Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

The Unified Resource Manager (URM) is a job scheduler that balances the
demands of both batch and interactive sessions. URM provides a high-level
method of controlling the allocation of system resources to run jobs that
originated either in batch mode or in an interactive session.

Note: In this section, the term job is used to identify the scope of the object
being managed by URM. For purposes of this discussion, an interactive
session is considered a job.

Controlled system resources include CPU time, memory, tape devices, number
of jobs, and Secondary Data Segment (SDS) allocation. The URM feature is
common among all Cray Research architectures, but the managed resources are
tailored to the hardware configuration on which URM is installed.

Prior to the introduction of URM, the UNICOS operating system included
separate facilities for scheduling batch jobs and interactive sessions. Batch jobs
were scheduled by the Network Queuing System (NQS). Interactive sessions
were scheduled by transient session initiators, such as login and rsh .
However, URM takes input from all session initiators, including NQS and the
transient session initiators.

URM combines the management of machine resources under a single umbrella,
making it possible to provide consistent treatment of resource demands arriving
from these various sources. In addition to monitoring resource demands, URM

also monitors the following;:

¢ History of system usage. By monitoring the UNICOS fair-share scheduler,
URM monitors past use of important system resources by each user.

* Current system load. URM monitors current use of all important system
resources.

e Future work backlog. URM predicts future demands on all important
system resources, as indicated by the job backlog and the amount of work in
process and waiting to be initiated.

¢ Target loads. URM manages memory oversubscription, number of active
processes, SDS oversubscription, tape usage, and the number of active batch
and interactive jobs.

Using this information, URM evaluates requests to initiate jobs. Requests arrive
from such UNICOS service providers as NQS (for batch) and login (for

353

UNICOS Resource Administration

interactive). Following the selection process, URM sends to each service
provider a list of jobs that URM recommends for initiation.

URM does not actually initiate jobs. The service providers retain full
responsibility for and control of jobs within their scope. Jobs are not required to
be processed through the selection server portion of URM. This is allowed in
order to retain command execution capability if the system is behaving
improperly. Under normal operation, service providers use the URM selection
server and follow the job initiation recommendations of URM.

The Unified Resource Manager is described in detail in the following sections:
e URM features

* Summary of URM commands
¢ Installing URM

¢ Configuring URM

* URM administrator tasks

* Troubleshooting URM

e URM architecture

* URM resources

¢ URM checkpointing

* Tuning URM

8.1 URM Features

The Unified Resource Manager provides the following functionality:

* Provides uniform services for all types of jobs (batch and interactive, for
example) and eliminates non-essential differences among them.

e Uses sdsmgr to schedule use of SDS space for both batch and interactive
sessions.

* Maintains job resource predictions (as offered by the service providers) as
well as consumption information to assist the algorithms selecting jobs to
recommend for initiation.

* Provides job initiation recommendations to NQS and other service providers.

354 SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

Supports SDS oversubscription through job preemption. (The preemption
mechanism is suspend/resume.)

Supports system scheduling on CRAY T3D systems by monitoring the load
information and job backlog, and by recommending the best job candidates
for initiation.

Controls the number of active jobs. This includes control over the number of
jobs of each type as well as the total number of all jobs.

Uses the information provided by the fair-share scheduler to evaluate a
user’s potential priority among those competing to have a job initiated.

Provides a way to report an assessment of machine loading, a list of jobs
currently recommended for initiation, and other information upon request.

8.2 Summary of URM Commands

8.3 Installing URM

SG-2302 10.0.0.2

The following UNICOS commands support URM:

Command Description

rmgr (1) Provides an interface to the URM daemon

urmd (8) Starts the URM daemon

urmsnap (8) Captures the current URM configuration information
usetjob (8) Changes the minimum rank of batch jobs

ustat (1) Displays URM job information

For details of the rmgr (1) and ustat (1) commands, see the UNICOS User
Commands Reference Manual, publication SR-2011. For details of the urmd(8),
urmsnap (8), and usetjob (8) commands, see the UNICOS Administrator
Commands Reference Manual, publication SR-2022.

