Fair-share Scheduler [4]

4.1 Design Objectives

SG-2302 10.0.0.2

The fair-share scheduler (also referred to as fair-share) controls CPU resources
and allows the Cray Research system to be shared among groups in an
organized fashion. To accomplish this, the fair-share scheduler assigns the
system’s CPU resource to the most deserving processes.

Other system resources, such as usage of memory, tape, SSD, and system calls,
are monitored by appropriate system components. However, the fair-share
scheduler can be configured to add a penalty for usage of these resources as
well as the CPU resource.

This section includes information on the following topics:

* Design objectives, Section 4.1, page 191

* Fair-share feature summary, Section 4.2, page 192

¢ Components of fair-share, Section 4.3, page 194

* Using fair-share (setup and administration), Section 4.4, page 202
* Customizing fair-share (user exits), Section 4.5, page 224

e Tuning fair-share, Section 4.6, page 227

e Using CPU quotas, Section 4.7, page 237

The fair-share scheduler is designed to allow users with similar share allocations
(the number of shares allocated in the user database, or UDB) to utilize similar
amounts of the CPU resource, regardless of the number of active processes they
have executing. By contrast, traditional UNIX process schedulers allow users
with more processes to have a larger percentage of the system than their
priority might typically allow. The fair-share scheduler knows the aggregate
consumption rate of each user, and it does not allow users with many active
processes to utilize CPU resources at a higher rate than those users with only a
few active processes.

Another goal of resource scheduling is to provide adequate and predictable
response times. However, it is possible to have levels of system loading that
create a long response time, regardless of the scheduling mechanism used. It is

191

UNICOS Resource Administration

your responsibility to control the amount of work in process, using other
available methods.

Before the UNICOS 8.0 release, the Network Queuing System (NQS) queue
structures were the primary method of controlling the system workload.
Beginning with 8.0, the Unified Resource Manager (URM) can be used to control
the workload. Using URM ensures that the work the system is expected to do is
reasonable, and predictable responsiveness is achievable. For more information
on URM, see "Unified Resource Manager (URM)," Chapter 8, page 353.

Under the UNICOS operating system, users are allocated a portion of the CPU
resource specified by their share. To improve the fair distribution of resources
among users who are allocated equal shares, the concept of usage history has
been introduced. Usage history allows the scheduler to allocate proportionally
more resource to a user who has done less work in the recent past than one who
has done more. This rewards users who distribute their work over time and can
be valuable in environments where deadlines cause users to do work within a
short span of time (which increases the possibility of overloading the system).

The length of time during which past work affects the priority calculation is
determined by a decay factor (expressed as the half-life of usage history). This
controls the rate at which past usage is reduced as a factor in scheduling the
user’s processes. It can be set anywhere in a range from seconds to many days.

4.2 Fair-share Feature Summary

192

The fair-share scheduler and the portion of resource control represented by it
can be summarized as follows:

e Comprehensive user information is contained in the UDB. A number of
utilities and library routines are provided to maintain and view this
information and migrate from earlier mechanisms for user validation and
control.

e Two system calls, limits (2) and policy (2), provide an interface between
the kernel and user levels of the fair-share scheduler. A daemon,
shrdaemon (8), updates usage information in the UDB and recovers user
information from unplanned system halts. If user-level fair-share mode is
enabled, the daemon also updates Inode information in the kernel. The
login (1) command, the cron (8) command, and NQS access the new user
information and pass it on to the kernel by using the setshares () routine
to create Inodes (limits nodes) based on the UDB definitions.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

SG-2302 10.0.0.2

The system tracks usage of users or accounts with a user limits structure
called an Inode in kernel memory for each active user name on the system.
Users can access their system usage with the limits (2) system call.

Both the user and administrator have displays of scheduling activity
available through the shrview (1) command (as well as the command
shrmon (8)). A user’s profile can be viewed with the command udbsee (1),
and the administrator may use features of this command to help generate
reports or create source input, which, with further manipulation, can be
used by udbgen (8) for UDB maintenance.

At system startup or during operation, the administrator uses the
shradmin (8) command to set or alter the behavior of the fair-share
scheduler to tune the system or prepare for differences in operational
emphasis. (The shrdist (8) and shrsync (8) commands can be used to
adjust shares.)

A fair-share hierarchy can be defined to proportion resources among and
within organizations so that a predictable amount of system resources can
be allocated to each organization. This method of allocation is dynamic and
does not allow a portion of the resource to go unused if some of the
organizations are not presently active or are unable to utilize their share.
Users and administrators can display the fair-share hierarchy with the
shrtree (8) utility.

An optional Share by Account mode can be used to assign shares to account
IDs rather than to users as in the default Share by User mode. With this
feature, a user’s share allocation and resulting scheduling priority are
determined by the user’s account ID, which is set initially to the default
account ID for the user (in the UDB). Scheduling priorities are determined
by the current account ID as users change from one account to another
using the newacct (1) command.

Usage history to the degree desired is available the administrator. It allows
users or organizations who have equal shares but have utilized unequal
amounts of resource to come into balance by encouraging the load to be
spread over time rather than in a last-minute flurry of activity before a
deadline.

An optional CPU scheduling mode, user-level fair-share, provides a user exit
and duplicates kernel functionality at the user level. In this mode, the
fair-share scheduler’s calculations are performed by the fair-share daemon,
shrdaemon (8), instead of the kernel. shrdaemon replaces the kernel
functions that apply the scheduling policy algorithms. This optional mode is
enabled with the USRLEVLFSSlag in shradmin (8).

193

UNICOS Resource Administration

4.3 Components of Fair-share

Several components, both at the user level and in the kernel, work together to
accomplish the objectives of the fair-share scheduler. These are described in the
following sections and include the UDB, support functions, user and
administrator displays, administrator controls, hierarchical share, share
normalizing, and process scheduling.

4.3.1 User Database (UDB)

In resource control, all user profile information must be stored in a
comprehensive way. The UDB contains all the user information (factors) used
for the scheduler. The UDB factors used for the fair-share scheduler are as
follows. (For more information on UDB fields, see the udbgen (8) man page.)

Factor

Acids

Charges

Exit-time

Resource-group

194

Description

The UDB stores account IDs (acids) as a list of up
to 64 (set by MAXVIDS numeric account IDs or
account names separated by commas. If acids are
used, they must be added to the /etc/acid file
before udbgen is executed. The UDB acids field
is maintained by the administrator; it has the
following format:

acids =[+- :nl, n2, .. nn.

The UDB stores the long-term accumulated costs
from the fair-share scheduler. The UDB
shcharge field is maintained by the fair-share
scheduler; it has the following format:

shcharge : vo.ov:

Records the time that the user last completely
logged off the system (that is, the last time there
were zero processes owned by this user running
in the system). The UDB shextime field is
maintained by the fair-share scheduler; it has the
following format: shextime :n:

In a fair-share hierarchy, a user can be a member
of an entity known as a resource group. Resource

groups can be members of other resource groups.
Four levels are enabled by default; the maximum

SG-2302 10.0.0.2

Fair-share Scheduler [4]

SG-2302 10.0.0.2

Shareholder

Shares

Share-flags

Usage

number of levels is limited only by the
configuration, but system overhead increases for
each additional level. Resource groups can be
further divided by account IDs, or shareholders, by
using specific values in the UDB share-flags field
(see the "Shareholders" entry in this list).

Resource groups exist in the UDB with the
character "™*" as the password, ensuring that no
user logs in as a resource group. The UDB
resgrp field is maintained by the administrator;
it has the following format: resgrp: n:

Subdivision of a resource group, used when Share
by Account mode has been selected; also called an
account ID. In Share by Account mode, there
must be an entry in the UDB for each account ID
that is in use. These entries must correspond with
account ID (acid) numbers; that is, they must
exist in the /etc/acid file before udbgen is
executed (see the "Acids" entry in this list).

Each user of the system is allocated a number of
shares. This number has meaning only as a
proportional value; that is, a share represents the
proportion of system resources relative to all
other users or accounts within the same group.
The actual share values in the UDB are not
relevant in any other way. The UDB shares field
is maintained by the administrator; it has the
following format: shares: n:

Certain user entries in the UDB can represent an
entity other than a direct user of the system (such
as a resource group or a shareholder). The UDB
shflags field is used to denote these special
UDB entries. This field is maintained by the
administrator; it has the following

format: shflags =|+|-: octal: (The fair-share
scheduler now enforces correct usage of the
fair-share fields in the UDB.)

One principal factor that the fair-share scheduler
uses for establishing priority is a user’s previous
usage of the system. When a user is completely

195

UNICOS Resource Administration

4.3.2 Suppor t Functions

196

logged off the system, that user’s decayed usage
of the system is recorded in the UDB. The next
time the user logs in to the system, the login
process calculates a new decayed-usage value to
be installed in the system, based upon the
amount of time that has passed since the user last
logged out (see the "Exit-time" entry in this list).
The UDB shusage field is maintained by the
fair-share scheduler; it has the following

format: shusage: vv.vv:

In addition to the fair-share fields in the UDB, several special user accounts
(UDB entries) are necessary for the proper operation of the system, including
the Idle account, the UnKnown or unknown account, and resource group
entries. (See "Setting up system UDB entries," Section 4.4.4, page 209, for a list
of these special UDB entries.)

Idle processes are treated just like any other user of system resources in the
fair-share system and, as such, need an entry in the UDB. User ID 11 is
reserved in UNICOS for representing the idle usage of the system.

There must also be an entry in the UDB called UnKnown or unknown ; this entry
is used when no valid UDB entry for a user can be found.

Each resource group or shareholder (account ID) represented within the
fair-share hierarchy must also have an entry in the UDB. Resource groups and
shareholders are assigned shares, which are taken to be relative to the shares
allocated to other resource groups at the same level, and are a subset of the
shares in the next higher level in the fair-share hierarchy.

At the user level, the fair-share daemon shrdaemon (8) performs the following
activities:

* At 1-minute intervals, shrdaemon records in the UDB usage for each user
and resource group that has finished execution.

* At 5-minute intervals, shrdaemon checkpoints the kernel tables holding
fair-share usage information about running users and resource groups.

¢ When the UNICOS operating system is restarted after an unscheduled
shutdown, shrdaemon recovers user and group CPU consumption
information from the checkpoint file.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

At the kernel level, the fair-share scheduler performs the following activities:

* At configurable intervals (4 seconds by default), the fair-share scheduler
accumulates charges and updates usage information in the Inodes.

