Automated Incident Reporting (AIR) [3]

3.1 AIR Components

3.1.1 AIR Configuration Fi

SG-2302 10.0.0.2

The automated incident reporting (AIR) system allows you to measure overall
system availability for the following products:

e Transmission Control Protocol/Internet Protocol (TCP/IP)
* Network Queuing System (NQS)

® Online tapes

e UNICOS kernel

® Unified Resource Manager (URM)

Warning: The AIR feature is not part of a Cray ML-Safe configuration.
This section does not contain any further warnings or information

pertaining to the use of a Cray ML-Safe configuration of the UNICOS
system.

Overvie w

The AIR system consists of four main components, as follows:
e Configuration file

e (Coordinator daemon

* Monitoring functions

* Report generator

le

The AIR configuration file, /usr/air/config_{file , contains definitions for
all the configurable aspects of the AIR system, written in a simple configuration
language syntax. All AIR system components refer to this file at initiation for
information. Scanning, printing, validation, and translation routines manage the
processing of the data in the file.

137

UNICOS Resource Administration

A\

Caution: AIR configuration file, /ust/air/config_file , can be
maintained through the UNICOS Installation Menu System (installation tool).
If the installation tool is used to maintain this file, it should never be edited
manually.

3.1.2 AIR Coordinator Daemon

The AIR coordinator daemon, aird , executes configured functions at the
specified rates and enacts the return code processing cues.

The coordinator translates the configuration file into a work list consisting of
functions associated with each monitored product. The coordinator keeps a
running clock, executing the functions with rates indicating that they should be
executed. When the coordinator is not executing functions, it waits for function
completion. If there are no functions for which to wait, the coordinator sleeps
until the next time a function is configured to be executed.

3.1.3 AIR Monitoring Functions

The AIR monitoring functions are product verification processes; these
functions can be either shell scripts or executable binaries. The implementation
of the functions for each monitored product follows a hierarchical philosophy.
Several functions are specified for each monitored product, and they are
differentiated by the cost of the resources they use and the aspects of the
product that they test. For example, a function that verifies that a process exists
on the system would be low cost, and, thus, could be executed more frequently
than a function that required a tape mount. However, the higher-cost function
provides a better assurance of product verification. These issues must be
balanced by the rate specification in the configuration file and be configured for
each site’s specific needs.

3.1.4 AIR Report Generator

138

The AIR report generator collects information, such as the AIR configuration
and monitoring function event records from the coordinator log file, and
presents product availability and summary information in a text format.

The coordinator reads input from the configuration file and translates that data
into a series of event functions for periodic execution. The results of each
function’s executions are processed on completion, and pertinent information is

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

written to the coordinator’s log file. Periodically, reports can be generated by
executing the report generation procedures, as follows:

Command Description
airprconf Prints AIR configuration file contents from the

configuration headers in the aird binary log file
(see airprconf (8)).

airsum Generates availability summary reports based on
the aird (8) binary log file (see airsum (8))

airtsum Generates detailed AIR reports based on the
coordinator binary log file (see airtsum (8))

airdet Generates detailed AIR reports based on the
aird binary log file (see airdet (8))

3.2 Initiation and Administration

SG-2302 10.0.0.2

The aird (8) process is initiated automatically at system boot time. aird is
listed in the system /etc/daemons file and is started in the same manner as
the other system daemons. The /usr/air/bin/start_air script contains
the sequence used to start the aird process; use this script if you need to start
aird manually. (See start _air (8) for more information.)

For systems running AIR, the following scripts are available (to be executed
periodically by cron) to perform useful, daily functions:

Shell script Description
mvfiles Moves the AIR log files to data directories,

resetting the log files. If you do not execute this
script periodically in your system, the binary log
file written to by aird will grow quite large.

airdchk Monitors aird . This script uses the airexist (8)
command to verify that aird exists on the
system. Mail is sent to root if aird is not running,.

These two scripts are located in the /ust/air/bin directory. The following
example shows crontab entries for mvfiles and airdchk

#
AIR utilities for periodic execution by cron.
Execute aird checking test every fifteen minutes.

139

UNICOS Resource Administration

3.3 AIR Configuration

Move the log files every Sunday.
#

15 * * * * [ysr/air/bin/airdchk

0 0 * * 0 /usr/air/bin/mvfiles

The AIR configuration file contains definitions for all configurable aspects of the
AIR system. The aird process reads the configuration file and translates the
contents into monitoring functions that are executed periodically. In addition to
initiating its internal processing worklist, aird also sets any environment
variables specified in the configuration file.

AIR configuration file can be maintained by using the UNICOS Installation
Menu System (installation tool). For completeness, the following sections
describe both the installation tool menus for AIR and the configuration file itself.

The AIR configuration file is composed of statements written in the AIR
configuration language. This section explains the configuration language in
detail along with the corresponding installation tool menus, examines the
default configuration file, /usr/air/config_file , and investigates tuning
and validating the configuration file.

3.3.1 Basic Syntactic Rules

140

The AIR configuration language is composed of a defined set of keywords and
their associated arguments. Each line of the configuration file is blank (white
space or a new line), a comment (containing a #, text and/or white space), or a
keyword and its associated arguments. A comment is permitted on a keyword
line.

The following basic syntactic rules apply:

¢ The configuration language can contain only printable ASCII characters; the
parser exits with an error if it finds an unprintable, non-ASCII character in
the configuration file.

e Keywords are uppercase names, and user values are lowercase names.
4

* Noncomment lines begin with a keyword followed by the appropriate
arguments.

e Comments in the file are designated like shell comments, beginning with the
character and continuing until an end-of-line is encountered.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

* Only one keyword may be present on a line, and it must begin with the first
nonwhite character on that line. The CONFIGkeyword must be the first
keyword, and the ENDCONFIGeyword must be the last keyword.

® The maximum line length is 4096 characters.
* Legal separators are white space, tabs, colons, commas, and semicolons.

* All path names specified as arguments to keywords must be the full path
name of the file. (AIR validation routines ensure that all path names begin
with a/.)

* All rates specified as arguments to keywords are interpreted as minutes by
default. For example, a specification of 300 is interpreted as 5 hours. The
aird -C option lets you change the conversion factor of the specified
arguments (see aird (8)).

3.3.2 Configuration Keywords

This section contains lists of available keywords and associated arguments.
Refer to the configuration file on your system or to the AIR configuration menu
in the installation tool while examining these sections, noting the location and
value of each keyword and its arguments. The keywords are discussed in the
order they appear in the released configuration file.

3.3.2.1 File Delineation Keywords
The keywords described in the following sections define the beginning and end
of the configuration file.

3.3.2.1.1 CONFIGname

The CONFIGname keyword marks the beginning of the configuration
specification. Only comment or blank lines are allowed before a CONFIGline.
The name argument is the name of the configuration, which is any string.

3.3.2.1.2 ENDCONFIGiame

The ENDCONFIGuame keyword marks the end of the configuration
specification. Only comment or blank lines are allowed after an ENDCONFIG
line. The name argument is the name of the configuration, which is any string,
but must match the name specified with the CONFIGkeyword in the file.

SG-2302 10.0.0.2 141

UNICOS Resource Administration

3.3.2.2 Basic Operational Keywords

3.3.2.2.1 Installati

S-> AIR daemon
Monitoring
AIR daemon
AIR daemon
AIR daemon
AIR daemon

3.3.2.2.2 COORD

on Tool

In your configuration file, the keywords described in the following sections
appear immediately after the CONFIGkeyword and before a PRODUCBr
FUNCTIONkeyword specification. These keywords define the basic operational
configuration for the AIR system.

The operational keywords correspond to the following installation tool menu:

M-> Configure system ->
M-> AIR configuration ->
M-> Coordinator setup ->

AIR Coordinator setup

binary log file name Jusr/spool/air/logs/blog
function execution directory Justr/air/test
heartbeat rate 15
ASCIl log file name /usr/spool/air/logs/coord.log
debugging level 0
information log level 0

_LOGle

The COORD_LO#le keyword specifies the absolute path name to the aird
ASCII log file. This log file is used for debugging purposes only. Any
information needed by the report generators is logged into aird ‘s binary log
file. The COORD_LOGLEMeyword specifies the number of messages written to
this ASCII log.

3.3.2.2.3 COORD_TESTDIRir

The COORD_TESTDIRir keyword specifies the absolute path name to the
directory where the configured monitoring functions are executed.

3.3.2.2.4 COORD_HBEAte

142

The COORD_HBEAiute keyword specifies the rate at which aird should log its
own heartbeat record into its binary log file. The report generators use this
heartbeat record and the configured rate when determining AIR system
availability.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.3.2.2.5 COORD_DEBUlevel

The COORD_DEBUlEvel keyword specifies the number of diagnostic messages
that should be logged to the aird ASCII log file (the location of which is set by
using the COORD_LOGeyword). The level argument is a number 0 through 20;
however, because this keyword is used for debugging purposes only, it is
recommended that level usually be set to 0.

3.3.2.2.6 COORDBLOGfile

The COORDBLOG(ile keyword specifies the absolute path name to aird ’s
binary log file. The report generators use this log file when determining the
availability of the monitored products. Refer to Section 3.5, page 174, for more
information on the contents and use of this file.

