]
while (expression) statement

do statement while (expression)

for (expression; expression; expression) statement
break

continue

{ [statements 1 }

expression

print expression-list [>expression]

printf format[, expression-list 1 [>expression]
next

exit [expression]

return [expression]

The following describes further the contents of statements in a csagfef script:

e Statement terminators. Statements are terminated by semicolons, right
braces, or newlines.

123

UNICOS Resource Administration

124

Statement continuation. Statements can be continued on successive lines by
using \ as the last character of the line. Statements can also be continued
after the following symbols:

, (comma)

{ (left brace)

&& (logical AND)

|l (logical OR)

do

else

) (right parenthesis in an "if" or "for" statement)

Comments. Nonexecutable comments begin with # and end with a newline.
They can appear anywhere in the source script.

Expressions. Expressions include constants, variables, and operators.
Parentheses can be used to control the grouping of the operations in an
expression.

Logical expressions. Logical expressions have a value of 1 (true) and 0
(false). As in the C language, any nonzero value is taken to be true.

Numbers. Numbers can be integers or floating points. The format is the
same as that recognized by strtod (3C) and strtol ~ (3C): digits, decimal
point, digits, e or E, signed exponent. At least one digit or a decimal point
must be present; the other components are optional. Octal integers begin
with 0. Hexadecimal integers begin with 0 x.

Variable names. Variable names consist of a letter followed by a string of
letters, numbers, or the character . Variables are used to name the data
items found in the data records of the consolidated file.

Some variables in the consolidated data file are arrays. The elements of
these arrays can be referenced by indexing. For example, the variable,
pu_t_mutime , is an array that contains the time a process was connected to
(i+1) CPUs; see Table 19, page 114 (table: pacct multitasking record
variables). The time a process was connected to one CPU is referenced by
pu_t _mutime [0].

You can also define additional variables within the csagfef source script;
however, user-defined arrays are not supported.

A csagfef script can include prefix, infix, and suffix operators as follows:

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

Prefix operators

Infix operators

The csagfef

command applies a prefix operator

immediately preceding a term and any suffix
operators. It then applies any prefix operators to
the left of that operator, grouping them from right

to left.

Operator Action

++X Preincrement

-X Predecrement
+X Plus

-X Minus

X Logical NOT

The csagfef

command applies infix operators,

in descending order of precedence, as follows:

Operator Action

XAY Exponentiation

X*Y Multiplication

X/Y Division

X%Y Remainder

X+Y Addition

X-Y Subtraction

X<Y Less than

X<=Y Less than or equal

X>Y Greater than

X>=Y Greater than or equal
==Y Equals

X!=Y Not equals

X&&Y Logical AND

XY Logical OR

XY Conditional

X=Y Assignment

X*=Y Multiply assign

125

UNICOS Resource Administration

Suffix operators

2.3.4.5.7 Built-in Functions

The csagfef

X/=Y
X%=Y
X+=Y
X-=Y
XY

The csagfef

Divide assign
Remainder assign
Add assign
Subtract assign
Comma

command applies a suffix operator

immediately following a term before it applies
any other operator. It then applies any suffix
operators to the right of that operator, grouping
them from left to right. The following list shows
the suffix operators:

Operator Action

X++ Postincrement
X- Postdecrement
X[Y] Subscript

X(Y) Function call

command has the following built-in functions, with the function

parameters (given in parentheses) defined at the end of the list:

Function name

abs(exp)

acid2nam (num)

bytes to (num[, unit])

clicks_to

126

(num|[, unit])

Description

Returns the absolute value of
exp.

Returns the character string
associated with the account
ID (num). If there is no
associated string, return
Unknown.

Converts bytes to some other
unit. If [, unit] is not
specified, kilobytes are
returned.

Converts clicks to some other
unit. If [, unit] is not

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

clocks_to (num], tunit])

close(str)

frac(exp)

gid2nam (num)

imax(arr)

imin(arr)

int(exp)

isdefined(sym)

nam?2acid (str)

nam2gid (str)

nam2uid (str)

specified, kilobytes are
returned.