Note: In user-level fair-share mode, updating usage and Inode
information is done by the fair-share daemon rather than by the kernel.

e Every 1/60th of a second, CPU usage is accumulated and stored in the
Inodes of processes having had the CPU, and the p_sharepri ~ values are
adjusted based on usage.

* At l-second intervals, the share priority of each process is decayed
according to the rate determined by the nice value of the process.

The most significant factors affecting placement on the kernel run queue (high
or low) are as follows:

* The process’s resource usage during the last cycle, relative to other processes.

® The process’s proportion of machine shares relative to other users or groups
(active Inodes) at that time.

The scheduling calculations can lower, raise, or leave unchanged the position of
the process in the run queue. When this evaluation has been accomplished, the
processes at the top of the run queue are connected to a CPU.

In addition, the positions of all the processes in the queue are evaluated by
decaying their resource consumption at a rate determined by their nice values
(processes with smaller nice values move toward the top of the queue faster).
This has the effect of gradually moving processes to the top of the queue and
ensures that every process will be scheduled to run; note that only processes
which have not received the CPU recently actually move up in the queue. It is
necessary to balance the rate of migration to the top of the queue and the rate
of resource consumption so that relative priorities are remembered for a long
enough time period to prevent large numbers of processes from migrating to
the top of the queue.

4.3.3 User and Administrator Displays

SG-2302 10.0.0.2

Fair-share displays are generated by the shrview (1) command, the shrmon (8)
command, and the shrtree (8) command. In addition, users can view their
share control values by using the udbsee (1) command, which displays the
content of the UDB (with the exception of sensitive information).

197

UNICOS Resource Administration

4.3.4 Administrator

4.3.5 Fair-share Hierarchy

198

Note: The shrmon (8) command will not be available in future releases of the
UNICOS operating system. Its functionality has been replaced by the
shrview (1) command.

Controls

The shradmin (8) command changes scheduling parameters, decay rates, flags,
and other useful items. One of the intended uses of shradmin is to set
appropriate control parameters at startup so that you can alter the behavior of
the system to reflect current needs without resorting to recompiling modules or
other inefficient mechanisms. It is also possible to change scheduling
characteristics during system operation. This facility could be used to change
scheduling emphasis during portions of the day when, for example, mostly
interactive or batch work is encouraged.

Note: You must run shradmin before activating the fair-share daemon,
shrdaemon (8). For more information, see "Activating the fair-share
scheduler," Section 4.4.6, page 212.

You can use the -n option of shradmin (8) to lend more reliability to the
fair-share scheduler information in the UDB. This option specifies the interval,
in seconds, to be used for copying Inode information to the UDB. When this
feature is enabled, the fair-share daemon writes accumulated usage and charge
information from the Inodes to the UDB at the specified interval. For more
information, see the shradmin (8) man page.

The shrview (8) command monitors the operation of the fair-share scheduler at
a closer level of detail.

To turn off fair-share scheduling, see "Disabling the fair-share scheduler,"
Section 4.4.9, page 217.

A flat, or single-level, fair-share mechanism is inadequate for many
environments because it does not provide a convenient way to allocate shares
among organizations and then to the users within each organization. The
fair-share hierarchy grants each organization a part of the system, determined by
the proportional shares assigned to each. After this is accomplished, the
members of each organization can be allocated shares as though that
organization had exclusive use of the system. This makes the allocation of
shares within an organization easier; however, individual user share values are
not comparable across organization boundaries.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

4.3.6 Share Normalizing

SG-2302 10.0.0.2

Whenever the active user population changes, the shares assigned through the
fair-share hierarchy are converted to an internal value known as machine share.
This is the proportion of the available resources to which a group or user is
entitled. (You can see these values in the fair-share displays.) Because they are
normalized across organizations with respect to each organization’s share
proportion, machine-share relative values can be directly compared; user shares
cannot. Machine shares are recomputed whenever a user logs in or out or when
an organization becomes active or inactive. For more information, see "Share
normalizing," Section 4.3.6, page 199.

You can activate the optional Share by Account mode by using shradmin (8) to
set the SHAREBYACC3cheduling flag. In this mode, fair-share determines the
relative share based on the account ID rather than the user ID (UID). The initial
association is based on the default account ID, which is the first ID in the list of
valid account IDs for that user in the UDB entry. In Share by Account mode,
the newacct (1) command reassociates the user with the new account ID, which
allows the user to move within the fair-share hierarchy.

If Share by Account mode is enabled, the fair-share hierarchy must have
resource-group Inodes at the head of the hierarchy chain; the hierarchy chain
must terminate with shareholder (account ID) Inodes.

You can use the shriree (8) command to display and verify the fair-share
hierarchy; see "Using the shrtree (8) command," Section 4.4.11.3, page 222, for
more information.

In Figure 4, page 200, three groups have been given portions of the system
resources. Groups G1 and G3 have 25%, while Group G2 has 50%. This
illustration is a snapshot of a particular instant in time when the active group
membership is as shown. Within each group, shares have been allocated based
on some arbitrary range of values. G1 is based on the range 0 through 1000, G2
on the range 0 through 10, and G3 on the range 0 through 100, to show that the
normalizing function works in mixed-range situations.

The columns headed "G Sh" show the shares allocated to the currently active
users from each group. Column "G %" shows the percentage of the group’s
resource to which each user is entitled, based on the allocated shares and the
active group membership. (The percentage will vary as group members arrive
and depart because the goal is to distribute the system proportion fairly
according to each user’s share among the active users at a given instant.)

199

UNICOS Resource Administration

200

The column headed "M %" shows the actual machine share each user should
have, based on the group in which the user exists. The totals at the bottom of
the figure show that the sum of machine shares from each group adds up to the
share allocated to the group.

Group share total = 100%

Gl =25% G2 =50% G3 =25%
G Sh G% M% G Sh G% M% G Sh G% M%
700 70 17.5 1 10 5 40 50 12.5
150 15 3.75 2 20 10 25 31.25 7.8125
150 15 3.75 3 30 15 15 18.75 4.6875
4 40 20
G1 Total: 25% G2 Total: 50% G3 Total: 25%

alla26

Figure 4. Share normalizing

Normalizing is accomplished as follows:

1. Calculate the number of shares active, SA ¢ within each group g for each
member m: °

mI=mazr

SA, Z share,,

m=1
(4.1)
2. Calculate machine share, MS, , for each member m of group g:
MS, = Group_proportiong X (share, <+ SA q)

This example considers only one hierarchy level. When more than one level is
being supported on a given system, the method shown above is recursively
applied down the hierarchy tree until the MS, of each group and user node has
been calculated. As more levels are added, however, there is a corresponding
increase in the system overhead required to perform all the calculations for each
cycle. See "Tuning the fair-share scheduler,” Section 4.6, page 227, for more
information on this overhead.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

4.3.7 Process Scheduling

The purpose of process scheduling is to ensure that all system processes are
running and to assign the remaining CPU resource to user processes. As
discussed previously, this means that the CPU is assigned to the process at the
top of the run queue. As resources are utilized, processes move down the
queue, and as processes age, they move up the queue. This change in queue
position is also influenced by the user’s share of the system, the interaction
between shares, resource consumption, and the passage of time. This process
scheduling is the essence of the fair-share scheduling process.

4.3.8 Fair-share Limits Node (Lnode)

SG-2302 10.0.0.2

When a user enters the system (through NQS, cron , rsh , or interactive access)
or exits the system, the system tracks that user’s usage as follows:

1.

The system creates a user limits structure called an /node (limits node) in
kernel memory. In Share by User mode, there is an Inode for each active
user on the system; in Share by Account mode, there is an Inode for each
active account ID (shareholder). System usage from the relevant UDB entry
is passed to the kernel by the setshares () routine, which calls the

limits (2) system call.

. The time elapsed since the user last exited the system is determined, and

the user’s or shareholder’s usage is aged by this last exit time. The
fair-share scheduler uses this calculated decayed usage in the adjustment of
process priorities. The decay rates can be configured by the system
administrator; see shradmin (8) for more detail.

If necessary, the system creates Inode entries representing the ancestors
(controlling levels in the fair-share hierarchy) of the user’s Inode.

Once the Inode chain has been created and the user’s login shell has been
spawned (for both interactive and batch usage), all subsequent processes of
the session reference (are attached to) the terminal Inode. However, in Share
by Account mode the newacct (1) command can be used to attach a
process to a different Inode.

The fair-share daemon, shrdaemon (8), updates the user database every 60
seconds (by default). Information from any Inode structures that have no
attached process table entries is recorded; these Inodes are subsequently
released. When the Inode structure is removed (if a user or group has no
running processes), shrdaemon records the exit time in the shextime field
of the user’s UDB entry, and records the usage in the shusage field.

201

UNICOS Resource Administration

6. To prevent loss of current usage information stored in the Inode (for
example, because of a system interrupt), shrdaemon writes all the active
Inode structures to the checkpoint file /etc/Inodes.chkpt every 5
minutes.

7. In user-level fair-share mode, the scheduling policy algorithms are applied
to Inode data by the fair-share daemon rather than by the kernel.

4.3.9 Fair-share and NQS

Fair-share data can also be used by the Network Queuing System (NQS) to
select batch jobs for execution. This makes it possible for the fair-share scheduler
to influence both queued and running jobs. The amount of influence fair-share
has on NQS job scheduling is established by NQS scheduling parameters.

Sites running fair-share NQS should read the following section on fair-share
setup and administration ("Using the fair-share scheduler," Section 4.4, page
202). For information on start-up and administration of fair-share NQS, see the
gmgr (8) man page and the UNICOS NQS and NQE Administrator’s Guide,
publication SG-2305.

4.3.10 Fair-share and URM

On a system using the fair-share scheduler, the Unified Resource Manager
(URM) uses share values in its priority calculations for NQS job initiation
recommendations. During the batch job ranking phase, if the fair-share
weighting factors for machine share, usage, and share entitlement are nonzero
values, URM computes a fair-share priority value based on effective share and
past usage. This priority is combined with other scheduler weighting factors to
determine the job selection order.

For more information on URM setup and administration, see "Unified Resource
Manager (URM)," Chapter 8, page 353.