3.3.2.2.7 COORDLOGLEVIevel

The COORDLOGLEVIevel keyword specifies the number of general
informational messages that should be logged to the aird ASCII log file. The
level argument is a number 0 through 20; however, because this keyword is used
for debugging purposes only, it is recommended that level usually be set to 0.

3.3.2.2.8 TYPEtag types

E-> PASSED
FAILED
CHANGED
NODEVICE
NORESERVE
TIMEOFDAY
NOMOUNT
BADWRITE

SG-2302 10.0.0.2

The TYPEtag type keywords are configured in the following installation tool
menu:

M-> Configure system ->
M-> AIR configuration ->
M-> Return tags and types setup ->

AIR Return tags and types setup

Tag Type Type 1 Type 2 Type 3
PROD_AVAILABLE

PROD_UNAVAILABLE

PRODAVAILABLE WARN_ADMIN
PRODAVAILABLE WARN_ADMIN WARN_OPS
PROD_AVAILABLE WARN_ADMIN
PROD_AVAILABLE

PROD_UNAVAILABLE WARN_OPS WARNADMIN
PROD_UNAVAILABLE

143

UNICOS Resource Administration

BADJOB PROD_UNAVAILABLE
TIMEDOUT PROD_AVAILABLE WARN_ADMIN
QSUBFAILED PROD_UNAVAILABLE
AUDITERROR PROD_AVAILABLE WARN_ADMIN
TCPFAILED PROD_UNAVAILABLE
UDPFAILED PROD_UNAVAILABLE
ICMPFAILED PROD_UNAVAILABLE

3.3.2.3 Monitored Products

144

The TYPEtag types keyword defines return tags and their associated types. The
tags are set as environment variables. aird and the monitoring functions use
the tags to communicate. The monitoring functions use the tags as return
values. The report generators use the types to report various aspects of the
system availability. The tags are also used in the MESSAGEnd RETURN
keyword arguments, and additional text and subsequent actions are assigned to
the tag.

Other than two required tags, PASSEDand FAILED, the tag argument
assignment is arbitrary; however, the tags defined in the configuration file must
match the expected return values for the configured monitoring functions. In
other words, for every expected return value in the monitoring functions, a
TYPEkeyword definition with that return value listed as the tag argument must
exist.

The report generators use the PROD_AVAILABLEand PROD_UNAVAILABLE
types extensively when determining product availability.

The following types are allowed:

PROD_AVAILABLE PROD_UNAVAILABLE PRODWARNING SEND_MAIL

SPR OIR WARN_OPS WARN_ADMIN
WARN_USERS 10% 20% 30%

40% 50% 60% 70%

80% 90% 91% 92%

93% 94% 95% 96%

97% 98% 99% 100%
Keywords

The keywords in the following sections appear immediately following the
TYPESkeyword definitions in your configuration file. These keywords specify
the products to be monitored by the AIR system and configure the monitoring
functions to be used for each specified product. An explanation of how
products and functions are configured in the installation tool follows the
description of the keywords.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.3.2.3.1 PRODUCame status

The PRODUCTame status keyword marks the beginning of a product definition
and is always paired with the ENDPRODUCHeyword. You can define multiple
products in a configuration file (within the CONFIGand ENDCONFIGeyword
pair); however, you cannot nest product specifications within other product
specifications. You can define single or multiple monitoring functions within
each PRODUCT ENDPRODUCHair. The name argument, which is indicated in
the report generators output, is an arbitrary string but it must be unique within
the configuration. The status argument indicates whether a product is active
(ON or inactive (OFF. A product that is inactive is still part of the
configuration, but no functions defined within that product are executed.

3.3.2.3.2 ENDPRODUCiame

The ENDPRODUCiame keyword marks the end of a specific product
specification. This keyword is always paired with the PRODUCkeyword.

3.3.2.3.3 MESSAGHag message

The MESSAGHag message keyword specifies a text message to be associated
with the specified tag. As described in the TYPESkeyword definition, the
return tag indicates a status returned by a monitoring function after executing.
aird sets these return tags to environment variables prior to the execution of
the monitoring functions. The report generators use the specified message text
when reporting availability statistics. The tag argument must be one of the tags
defined in a TYPEkeyword specification. The message is any arbitrary string.
The entire line is limited to 4096 characters.

3.3.2.3.4 FUNCTIONname status

SG-2302 10.0.0.2

The FUNCTIONname status keyword marks the beginning of a function
definition and is always paired with an ENDFUNCTIONeyword. You can
define multiple functions for a product (within a PRODUCT ENDPRODUCT
keyword pair); however, you cannot nest function specifications within other
function specifications. The name argument which is indicated in the report
generators output, must be unique within a product specification, but does not
need to be unique within the configuration. The status argument indicates
whether a function is active (ON or disabled (OFP).

145

UNICOS Resource Administration

3.3.2.3.5 ENDFUNCTIOMame

The ENDFUNCTIONuame keyword marks the end of a FUNCTIONspecification.
This keyword is always paired with a FUNCTIONkeyword.

3.3.2.4 Monitoring Function Specification

3.3.2.4.1 RATErate

3.3.2.4.2 EXECUTHile

3.3.2.4.3 LOGFILE file

3.3.2.4.4 TIMEOUTtime

146

The keywords described in the following sections appear within a FUNCTION/
ENDFUNCTIONeyword pair. These keywords are required for a complete
monitoring function specification.

The RATErate keyword specifies the frequency with which aird executes the
monitoring function. The rate argument is interpreted as number of minutes. If
the function is meant to be an action type of routine rather than a monitoring
function (for example, a function to restart a daemon when a FAILED status has
been returned to a monitoring function), the argument for RATEshould be set
to NONEThis value prevents the function from being executed periodically
while allowing it to be executed from other functions. Refer to Section 3.4, page
160, for more information about rate specification on the monitoring functions.

The EXECUTHile keyword specifies the absolute path name of the monitoring
function that is to be executed.

The LOGFILE file keyword specifies the absolute path name of the file in which
the function output is placed. If there is no output of interest from the specific
monitoring function, set this argument to NONE

The TIMEOUTtime keyword specifies the length of time that aird should wait
for the return of the function. If this time is exceeded, aird Kkills the
monitoring function and logs the abnormal termination in its binary log file.
The time argument can be set to NONEto indicate that the function should never
be timed out by aird .

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.3.2.4.5 RETURNuag value action

The RETURNag value action keyword specifies the return values for the
monitoring function. The return tag is a tag previously defined in a TYPE
keyword specification and associated with text from the MESSAGKkeyword
specification. The value argument, to which the tag set in the environment is
assigned, is an integer between 0 and 200. The action argument specifies the
name of another function to be executed on the return of the specified tag value
from the monitoring function.

The function identified in the action argument must also be defined using the
function specifications within the current product specification. The action can
also be set to NONEindicating that no further action should be taken on the
return of that tag from the monitoring function.

3.3.2.5 Installation Tool Configuration

The configuration of products and their monitoring functions span three
interconnected menus in the installation tool:

M-> Configure system ->

M-> AIR configuration ->
M-> Product enable ->
M-> Product functions ->
M-> Function return configuration ->

Each of these menus is described below.

3.3.2.5.1 Product Enable Menu

SG-2302 10.0.0.2

This first menu describes the products and whether they are to be monitored.
The menu consists of two fields: the name of the product, and whether it is
enabled.

An example of the product enable menu follows:

AIR Product enable

Product Name Product Enabled
E-> disk-integ YES

ngs YES

tapes YES

msgdaemon YES

tcp YES

urm YES

147

UNICOS Resource Administration

The menu is used to determine the PRODUCHEnd ENDPRODUCHReywords in
the configuration file.

3.3.2.5.2 Product Functions Menu

This menu contains seven fields that are used to determine the FUNCTION
ENDFUNCTIONRATE EXECUTELOGFILE, and TIMEOUTkeywords in the
configuration file.

Here is a short example of the product functions menu, focusing on the URM
product:

AIR Product functions

Prod Name Funct Name Enabled Rate CommandLog File Timeout
urm function YES 25 usr/air/test/urm/urm.funct NONE
urm response YES 20 lusr/air/test/urm/urm.response NONE
urm existence YES 10 usr/air/test/urm/urm.exist NONE
urm restart NO NONE /ustr/air/test/urm/urm.restart NONE

The Prod Namefield associates these functions under a given product (there
must be a product with this name in the Product enable-> menu).

The Funct Namefield (FUNCTION names the function while the Enabled

field indicates whether this monitoring function is on or off. The Rate field
(RATBE indicates the time in minutes between executions of the monitoring
command set in the Commandfield (EXECUTE The Log File field (LOGFILE)
is the name of a file where the output is to be placed (blank means no log file)
and the Timeout field (TIMEOUT) indicates the maximum amount of time the
monitoring function can take.