Converts clocks to some other
unit. If [, tunit] is not
specified, seconds are
returned.

Closes the file stream
specified by str.

Returns the fractional part of
exp.

Returns the character string
associated with the group ID
(num). If there is no
associated string, return
Unknown.

Returns the index of the
maximum element of array
arr.

Returns the index of the
minimum element of array
arr.

Returns the integer part of
exp.

Returns 1 if sym is defined.
Otherwise, returns 0.

Returns the numeric account
ID associated with the
account name (str). If there is
no account ID, return -1.

Returns the numeric group
ID associated with the group
name (str). If there is no
group ID, returns -1.

Returns the numeric ID
associated with the user
name (str). If there is no user
ID, returns -1.

127

UNICOS Resource Administration

128

stremp (strl, str2)

strftime (fint)

strlen (str)

sum(arr)

system(str)

ticks_to (num|, tunit])

uid2nam (num)

words_to (num|, unit])

Compares two strings.
Returns a value that is greater
than, equal to, or less than 0
according to whether str1 is
greater than, equal to, or less
than str2.

Formats the time into a string
according to (fmt).

Returns the number of
characters in string (str).

Returns the sum of the
elements in array arr.

Passes str to the shell for
execution.

Converts ticks to some other
unit. If [, tunit] is not
specified, seconds are
returned.

Returns the character string
associated with the user ID
(num). If there is no
associated string, returns
Unknown.

Converts words to some
other unit. If [, tunit] is not
specified, kilowords are
returned.

The definitions of the function parameters are as follows:

Parameter

arr

exp

An array name. For example:

imax (pd_t_cioch)

A variable name or a function invocation. For

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

num

str, strl, str2

sym

abs (pb_t rw)

Variable name

NULL or a valid strftime (3C) format that is
enclosed in double quotes. For example:

strftime 0O

NULL format
strftime (" %X")

strftime format

Either an integer value or the name of a variable
that contains an integer value. For example:

bytes to (pb_t _io)

Variable name

uid2nam (uid)

Variable name
words_to (5125)

Integer value

Either character strings enclosed in double
quotation marks or the names of a variables
whose values are character strings. For example:

close (" cpu_data ")

Character string

command = "date; uname -a“

system (command)

Variable that contains a character
string

A variable name. Names of array elements are
not valid symbols. sym can be defined by the
csagfef -D option. For example:

129

UNICOS Resource Administration

unit

130

if (isdefined (ios_e))

Variable
if (isdefined (us_stime [us_Dispose 1))

Not valid
csagfef -DCPU

if (isdefined (CPU)

Symbol defined by the
csagfef -D option

May be one of the following:

B Converts to bytes

KB Converts to
kilobytes (2'° bytes)

MB Converts to
megabytes (2%°
bytes)

GB Converts to
gigabytes (23°
bytes)

W Converts to words

KW Converts to
kilowords (2'°
words)

MW Converts to
megawords (2%°
words)

GW Converts to
gigawords (23°
words)

number Uses number as the

divisor and divides
the value by
number

SG-2302 10.0.0.2

Accounting [2]

tunit

2.3.4.5.8 Built-in Variables

The csagfef
29:

variable_name Uses
variable_name
as the divisor

Examples of using the unit function parameter
follow:

bytes _to (tp_nread, MB
Converts bytes to megabytes

words_to (pb_t_phimem_max , 1000)

Uses 1000 as the divisor and
returns (pb_t_phimem_max

/ 1000)
May be one of the following:
SEC Converts to seconds
MIN Converts to

minutes

HOUR Converts to hours
DAY Converts to days
Example:

clocks_to (pb_t_iowtime , MIN)

Convert clocks to minutes

command has the following built-in variables, as shown in Table

Table 29. Built-in variables

Variable
FILENAME
NR

OFMT

SG-2302 10.0.0.2

Description
Name of the current input file
Number of data records read so far

Output format for printing numbers

131

UNICOS Resource Administration

Variable Default Description

OFS " Output field separator

ORS \n Output record separator

RSIZE None Size of the data records in bytes

2.3.4.5.9 Generic Front-end Formatting Example

132

The extended example presented here illustrates how you can consolidate and
format data for NQS requests using csagcon and csagfef . It assumes input
from a session file. The example follows the steps listed in Section 2.3, page 97.