4.4 Using the Fair-share Scheduler

The following sections describe how to set up, activate, and monitor the
fair-share scheduler, including the following tasks:

e Setting up a fair-share hierarchy

¢ Creating resource groups

202 SG-2302 10.0.0.2

Fair-share Scheduler [4]

¢ Allocating shares to users

® Setting up Share by Account mode

e Setting up system UDB entries

e Activating the fair-share scheduler

* Modifying fair-share scheduler settings
* Enabling resource group administrators
¢ Disabling the fair-share scheduler

* Monitoring the fair-share scheduler

The fair-share scheduler has two modes of operation: Share by User and Share
by Account. In the default Share by User mode, the fair-share scheduler
calculates priorities and costs for each active user. In the optional Share by
Account mode, fair-share calculates priorities and costs for each active account
ID. If a user works on different projects, Share by Account mode allows that
user to switch between projects, which are set up as accounts, by using the
newacct (1) command. This allows the user to work under a different set of
fair-share priorities for each project.

The steps to set up and activate Share by Account mode are similar to those for
Share by User mode, but there are some significant differences. The hierarchy of
resource groups can be set up the same way. In addition, you must create UDB
entries for each valid shareholder, or account ID, and assign share allocations to
them. The following sections describe the procedures for setting up Share by
User mode. See "Setting up Share by Account mode," Section 4.4.5, page 211,
for specific information on setting up this optional share allocation method.

4.4.1 Setting up a Fair-share Hierarchy

SG-2302 10.0.0.2

This section describes how to establish a fair-share hierarchy. An example
hierarchy is used throughout the section for demonstration purposes; note that
actual division of resources on Cray Research systems will differ for each
installation.

Although using a multilevel fair-share hierarchy is optional, the process of
share allocation is simplified by organizing users in resource groups. In Share
by User mode, the fair-share hierarchy has users at the end of the resource
group chain; in Share by Account mode, the hierarchy has projects or groups,
also known as account IDs, at the end of the chain.

203

UNICOS Resource Administration

204

Resource group chains are created for important divisions of users at the site
(for example, different divisions, projects, or physical locations). As an example,
site ACME divides UNICOS resources into three categories for three different
projects: Projects 1, 2, and 3. Each of these projects must be assigned the
appropriate proportion (share) of the system. In addition, system maintenance
functions must receive enough resources to accomplish their tasks. The
following figure shows the desired division of resources:

ACME system

Project 1 Project 2 Project 3 Maintenance
Project Project
1A 1B
Project Project Project Project System
1A 1B 2 3 maintenance
users users users users accounts

al0166

Figure 5. Example of system resource division for fair-share

Four levels of hierarchy are available by default (the number of levels may be
changed by using shradmin -G). The first level is permanently assigned to
root . Additional levels of resource groups can be defined by creating a
resource group that references its parent resource group in the UDB.

Note: Users or shareholders must not be connected directly to the root Inode.
There must be at least one level of resource groups above the user or
shareholder level. When this rule is not followed, the shrtree (8) command
issues a warning message about referencing ROOTdirectly.

When designing a fair-share hierarchy, keep it as simple as possible. You can
make later refinements to the hierarchy as needed without having to change
other fair-share parameters. For information on how to make UDB or hierarchy

SG-2302 10.0.0.2

Fair-share Scheduler [4]

changes on a running system, see "Modifying fair-share scheduler settings,"
Section 4.4.7, page 215. For information on how to display the fair-share
hierarchy, see "Using the shrtree (8) command," Section 4.4.11.3, page 222.

4.4.2 Creating Resource Groups

SG-2302 10.0.0.2

The first step in creating a usable fair-share hierarchy is to create UDB entries
for the resource groups. All resource groups must have an entry in the UDB.
(Use the udbgen (8) command to create these entries.) The following guidelines
apply to resource groups:

® FEach resource group must have a unique user ID (UID). It is helpful to use a
unique range of UIDs so the resource groups are easy to distinguish. To
prevent accidental logins for the resource group’s UID, do not specify a
password (the default encrypted password is the character "™*").

* Each resource group must be assigned shares relative to the shares allocated
to other resource groups at the same level of the hierarchy. A common
technique would be to apportion the shares among resource groups at the
same level such that the total number of shares adds up to 100 or 1000 (for
example, 50-50 or 700-200-100); however, any numbers can be used.

* Resource groups must have their shflags field in the UDB initialized to
040000. (The fair-share scheduler now enforces correct usage of the
fair-share fields in the UDB.)

* For each resource group, the resgrp field indicates the UID of the
controlling resource group (that is, the resource group above it in the
hierarchy chain). Resource groups can belong to other resource groups, as
explained on Section 4.3.1, page 194. Top-level resource groups (chain
leaders) should have this field set to the root UID, which is always 0.

Because resource groups are defined in the UDB with the ordinary user entries
and shareholders (account IDs), it is recommended that you establish a naming
scheme to help distinguish resource group entries from user and shareholder
entries and to avoid use of identical names. One convention that works well is
to capitalize the first character of the names of the resource groups.

Note: A resource group entry for a system group is required for the system
UDB entries such as root , cron , and system daemons. This group is often
called system or admin (group Maint is used at example site ACME).

For the example site, the following project names are used as resource group
chain leaders: Projl , Proj2 , and Proj3 . Table 30 contains the project names,
their desired proportion of the system, and their equivalent share value. A

205

UNICOS Resource Administration

206

separate share of the system has also been reserved for maintenance (Maint). A
total share value of 1000 is distributed among the projects in the desired
proportion.

Table 30. Share division among resource groups

Project Proportion Share value
Maint 10% 100

Proj1 50% 500

Proj2 25% 250

Proj3 15% 150

Total 100% 1000

The UDB entries for these resource group chain leaders can be created by using
udbgen (8) with the following directives:

create:Maint:uid:999:gid:10:passwd:*:shflags:040000:shares:100:resgr p:0:
create:Projl:uid:111:gid:20:passwd:*:shflags:040000:shares:500:resgr p:0:
create:Proj2:uid:222:gid:30:passwd:*:shflags:040000:shares:250:resgr p:0:
create:Proj3:uid:333:gid:40:passwd:*:shflags:040000:shares:150:resgr p:0:

A comment field can be used to include an explanation for the UDB entries, but
that was not done in this example. The value used in the gid field is a
site-dependent group ID (GID); at least one GID must be specified, or warning
messages will occur. The passwd field has been set to the character "*" to
ensure that no one is able to log in to a resource group account. Notice the
shflags value of 040000. This value marks these entries as resource groups.
Also note that the shares field contains the share value numbers from Table 30.

Additional levels of resource groups can be defined by creating a resource
group, as in the first example, including the name or user ID of the parent
resource group in the resgrp field. (Four levels are available by default; use
the shradmin -G command to increase this amount as desired.) For example,
site ACME would subdivide resource group Projl into two resource groups,
Proj1A and Proj1B , using the following udbgen directives:

create:ProjlA:uid:444:gid:20:passwd:*:shflags:040000:shares:500:resg rp:111:
create:Proj1B:uid:555:gid:20:passwd:*:shflags:040000:shares:500:resg rp:111:

SG-2302 10.0.0.2

Fair-share Scheduler [4]

Each new resource group now has 500 shares, or, half the resources of Projl
(1000 was used as the total share value for this level). The resgrp field is set to
the UID of Proj1 (111) to mark these resource groups as shareholders of Proj1 .

4.4.3 Allocating Shares to Users

SG-2302 10.0.0.2

The next step in setting up fair-share allocations is to decide which users belong
to each resource group and assign them to the appropriate group with an
appropriate share value. Within each resource group, the share values are
relative to each other. A convenient total share value, such as 100 or 1000, will
make the job of assigning proportional shares easier. However, any number can
be used for the total share value; only the relative values are important.

The allocation of shares in the UDB should occur as follows:

1. If Share by User mode will be enabled, set the resource group of each user
(the resgrp field) to the name of that user’s controlling resource group.

2. If Share by Account mode will be enabled, ensure that each user has a list
of valid account IDs in the acids list (the acids field) of the UDB; at least
one entry is required in this list. Fair-share uses the first account ID in the
list as the user’s default, or initial, account. (See "Setting up Share by
Account mode," Section 4.4.5, page 211, for more information.)

3. Allocate each user and shareholder entry in the UDB a number of shares (in
the shares field). The exact number is not critical, but it is convenient to
pick a value that could later be adjusted up or down. (For example, each
user could be allocated 100 shares.)

You can use the udbgen command to analyze share resource assignments in the
UDB and report any problems. For Share by User mode, use the following
command to analyze the default UDB in the /etc directory:

udbgen -a -R

For Share by Account mode, use the following command to analyze share
resource groups based on the acids field instead of the resgrp field:

udbgen -a -A

Table 31 shows the division of shares for the example site.

207

UNICOS Resource Administration

208

Table 31. Share division within resource groups

Group User
Maint ul
u2
u3
us
Projl
Proj1A u5
ué
Proj1B u7
u8
Proj2 u9
ulo
ull
ul2
Proj3 ul3
ul4
uls
uleé

Proportion
25%
25%
25%
25%

25%
25%
25%
25%
50%
30%
10%
10%
25%
25%
25%
25%

Share value

25
25
25
25

50
50
50
50
50
30
10
10
25
25
25
25

These entries show, for each resource group, the users in the group ("User"
column), the percentage of resources each user is to have within the group
("Proportion” column), and the individual share value equivalent to the
proportion ("Share value" column). For each group, a total share value of 100

was used.

The following udbgen directives update the UDB to reflect this division of

resources (only Share by User mode will be enabled):

update:ul:resgrp:999:shares:25:
update:u2:resgrp:999:shares:25:
update:u3:resgrp:999:shares:25:
update:u4:resgrp:999:shares:25:
update:u5:resgrp:444:shares:50:

SG-2302 10.0.0.2

Fair-share Scheduler [4]

update:u6:resgrp:444:shares:50:
update:u7:resgrp:555:shares:50:
update:u8:resgrp:555:shares:50:
update:u9:resgrp:222:shares:50:
update:ul0:resgrp:222:shares:30:
update:ull:resgrp:222:shares:10:
update:ul2:resgrp:222:shares:10:
update:ul3:resgrp:333:shares:25:
update:ul4:resgrp:333:shares:25:
update:ul5:resgrp:333:shares:25:
update:ul6:resgrp:333:shares:25:

The resgrp field for each entry is set to the UID of the resource group (Maint
is 999, Proj1A is 444, ProjlB is 555, Proj2 is 222, and Proj3 is 333). The
specified resource group and user entries must already exist in the UDB before
these update directives can be executed.