3.3.2.5.3 Function Return Configuration

148

Product

This menu contains six fields that define the RETURNand MESSAGEKeywords.
An example showing the function return configuration for the URM product is
as follows:

AIR Function return configuration

Name Function Name Return Name Return Value Action Return Message
function PASSED 0 Test Passed
function FAILED 1 Test Failed

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

urm
urm
urm
urm
urm
urm

response
response
existence
existence
restart
1restart

3.3.3 Return Tags

SG-2302 10.0.0.2

FAILED 1 Test Failed
PASSED 0 Test Passed
FAILED 1 restart Test Failed
PASSED 0 Test Passed
FAILED 1 Test Failed
PASSED 0 Test Passed

The Product Nameand Function = Namefields are used to associate the
return information with a given product (must be a product by this name in the
Product enable- > menu) and function (must be a function by this name for
this product defined in the Product functions -> menu).

Each function under a product must have a minimum of two return values,
named PASSEDand FAILED. These names correspond to an exit status (in this
case 0 and 1 respectively) and to a return message text.

Depending on the return value for a function, an action can be performed. This
action is specified by the Action field and corresponds to the name of another
function defined for this product. In the example above, if a FAILED status is
returned by the existence function of the urm product (exit status of 1 from
/usr/air/test/urm/urm.exist), the restart function is then started by
the aird process.

The restart function is a special function, since it is not used for monitoring
purposes but rather for restarting the URM daemon. Since the restart function
should only be started when the existence test fails, the restart ~ function is
configured with a Rate (RATEH of NONEThis indicates that this product is not
to be started periodically. Note also that in the above example, the restart
function is turned off. Therefore, if the existence function were to fail, the
restart function would not be run because it is disabled.

This section contains an overview and summary of the TYPE MESSAGEand
RETURNkeywords and the associated arguments.

The TYPEkeyword defines return tags and their associated types. The TYPE tag
argument defines a variable to be used as an exit status by a monitoring
function. aird sets this variable in the environment when it initially processes
the configuration file. The types associated with each TYPEtag are associated
with the environment variables that serve as exit statuses for the monitoring
functions. The report generators use these types, associated with the tags, in
their processing. Only the PROD_AVAILABLEand PRODUNAVAILABLE types
are used by the report generators at this time for availability determination.

149

UNICOS Resource Administration

The report generators also use the MESSAGKeyword, which associates a text

message with a tag.

The RETURNceyword assigns the tag an environment variable and indicates
whether further action should be taken following the return of a monitoring

function.

3.3.4 Sample Configuration File

Start
#

#

#
CONFIG

150

of Configuration

This section contains a sample configuration file and an interpretation of the
contents. Read this section if you are unsure of the correct interpretation or if
you want to check your understanding. Refer to this sample file as you read the

text following the file.

File Generated by printcf

:%s./usr./sn1101/soft/os/crs

kernel_test_version

#

Define
#

COORD_LOG

#

test

#
COORD_TESTDIR
#

Define
#
COORD_HBEAT
#

Define
#
COORD_DEBUG
#

Define
#
COORD_BLOG
#

Define
#

Coordinator logfile
/usr/spool/air/logs/coord.log
directory

Jusr/air/test
Coordinator Heart Beat
10
Debug level
0
Binary output file name
usr/spool/air/logs/blog

ASCIl logging level

COORD_LOGLEV 0

on Thu Feb 21 15:31:40

1991

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

#

Define TYPES

#

TYPE PASSED PROD_AVAILABLE
TYPE FAILED PROD_UNAVAILABLE

TYPE CHANGED PROD_AVAILABLE WARNADMIN

TYPE NODEVICE PROD_AVAILABLE WARN_ADMINWARN_OPS
TYPE NORESERVE PROD_AVAILABLE WARNADMIN

TYPE NOMOUNT PROD_UNAVAILABLEWARN_OP3SNVARN_ADMIN
TYPE BADWRITE PROD_UNAVAILABLE

TYPE BADJOB PROD_UNAVAILABLE

TYPE QSUBFAILED PROD_UNAVAILABLE

TYPE AUDITERROR PROD_AVAILABLE WARNADMIN

TYPE TCPFAILED PROD_UNAVAILABLE

TYPE UDPFAILED PRODUNAVAILABLE

TYPE ICMPFAILED PRODUNAVAILABLE

#

Define product disk-integ
#

PRODUCTdisk-integ ON

MESSAGHE-AILED Test Failed
MESSAGEPASSED Test Passed

#
Define Function response of Product disk-integ
#
FUNCTION response ON
RATE 1
EXECUTE /usr/air/test/kern/kern.response
LOGFILE NONE
TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE
ENDFUNCTION response
#
Define Function existence of Product disk-integ
#
FUNCTION existence ON
RATE 15

EXECUTE/usr/air/test/kern/kern.exist
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

SG-2302 10.0.0.2 151

UNICOS Resource Administration

152

#

ENDFUNCTION existence

ENDPRODUCT disk-integ

#
#

Define product ngs

PRODUCThgs ON

MESSAGEPASSED Test Passed

MESSAGEFAILED Test Failed

MESSAGEQSUBFAILED Qsub failed during functional test.
MESSAGEBADJOB Returned job did not contain expected output
#

Define Function functional of Product ngs
#
FUNCTION function ON

RATE 15

EXECUTE /usr/air/test/ngs/ngs.funct
LOGFILE NONE

TIMEOUT 10
RETURN PASSED 0 NONE
RETURN FAILED 1 NONE
RETURN QSUBFAILED 2 NONE
RETURN BADJOB 3 NONE

ENDFUNCTION function

#

Define Function response of Product ngs

#

FUNCTION response ON
RATE 10
EXECUTE /usr/air/test/ngs/ngs.response
LOGFILE NONE
TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION response

#

Define Function existence of Product ngs

#

FUNCTION existence ON
RATE 5

EXECUTE /usr/air/test/ngs/ngs.exist
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

RETURN PASSED 0 NONE
ENDFUNCTION existence
#
Define Function netexist of Product ngs
#
FUNCTION netexist ON

RATE 5

EXECUTE /usr/air/test/ngs/ngsnet.exist
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION netexist

ENDPRODUCT ngs

#

Define product tapes

#

PRODUCTtapes ON
MESSAGEPASSED Test Passed
MESSAGEFAILED Test Failed
MESSAGEBADWRITE Write to tape failed
MESSAGENOMOUNT Mount of tape failed
MESSAGENORESERVEReserve of tape failed
MESSAGENODEVICE No devices available at start of test.

#

Define Function functional of Product tapes
#

FUNCTION function OFF

RATE 60

EXECUTE /usr/air/test/tapes/tape.funct
LOGFILE NONE

TIMEOUT 10
RETURN PASSED 0 NONE
RETURN FAILED 1 NONE
RETURN BADWRITE 2 NONE
RETURN NOMOUNT 3 NONE
RETURN NORESERVE 4 NONE
RETURN NODEVICE 5 NONE

ENDFUNCTION function

#

Define Function response of Product tapes
#

FUNCTION response ON

SG-2302 10.0.0.2 153

UNICOS Resource Administration

RATE 10

EXECUTE /usr/air/test/tapes/tape.response

LOGFILE NONE

TIMEOUT 1
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE
ENDFUNCTION response
#
Define Function existence of Product
#
FUNCTION existence ON
RATE 5
EXECUTE /usr/air/test/tapes/tape.exist
LOGFILE NONE
TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE
ENDFUNCTION existence
#
Define Function avrexist of Product
#
FUNCTION avrexist ON
RATE 5

EXECUTE /usr/air/test/tapes/tapeavr.exist

LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION avrexist
ENDPRODUCT tapes
#
Define product msgdaemon
#
PRODUCTmsgdaemon ON
MESSAGEPASSED Test Passed
MESSAGEFAILED Test Failed

#

Define Function response of Product
#

FUNCTION response ON

RATE 10

EXECUTE /usr/air/test/msgd/msgd.response

LOGFILE NONE

154

msgdaemon

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

TIMEOUT 1
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE
ENDFUNCTION response
#
Define Function existence of Product msgdaemon
#
FUNCTION existence ON
RATE 5

EXECUTE /usr/air/test/msgd/msgd.exist
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION existence

ENDPRODUCT msgdaemon

#
#
#

Define product tcp

PRODUCTicp ON

SG-2302 10.0.0.2

MESSAGEFAILED Test Failed

MESSAGEPASSED Test Passed

MESSAGETCPFAILED Transmission Control Protocol failure
MESSAGEUDPFAILED User Datagram Protocol failure
MESSAGHCMPFAILED Control Message Protocol failure

#

Define Function functional of Product tcp
#
FUNCTION function ON

RATE 10

EXECUTE /usr/air/test/tcp/tcp.funct
LOGFILE NONE

TIMEOUT NONE
RETURN PASSED 0 NONE
RETURN FAILED 1 NONE

RETURN ICMPFAILED 2 NONE

RETURN UDPFAILED 3 NONE

RETURN TCPFAILED 4 NONE
ENDFUNCTION function

#

Define Function existence of Product tcp
#

FUNCTION existence ON

155

UNICOS Resource Administration

156

RATE 5
EXECUTE /usr/air/test/tcp/tcp.exist
LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE
ENDFUNCTION existence
#
Define Function gatedexist of Product tcp
#
FUNCTION gatedexist ON