To install URM, use the UNICOS Installation / Configuration Menu System (the
menu system). For details about the menu system and how to use it, see the
following publications:

UNICOS System Configuration Using ICMS, publication SG-2412
UNICOS Installation Menu System Reference Card, publication SQ-2411

355

UNICOS Resource Administration

Perform these basic steps to install URM:
1. Verify the automatic startup of the URM daemon
2. Configure the initial URM values
3. Verify the security parameters
4. Enable the service providers

The following sections discuss these steps.

Warning: The following information on configuring URM is not written for a
site running a Cray ML-Safe configuration of the UNICOS system. For
information on configuring URM for a Cray ML-Safe configuration, see the
description of the UNICOS MLS feature in General UNICOS System
Administration, publication SG-2301.

8.3.1 Verifying Automatic Startup of URM Daemon

356

To ensure that the URM daemon (urmd) is invoked automatically, verify that
the /etc/config/daemons file includes a line for urmd. If the
letc/config/daemons file does not contain a line for urmd, you should
create one by using the menu system. Traverse the menus by using the
following menu selections:

UNICOS 10.0 Installation | Configuration Menu System - >
Configure system ->
System daemons configuration ->

System daemons table ->

The final menu selection displays a list of all active system daemons and their
attributes, as shown in the following example:

Group Name Start Opts Kill Program >
SYS1 cron 5=NO:*=YES * letc/cron
SYS1 fsdaemon 5=NO:*=YES * /etc/fsmon
TCP gated NO letc/gated.pid letc/gated
E-> SYS2 urmd YES usr/lib/urm/urmend letc/urmd

If this table does not include such a line for urmd, create a new entry having
the following attributes:

S-> Group SYS2
Name urmd

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.3.2 Configuring

SG-2302 10.0.0.2

Startup at boot time? YES
Kill action usr/lib/urm/urmend
Executable pathname /etc/urmd

The meaning of these attributes is as follows:

Attribute Description

SYS2 Places urmd in the group of daemons started last.
urmd Names the URM daemon.

YES The URM daemon executes automatically at

system startup. If this attribute were NQ the
daemon would not execute automatically at
system startup; however, the daemon could be
started manually by using the command
sdaemon urmd.

{usr/lib/urm/urmend Specifies the command to shut down urmd and
request interactive checkpointing (if configured).

letc/urmd Identifies the full path name of the executable for
the URM daemon.

To activate this configuration change, use the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
System daemons configuration ->

Activate the daemon configuration

Activation causes the menu system to add a urmd line to the
letc/config/daemons file. You can then stop urmd manually by using the
sdaemon -k urmd command or restart urmd manually by using the sdaemon
urmd command.

Initial URM Values

As-shipped default parameters for URM configuration are designed to
minimize the impact of URM installation on a running system. This allows you
to learn about URM and control its effects as you activate the configuration
changes that allow URM to monitor various system limits.

The default configuration should have no effect on a running system until you
explicitly change certain of these URM configuration values. The following
section discusses these changes.

357

UNICOS Resource Administration

8.3.2.1 Individual Session Initiator Configuration Changes

358

The as-shipped default URM configuration overrides all URM limits and
recommends initiation for all jobs started by all individual session initiators
except batch. (In the case of batch jobs, this default never applies, since the NQS
configuration parameters override these values.) To change these defaults and
permit URM to make recommendations about whether or not to initiate jobs
that started from individual session initiators, use the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System - >
Configure system ->
URM configuration ->
Individual session initiator defaults ->

Initially, every entry in the default table of values is 0:

Name CPU Time Memory Usage

E-> batch 0 0
cron 0 0
ftp 0 0
login 0 0
null 0 0
rexec 0 0
rsh 0 0
sitel 0 0
site2 0 0
site3 0 0

For a given session initiator (login , for example), if both the CPU Time and
the Memory Usage entries are 0, then you override URM limits and allow all
jobs started by that session initiator. For example, if the CPU Time and Memory
Usage entries for login are 0, URM favorably recommends all login

requests, regardless of system load. Only when either entry for login is a
nonzero value are login requests subject to URM limits.

Therefore, to enable communication between each session initiator and URM,
change each 0 for that session initiator to a nonzero value. For example, for
login and rsh , you might use a minimum of the estimated size of a shell
process (in clicks).

Note: Configuration parameters in the NQS override these values for batch .

The rsh settings also affect rcp (remote copy).