4.4.4 Setting up System UDB Entries

4.4.4.1 Idle Account

SG-2302 10.0.0.2

System UDB entries such as Idle , root , and system daemons have special
requirements for the resource group and shares fields. This section describes
the following accounts:

e |dle account
e UnKnown or unknown account

® Other system accounts (root , cron , system daemons, and so on)

A special account, called Idle , is required for the fair-share scheduler to work
correctly. (During initial installation of the UNICOS operating system, the UDB
initialization process sets up a correct Idle entry by default.) The following
guidelines exist for the Idle account:

e The UID for the Idle account (the uid field in the UDB) must be 11.

¢ The ldle account must be assigned no shares (the shares field must be
omitted or set to 0).

¢ The controlling resource group (the resgrp field) must be 0, which is the
UID of root .

e The acids field must be set to a null value (that is, acids::).

209

UNICOS Resource Administration

e The shflags field must be 0. (The fair-share scheduler now enforces correct
usage of the fair-share fields in the UDB.)

The following example shows a sample Idle account for site ACME:

Idle:uid:11:comment:System Idle:passwd:*:gids:0:acids::resgrp:0:shflags:0:

Note: It is critical to the proper operation of the system that only the Idle
entry be allocated zero shares in the UDB.

4.4.4.2 UnKnown or Unknown Account

The UDB must contain an entry called UnKnown or unknown ; this entry is used
when no valid UDB entry for a user can be found. You must add this entry to
the UDB before enabling the fair-share scheduler.

The following example shows a sample unknown account for site ACME:

unknown:uid:12:passwd:*:gids:0:acids::resgrp:999:shflags:0:shares:1:

4.4.4.3 Other System Resource Accounts

210

Each system account requires a resource group entry in the UDB. This includes
entries for root , cron , the operator, NQS, system daemons, and other system
user IDs. These system UDB entries must be assigned to the system or
administrator resource group (often called system or admin ; group Maint is
used at example site ACME). In addition, if Share by Account mode will be
enabled, the acids field of each system entry should be set to the account ID
of the system or administrator shareholder.

For initial installations of the UNICOS operating system the UDB skeleton file
creates a default list of resource group and user accounts in the UDB, and sets
the resgrp field to O (root).

The UDB skeleton file is located in the file /usr/src/skl/c1/etc/initudb
It sets up the following accounts: root , sync , bin , sys, adm, cron , ngs,
daemon, operator , ce, Idle , unknown, osi , and nobody .

Note: Upgrading sites should verify their UDB system account entries
against the UDB skeleton file.

To enable a fair-share hierarchy, you must add the UDB entry for a system or
administrator resource group and set the resgrp field of the system accounts
to the UID of this resource group. The resgrp field is used to link the resource
tree of the hierarchy.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

If Share by Account mode will be enabled, the acids field of the root UDB
entry should be set to the UID of the system maintenance or administration
resource group (for example, 999 at site ACME specifies the Maint resource

group).

4.4.5 Setting up Share by Account Mode

SG-2302 10.0.0.2

By default, the fair-share scheduler runs in Share by User mode, in which a
user’s relative priority is determined by the resgrp field in the UDB. However,
you can activate the optional Share by Account mode by using the shradmin (8)
command to set the SHAREBYACC3cheduling flag. In this mode, fair-share
associates and sets priorities based on the shareholder, or account ID (acids
field in the UDB). The initial association is based on the default account ID.
This is the first ID in the list of valid account IDs for a user in the UDB entry.

Administrators have the option of assigning shares to users (Share by User
mode) or accounts (Share by Account mode). If a user works on different
projects, Share by Account mode allows that user to switch between projects,
which are set up as accounts, by using the newacct (1) command. This allows
the user to work under a different set of fair-share priorities for each project.

Enabling Share by Account mode is similar to enabling Share by User mode.
The hierarchy of resource groups is set up the same way. However, the
following additional administration tasks are necessary to set up Share by
Account mode:

* Create a UDB entry for each valid account. It is helpful to use a unique
range of UIDs so the account IDs are easy to distinguish. The UIDs for
account ID entries (shareholders) must not overlap with resource group or
user entries in the UDB.

* Set the shflags field for each account ID entry to 01000000. (The fair-share
scheduler now enforces correct usage of the fair-share fields in the UDB.)

* Assign share allocations to each valid account ID entry.

* Assign a passwd of "*" to each account ID entry so no user can log in as a
resource group.

* Verify that each account ID entry has been added to the /etc/acid file
before udbgen (8) is executed.

e Set the resgrp field of each account ID entry in the UDB to the appropriate
resource group entry. The resgrp field is used to link the resource tree of
the hierarchy.

211

UNICOS Resource Administration

® Specify the first account ID in the acids field of each user entry as the
name of the user’s default account ID. Each user must have at least one
account ID in this field; enter a comma-separated list of account IDs for
users who can change to different accounts.

* Verify that the Idle UDB entry specifies a null account ID field; that is, the
acids field should be omitted or set to acids::

* Set the acids field for the root UDB entry to the UID of the system
maintenance or administration resource group (for example, 999 at site
ACME specifies the Maint resource group).

e If there are more than four levels in the fair-share hierarchy, including
account ID entries, use the shradmin -G command to increase the number
of hierarchy levels.

4.4.6 Activ ating the Fair-share Scheduler

212

To activate the fair-share scheduler during system startup, the system
configuration script must be modified to execute the shradmin (8) command
with the appropriate options and start up the fair-share daemon,

shrdaemon (8). (To change and reactivate fair-share on a running system, see
"Modifying fair-share scheduler settings," Section 4.4.7, page 215.)

There are two methods to modify the system configuration script: using the
UNICOS Installation and Configuration Menu System, or editing the file
/etc/config/daemons

If you are using the menu system, access the following menu to make this
change:

Configure System ->
System daemons configuration ->
System daemons table

If you are not using the menu system, access the file /etc/config/daemons

to make this change. An example of /etc/config/daemons is as follows:
letc/config/daemons excerpt
group tag start kill pathname arguments
SYS1 share YES * /etc/shradmin options
SYS1 share YES * /etc/shrdaemon

SG-2302 10.0.0.2

Fair-share Scheduler [4]

These lines control initiation of /etc/shrdaemon (the fair-share daemon) and
the administrator command /etc/shradmin , which activates the fair-share
scheduler using the options described in the following paragraphs.

Note: The /etc/shradmin command must be run before the
/etc/shrdaemon command.

4.4.6.1 Setting Scheduling Options and Flags

SG-2302 10.0.0.2

The following shradmin options are important for enabling fair-share
functions. (See the shradmin (8) man page for a complete description of all
options; see "Tuning the fair-share scheduler," Section 4.6, page 227, for
information on performance impact of shradmin values.)

Option Description

-F (flags) Sets the fair-share control flags in the kernel sh_consts
structure. The following flags are available:
NOSHARE (001) Turns off the fair-share

scheduler. Leaves accumulated
charges in the UDB unless they are
cleared by the system administrator.

ADJGROUPS (002) Specifies adjustments by
group IDs (group share allocation).

LIMSHARE (004) Specifies limits on maximum
share.

SHAREBYACCT (010) Specifies Share by Account
mode.

NOSCHED (020) Gathers fair-share charges and

usage information, but does not use
these values for CPU scheduling.

USRLEVLFSS (0100) Specifies user-level fair-share
mode; in this mode, the fair-share
daemon (shrdaemon (8)) performs
the share calculations and updates
the Inodes. This will be the default
mode in future releases of the
UNICOS operating system.

-K (half-life) Establishes the length of time that past usage of
resources are remembered. Longer decay rates cause the

213

UNICOS Resource Administration

letc/config/daemons

group tag
SYS1 share
SYS1 share

214

start
YES
YES

scheduler to distribute resources fairly over a longer period of
time. This option can have a significant impact on interactive
responsiveness; see "Tuning the fair-share scheduler,” Section 4.6,
page 227, for more information.

Note: Never set the -K option to a value lower than 1 hour
(3600 seconds).

(delta) Sets the major fair-share adjustment cycle to the specified
value. This means that once every cycle, the resource usage of all
users and groups active on the system is evaluated, and, if the
ADJGROUPSag is set, the group hierarchy is evaluated to
determine what adjustments are necessary to achieve proper
group sharing.

(tick) Sets the cost per tick. The usage field of the user owning
that process is increased by this amount.

(maxushare) Limits how much past usage can be accrued; it is
used only when the LIMSHAREflag is set. See "Tuning the
fair-share scheduler,” Section 4.6, page 227, for more information.

(mingshare) Specifies the deviation between group share allocation
and the actual rate of resource consumption allowed before the
scheduling algorithm tries to compensate. It has an effect only
when the ADJGROUPSag is set. See "Tuning the fair-share
scheduler," Section 4.6, page 227, for more information.

(sharemin) Sets a minimum allocation of machine shares for any
active Inode (user or account ID). See "Tuning the fair-share
scheduler,” Section 4.6, page 227, for more information.

An example of ACME's /etc/config/daemons is as follows:

excerpt

kill

*

*

pathname
letc/shradmin
/etc/shrdaemon

arguments
-t100 -FO6 -K3600s -X3.0 -Y.85 -Z .002

The -t option sets the cost per tick to 100. The -F option enables Share by User
mode by setting the fair-share control flags; that is, the ADJGROUP&nd
LIMSHAREflags are set, while the NOSHARHlag is cleared. The -K option sets
the usage decay rate to a half-life of 3600 seconds. The -X option sets maxushare

to 3.0, which decreases the possibility that users with very low past usage can
monopolize the CPU. The -Y option sets mingshare to .85 to decrease the

deviation between group share allocation and the actual rate of resource

SG-2302 10.0.0.2

Fair-share Scheduler [4]

4.4.7 Modifying Fair-share

SG-2302 10.0.0.2

consumption. The -Z option sets sharemin to .002, which guarantees each user
or shareholder a minimum machine share of 0.2%.

Scheduler Settings

Elements of fair-share configuration that can be changed on a running system
include the following;:

* Maximum levels in the fair-share hierarchy

* Distribution of shares within resource groups and account ID shareholders
e Existing UDB entries, such as the acids , resgrp , or shares fields

* Addition or deletion of UDB entries

e All shradmin (8) options (tuning parameters)

Use the shradmin -G command to change the maximum number of levels for
the fair-share hierarchy (there are four levels by default). See the shradmin (8)
man page for more information.

For information on allowing other users to administer share distribution within
a resource group, see "Enabling resource group administrators," Section 4.4.8,
page 216.

Use the udbgen (8) command to analyze share resource assignments in the UDB
and report any problems. For Share by User mode, use the following command
to analyze the default UDB in the /etc directory:

udbgen -a -R

For Share by Account mode, use the following command to analyze share
resource groups based on the acids field instead of the resgrp field:

udbgen -a -A
See the udbgen (8) man page for more information.