RATE 5

EXECUTE /usr/air/test/tcp/tcpgated.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE
ENDFUNCTION gatedexist
#
Define Function Ipdexist of Product tcp
#
FUNCTION Ipdexist ON

RATE 5

EXECUTE /usr/air/test/tcp/tcplpd.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE
ENDFUNCTION Ipdexist
#
Define Function namedexist of Product tcp
#
FUNCTION namedexist ON

RATE 5

EXECUTE /usr/air/test/tcp/tcpnamed.exist

LOGFILE NONE

TIMEOUT NONE

RETURN FAILED 1 NONE

RETURN PASSED 0 NONE
ENDFUNCTION namedexist
#
Define Function ntpdexist of Product tcp
#

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

FUNCTION

ntpdexist ON
RATE 5

EXECUTE /usr/air/test/tcp/tcpntpd.exist
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION ntpdexist

#

Define Function smailexist

#

FUNCTION smailexist ON
RATE 5

EXECUTE /usr/air/test/tcp/tcpsmail.exist
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION smailexist

#

Define Function snmpdexist

#

FUNCTION snmpdexist ON
RATE 5

EXECUTE /usr/air/test/tcp/tcpsnmpd.exist

LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE
ENDFUNCTION snmpdexist
ENDPRODUCT tcp
#
Define product urm
#
PRODUCTurm ON
MESSAGEPASSED Test Passed
MESSAGEFAILED Test Failed
#
Define Function functional
#
FUNCTION function ON
RATE 25

SG-2302 10.0.0.2

EXECUTE/usr/air/test/urm/urm.funct

of Product

of Product

of Product

tcp

tcp

urm

157

UNICOS Resource Administration

LOGFILE NONE

TIMEOUT NONE
RETURN PASSED 0 NONE
RETURN FAILED 1 NONE
ENDFUNCTION function
#
Define Function response of Product
#
FUNCTION response ON
RATE 20
EXECUTE /usr/air/test/urm/urm.response
LOGFILE NONE
TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE
ENDFUNCTION response
#
Define Function existence of Product
#
FUNCTION existence ON
RATE 10
EXECUTE /usr/air/test/urm/urm.exist
LOGFILE NONE
TIMEOUT NONE
RETURN FAILED 1 restart
RETURN PASSED 0 NONE
ENDFUNCTION existence
#
Define Function restart of Product
#
FUNCTION restart OFF

RATE NONE
EXECUTE/usr/air/test/urm/urm.restart
LOGFILE NONE

TIMEOUT NONE
RETURN FAILED 1 NONE
RETURN PASSED 0 NONE

ENDFUNCTION restart
ENDPRODUCT urm
ENDCONFIG kernel_test_version
#

End of Configuration File Generated by printcf on Thu Feb 21 15:31:40

#

158

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

At the top of the configuration file, the global operational keywords are
defined. The ASCII log and binary log files for the aird process are set to
/usr/spool/air/logs/coord.log and /usr/spool/air/logs/blog ,
respectively; however, the ASCII and debug logging levels are both set to 0,
which means that the aird ASCII log file should remain empty. The rate that
the aird process logs its own heartbeat record is set to every 10 minutes.

Next, the return tags and associated types are defined. The required PASSED
and FAILED tags are at the top of the specification block. Also, the
PROD_AVAILABLEand PROD_UNAVAILABLEypes associated with the various
tags are specified.

The next component of the file is the product’s specification, the first one being
the disk-integ. Messages are assigned to the two required tags, PASSEDand
FAILED, and two functions, response and existence, are defined. The response
function is configured to execute every 90 minutes. No log file or time-out limit
is specified, and no subsequent action is defined for the two required return
tags. The existence function is configured to execute every 15 minutes and has
no output, time-out, or subsequent actions specified. The actual monitoring
functions are found in /usr/air/test/kern/kern.response and
lusr/air/test/kern/kern.exist , respectively.

3.3.5 Configuration File Tuning and Validation

SG-2302 10.0.0.2

You can change the contents of the configuration file by using the UNICOS
Installation Menu System (installation tool) validation. You can validate your
configuration through the airckconf (8) command prior to putting that file
into production on your system. The airckconf ~ command uses the same
validation routines that the aird process uses on the contents of the
configuration file.

The AIR configuration menu in the installation tool allows you to verify your
configuration before activating it. Simply select the Verify air

configuration ... action in the AIR configuration menu. This action will
generate a test configuration file based on your selections and then run the
airckconf (8) command on it.

An example of an area that you may need to change is the execution rates for
the monitoring functions.

Note: Before making changes to the execution rates of the functions, please
read through Section 3.4, page 160, to determine the appropriate balance for
your system.

159

UNICOS Resource Administration

Changing the rates is accomplished by editing the argument for the RATE
keyword in a specific function (or the Rate field in the Product functions
-> menu of the installation tool). For example, if you want the existence
function for URM to run once every 10 minutes instead of the default of 5
minutes, you would change the RATEkeyword argument from 5 to 10 in the
existence function specification of the URM product specification.

Any associated keyword arguments can be changed in the same manner. To
add functions or products, refer to Section 3.4.6, page 165.

3.4 Monitoring Functions

160

The monitoring functions are the actual product verification processes and are
either shell scripts or executable binaries. The implementation of the functions
for each monitored product follows a hierarchic philosophy. Several functions
are specified for each monitored product, and they are differentiated by the cost
of the resources they use and the aspects of the product that they test.

For example, a function that verifies that a process exists on the system would
be low cost, and, thus, could be executed more frequently than a function that
required a tape mount. However, the higher-cost function provides a better
assurance of product verification. These issues must be balanced by the rate
specification in the configuration file, and be configured for each site’s specific
needs.

This section discusses the product testing coverage provided by the monitoring
functions. This section also describes functions that need to be configured on a
site-by-site basis and the procedures for adding those functions and other
products, to the AIR system.

Caution: Since the test scripts installed under /usr/air/test can be
overwritten during a software update, local changes to the supplied
monitoring functions should be made by copying the file to another directory
(or renaming it) and then altering this copy. Be sure to update the
configuration of AIR to point to the local copy of the monitor script.

Refer to the individual monitoring function man pages for more detailed
information on the contents of the individual tests.

Monitoring functions are provided for TCP/IP, NQS, online tapes, URM, and
disk-integ (general system checks). The functions for these products are divided
into the following types determined by the aspect of the product they are
testing:

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.4.1 TCP/IP

SG-2302 10.0.0.2

e Existence
* Response
e Functional invocation

The existence functions are low-cost verification routines that check for processes
on a system. The response functions are also lower-cost routines that cause a
product to respond in some manner, but do not cause significant operational
changes on a system. The functional invocation routines can be high-cost
functions. These functions are responsible for causing the product to
accomplish work in the same way a user would. The specified rates in the
configuration file for each of these functions reflects the cost involved; the
existence and response functions’ rates are much higher than those for the
functional invocation tests. Again, these rates are site-configurable.

The airexist (8) command verifies product component existence.

It is important to note that these functions are opaque objects in the AIR
system. Although they are grouped as described previously, they are by no
means restricted to those types. The basic structure of the aird process and
monitoring functions allows maximum flexibility in monitoring the products.

The following sections describe the product testing coverage and the functions
that can be configured for each product.

Existence and functional monitoring functions are available for TCP/IP.

The existence functions use the airexist ~ command for process verification.
There are separate existence functions for each of the following processes:

e Internet services daemon (inetd)

* Gateway routing daemon (gated)

* Line printer daemon (Ipd)

e Internet domain name server (named)
* Time synchronization daemon (ntpd)
® Mail daemon (sendmail)

e SNMP daemon (snmpd)

161

UNICOS Resource Administration

3.4.2 NQS

162

These daemons are checked separately so that a site can disable any of the
functions that check processes not configured on their system.

The functional invocation test uses an enhanced version of ping to send ECHO
packets to network hosts using the following protocols:

¢ Internet Control Message Protocol (ICMP)

e Internet Transmission Control Protocol (TCP/IP)

* Internet User Datagram Protocol (UDP)

Failure to receive the expected REPLY packet constitutes a failed status.

The existence functions for TCP/IP check for the following processes, which
must be configured on the system:

Function Process checked
tcp.exist inetd
tcpgated.exist gated
tcplpd.exist Ipd
tcpnamed.exist named
tcpntpd.exist ntpd
tcpsmail.exist sendmail
tcpsnmpd.exist snmpd

If you are not using one of the listed processes, you must disable the associated
function in the configuration file. If you do not disable a function that checks for
a process that does not exist, TCP/IP will always be reported as available 0%.

Existence, response, and functional monitoring functions are available for NQS.

The existence functions use the airexist command for process verification.
There are separate existence functions for each of the following processes:

e Main NQS daemon (ngsdaemon)
e TCP/IP networking component (netdaemon)

These daemons are checked separately so that a site can disable any of the
functions that check processes not configured on their system.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.4.3 Online Tapes

SG-2302 10.0.0.2

The response function uses the ngsresp command to verify that the
ngsdaemon process is able to read its named pipe. The ngsresp command
attempts to open the named pipe; if the open fails, this function returns a failed
status (see ngsresp (8)).