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

For any changes to these configuration parameters to take effect, you must
activate the changes by using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System - >
Configure system ->
URM configuration ->

Activate urm configuration

For details of the activation process, see Section 8.4.12, page 371.

8.3.3 Verifying Security Parameters

As part of any URM installation, you should verify that the URM configuration
parameters establish only the authorized administrators and authorized hosts
that you want. To learn about these parameters and how to change them, see
Section 8.4.1, page 360.

8.3.4 Enabling Service Providers

8.4 Configuring URM

SG-2302 10.0.0.2

With one exception, all service providers (such as ftp , login , and rsh)
automatically use URM. The one exception is NQS. You must explicitly enable
URM services in NQS.

To change the NQS configuration parameters to enable URM services, use the
menu system. To enable communication between NQS and URM, the NQS
configuration must include a statement to set URM on.

To ensure that this communication continues after a restart, the NQS
configuration also must include a statement to set URM restart on. For details
of how to enable URM services and how to enable URM restart in NQS, see the
UNICOS NQS and NQE Administrator’s Guide, publication SG-2305.

After URM has been installed and all initial values have been configured, you
can change the URM configuration values as needed. The following sections
describe the URM configuration parameters, how to use the menu system to
implement changes in URM configuration, and how to activate changes.

359

UNICOS Resource Administration

Warning: The following information on configuring URM is not written for a
site running a Cray ML-Safe configuration of the UNICOS system. For
information on configuring URM for a Cray ML-safe configuration, see the
description of the UNICOS MLS feature in General UNICOS System
Administration, publication SG-2301.

To make changes to the URM configuration, use the menu system. Traverse the
menus using the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System - >
Configure system ->
URM configuration ->

This menu selection displays the following menu:

M-> Authorized administrators ->
Authorized hosts ->
Machine load evaluation rates ->
Machine target values ->

Individual session initiator targets ->
Individual session initiator defaults ->
URM control settings ->

Weighting factors for the selector ->
Auto-configuration settings ->

Reset DEFAULT urm configuration

Import urm configuration
Activate urm configuration

The following sections discuss each line of this URM configuration menu. In
addition, online help is accessible on each menu in the menu system.

8.4.1 Authorized Administrator s

360

To control access to URM, use the menu system. Traverse the menus using the
following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
Authorized administrators ->

The as-shipped defaults for these parameters are as follows:

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

Login name Type

E-> root privileged
* public
* anonymous

These parameters have the following meanings:

Parameter Description

privileged Can read any internal information. Can stop the URM daemon
(using rmgr -c ’'stopdaemon’).

public Can read only global information and information owned by this
user.

anonymous Can read only global information.

If you want to add an authorized administrator, create a line for the login of the
new authorized administrator (admin2 , for example):

Login name Type

root privileged

* public

* anonymous
E-> admin2 privileged

If, for security reasons, you want to limit who can use rmgr to access URM,
delete the two asterisked lines:

Login name Type

root privileged
E-> admin2 privileged

This limits access privileges to root and admin2 .

Note: For proper URM functioning, you must retain the root privileged
entry.

The login name * is not recognized in the privileged node. Therefore, the
entry * privileged is not allowed. This restriction also applies to the local
URM configuration file; an entry of the form /admin/privileged/* is
purposely illegal.

361

UNICOS Resource Administration

8.4.2 Authorized Hosts

To control access to URM from remote hosts, use the following menu selections:

UNICOS 10.0 Installation

Configure system ->
URM configuration ->
Authorized hosts ->

| Configuration Menu System - >

The as-shipped default for this parameter is as follows:

Host name

This parameter has the following meaning:

* (all) Allows any client from a remote host to connect to urmd,

assuming the administrator configuration also allows the
connection.

If, for security reasons, you want to disallow connections from all remote hosts,
remove the asterisk (*). You can then add a line for each host from which you
want to allow connections (systeml and system2 , for example):

Host name

systeml
E-> system2

8.4.3 Machine Load Evaluation Rates

362

The as-shipped URM configuration includes a set of smoothing factors that are
designed to reduce the impact of sudden changes in resource usage. These
factors reduce the rate at which changes are factored into the URM
decision-making process. This, in turn, protects URM users by making URM
results more predictable.