To make and enable share allocation changes on a running system, use the
shrdist (8) command to make changes. Users do not have to log out in order
for these changes to take effect. (To make substantial changes, you can also use
the udbsee (1), udbgen (8), and shrdist (8) commands; see the man pages for
more information.)

215

UNICOS Resource Administration

Note: In order to change from Share by User mode to Share by Account
mode (or vice versa), it is recommended that the system be brought to
single-user mode, then restarted with the appropriate shradmin options.
Changing between fair-share modes on a running system can cause
unpredictable results for priority calculations.

If your site will alternate between fair-share modes, ensure that each user
entry in the UDB sets both the resgrp field and the acids field to the
appropriate values. See "Setting up Share by Account mode," Section 4.4.5,
page 211, for more information on setting these fields.

4.4.8 Enabling Resource Group Administrator s

216

System administrators may find it useful to set up separate administrators for
each resource group. This capability allows the owner of a resource group (for
example, the project manager) to modify share allocations within the resource
group without requiring system administrator intervention to do so. For
example, if project A changes priority over time, or project B needs more shares
towards the end of the month, a resource group administrator could make the
necessary changes without system administrator intervention. This is done by
setting up the shrdist.auth file, which enables the listed resource group
administrators to reallocate shares within the group.

To redistribute shares within a resource group, use the shrdist (8) command.
For this command to work properly, you must create an authorization file called
/etc/shrdist.auth . The shrdist.auth file consists of two fields: the login
name of the resource group owner and the name of the resource group or
groups.

The following lines from a shrdist.auth file allow user mlb to administer
shares for two resource groups, Mktg and tng . If a resource group is not
specified (with the -g option), the first match (in this case, Mktg) is used.

mib Mktg
mib tng

The shrdist (8) command can be used to adjust shares. The shrdist
command operates in both batch and interactive mode. To reallocate share
values in interactive mode, perform these steps:

1. Use the following command to access the share allocation database:

letc/shrdist

SG-2302 10.0.0.2

Fair-share Scheduler [4]

2. Position the curser at the rightmost digit of the share allocation field for the
desired account and enter the new values.

3. Enter u to update the share allocation database.
4. Enter g to exit the shrdist command.

You can also perform updates in batch mode by using the shrdist -b
command. However, this method only allows you to update one account for
every execution of the shrdist command. Test mode is also supported
(shrdist -p). This capability is similar to test mode for the udbgen (8) and
udbsee (1) commands.

4.4.9 Disabling the Fair-share Scheduler

SG-2302 10.0.0.2

To turn off the fair-share scheduler after it has been enabled, perform the
following steps:

1. Execute the following shradmin command:
shradmin -F 021

This sets the NOSHARHlag, which specifies that no fair-share scheduling is
done. It also sets the NOSCHEMag, which prevents the marooning of
running processes by ignoring the shcharge and shusage information in
the CPU scheduling algorithm.

2. Wait for at least 1 minute. This delay allows shrdaemon enough time to
update the fair-share usage and charge information in the UDB.

3. Find the process ID (PID) of the fair-share daemon, shrdaemon , as follows:
ps -efl | grep shrdaemo
(The ps command truncates command names at 8 characters.)

4. Disable updating of fair-share information in the UDB by stopping the
shrdaemon process with the SIGTERMsignal, as follows:

kill -27 PID_of shrdaemon

Turning off the fair-share scheduler in this manner leaves all fair-share usages
and charges in the UDB. If a clean UDB is desired (for example, at the
beginning of a new fiscal year), perform the following steps:

217

UNICOS Resource Administration

1. Use the udbsee (1) command to create an ASCII version of the UDB
fair-share usage and charge fields, shusage and shcharge , and save this
output to a file, as follows:

udbsee -a -fupdate,uid,resgrp,shares,shusage,shcharge > tempfile

The uid , resgrp , and shares fields will not be changed, but they may be
useful as a reference during this operation.

2. Clear the fair-share information by editing tempfile as follows: replace the
values in the shrusage and shcharge fields with 0.

3. Bring the system to single-user mode. It is important that the next step be
performed when no other process is updating the UDB.

4. Use the udbgen command with the edited file, tempfile , to update the
UDB with the changes removing the fair-share information.

5. Return the system to multiuser mode.

4.4.10 Costs, Usage, and Background Users

218

Watch the relationship between costs, usage, and the MAXUSAGEalue.
(MAXUSAGEs set by the shradmin -U command to the upper bound for
reasonable usages; the default is a very large number.) If the cost factors are set
high enough that a user’s usage accumulation rises more quickly than the decay
rate can bring it down, and the usage accumulation exceeds MAXUSAGEhen
that user is put into the background user category by the fair-share scheduler.
This situation can be controlled by either raising MAXUSAGHith the shradmin
-U command, or by adjusting the following cost factors in a relatively uniform
downward direction: bio (block I/O operations), tio (stream I/O operations),
click (memory ticks), syscall (system calls), and tick (CPU ticks).

The tick cost, which is charged to the user up to 60 times per second, is usually
the cost that causes users’ usages to rise very rapidly. A background user can
be recognized as running at priority 996 in a ps(1) display.

Processes that have been assigned a nice value of 39 are treated as special by
the fair-share scheduler. They run at priority 997 and are not charged for CPU
use. Processes attached to Inodes with 0 shares run at priority 998.

See "Tuning the fair-share scheduler," Section 4.6, page 227, for more
information on fair-share costs and nice values, or for information on increasing
the default MAXUSAGEalue.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

4.4.11 Monitoring the Fair-share Scheduler

4.4.11.1 Using the shriview

SG-2302 10.0.0.2

Three commands display information about what is currently happening in a
fair-share system: shrview (1), shrtree (8), and shrmon (8). The shrview (1)
command provides the most functionality; it serves as a single interface for the
functions of the other fair-share display commands. The shrtree (8) command
displays the fair-share hierarchy. The shrmon (8) command is intended for use
by the administrator; it is located in the /etc directory.

Note: The shrmon (8) command will not be available in future releases of the
UNICOS operating system. Its functionality is replaced by the shrview (1)
command.

All fair-share display commands can be executed in line mode, repeat mode, or
continuous mode. In each mode, the time period used as a delay to collect
information, or between successive display updates, is the share cycle time set
by the -R option of the shradmin (8) command.

In line mode, the command collects information and prints its findings to
standard output (stdout). In repeat mode, the command behaves as if in line
mode and repeats the cycle as many times as specified with the -r option to
shrview , separating the outputs with a form-feed character. In continuous
mode, the command uses the curses (3) library capability and produces a
full-screen display that it updates periodically. For displays involving more
data than can be displayed (for example, 40 users on a 24-line terminal screen),
only the first screen is displayed.

(1) Command

The shrview command is an integrated tool for displaying information about
the behavior and current state of the fair-share scheduler. Many different
display options and formats are available. Selection and configuration of
displays may be done interactively when in curses mode.

The following sample display shows the ADJGROUPSisplay (-da option) of
resource groups (-S0 option), organized by group name in alphabetical order
(-0i option). This display helps quantify system use by resource group; the
Rate%, CPU%and Rshr% columns show that resource group Xydev in
SoftDev is using the largest percentage of the system.

219

UNICOS Resource Administration

% shrview -da -so -oi

SHRVIEW Type:adjgroup Select:only groups Sort_opt:id

Name Rate% CPU% Rshr% Nrun Rate Proj% Adj_a New%

CCN 0.00 0.00 26.67 0.00 0.00 20.92 1.00 16.63
SysAdm 0.00 0.00 17.78 0.00 0.00 13.82 1.00 10.99
Syssup 0.00 0.00 8.89 0.00 0.00 7.10 1.00 5.64
Mktg 0.31 0.23 13.33 0.00 0.00 56.65 1.00 45.05
Country 0.09 0.00 4.44 0.00 0.00 53.91 1.00 42.87
Intl 0.22 0.23 4.44 0.00 0.00 0.83 1.00 0.66
TechOps 0.00 0.00 4.44 0.00 0.00 191 1.00 1.52
SoftDev 97.62 99.77 60.00 65.76 21.48 2242 1.00 3831
Userint 1237 21.14 10.00 14.00 12.31 3.73 1.00 2.97
Users 3.29 795 1000 11.76 194 11.30 1.00 22.09
Netdev 1.59 3.86 2.00 2.00 1.00 0.00 1.00 0.00
Xydev 81.96 70.68 40.00 40.00 7.22 7.39 1.00 13.25

The following example shows the monitor display (-dm
with two levels of hierarchies.

shrview -dm

Shrview: sampling over 11 seconds starting at Tue Jul 25 12:27:33 1995

SHRVIEW Type:monitor Select:all Sort_opt:id
Name Rate% Eshr% Rshr% Usage(k) Rate Muse Ref Chld
CCN 93.84 11.76 11.76 1000000000 1.00 0 0 2
SysAdm 93.84 7.84 7.84 199667501 0.84 1358396 12 0
Syssup 0.00 3.92 3.92 570650974 0.84 489820 1 0
Idle 0.00 0.00 0.10 1000000000 17.84 24 2 0
Mktg 6.16 11.76 11.76 1000000000 1.00 0 0 2
Country 0.00 5.88 5.88 119543509 0.84 29760 2 0
TechOps 6.16 5.88 5.88 41308301 0.84 3652 1 0
SoftDev 0.00 5294 5294 1000000000 1.11 0 0 4
Netdev 0.00 13.24 13.24 67308849 0.84 83308 6 0
Userint 0.00 13.24 13.24 203251100 1.11 541828 23 0
Users 0.00 13.24 13.24 200168203 0.84 1609728 8 0
*Xydev 0.00 13.24 13.24 144301956 0.94 236500 19 0
System 0.00 2353 23.53 1000000000 1.00 0 0 1

220

Pri%

option) on a system

50000
1010000
1010000

10000

50000
1010000
1010000

50000
1010000
1010000
1010000
1010000

50000

SG-2302 10.0.0.2

Fair-share Scheduler [4]

Admin

0.00

23.53

23.53

10437769

4.4.11.2 Using the shrmon (8) Command

$ shrnon -vv

Tue Sep 20 09:06:20

CPUs charge

11.2 0.0
0.0 0.0
3.4 0.2
0.0 0.0
3.4 0.2
0.0 0.0
0.0 0.0
0.0 0.0
7.7 0.3
0.0 0.0
0.0 0.0
7.7 0.4
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

SG-2302 10.0.0.2

rate
13
3.8
13
0.8
1.4
0.0
0.8
0.8
5.0
0.8
1.0
5.0
0.0
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.0
0.8
0.0
0.8
0.0
0.8
0.0

0.84 428412

1 0 1010000

The fair-share monitor, shrmon (8), produces a columnar formatted output that
can be used to monitor most of the more important accumulators and feedback
parameters found in the fair-share scheduling node within the kernel.