The functional invocation test uses the NQS gsub command to submit a job.
The test then verifies that the expected string is found in the job output file.
This function must also be configured to use a valid enabled, started, and
running batch queue.

The existence functions for NQS check for the following processes, which must
be configured on the system:

Function Process checked
ngs.exist ngsdaemon
ngsnet.exist netdaemon

If you are not using one of the listed processes, disable the associated function
in the configuration file. If you do not disable a function that checks for a
nonexistent process, NQS will always be reported as available 0%.

Because it invokes a generic gqsub (1) command, the ngs.funct function
monitoring test is dependent on an enabled, started, and running default batch
queue. If you cannot ensure that a default batch queue is always available, edit
ngs.funct so that the job is directed to an available queue by using the
appropriate gsub options.

Existence, response, and functional monitoring functions are available for online
tapes.

The existence functions use the airexist ~ command for process verification.
There are separate existence functions for each of the following processes:

* Tape daemon (tpdaemon)
* Message daemon (msgd)
® AVR component (avrproc)

These daemons are checked separately so that a site can disable any of the
functions that check processes not configured on their system.

163

UNICOS Resource Administration

3.4.4 Disk-integ

3.4.5 URM

164

The tpstat (1) command is a tape status command that forces a response from
the tpdaemon process. The response function determines the ability of the
tpdaemon to respond based on the return value from tpstat . The response
function for the msgd process invokes the msgd command, and redetermines
the ability for response based on the return value.

The function invocation test uses the dd(1) command to write a file to tape by
using the tape daemon. This test serves as a template only. Due to the variance
of device groups, label types, and volume serial numbers, each site needs to
modify this script to reflect their configuration.

If you are not using AVR, disable the tapeavr.exist function in the AIR
configuration file. If AVR is nonexistent and you do not disable
tapeavr.exist , online tapes will always be reported as available 0%.

The tape.funct function monitoring test uses the tpmnt (1) command to
mount a tape on a drive, and then uses the dd command to write data to that
tape. Edit this test to reflect your local tape environment, paying particular
attention to the DEVGRPLABEL, and VOLSERvariables and the time check at
the top of the script. By default, this test executes between 10 A.M. and 4 PM.;
otherwise, it returns a passed exit status without execution.

System monitoring functions that check existence and integrity are available for
the kernel.

The existence script invokes various user commands, such as cd, Is , and cat ,
to verify that the kernel is working and to gain some idea of the interactive
response time.

The integrity function checks the following:
* Unrecovered disk errors
* File system free space and inodes

This script is configured to send mail to the appropriate administrators with
pertinent information.

Existence, response, and functional monitoring functions are available for the
Unified Resource Manager (URM).

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

The existence function uses the airexist command to determine if the urmd
process exists in the system.

The rmgr command is a URM status command that forces a response from
URM. The response function determines the ability of URM to respond based
on the return value from rmgr .

The functional invocation test uses the URM rmgr command to send a
REGISTERrequest to urmd to verify whether or not urmd is initialized and
functioning. The URM product also has a special function called restart . The
function is not a monitoring function, but rather, an action. The existence
function defines it to be started in response to a FAILED exit status (the urmd
process not running) in order to restart the urmd process. Since it is not a
monitoring function, its RATEis set to NONEto indicate to aird that it should
not be periodically started.

In the preceding example configuration, the restart function is turned off. In
order for the restart function to be started by the aird process in response
to the failure in existence , it must be turned on.

3.4.6 Adding Products and Functions

SG-2302 10.0.0.2

In the AIR system, you can easily extend product sets and enhance monitoring
functions.

This section describes the addition of products and monitoring functions to the
AIR system.

Follow these steps in order to add a product to the AIR system:
1. Create the appropriate monitoring functions for the product.

2. Create the appropriate directory in the test directory tree, and move the
monitoring functions to that directory.

3. Add the product and monitoring function specifications to the configuration
file.

4. Use the airckconf =~ command on the newly edited configuration file to
validate your changes.

5. Move the file into production; send a SIGHUPsignal to the aird process.

6. Check to ensure that the added functions are working as expected.

165

UNICOS Resource Administration

3.4.6.1 Creating Functions

#l

HHHHHHHH K HHH

/bin/sh

The first step in adding a product to the AIR system is creating the appropriate
monitoring functions. This step is quite important because the accuracy and
effectiveness of product monitoring depends on the quality of the monitoring
functions. The creation method described in this section is recommended, but
because the functions are opaque in the system, you may use any method that
works for your site.

In this example, the data migration product and functions are added to the AIR
system by using the same hierarchical implementation as the released functions.
These functions are incomplete and meant only as examples; however, you can
use them as the basis for monitoring the data migration facility.

The following example shows an existence function for the dmdaemon process:

dmf.exist Product DMF existence test.

Test Description:
This is an existence test for DMF. It checks for the
existence of the following process: dmdaemon.

Dependencies:
The environment variable PASSEDmust be set.
The environment variable FAILED must be set.
The airexist command is installed in /usr/air/bin.

PATH=$PATH:/usr/air/bin

airexist -u 0 dmdaemon
if [$? -eq 1]
then
EXITVAL=$PASSED
else
EXITVAL=$FAILED
fi
exit ${EXITVAL }
#
End of product DMF existence test.
#
166 SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

Functional monitoring of data migration could be accomplished in one of two
ways:

e Attempting to migrate and restore a file to online tape media
e Attempting to migrate and restore a file to the MVS station

The following example shows the online tape function test; the MVS front-end
function would be identical to this one except that the specified media would
be the MVS front end:

#! /bin/sh

#

dmftape.funct Product DMFonline tape functional test.

#

Test Description:

This is a functional test for the online tape media
capability of the data migration facility. Note that
this script, through the forced migration of a file,
calls for a tape mount and should be run at a rate

appropriate for the site operational personnel and tape
environment.

#

Dependencies:

The environment variable PASSEDmust be set.

The environment variable FAILED must be set.

The environment variable PUTFAIL must be set.

The environment variable NOMIGRATEmust be set.

The environment variable GETFAIL must be set.

The MIGRATE_FILE must be defined and exist.

#

MIGRATE_FILE="site defined"
MEDIA_TYPE=1

#
Migrate the file. Indicate that the tape media should be used.
#
dmput -p ${MEDIA_TYPE} MIGRATE_FILE
if [$? -ne 0]
then
exit ${PUTFAIL}
fi

SG-2302 10.0.0.2 167

UNICOS Resource Administration

Verify that the file has at least been premigrated.
#

if [Y(-M MIGRATE_FILE)]

then

exit ${NOMIGRATE}
fi

#

Restore the file.
#

dmget MIGRATE_FILE

if [$? -ne 0]

then
exit ${GETFAIL}
fi
#
Verify that the file has been returned.
#
if [™s - MIGRATE_FILE | cut -c1" = "m"]
then
exit ${FAILED}
else
exit ${PASSED}
fi
#
End of product DMFonline tape functional test.
#

3.4.6.2 Integrating the Functions

After you have created the monitoring functions, you must create the
appropriate directory in the test directory tree and place the new functions in
that directory.

In this example, you would create the /usr/air/test/dmf directory. Then
you would copy the dmf.exist , dmftape.funct , and dmfmvs.funct
monitoring functions created in the previous section into that directory.

168 SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.4.6.3 Configuring the Functions

After you create the monitoring functions and place them in the test directory,
you must follow these steps to instruct the aird process what to do with these
monitoring functions. (Refer to Section 3.3.2, page 141, for a discussion of the
configuration file and information concerning the specific keywords and their
associated arguments in the configuration language syntax. There is a section
for users of the UNICOS Installation Menu System, as well as for those who
manually update the configuration file.)

3.4.6.3.1 Manual Function Configuration

SG-2302 10.0.0.2

Use the following procedures to manually add new products/functions to the
AIR configuration file.

1. This step is necessary only if you are not using the installation tool to
configure AIR.

Copy the configuration file, /ust/air/config_file , to a temporary file,
as in the following example:

$ cp /Jusr/air/config_file

/tmp/tmp_config_file

2. Using a standard text editor, add the product and monitoring functions’
specification to the file, in the following two-step process:

a. Add the additional return types (PUTFAIL, NOMIGRATEand GETFAIL)
used in the functional tests to the TYPESdefinition area near the top of
the configuration file, as in the following example:

#

#

#

TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE

Define TYPES

PASSED
FAILED
CHANGED
NODEVICE
NORESERVE
NOMOUNT
BADWRITE
BADJOB
QSUBFAILED
AUDITERROR
TCPFAILED
UDPFAILED

PROD_AVAILABLE

PROD_UNAVAILABLE

PROD_AVAILABLE WARN_ADMIN
PROD_AVAILABLE WARNADMIN WARN_OPS
PROD_AVAILABLE WARN_ADMIN
PROD_UNAVAILABLEWARNOPS WARN_ADMIN
PROD_UNAVAILABLE

PROD_UNAVAILABLE

PROD_UNAVAILABLE

PROD_AVAILABLE WARN_ADMIN
PROD_UNAVAILABLE

PROD_UNAVAILABLE

169

UNICOS Resource Administration

170

TYPE ICMPFAILED PROD_UNAVAILABLE

TYPE PUTFAIL PRODUNAVAILABLE WARN_OPSNVARN_ADM
TYPE NOMIGRATE PROD_UNAVAILABLEWARNOPS WARN_ADM
TYPE GETFAIL PROD_UNAVAILABLEWARN_OP3SNVARN_ADM

Although the WARN_OP&nd WARN_ADMINeturn types are not
implemented for use, they will be important pieces of information for
the real-time evaluation of the monitored products.