1.

Identify the data that needs to be reported.

Determine the information that is useful to your site. In this case, for each
NQS request the example will report the following fields:

User name

Account name

Request name

Request ID

Queue name

CPU time

Memory high-water value
Queue wait time

Locked I/0 wait time

Unlocked I/0 wait time

Because some of these items are not default csagcon consolidation items,
you must specify a request file when executing csagcon . The following
variable names, which are described in Table 14, page 111, through Table 29,
page 131, must be in the request file (ngs.req). You can find a copy of this
file in the /usr/src/cmd/acct/src/csa/csagfef/examples directory.

ng_regname
ng_seqgno
ng_quename

SG-2302 10.0.0.2

Accounting [2]

SG-2302 10.0.0.2

pb_t stime
pb_t_utime
pb_t_phimem_max
ng_qwtime
pb_t_iowtime
pb_t_iobtime

Pass the request file name (ngs.req) to csagcon by using the -R option
(-R ngs.req).

. Select the csagcon consolidation keys.

To extract information for each NQS request, you must select consolidation
keys: appropriate job ID (] option) and job class (-¢c option). However,
you must be certain that all portions of an NQS request are processed as
though they have the same job ID, which is the default. (For this example,
do not specify the -N option, which consolidates each portion of an NQS
request according to its job ID).

To report the username and account name that is associated with each
request, you also must specify the -u and -a options. If these two keys are
not specified, the username and account name will not be known.

Note: All consolidation keys (acid , gid , jclass , jid , and uid) that
are not selected on the csagcon command line by the-a,-g,-c, - ,
and -u options, will have a value of -9.

For example, if you do not specify the -u option, the uid variable will
always have a value of -9.

If you want to sort the output, use the -s option. In this example, the
output is sorted alphabetically by username (-s username option).

To summarize, the consolidation and sort options used in this example are
the following: -j -c -u -a -s username .

. Determine which sessions should be consolidated.

This example will consolidate only terminated sessions (default option).
You can use the -A or -C option to consolidate all sessions or only active
sessions.

The data to be consolidated now is identified and you are ready to execute
csagcon . If you assume that the input comes from a session file named
Super-Record.1130 and the output is written to the file gacct.1130 ,
you would execute the following command:

133

UNICOS Resource Administration

csagcon -S Super-Record.1130 -0 gacct.1130 -R ngs.req -jcua -S username
4. Format the consolidated data into a report.

You must decide the units and length of the various fields. In this example,
memory highwater is reported in megawords and CPU time, queue wait
time, locked I/0 wait time, and unlocked I/O wait time is reported in
seconds. Data that is not already in the correct units is converted by
csagfef . Tables Table 14, page 111 through Table 29, page 131 list the
default units of the various fields.

After deciding on the format, you must write a csagfef source script that
tells csagfef how to generate the report. The following script can be used
as input to csagfef and is found in the following file:

/usr/src/cmd/acct/src/csa/csagfef/examples/ngs.ss

The script contains variables that control the writing of the header and
summary lines. When -D HEADERS specified on the command line,
csagfef outputs the header. When -D SUMMARY specified, summary
information is written.

If you assume that the consolidated data file is named gacct.1130 , and
the source script is named ngs.ss , the following command will generate a
report without the header and summary lines:

csagfef -f gacct.1130 ngs.ss

If you want both, the header and summary information, you should execute
the following command:

csagfef -f gacct.1130 -D HEADER-D SUMMARYAQS.SS

The ngs.ss source script listing follows.