Note: The shrmon (8) command will not be available in future releases of the
UNICOS operating system. Its functionality is replaced by the shrview (1)
command.

The following display shows sample shrmon output:

1988
nrun

13 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

OO O0OO0OO0OO0OO0OD0O0D0OO0OO0OO0O0OO0OUTFP,OUTOOONON M

%Rate %share

100.0
0.0
8.3
4.2
4.2
8.3
4.2
4.2

16.7
5.6
5.6
5.6
8.3
21
21
21
21
2.8
2.8
2.8
8.3
8.3
8.3
8.3
8.3
8.3
8.3

%CPU%rshare kids

100.0
0.0
30.5
0.0
30.5
0.0
0.0
0.0
69.4
0.0
0.0
69.4
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

100.0
0.0
33.3
2.0
33.3
2.0
2.0
2.0
66.7
20
20
66.7
2.2
20
20
20
2.2
20
20
20
20
20
20
20
2.0
2.0
2.0

12

P OPRPORFPOPOOOOOOOMNOOOWOONOONO

ref
59

N
WEFENEFEPPFPNO WO

=N
= O

P NMNNOORFRRFRPRFEPAPRPLPOUUWW

System
Idle
Regions

poulet

ub
LibProd

saa

jam
OpSysDev

dak

sen

dws
Operatns
operator

tga

backup

ce

mab

gop

aaw
Appl

wgh
10S

Stt
Services

hhj
CompDev

221

UNICOS Resource Administration

0.0
0.0
0.0
0.0
0.0

4.4.11.3 Using the shrtree

$ shrtree

DISPLAY OF SHARE TREE

0.0
0.0
0.0
0.0
0.0

0.8
0.0
0.8
0.0
0.8

UDB path:

222

DEFAULT

0 00 83 00 2.0 0 1 plu

0 00 83 00 2.0 1 1 Diag

0 00 83 00 2.0 o 1 I

0 00 83 00 2.0 1 0 Netwrkng
0 00 83 00 1.9 0 0 iy

The most important factors in this display are %rshare and %CPUThe
%rshare factor is the machine share of the system, expressed as a percentage,
to which this particular user or group is entitled based on the current active
users and the fair-share hierarchy defined in the UDB. The %CPUactor is the
percentage of CPU resources allocated to the Inode over the sampling interval.

Interactive users, who are relatively idle at the time of the sample, each hold a
2.0% rshare .

Note that the fair-share hierarchy in this example involves two levels: group
levels have names beginning with a capital letter; and users are identified by
lowercase login names.

(8) Command

The shrtree (8) command displays the share tree, or fair-share hierarchy, that
is defined in the UDB, and highlights problems that could prevent logging in to
the system or submitting jobs. Any problems in the UDB that would affect the
fair-share scheduler are marked in the shrtree output. (Most problems can
prevent logging in and submitting jobs for the affected users.)

The shrtree command displays such useful statistics as the group share and
usage value from the UDB. This command also displays a general
approximation of share distribution by displaying a static analysis of what the
relative entitlements would be if all the users in the UDB were logged on at the
same time.

The following display shows sample output for shrtree with no options
(short form report). The system is running Share by User mode, with a
maximum of four levels in the fair-share hierarchy. In this example, the Serv
entry has warning flag Nc; Unknown has warning flag Zs; and Country ,
Region , and TechOps have flags Nc and Zs.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

Analyzed: By UID
Format: Groups only
Maxgroups: 4
Node: ALL
Group Count: 15
Account Count: 0
User Count: 1370
Warnings: 9
Errors: 0
Warning Count: 4 (Nc) Group has no references
Warning Count: 1 (Zs) User has zero shares
Warning Count: 4 (Zs) Group has zero shares

System Group System
Lv Name ID Share Share Usage Status Flags
0 _ROOT_ 0 100.0% 100.0% 100.0% G 40000
1 Demos 8367 100.0% 100.0% 0.0% G 40000
2 Serv 8001 100.0% 100.0% 0.0% G|Nc 40000
1 System 8389 0.0% 0.0% 0.0% G 40000
2 Admin 8306 0.0% 2.9% 0.0% G 40000
1 Unknown 8393 0.0% 0.0% 0.0% G|Zs 40000
1 Users 8395 0.0% 0.0% 288% G 40000
2 CCN 8354 0.0% 4.8% 0.2% G 40000
2 Country 8359 0.0% 0.0% 0.0% G|Nc|Zs 40000
2 HardDev 8372 0.0% 4.8% 0.0% G 40000
2 Intl 8374 0.0% 14.3% 0.0% G 40000
2 Mktg 8381 0.0% 28.6% 0.1% G 40000
2 Region 8385 0.0% 0.0% 0.0% G|Nc|Zs 40000
2 SoftDev 8386 0.0% 47.6% 28.5% G 40000
2 TechOps 8390 0.0% 0.0% 0.0% G|Nc|Zs 40000

$ shrtree -e

The following example shows the error display for the same system (shrtree
with the -e option). Only the entries with errors are displayed.

DISPLAY OF SHARE TREE

UDB path:
Analyzed:
Format:

SG-2302 10.0.0.2

DEFAULT
By UID

Groups only

223

UNICOS Resource Administration

Maxgroups: 4
Node: ALL
Group Count: 15
Account Count: 0
User Count: 1370
Warnings: 9
Errors: 0
Warning Count: 4 (Nc) Group has no references
Warning Count: 1 (Zs) User has zero shares
Warning Count: 4 (Zs) Group has zero shares

Type Name ID Status Description
WARN*** Serv 8001 10 Nc: Group has no references
WARN* Unknown 8393 1000 Zs: Group has zero shares
WARN*** unknown 12 1001 Zs: User has zero shares
*WARN*** Country 8359 1010 Nc: Group has no references
*WARN*** Country 8359 1010 Zs: Group has zero shares
*WARN*** Region 8385 1010 Nc: Group has no references
*WARN*** Region 8385 1010 Zs: Group has zero shares
WARN* TechOps 8390 1010 Nc: Group has no references
WARN* TechOps 8390 1010 Zs: Group has zero shares

4.5 Customizing the Fair-share Scheduler (User Exit)

You can customize the fair-share scheduler’s CPU scheduling policy at your

224

site. This allows use of a different scheduling algorithm without modifying the
UNICOS kernel.

To customize the scheduling policy, you provide a user exit routine and set the
USRLEVLFSSlag with the shradmin (8) command. The fair-share daemon,
shrdaemon (8), includes a stub routine (in the module shrsiteux.c) that has
an entry point named site _adjust_Inodes . After reading the Inodes from
the kernel and performing the calculations indicated by the share flags, this

user exit is invoked before writing the Inodes back to the kernel.
The following calling sequence is defined in the include file sys/Inode.h
site_adjust_Inodes(&Lnodes[0],

count, Traceflag)

The arguments of site_adjust_Inodes have the following meanings:

SG-2302 10.0.0.2

Fair-share Scheduler [4]

Argument
Lnodes

count

Traceflag

4.5.1 Fair-share User Exit Example

static char USMID[]

/*

* (C) COPYRIGHTCRAY RESEARCH, INC.

* UNPUBLISHEDPROPRIETARYINFORMATION.
* ALL RIGHTS RESERVED.

*/

#include <stdio.h >
#include <errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/Inode.h
#include <sys/share.h>
/*

SG-2302 10.0.0.2

>

Description

This argument is a pointer to the Inode table in
the shrdaemon (8) memory; it is of type struct
kern_Inode *Lnodes . All the address fields in
the Inode table can be used for scanning, because
shrdaemon converts them to shrdaemon
memory addresses before performing any
analysis.

This parameter specifies the number of Inodes in
the Inode array; it is of type int count .

This parameter is of type int Traceflag ; it can
be used to specify logging, as in the following
example:

if (Traceflag)
fprintf(stderr, "Adjusting Inodes\n").

As a simple example of a user exit, the following routine allows UID 104 to use
as many CPU resources as necessary. This capability allows a system daemon
to run under a different UID than root (some sites prefer to do this for
accounting reasons), but removes the resource limitations that are normally

enforced for all non- root

"@(#)man/2302/04 fair.share

UlDs.

92.1 12/11/95 16:48:26";

225

UNICOS Resource Administration

* site_adjust_Inodes()
*
* User exit stub to allow sites to perform any calculations
* desired upon Inode data before the shrdaemon writes them
* back to kernel ~memory.
*
* A ptr to the Inode table in the shrdaemon memory is passed
* in; all the address linkages have been converted to shrdaemon
* memory addresses.
*/
void
site_adjust_Inodes(struct kern_Ilnode *Lnodes, int count, int Traceflag)
{
int i
struct kern_Inode *Ip;
/*
* Site can now perform any calculations desired on Inode data.
*/
for (Ip = Lnodes, i = 0; i < count; i++ Ip++) {
if (Ip->kLI_uid == 104) {
/* This user is special, must never starve for cpu. */
Ip->kl.l_usage = 2.0;
Ip- >kl_usage = 2.0;
}
if (Traceflag) {
fprintf(stderr, "Adjusting Inode %s.0, Ip->kl.I_name);
fprintf(stderr, “lLuid %dO0, Ip- >kll_uid);
fprintf(stderr, "I _usage %gO0, Ip->kl.I_usage);
fprintf(stderr, "_charge %g0, Ip->kl.I_charge);
fprintf(stderr, "kl_usage %g0, Ip->kl_usage);
fprintf(stderr, "kl _totuse %g0, Ip->kl_totuse);
fprintf(stderr, "kI_adj %g0, Ip- >kl_ad));
fprintf(stderr, "kI_rate %g0, Ip->kl_rate);
fprintf(stderr, "kl_cost %d0, Ip- >kl_cost);
fprintf(stderr, "0);
fflush(stdout);

226

SG-2302 10.0.0.2

Fair-share Scheduler [4]

return;

4.6 Tuning the Fair-share Scheduler

This section discusses tuning issues relating to the fair-share scheduler. If you
run fair-share, it is important to consider other factors such as memory
scheduling and NQS configuration to achieve your CPU scheduling goals.