Add the product and functions specification anywhere below the
TYPESarea, as in the following example:

ENDPRODUCTcp

#

Define Product DMF

#

PRODUCTdmf ON
MESSAGEPASSED Test Passed
MESSAGEFAILED Test Failed

MESSAGEPUTFAIL
MESSAGENOMIGRATE
MESSAGEGETFAIL

Migration of file failed
Expected migrated file not migrated
Restore of file failed

#
Define function existence of Product DMF
#
FUNCTION existence ON

RATE 5

EXECUTE /usr/air/test/dmf/dmf.exist

LOGFILE NONE

TIMEOUT NONE

RETURN PASSEDO NONE

RETURN FAILED 1 NONE
ENDFUNCTION existence
#
Define function online functional of Product DMF
#
FUNCTION tapefunct ON

RATE 60

EXECUTE /usr/air/test/dmf/dmftape.funct
LOGFILE NONE

TIMEOUT 10

RETURN PASSED 0 NONE
RETURN FAILED 1 NONE
RETURN PUTFAIL 2 NONE

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

RETURN NOMIGRATE3 NONE
RETURN GETFAIL 4 NONE
ENDFUNCTION tapefunct
#
Define function MVS functional of Product DMF
#
FUNCTION mvsfunct ON
RATE 60
EXECUTE /usr/air/test/dmf/dmfmvs.funct
LOGFILE NONE
TIMEOUT 10
RETURN PASSED 0 NONE
RETURN FAILED 1 NONE
RETURN PUTFAIL 2 NONE
RETURN NOMIGRATE3 NONE
RETURN GETFAIL 4 NONE
ENDFUNCTION mvsfunct
ENDPRODUCTEm(

3.4.6.4 Function Configuration through the Installation Tool

This section describes how to use the UNICOS Installation Menu System
(installation tool) to add new products and functions to AIR.

1. Enter the Return tags and types setup -> submenu under the AIR
configuration menu. Add the new return types (PUTFAIL, NOMIGRATEand
GETFAIL) used in the functional tests as follows:

AIR Return tags and types setup

Tag Name Tag Type Type 1 Type 2 Type 3
E-> PUTFAIL PRODUNAVAILABLE ~WARN_OPS WARN_ADM

NOMIGRATE = PROD_UNAVAILABLE WARN_OPS WARN_ADM

GETFAIL PROD_UNAVAILABLE WARN_OPS WARN_ADM

2. Add the product to the product list in the Product enable -> menu:

SG-2302 10.0.0.2 171

UNICOS Resource Administration

AIR Product enable

Product Name Product Enabled
disk-integ YES
ngs YES
tapes YES
msgdaemon YES
tcp YES
urm YES

E-> dmf YES

3. Create the three functions in the Product functions -> menu:

AIR Product functions

Prod Name Funct Name Enabled Rate CommandLog File Timeout
E-> dmf mvsfunct YES 60 Jusr/air/test/dmf/dmfmvs.funct 10

dmf tapefunct YES 60 lusr/air/test/dmf/dmftape.funct 10

dmf existence YES 5 lusr/air/test/dmf/dmf.exist NONE

4. Create the function return information through the Function return
configuration -> menu:

AIR Function return configuration

Product Name Function Name Return Name Return Value Action Return Message
E-> dmf tapefunct FAILED 1 Test Failed
dmf tapefunct PASSE 0 Test Passed
dmf tapefunct PUTFAIL 2 Migration of file failed
dmf tapefunct NOMIGRATE 3 Expected migrated file not migrated
dmf tapefunct GETFAIL 4 Restore of file failed
dmf mvsfunct FAILED 1 Test Failed
dmf mvsfunct PASSED 0 Test Passed
dmf mvsfunct PUTFAIL 2 Migration of file failed
dmf mvsfunct NOMIGRATE 3 Expected migrated file not migrated
dmf mvsfunct GETFAIL 4 Restore of file failed
dmf existence FAILED 1 Test Failed
dmf existence PASSED 0 Test Passed

172 SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.4.6.5 Validating Configuration

3.4.6.6 Production

SG-2302 10.0.0.2

All essential components are in place for monitoring a new product. Before
placing the new configuration file into production, however, you should
validate the changes and additions that have been made. The airckconf (8)
command runs the configuration file through the same verification routines that
the aird process uses during its internal processing initiation. The following
sample command line verifies the temporary configuration file produced in the
previous section:

$ airckconf tmp_config_file

If you are using the installation tool, perform the Verify air
configuration ... action to verify that the changes made in the menu
system are correct.

For more detailed information, see airckconf (8).

Note: Do not proceed to the next step until airckconf is executing without
error on the new configuration file.

Before copying the new configuration file over the current one, make a back-up
copy of /ust/air/config_file . If you are using the installation tool to
update the AIR configuration, the backup is not necessary, since backups are
made automatically. After creating a back-up copy and copying in the new
configuration file (activating the configuration if using the installation tool),
either start the aird process, using the /usr/air/bin/start_air script, or,
if aird is already running, send the aird process the SIGHUPsignal. Use the
ps (1) command to determine the process ID of aird and use the kill (1)
command to send the SIGHUPsignal to that pid, as in the following example:

$ ps -el | grep aird

0sS 0 12954 1 0 39 24 26236 98 561 - 0:07 aird

$ kil -1 pid

By sending the SIGHUPsignal, you cause the aird process to break out of its

processing loop and reread the configuration file, thus adding the changes to its
internal work list.

173

UNICOS Resource Administration

3.4.6.7 Final Verification

Verify that the new monitoring functions are operating as expected. Wait until
all added functions have executed several times; the time to wait depends on

the configured execution rates for the functions. Use the airdet (8) command
to examine the records that have been logged pertaining to those functions, as
in the following example:

airdet -p dmf -dmt /usr/spool/air/logs/blog

If you receive messages, final verification of the process is complete.

3.5 Using the Report Generator s

3.5.1 Record Types

174

This section examines the use of the four report generator commands,
airprconf (8), airdet (8), airtsum (8), and airsum (8). The section includes a
discussion of the record types used as input for each generator, an explanation
of the output from each generator, and an analysis of a binary log file that
highlights how you can use these commands and how they interact.

The availability numbers produced by the AIR report generators indicate the
length of time a monitored product is available to a monitoring function.
Whether the reported availability is the true availability depends on the quality
of the monitoring functions and the AIR configuration. For example, if you
configure your functional tests to run once a day, the numbers reported and the
actual availability may be quite different for a product. Through careful crafting
of the monitoring functions, and thorough configuring of the systems, accurate
and detailed availability statistics can be obtained.

It is recommended that you read the man pages for the four report generators
before reading this section, and that you keep the text of the man pages
available for reference.

The four report generator commands provide extensive and tunable selection
criteria for the presentation of the availability statistics from the data gathered
by the automated incident reporting system (AIR). This data consists of the
binary records logged by the aird (8) process into its binary log file.

The following record types make up the contents of the aird binary log file:

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

SG-2302 10.0.0.2

Record type
Configuration header

Event

Heartbeat

Time-out

Description

When initiated, the aird process reads the
configuration file and translates the contents of
that file into its own internal processing worklist.
After completing the file translation, the aird
process logs a configuration header record that
delineates the contents of the configuration file
just processed. If the aird process receives a
SIGHUPsignal, it breaks out of its internal
processing loop and rereads the configuration file.
After processing the configuration file, the aird
process then logs another configuration header
record into its binary log file.

Upon the return of each configured monitoring
functions, the aird process logs an event
structure denoting the product and function
names, the start and end times of the function,
and the return type structure as specified in the
configuration file.

At a configured rate, the aird process logs a
heartbeat record from which subsequent AIR
system availability can be determined.

If a monitoring function exceeds the specified
TIMEOUTvalue, the aird process kills the test
and logs a message indicating the abnormal
termination.

The following list contains the AIR commands and descriptions of the reports

they provide:

Command

airprconf

airdet

airtsum

Description

Reads the configuration header records logged by
the aird process and prints the contents of the
configuration files that the records represent

A detailed reporting mechanism that reads and
prints event, heartbeat, and time-out records

Collates event records and prints a summary of
statistics for the configured monitoring functions

175

UNICOS Resource Administration

3.5.2 Output

3.5.2.1 Using the airprconf

3.5.2.2 Using the airdet

176

airsum Prints statistics on the availability of each
monitored product by using event and heartbeat
records

This section discusses the output information printed by each generator
command.