To see or change the smoothing factors, use the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
Machine load evaluation rates ->

The as-shipped default rates are as follows:

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

S-> MEMORYate 0.8
SDS rate 0.8
TAPE rate 1.0
MPP BARRIERS rate 1.0
MPP PROCESSINGELEMENTS(pe) 1.0

These rates should not be changed, except by an analyst experienced in tuning
systems using URM.

8.4.4 Machine Target Values

SG-2302 10.0.0.2

To properly perform its scheduling functions, URM must be aware of target
usage limits for important system resources. These resources include memory,
SDS, job count, tapes, and MPP (massively parallel processing systems).

During installation, a URM automatic configuration command changes many of
the URM default targets. Automatic configuration determines the actual
configuration of your system and replaces the as-shipped default values with
values derived from the actual values for your system.

The formula used to change these values can be modified by using the menu
system. Values that can be changed globally include memory and SDS
oversubscription, and limits for job count, tapes, and MPP. In addition to these
values, values for CPU time and memory usage can be set for each individual
session initiator (see "Installing URM," Section 8.3, page 355).

The following sections describe the URM configuration values that can be set
globally.

To verify or change the value (either multiplier or limit) for each important
system resource, use the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->

Machine target values ->

The as-shipped URM configuration has the following values:

S-> Memory oversubscription multiplier 20
SDS oversubscription multiplier 15
Target session maximum MAX
Target tape limit MAX
Target MPP barriers limit MAX
Target MPP PE limit MAX

363

UNICOS Resource Administration

The auto-configure script uses each of these values as follows:

Value

20

15

MAX

Description

Multiplies the value of your system’s actual physical user
memory (user _memory) by this value (2.0) to calculate a
memory oversubscription value (memory). URM strives to hold
memory usage below this memory oversubscription value. To see
the value being used by URM, view the object
/machine/target/memory . You cannot alter this object
directly; you can only change the multiplier.

Multiplies the value of your system’s actual SDS user space
(user_sds) by this value (1.5) to calculate an SDS
oversubscription value (sds). URM strives to hold SDS usage
below this SDS oversubscription value. To see the value being
used by URM, view the object /machine/target/sds . You
cannot alter this object directly; you can only change the
multiplier.

The following paragraphs describe, for each parameter, the effects
of a MAXvalue.

For Target session maximum, the MAXvalue sets the
maximum number of jobs (both interactive and batch combined)
that URM allows to be running at any time (jobcount). The
upper limit for this range is defined by limits in the kernel
configuration. That is, if this field contains a number that is
higher than the maximum established in the kernel configuration
parameters, this higher number is ignored, and the kernel
configuration value is used. However, if this field contains a
lower number, the lower number takes effect for URM.

For Target tape limit , the MAXvalue compiles a list of all
tape systems actually available on the system and puts this
information in the field tape .

For MPP limits, the MAXvalue allows URM to determine whether
or not the system configuration includes an MPP system and, if
so, allows URM to factor MPP limits into its scheduling algorithm.

Note: To allow proper URM autoconfiguration to occur, do not
change the keyword MAXfor this resource.

Using the menu system, you can reset these factors to any value you decide is

reasonable.

364

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

For changes to these configuration parameters to take effect, you must activate
the changes by using the following menu selections:

UNICOS 10.0 Installation / Configuration Menu System - >
Configure system ->
URM configuration ->

Activate urm configuration

For details of the activation process, see Section 8.4.12, page 371.

8.4.5 Individual Session Initiator Targets

To verify or change the target values for each individual session initiator, use
the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
Individual session initiator targets ->

This menu selection displays a table of target values, as in the following

example:
Name bb cputime jobcount memory pe petime sds tape
E-> batch MAX 9999999 MAX MAX MAX 9999999 MAX MAX

8.4.6 Individual Session Initiator Defaults

To change the default values for each individual session initiator, use the
following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
Individual session initiator defaults ->

This menu selection displays the table of default values. For example:

Name CPU Time Memory Usage

E-> batch 0 0
cron 0 0
ftp 0 0
login 40 250

SG-2302 10.0.0.2 365

UNICOS Resource Administration

null 0 0
rexec 0 0
rsh 0 0
sitel 0 0
site2 0 0
site3 0 0

Entries for CPU Time are given in seconds. Entries for Memory Usage are
given in clicks. You can raise or lower these limits by changing the entries in
this table.