This section discusses the following:
* Fair-share parameters
* Memory scheduling parameters and fair-share

¢ Priority-based scheduling with nice values (this item is not strictly about
fair-share; but, it is a related topic)

4.6.1 Fair-share Parameters

Fair-share parameters provide you with considerable control over the behavior
of the fair-share scheduler but do not allow you to directly affect system
throughput. Before attempting to tune fair-share, it is important to establish a
clear set of CPU scheduling goals. Tuning fair-share usually involves a
compromise between accurate distribution of resources by share allocations and
interactive responsiveness.

This section describes the shradmin (8) options most useful for tuning the
fair-share scheduler and provides an example of possible parameter settings.
For more information on fair-share parameters, see the shradmin (8) man page.

4.6.1.1 shradmin (8) Options Affecting Cost

SG-2302 10.0.0.2

The following options for the shradmin (8) command allow you to set the cost
for various system resources:

Option Description

-b Cost for logical I/O request
-m Cost for each memory click
-S Cost for each system call

-t Cost for a CPU tick

227

UNICOS Resource Administration

-y Cost for a tty read /write operation

The shradmin command allows you to apply a percent multiplier to all of
these cost factors. For example, the command shradmin 20 specifies that all
cost values should be multiplied by the factor 0.2. By applying the multiplier,
you can uniformly scale the cost parameters.

Because fair-share schedules only the CPU resources, it is recommended that
costs be weighted heavily, or exclusively, for CPU use.

4.6.1.2 -U Option (MAXUSAGE

228

If the usage value for a process reaches MAXUSAGRhat process hangs if there is
no idle time (the priority of the process is set to 998, which prevents the process
from getting the CPU). Therefore, MAXUSAGEhould be set such that it will only
take effect under extreme circumstances.

The default setting of MAXUSAGEs 1.0e*!2. This is too low for systems with 8
or more CPUs and fast cycle times. For a system with 8 CPUs, a better starting

value is 1.0e+15; for a system with 16 CPUs, a better starting value is 1.0e

+18

For any site, if a very long usage decay rate (greater than 24 hours) or large cost
values are used (greater than 1000), it is recommended that this value be

increased.

Use the shrview (1) command with the -ds option to obtain statistics on
process usage values. This command samples the average number of users
logged on at one time, as in the following example:

% shrvi ew -ds
Shrview: sampling over

SHRVIEW Type:statistics

Active id’s: 62/300
Active groups: 6

syscall
Charge: 0%
Costs: 0
Counts: 501753913

5 seconds starting at Thu Aug 5 16:55:14 1993

Select:all Sort_opt:id
High Max
Usage: 5.9689e+09 1.0000e+12

Share_pri: 3.8694e+03 1.0000e+28

bio sio tick click
0% 0% 100% 0%
0 0 100 0
6866002 0 15649624 0

SG-2302 10.0.0.2

Fair-share Scheduler [4]

If clipping is occurring on MAXUSAGRhat is, if the actual usage is consistently
close to the MAXUSAGEetting), increase the value for MAXUSAGIn the

/etc/config/daemons file.

4.6.1.3 -D Option (priority Decay Rates)

The -D option sets priority decay rates for processes in the following areas and

alters the effect of nice:
e Normal nice values (20)

e Maximum nice values (39)

These two values are used to build a table of priority decay rates for each nice
value (0 through 39). As the difference between the two rates increases, the
effect of nice is more pronounced. This effect is not related directly to fair-share;
it occurs even if fair-share is not enabled. Shorter decay rates cause the
scheduler to act in more of a round-robin fashion. Longer values cause the
scheduler to be more influenced by fair-share information.

The effect of this option is subtle and might have undesirable side effects. Long
decay rates can cause marooning, where a compute-bound process can control
the CPU(s) for long periods of time. The default values for the -D option (2,60)
are recommended, and any changes should be carefully considered. Do not use
values of less than (1,30) because this generates negative decay rates for some

of the lower nice values.

(1) command used with the -v option shows the decay rates for

the nice values of 0, 20, and 39, as in the following example:

The shrinfo
Scheduling flags = ADJGROUPS,LIMSHARE
Charging percentage = 100%
Usage decay rate = 0.95484160 (half-life of 60.0 seconds)
Active users = 59/300, active groups = 6.

---syscall-- ----bio---- -=--tiQ-------- tick--- ---click---
Charge: 0% 0% 0% 100%
Costs: 0 0 0 100
Counts: 494584243 6698323 0 15173200
Process priority decay rate biased by "nice "-
high priority (nice -20) 0.4044 (half-life of 0.8 seconds),
avg priority (nice 0) 0.7039 (half-life of 2.0 seconds),
low priority (nice 19) 0.9885 (half-life of 60.0 seconds).
Run rate decay rate 0.8409 (half-life of 4.0 seconds).

SG-2302 10.0.0.2

(NULL)
0%

0

0

229

UNICOS Resource Administration

Max.
Max.
Max.
High
High

User

230

value for normal usage
value for normal p_sharepri

value for idle

value of current normal

p_sharepri

usage

value of current p_sharepri

<anne> owns 100 shares.

The shrview

1.000000e+12,
1.000000e+28,
1.000000e+38.
3.369134e+10,
9.236291e+03.

as in the following example:

Shrview:

N Nice
0 -20
1 -19
2 -18
3 -17
4 -16
5 -15
6 -14
7 -13
8 -12
9 -11
10 -10
17 -3
18 -2
19 -1
20 0
21 1
22 2
23 3

sampling

SHRVIEW Type:nice

over

tables

NiceDecays
Decay 1/2life

0.6590
0.6740
0.6890
0.7039
0.7189
0.7339
0.7489

1.662
1.757
1.860
1.974
2.100
2.240
2.397

Select:all

Nice

Rates

0.1591
0.1591
0.1591
0.1591
0.1515
0.1446
0.1384

5 seconds starting

Nice
Ticks

107
105
102
100
97
95
92

-dn command shows a table of decay rates for each nice value,

at Thu Aug5 16:41:36 1993

SG-2302 10.0.0.2

Fair-share Scheduler [4]

37 17 0.9586 16.377 0.0860 57
38 18 0.9735 25.844 0.0837 55
39 19 0.9885 60.000 0.0000 1

4.6.1.4 -X Option (maxushare)

The -X option (maxushare) defines the maximum effective share for an
individual user, when the global scheduling flag LIMSHARE s set (with the
shradmin -F command). This option can be used to minimize marooning by
preventing users with very low past usage from monopolizing the CPU or by
preventing users with very high past usage from being locked out.

Values close to 1 ensure good interactive response regardless of past usage and
provide a leveling effect so that all users will have scheduling priorities that
correlate closely to their share allocations. Increasing this value allows
scheduling priorities to deviate more from share allocations as determined by
past usage.

The default value of 2.0 is a good initial value if interactive use is important at
your site. Values of 8.0 and greater are good for a batch environment. If
interactive response is not important, and consistent distribution of resources
has the highest priority, you should turn off this option by setting the
LIMSHAREflag equal to 0. This option must be set to a value greater than 1.0.

You can view the effect of the maxushare option with the shrview -dl
command.

4.6.1.5 -Y Option (mingshare)

SG-2302 10.0.0.2

The -Y option (mingshare) specifies the deviation between group share
allocation and the actual rate of resource consumption allowed before the
scheduling algorithm tries to compensate. It has an effect only when the global
scheduling flag ADJGROUPSs set (with the shradmin -F command). This
option can diminish to some degree the effect of the -X (maxushare) option.

The default setting of .75 allows a 25% or less deviation. Values closer to 1.0
allow less deviation, but may interfere with maxushare. This option must be set
to less than 1.0.

When accurate distribution of resources based on group share allocations is a
high priority, this option is very important and should be set near to 1.0 (.90 to
.95).

The effect of the mingshare option can be viewed with the shrview -da
command, as in the following example:

231

UNICOS Resource Administration

% shrvi ew -da

Shrview: sampling over 5 seconds starting at Thu Aug 5 16:47:12 1993

SHRVIEW Type:adjgroup Select:all Sort_opt:id
Name Rate% CPU% Rshr% Nrun Rate Proj% Adj_a New% Pri%
Idle 0.00 3.11 0.02 0.00 7.62 0.00 1.00 0.00 0.00
System 452 6.14 10.00 0.00 0.00 0.00 1.00 0.00 8.12
operator 0.00 0.00 5.00 0.00 0.84 0.00 1.00 0.00 6.50
ikl 452 6.14 5.00 5.00 1.00 0.00 1.00 0.00 1.62
Users 63.65 45.37 90.00 0.00 19.48 0.00 1.00 0.00 29.24
CCN 0.00 0.00 5.00 0.00 0.84 0.00 1.00 0.00 1.62
abc 0.00 0.00 1.64 0.00 0.84 0.00 1.00 0.00 0.53
ZyX 0.00 0.00 1.64 0.00 0.84 0.00 1.00 0.00 2.13
cl234 0.00 0.00 1.64 0.00 0.84 0.00 1.00 0.00 2.13
HardDev 5.41 2.43 5.00 0.00 0.84 0.00 1.00 0.00 1.62
paul 2.71 2.43 4.76 0.00 0.87 0.00 1.00 0.00 1.55
Mktg 0.17 0.05 30.00 0.00 0.84 0.00 1.00 0.00 9.75
*anne 0.08 0.05 3.61 0.00 0.84 0.00 1.00 0.00 1.17
steven 0.00 0.00 3.61 0.00 0.84 0.00 1.00 0.00 1.17
c0987 0.00 0.00 3.61 0.00 0.84 0.00 1.00 0.00 1.17
gregj 0.00 0.00 3.61 0.00 0.84 0.00 1.00 0.00 4.70
SoftDev 58.07 42.90 50.00 0.00 13.77 0.00 1.00 0.00 16.25
ali 0.00 0.00 1.20 0.00 0.84 0.00 1.00 0.00 1.57
birk 0.00 0.00 1.20 0.00 0.84 100.00 1.00 100.00 1.57
bobo 0.17 0.18 1.20 1.20 1.19 0.00 1.00 0.00 0.39
cde 0.00 0.00 1.20 0.00 0.84 0.00 1.00 0.00 1.57
zz7y77y 0.08 0.60 1.20 0.00 0.84 0.00 1.00 0.00 0.39

4.6.1.6 -Z Option (sharemin)

The -Z option (sharemin) specifies the minimum machine share allocated to a
user. This option, when combined with the maxushare option, sets a range for
individual priorities to allow reasonable interactive response for all users. The
default value of 0 sets no minimum share allocation for users. It is
recommended that you select a nonzero value for this option to provide
reasonable response for all users. Select a value based on the reciprocal of the
average number of users logged on (1 average_users), rounded to three digits.