Note: Because the airprconf and airdet commands merely log available
statistics and do no collation or summarization, no interpretation of the
output they produce is needed. However, the reports produced by the
airtsum and airsum commands do require interpretation and this section
contains the explicit derivation for the numbers found in the reports.

Command

The default report generated by the airprconf (8) command contains the
following information:

e Time the configuration header record was written to the binary log file by
the aird process

e Number of types, messages, products, and functions defined
* Mapping of values and tags to the types
* Messages and functions defined for each product

For an example of the default report, see airprconf (8). Refer to Section 3.3.2,
page 141, for a discussion of the configuration file and its contents, and for
further information regarding the return types and their mappings.

If the -P option is specified, airprconf prints the configuration as it appears
in the configuration file as it was in that period. All information found in the
original configuration file is printed. Refer to Section 3.3.2, page 141, when
interpreting this output.

Command

The default report generated by the airdet command consists of all event,
heartbeat, and time-out records found in the aird binary log file. For each
record, the product and function names and the message type are shown. For
an example of a default report, see airdet (8).

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

SG-2302 10.0.0.2

The options for airdet allow you to change the selection of records and the
information displayed for each selected record.

The selection criteria contain the following capabilities:

* The -b and -e options let you specify the range of time within which the
records must fall in order to be selected. This option is helpful if you want
to analyze only certain time periods.

¢ The -p and -f options let you limit the printed records to those from the
given product or function, respectively.

* The -n option lets you specify a time so that the only records printed are
those whose elapsed time exceeds the specified time. This option provides a
back-end implementation of noticing for the AIR data. Noticing is the
capability to indicate, or provide notice, when a particular record’s elapsed
time has exceeded a specified time. This capability can be useful if you want
to highlight periods of time when a system may have been experiencing
performance problems.

* The -T and -O options let you isolate the specified return type tags. These
options are helpful if you are searching for specific as well as general
product status. Refer to Section 3.3.2, page 141, for an explanation of the
return type tags and what they indicate about their associated products.

The information criteria contain the following capabilities:

e The -I option outputs the elapsed time of the given record. If -l is
specified with the -n option, airdet verifies the specified status.

* The -t option outputs the time stamps (beginning and end) for the selected
records.

e The -m option outputs the text associated with the return type found in the
record. This further denotes the status of the selected record.

¢ The -h option provides headers for the record delineation.

You can use the options previously described in a myriad of ways to assist you
in analyzing the data collected by the AIR system. The airdet (8) man page
describes basic concepts and provides examples to help you easily analyze a
binary log file.

The following usage tips may be useful:
e When attempting to observe a particular range of time, use the -b and -e

options.

177

UNICOS Resource Administration

* When attempting to observe particular products or functions, use the -p or
-f options, respectively.

¢ When attempting to isolate product status, use the -T and -O options,
keying off the desired status type.

* When attempting to identify abnormal elapsed times, use the -n option.
You can use either the airtsum or airsum command with the -E option if
you need to isolate a certain period of time. This option prints summary
reports for each configuration header encountered. The default action is to
display only the summary information over the range of files specified on
the command line and not denote the smaller samples contained within.

Note: If the -E option is specified, both commands generate much more
information, depending on the number of SIGHUPsignals, machine boots,
and AIR system startups contained within the specified binary log file.

3.5.2.3 Using the airtsum Command

178

The airtsum command prints summary statistics for the monitoring functions.
This section discusses each column of information available within this report
and the options associated with those columns. Note that the first four columns
contain the default information printed in these reports.

Column Description
Product Name

Name of the monitored product. Each of the configured
products is displayed.

Function Name

Name of the monitoring tests. The monitoring functions
specified for each of the monitored products are displayed.

Total Executed

Number of monitoring tests that returned. This number is
really a count of the records logged by the aird process on
return of each specific monitoring function. This number
reflects the number of times that a specific monitoring function
was executed during the given sample time of AIR data.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

SG-2302 10.0.0.2

Time Tested

Time over which a specific function was monitoring its product.
This time begins at the start time of the first record logged for
the given function, and ends at the end time of the last record
logged for the given function.

From Time/Until Time

(Displayed using the -S option) Beginning and end times that a
specific function was monitoring its product. These times are
used in the calculation of the total time tested.

(Displayed using the -p option) Percentage of time that the
product was monitored by the specific function. This
percentage is calculated by dividing the total time the specific
function tested the product by the total time that UNICOS was
running. The total time that UNICOS was running is calculated
by subtracting the end time of the last record read from the
boot time of the system. The equations for these calculations
are as follows:

%_tested = total_time_tested | total_system_time
total_system_time = system_boot_time - last_end_time

Type/Number Returned

(Displayed using the -r option) Breakdown of each return type
for each monitoring function. Each return type and the number
of times that each type was returned are displayed for each
configured monitoring function. The return numbers indicate
the number of records logged by the aird process that
contained the specific return type.

In the following columns, intervals are determined by subtracting the end time
of the previous record of the same function type from the start time of the
current record:

Description

(Displayed using the -I option) Longest period of time
between executions of the specific monitoring function

179

UNICOS Resource Administration

Short Interval

(Displayed using the -s option) Shortest period of time
between executions of the specific monitoring function

Average Interval

(Displayed using the -a option) Average period of time
between executions of the specific monitoring function

Configured Interval

(Displayed using the -¢ option) Period of time that should
transpire between the execution of the specific monitoring
function, as specified in the configuration file

The airtsum and airsum commands also accept -b and -e options, which
specify sample times. They are used in the same manner as described
previously in the airdet discussion.

3.5.2.4 Using the airsum Command

The airsum command reports summary statistics on the availability of each of
the monitored products. The formats of report information are described in the
following sections.

3.5.2.4.1 Default Summary Information Section

180

The Default ~ Summary Information section contains default output from
the airsum command. Specifically, this section contains the following basic
availability information for each of the monitored products:

Column Description
Product Name

Name of the monitored product. Each of the configured
products are displayed.

Total Time Available

Entire time that the monitored product was available to its
monitoring functions.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

Total Time Unavailable

Entire time that the monitored product was unavailable to its
monitoring functions.

Relative Percentage Available

Percentage of time that the monitored product was available
with respect to the total time that the aird process was
available.

Real Percentage Available

Percentage of time that the monitored product was available
with respect to the total time that the system was available.

3.5.2.4.2 Product Availability Breakdown Section

SG-2302 10.0.0.2

When the records in the aird binary log file are processed, the final step is to
determine the availability state of each product. A product’s state indicates
whether it is available or unavailable, and also the time during which this
status is in effect. The state is determined not only by a change in availability,
but also by configuration restarts either through SIGHUPsignals or system
boots. The availability breakdown for a product is the complete record of any
availability changes; this section of the report contains availability breakdowns
for each product and can be printed using the -B option. The report contains
the following columns of information:

Column Description
Product Name

Name of the monitored product. Each of the configured
products is displayed.

Product Status

Status of each of the product’s states. The status can be either
available or unavailable

181

UNICOS Resource Administration

From Time/Until Time

Range of time that the specific product was in the current state.

3.5.2.4.3 Summary Information for Periods Section

182

You can print each column of information in the Summary Information for
Periods section by using the appropriate option, or you can print all columns
by using the -A option. The airsum command collects the statistics from the
product availability state breakdown. The report contains the following
columns of information:

Column Description

Product Name

Name of the monitored product. Each configured product is
displayed.

Total Time Available

(Displayed by using the -t option) Entire time that the
monitored product was available to its monitoring functions.

Total Time Unavailable

(Displayed by using the -T option) Entire time that the
monitored product was unavailable to its monitoring functions.

Longest Period Available
(Displayed by using the -I option) Longest period of time that
the specific product was in the available state.

Longest Period Unavailable
(Displayed by using the -L option) Longest period of time that
the specific product was in the unavailable state.

Shortest Period Available

(Displayed by using the -s option) Shortest period of time that
the specific product was in the available state.

Shortest Period Unavailable

(Displayed by using the -S option) Shortest period of time that
the specific product was in the unavailable state.

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

3.5.2.5 Log File Analysis

SG-2302 10.0.0.2

Average Period Available

(Displayed by using the -m option) Average period of time that
the specific product was in the available state.

Average Period Unavailable

(Displayed by using the -M option) Average period of time that
the specific product was in the unavailable state.

The -a and -u options let you specify the return type tags used in determining
the availability of the monitored products. By default, the airsum command
uses the PROD_AVAILABLEand PRODUNAVAILABLE return type tags for the
availability determination. For examples of all options, see airsum (8).

This section analyzes an aird binary log file to provide you with the basic
concepts involved in determining product availability from the data collected
by the AIR system.

The following steps lead you through the analysis of an aird binary log file.