BEGIN {
#
#
Figure out which sessions were consolidated.
#
if (con_key & 0100) {
CONSOL= "ACTIVE AND COMPLETEDSESSIONS"
} else if (con_key & 0200) {
CONSOL= "ONLY ACTIVE SESSIONS"
} else {
CONSOL= "ONLY COMPLETELSESSIONS"

134 SG-2302 10.0.0.2

Accounting [2]

#
Initialize counters.
ntot sess =0 # Total number of sessions
nngs 0 # Number of NQS sessions
#
Print the header if "-D HEADER"was specified on the command line.
#
if isdefined(HEADER)) {
printf("%s DAILY REPORTFOR %s (Rel %s, %s)\n\n",
strtime("%c", creatime), SYSNAME, RELEASE, VERSION)
printf("INCLUDES DATA FOR %s BETWEEN", CONSOL)
printf(" %s AND %s\n\n",
strftime("%c ", file_start), strtime("%c", file_end))
printf(" REQUEST ")
printf(" CPU TIME MEMHIWAT QWAIT LCK IO ")
printf("UNLCK \n")
printf("USER NAME ACCOUNTNAME REQUESTNAME ID ")
printf("QUEUE NAME [SECS] [MW] [SECS] WAIT ")
printf("1O WAIT\n")
printf(" ")
printf(" ")
printf("::::::: \n")
}
}
ntot _sess++ # count the total number of sessions
if (jelass == 2) { # output information only about NQS requests
nngs++ # count the number of NQS requests
username = uid2nam(uid) # user name
acname = acid2nam(acid) # account name
cputime = clocks _to(pb_t_stime, SEC) + \ clocks_to(pb_t_utime, SEC)
CPUtime in seconds
memhiwat = words_to(pb_t_phimem_max, MW) # memory high water in megwords
lockio = clocks_to(pb _t iowtime, SEC) # locked 1/0 wait in seconds

SG-2302 10.0.0.2

135

UNICOS Resource Administration

/10 wait

%d\n",

nngs)

in seconds

ulockio = clocks_to(pb_t_iobtime, SEC) # unlocked
printf("%-12.12s %-16.16s %-16.16s %-8d %-16.16s ",
username, acname, ng_reqname, Nng_segno, Nng_guename)
printf("%11.3f %8.0f %7d %7.1f %7.1f \n",
cputime, memhiwat, ng_gwtime, lockio, ulockio)
}
#
Print summary information about the input file if "-D SUMMARY
was specified on the command line.
#
END {
if (isdefined(SUMMARY)) {
printf("\n\nlnput file: %s\nTotal number of sessions:
FILENAME, ntot_sess)
printf("Number of NQS requests: %dn", nngs)
printf("Number of non-NQS requests: %d\n", ntot _sess
}

The script above produces the following output. Both the header and summary

information are included.

Wed Nov 30 10:04:50 1994 DAILY REPORTFOR sn1703c (Rel 9.0.0ao, d90.50)
INCLUDES DATA FOR ONLY COMPLETEDSESSIONS BETWEEN

Wed Nov 30 07:58:09 1994 AND Wed Nov 30 09:51:45 1994

REQ CPU TIME MEMHIWAT QWAIT LCK IO UNLCK

USER NAMEACCOUNTNAMEREQUESTNAMEID QUEUENAME [SECS] [MW] [SECS] WAIT 10 WAIT
fe Xydev STDIN 3 Db30_1 0.411 1 4 0.1 0.4
fe Xydev STDIN 4 b _30_1 0.414 1 3 0.1 0.3
pds SysAdm STDIN 6 b 301 0.570 0 4 0.0 0.4
root SysAdm STDIN 6 b 301 0.544 0 0 0.0 0.5
root SysAdm SLSCRUB 7 b_1200_1 0.958 0 0 0.0 1.6
root SysAdm STDIN 5 Db 301 0.531 0 0 0.0 0.1
root Xydev STDIN 4 Db 301 0.558 0 0 0.0 0.3
root Xydev STDIN 3 Db30_1 0.552 0 0 0.1 0.4
userl SysAdm SLSCRUB 7 b_1200_1 2.079 0 9 0.1 14.8
Input file: gacct

Total number of sessions: 175
Number of NQS requests: 10
Number of non-NQS requests: 165

136

SG-2302 10.0.0.2