232 SG-2302 10.0.0.2

Fair-share Scheduler [4]

For example, use the value 0.013 on a system with an average of 80 users
logged on at any one time.

The effect of the -Z option can be seen by comparing the Eshr and Rshr
columns from the shrview -dm output, as in the following example. The
values in these columns should be as close as possible.

Shrview: sampling over 5 seconds starting at Thu Aug 5 16:57:21 1993

SHRVIEW Type:monitor Select:all Sort_opt:id
Name Rate% Eshr% Rshr% Usage(k) Rate Muse Ref Chld Flags
Idle 0.00 0.00 0.02 1000000000 7.62 56 8 0 10000
System 0.00 10.00 10.00 1000000000 0.00 0 6 2 50000
operator 0.00 5.00 5.00 0 0.84 1210410 1 0 10000
jkl 0.00 5.00 5.00 0 0.84 48068 5 0 10000
Users 66.67 90.00 90.00 1000000000 15.93 0 1598474 4 50000
CCN 0.00 5.00 5.00 0 084 0 60666 3 10000
abc 0.00 1.64 1.64 0 0.84 32836 4 0 10000
ZyX 0.00 1.64 1.64 0 084 3475 3 0 10000
cl234 0.00 1.64 1.64 0 0.84 14100 3 0 10000
HardDev 1.44 5.00 5.00 0 084 0 14813 1 10000
paul 0.72 4.76 4.76 0 094 81902 9 0 10000
Mktg 10.41 30.00 30.00 0 1.02 0 211197 7 10000
*anne 0.06 411 411 0 084 3536 3 0 10000
steven 0.00 411 411 0 084 2626 2 0 10000
c0987 0.00 411 411 0 084 3414 1 0 10000
gregj 0.00 411 411 0 084 2848 1 0 10000
SoftDev 54.81 50.00 50.00 0 8.6 0 1311798 41 10000
ali 0.00 1.20 1.20 0 084 5720 1 0 10000
birk 0.00 1.20 1.20 0 084 6638 1 0 10000
bobo 0.23 1.20 1.20 0 1.82 131743 11 0 10000
cde 0.00 1.20 1.20 0 0.84 14404 1 0 10000
zz7y77Yy 0.00 1.20 1.20 0 0.84 89449 4 0 10000

SG-2302 10.0.0.2 233

UNICOS Resource Administration

4.6.1.7 -R Option (delta)

The -R option (delta) determines how often usage values are updated and is
directly related to the overhead for fair-share processing. Shorter values increase
the scheduler’s responsiveness to changing conditions, but they increase
overhead longer values decrease overhead but also decrease responsiveness.

The default of 4 seconds is a good compromise for interactive environments.
For batch environments, the value can be increased; however, overhead is
increased by the number of active Inodes and levels in the fair-share hierarchy.

4.6.1.8 -K Option (usage Decay Rate)

The -K option (usage decay rate) establishes the length of time that past usage of
resources are remembered. Longer decay rates cause the scheduler to distribute
resources fairly over a longer period of time. This option can have a significant
impact on interactive responsiveness. On a heavily loaded machine with a large
number of users, short decay rates provide uniformly poor response for all
users with small share allocations. Longer rates will provide good interactive
response for users that have used less than their allocated share and worse
response for those who have used more. Very short usage decay rates (less than
3600 seconds, or 60 minutes) limit the effect of the maxushare and mingshare
options. For these reasons, decay rates greater than 60 minutes will generally
provide more accurate distribution of resources and better interactive response
times.

Note: Do not set the decay rate to less than 1 hour (the default) for general
fair-share operation. Decay rates of minutes or seconds are recommended
only for debugging purposes.

4.6.1.9 Example Parameter Settings

234

The following parameter settings show sample values at a site presently running
fair-share. The goals for choosing these settings were to provide the following:

* Good interactive response during prime time regardless of the share
allocations or past usage

* Close tracking of share allocations and usage during nonprime time
* Incentive for nonprime time usage

® Usage decay rate that would be similar in effect to the one-week refreshing
of "bank point" (a local concept for this site)

SG-2302 10.0.0.2

Fair-share Scheduler [4]

SG-2302 10.0.0.2

¢ Limit on the impact of long-running batch jobs on interactive performance

The following option settings

Option setting
-D 2,60
-F 006
-K 120
-R 4
-X 2.0
Y 0.7
-Z .02
-b 2
-m 2

-t 200
s 2
100

The following option settings

Option setting
-D 2,60
-F 006
-K 120
-R 8
-X 8.0
-Y 0.9
-Z .01
-b 2
-m 2

-t 200
s 2

are used during prime time:

Description

Priority decay rate
LIMSHAREand ADJGROUP3ags
Usage decay rate of 5 days
delta

maxushare

mingshare

sharemin (2%; default)

Cost of block I/0O

Cost of memory click

Cost per CPU tick

Cost of system calls
Percent multiplier (100%)

are used during nonprime time:

Description

Priority decay rate
LIMSHAREand ADJGROUP3ags
Usage decay rate of 5 days
delta

maxushare

mingshare

sharemin (1%)

Cost of block I/0

Cost of memory click

Cost per CPU tick

Cost of system calls

235

UNICOS Resource Administration

60,40 Percent multiplier (60% night, 40% weekend)

4.6.2 Fair-share and the Memory Scheduler

When using the fair-share scheduler, it is important to consider how fair-share
interacts with the memory scheduler. If you are using fair-share, the memory
scheduler parameters should be set to achieve the CPU scheduling goals
without excessive swapping overhead. If your goals are to base scheduling
completely on share allocations, it is possible that the system could become idle
as large memory processes dominate the system. Using both the memory
scheduler and the fair-share scheduler provides your site with a compromise
between improving system throughput and meeting scheduling objectives.

Deciding what values to use in order to achieve the desired results is more
difficult than if you were using only the memory factors or only the priority
factors. It is important to investigate the following areas:

* Memory oversubscription

¢ Fair-share priorities of jobs in relation to memory size (in other words, does
a user with low fair-share priority run big memory jobs and a user with
high fair-share priorities run small memory jobs?)

Using this type of scheduling ensures that processes with high fair-share
priorities are more likely to be in memory without causing excessive swapping
and system overhead.

For more information on the memory scheduler, see the nschedv (8) man page
in the UNICOS Administrator Commands Reference Manual, publication
SR-2022.

4.6.2.1 Priority-based Scheduling and I/O Resources

236

When you use both fair-share and priority memory scheduling, it is important
to consider how the system I/0O resources are used. If a job with a low
fair-share priority uses a large amount of disk or SDS resources, significant
problems could result for the entire system.

If you can determine that I/O-intensive jobs are a problem for your system,
consider changing the memory scheduling parameters so that either this type of
job is favored or has equal access to memory. Changing fair-share parameters
might also be necessary. Getting this job out of the system as soon as possible
helps the total system throughput.

SG-2302 10.0.0.2

Fair-share Scheduler [4]

4.7 Using CPU Quotas

SG-2302 10.0.0.2

The CPU quota feature allows you to control the total CPU time used by each
user login or account on the system in increments of tenths of seconds. CPU
quotas function only when your site is running the fair-share scheduler.

The CPU quota feature is similar to the CPU limits feature, but resource
consumption information is accumulated for the user rather than the job or
process. When a user reaches the quota, a SIGCPULIM signal is sent to the
user’s processes. (The SIGCPULIM signal is ignored by default.) When the user
reaches a specified threshold above the quota (the default is 3 seconds), the
kernel sends a SIGKILL signal to all the user’s processes and terminates them.

The UDB contains a quota field (cpuquota) and a time-used field
(cpuquotaused) that set a user’s CPU quota in seconds and the amount of
CPU time used in seconds, respectively. You can use the udbgen (§8) command
to update these fields. For example, to set a quota of 10 seconds for user xyz ,
you would enter the following command:

udbgen -c ’update:xyz: cpuquota:10:’

To cancel the accumulated time for user xyz , you would enter the following
command:

udbgen -c ’update:xyz: cpuquotaused:0:’

The amount of time that a user accumulates while running jobs (the accumulated
CPU time) is calculated by the kernel. After a user’s last session exits the
system, the fair-share daemon updates the cpuquotaused field in the UDB (as
well as other fields) with the accumulated CPU time. During this process, any
changes that have been made to an active user’s cpuquotaused field in the
UDB are overwritten with the old value from the UDB (plus the latest
accumulated CPU time). Therefore, you must take extra steps to ensure that
changes made to an active user’s cpuquotaused field, such as clearing the
field, remain in effect after the user has exited the system.

To ensure that changes to an active user’s cpuquotaused field are not lost, use
the shrsync (8) command. This command synchronizes various fields in the
UDB, including the cpuquotaused field, with the corresponding data in the
kernel.

The following procedure shows the shrsync commands used to update the
cpuquotaused fields in the UDB while in multiuser mode:

1. Use the -u option of the shrsync command to update the UDB with the
information from the active system. Because the active system will be

237

UNICOS Resource Administration

updated with information from the UDB, the information in the UDB must
first be brought up to date (in particular, the CPU-quota-used information
of the running sessions).

/etc/shrsync -u

2. Update the cpuquotaused fields in the UDB, as in the following example
for user xyz :

/etc/udbgen -c 'update:xyzfP: cpuquotaused:0:’ ;

3. Use the -q option of the shrsync command to indicate that all active users
will have their cpuquotaused information updated on the system from
the UDB, as follows:

/etc/shrsync -q

See the udbgen (8) man page for more information on the CPU quota fields; see
the shrsync (8) man page for more information on synchronizing UDB and
kernel information.

4.8 Additional Reference Material

The paper, "A Fair Share Scheduler," by J. Kay and P. Lauder, was published in
the January 1988 (volume 31, number 1) issue of Communications of the ACM
(pages 44-55). Although the UNICOS implementation does not exactly parallel
the description as published, it is substantially similar, and this paper is
recommended to anyone interested in the theory and philosophy of this
scheduling mechanism.

The paper "The Fair Share Scheduler,” by G.J. Henry, was published in the
October 1984 Bell Labs Technical Journal, LVIII-8b. This paper also contains
design information about the fair-share scheduler.

238 SG-2302 10.0.0.2