The most direct way to determine the availability of each monitored product on
your system is to create the default report generated from the airsum
command, as in the following example command line:

airsum -h /usr/spool/air/logs/blog

The -h option provides headers for the printed information and the default
report contains the availability numbers for each monitored product on the
system, as well as for the aird process itself. The following output is produced
by the previous command line:

*** Total Availability Summary ***

Summary Information

Product Total Time Total Time Rel. Perc. Real Perc.
Name Available Unavailable Available Available

aird 04:22:43 00:00:00 100 99
tcp e 00:00:00 04:20:33 0 0
ngs 00:00:00 04:20:33 0 0
tapes 04:20:33 00:00:00 99 99

183

UNICOS Resource Administration

184

msgdaemon 04:15:33 00:00:00 97 97
urm 04:15:33 00:00:00 97 97
disk-integ 04:08:03 00:00:00 94 94

By interpreting this information, you can tell that the example binary log file
spans approximately 4 hours (most log files will be much longer than this).

This summary report indicates that the aird process was available the entire
time the system was up; thus the relative and real percentages are identical for
all products. If, for any reason, the aird process had not been running during
the entire system time contained in the sample, the relative and real percentages
would differ.

The availability times vary greatly among the products shown as never
unavailable. Products that are always available do not necessarily have the
same availability time values for a given sample for the following reasons:

1. Each monitoring function is executed at its individual, and commonly
different, rate, as specified within the configuration file.

2. The availability of the product is keyed off the time marks found in the
records logged by the aird process when each respective function returns
from execution.

Thus, a product showing a shorter availability time indicates that the product’s
monitoring functions are configured to execute at a slower rate than a product
showing a longer availability time. The disparity depends on the sample size
and the configured execution rate for a function; the disparity increases as
sample sets decrease in size and execution rates increase.

The following airtsum command line illustrates these concepts:

% airtsum -h /usr/spool/air/logs/blog
** Total Test Summary ***

Function Summary Information

Product Function Total Total Time

Name Name Executed Tested

tcp gatedexist 14 01:05:00
namedexist 14 01:05:00
ntpdexist 14 01:05:00
existence 14 01:05:00

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

SG-2302 10.0.0.2

smailexist 14 01:05:00
snmpdexist 14 01:05:00
Ipdexist 14 01:05:00
function 7 01:00:00
ngs existence 14 01:05:00
netexist 14 01:05:00
response 7 01:00:00
function 5 01:00:16
tapes existence 14 01:05:00
avrexist 14 01:05:00
response 7 01:00:00
msgdaemon response 7 01:00:00
existence 14 01:05:00
urm response 7 01:00:00
existence 14 01:05:00
function 5 01:02:00
disk-integ existence 14 01:05:00
function 5 01:02:00

The output from this command shows how varied testing can be for each
product. The frequency of executions indicates how often the function has
monitored the product. The kernel response test has been configured to execute
at a very high frequency, as indicated by the high number of total executions.
Also, because it has the highest frequency of execution, it also has the longest
testing time accumulated. Remember that these times converge as the sample
length is extended.

The testing times shown in the airtsum report and the availability times
shown in the airsum output differ greatly (approximately 1 hour versus
approximately 4 hours). The airsum report generator cause this variance by
assigning a product’s first state to the status returned by the first record
pertaining to the product. This first state extends from the system boot time to
the end time of the first record. In normal operations, the time between booting
the system and logging the first record is negligible. In this example,
approximately 1 hour previous to the time this snapshot of the binary log file
was taken, the mv_files script was executed. Therefore, the binary log file
contains information from only the last hour or so. The availabilities calculated
by the airsum command, however, reflect the fact that the system was booted
4 hours ago. In cases such as this, where the time between the system boot and
first record of the sample is no longer insignificant, you should gather all
information by specifying the last binary log file, in addition to the current
binary log file, on the report generator command lines.

185

UNICOS Resource Administration

186

The numbers in the airtsum report indicate the execution rate for each
function and you verify the information by using the airprconf =~ command,
which prints the current configuration file (see Section 3.3.4, page 150 for a
sample configuration file).

By observing the airtsum output and this file, you can see the results of the
different execution rates specified in the file. For example, the kernel response
function is set to a 1-minute execution rate while most of the other functions are
5 and 10 minutes. Refer to Section 3.3.2, page 141, for more information on
using this file.

If you return to the summary report generated by the airsum command, you
can see that, although NQS and TCP/IP are available, AIR marks them as
unavailable. To understand this discrepancy, you could run airsum to create
the product availability breakdown section, as follows:

% airsum -hB /usr/spool/air/logs/blog

*** Total Availability Summary ***

Product Availability Breakdown

Product Product From Until
Name Status Time Time

aird PROD_AVAILABLE May 1 08:37:44 1991 May 1 13:00:27 1991

tep PROD_UNAVAILABLEMay 1 08:37:44 1991 May 1 12:58:17 1991
ngs PRODUNAVAILABLE May 1 08:37:44 1991 May 1 12:58:17 1991
tapes PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:58:17 1991
msgdaemon PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:53:17 1991
urm PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:53:17 1991
disk-integ PROD_AVAILABLE May 1 08:37:44 1991 May 1 12:45:47 1991

In this example, the breakdown does not provide any additional information
because the sample is too short for much change in states. However, for larger
samples, this report allows you to view the availability breakdown for any
products you may be examining. For example, if the airsum summary report
indicates that the aird process is unavailable for some period of time, the
product availability breakdown report would show the time that the product
was available and unavailable.

Because this report has not revealed any additional clues, the next report to
examine is that created by the airtsum command. In particular, it shows the

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

functional breakdown in terms of return types or the status each function

marked the product, as follows:

% airtsum -hr /usr/spool/air/logs/blog

*** Total Test Summary ***

Return
Type

Function Summary Information
Product Function Total
Name Name Executed
tcp gatedexist 14
namedexist 14
ntpdexist 14
existence 14
smailexist 14
snmpdexist 14
Ipdexist 14
function 7
ngs existence 14
netexist 14
response 7
function 5
tapes existence 14
avrexist 14
response 7
msgdaemon response 7
existence 14
urm response 7
existence 14
function 5
disk-integ existence 14
function 5

PROD_UNAVAILABLE

PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE

PROD_UNAVAILABLE

PRODAVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE

PROD_UNAVAILABLE

PROD_AVAILABLE
PRODAVAILABLE

PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE
PRODAVAILABLE

PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE
PROD_AVAILABLE

Number Total
Returned Tested

Time

14
14
14
14
14
14
14
7
14
14
7
5
14
14
7
7
14
7
14
5
14
5

01:05:00
01:05:00
01:05:00
01:05:00
01:05:00
01:05:00
01:05:00
01:00:00
01:05:00
01:05:00
01:00:00
01:00:16
01:05:00
01:05:00
01:00:00
01:00:00
01:05:00
01:00:00
01:05:00
01:02:00
01:05:00
01:02:00

SG-2302 10.0.0.2

This output shows that only the gatedexist
returning a status of unavailable. For NQS, the function test was failing.

If an existence test continually returns an unavailable status, ensure that the

function (not all of TCP/IP) was

particular process the function is verifying is actually configured to exist on the
system. In the example, the running system does not have the routing daemon

187

UNICOS Resource Administration

configured. Thus, the gatedexist function should be disabled in the
configuration file.

If you do not properly configure monitoring functions for your system, the tests
might report incorrect information about the monitored products. Ensure that
all configured functions are appropriate for your system so that you may
quickly diagnose and correct errors.

Although the cause of the existence functions failures in the example has been
identified, the cause of the NQS functional test failure is still unknown. Use the
airdet command to produce more details on system activities. Use the
following command line to print all records for the NQS function test:

% airdet -hm -p ngs -f function usr/spool/air/logs/blog

Product Function Type of Message Message

Name Name Text

ngs function PROD_UNAVAILABLEReturned job did not contain expected output
ngs function PROD_UNAVAILABLEReturned job did not contain expected output
ngs function PROD_UNAVAILABLEReturned job did not contain expected output
ngs function PROD_UNAVAILABLEReturned job did not contain expected output
ngs function PROD_UNAVAILABLEReturned job did not contain expected output

3.5.2.6 Summary

188

Obviously, the batch job submitted to NQS was returned and does not contain
the expected output. At this point, you must log into the system and try to
determine why the output was not appearing correctly.

Note: If you do not properly configure monitoring functions for your system,
the tests might report incorrect information about the monitored products.
Ensure that all configured functions are appropriate for your system so that
you may quickly diagnose and correct errors.

In the example in the previous section, a short binary log file is analyzed. The
airsum command is used to first look at the global availability statistics for
each of the monitored products. This section discussed the concepts of real
versus relative percentages as they were displayed in the report, and examined
the derivation of the net system statistics. We also touched upon the reasons
that the availability numbers did not always match other products of similar
states, and used the airtsum and airprconf commands to convey the results
of the variable execution rates. As an aside, we talked about the assumption
made by the airsum command in calculating the total test time starting from

SG-2302 10.0.0.2

Automated Incident Reporting (AIR) [3]

SG-2302 10.0.0.2

the system boot time. We then went on to troubleshoot why various products
were marked unavailable, and used the breakdown report generated by

airsum , as well as the return type breakdown report generated by airtsum , in
our examination of the failing products. We pointed out the importance of
properly configuring the AIR system, and the results of an incorrect
configuration. And finally we went on to use the airdet command to isolate
the truly failing function and to determine the reason for that failure.

189