Lines for sitel , site2 , and site3 are for local session initiators defined by
the site.

For a given session initiator (except batch), if both entries are 0, that session
initiator is not subject to URM limits.

Note: Configuration parameters in the NQS override these values for batch .
The rsh settings also affect rcp (remote copy).

For changes to these configuration parameters to take effect, you must activate
the changes by using the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->

Activate urm configuration

For details of the activation process, see "Activating URM configuration
changes," Section 8.4.12, page 371.

8.4.7 URM Contr ol Settings

366

The URM configuration includes a variety of control factors that affect URM
performance. To see a list of these control factors, use the following menu
selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
URMcontrol settings ->

This menu selection displays a table of URM control factors and current
settings. For example:

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

Seconds between load info access

Seconds to wait for job initiation

Seconds between scheduling cycles

Main loop sleep period

Old Caller timeout in seconds

Share evaluation period in seconds

Name of the SDS suspend command

SDS residency time in secs (0=SDS mgmt off)
Full path name of local URMconfig file
Full path name of URMchkpnt directory
Checkpoint policy

Share policy

Minimum # of seconds between checkpoints
Checkpoint interval measurement base
Maximum # of seconds to keep chkpnt file
Name of the interactive chkpnt command
Restart flag policy

Name of the interactive restart command
Rank boost to previously running batch jobs

10

1800

10

10

600

900
UPATH/sdsspnd
900
/etc/config/urm
/PPATH/chkpnt
Shutdown
Standard

1800

Clock

432000
J/UPATH/intchkpt
Force
JUPATH/irstart
6.0

The following sections discuss three of these factors that may be particularly

useful to administrators: SDS residency time in secs, Full
local URMconfig file ,and Rank boost to previously

of

running batch jobs .

8.4.7.1 SDS Residency Time

SG-2302 10.0.0.2

path name

This menu selection determines the minimum amount of time that a job
remains in SDS before being swapped out (900 seconds, in this example). This
applies to both batch and interactive. Prior to UNICOS 8.0, gqfdaemon
performed this function, but only for batch jobs.

If SDS residency time is set to 0, then URM does not perform SDS management.
If SDS residency time is set to a nonzero number, then URM performs SDS
management on interactive jobs. For URM to perform SDS management on
both interactive and batch jobs, SDS residency time must be set to a nonzero

number and the NQS set job scheduling

option parameter must be set to

the correct option. For details of enabling URM services in NQS, see the
UNICOS NQS and NQE Administrator’s Guide, publication SG-2305.

367

UNICOS Resource Administration

8.4.7.2 Local URM Configuration File

This menu selection is used to identify a site-defined configuration file. When
activated, changing this value to filename adds an Include filename statement to
the end of the /etc/config/urm/configuration file.

You can change the URM configuration by editing this site-defined
configuration file. Or you could change the URM configuration by writing a
cron job that accesses this file.

8.4.7.3 Rank Boost to Previously Running Batch Jobs

This menu selection specifies an additional value given to checkpointed batch
jobs to improve their rank. This value is applied to batch jobs that were
previously running and were checkpointed due to a shutdown or hold. The
rank boost is added after the job’s rank has been calculated using the weighting
factors (described in the following section).

8.4.8 Weighting Factors for the Batch Selector

The method by which URM selects the next batch job to recommend for
initiation depends upon the interaction between the NQS and URM. This
interaction is influenced by a set of weighting factors established in the URM
configuration. To see or change these weighting factors, use the following menu

selections:
UNICOS 10.0 Installation | Configuration Menu System - >
Configure system ->
URM configuration ->
Weighting factors for the selector ->

The as-shipped default settings for these factors are as follows:

368 SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

S-> Age in queue weight 0.5
MPP Barrier bits weight 0.5
MPP Processor elements weight 0.5
MPP Requested PE time limit weight 0.5
Requested CPUtime weight 0.5
Requested Memory weight 0.5
Requested SDS weight 0.5
Requested Tape weight 0.5
Service provider priority weight 0.5
Share priority weight 0.5
Share entitlement weight 0.5
Usage weight 0.5

Possible values are in the range of 0.0 to 1.0. For each batch job, URM assigns a
ranking based upon place in each queue. For example, using the Age in

queue weight factor, the oldest job is assigned a ranking of 0.5, while the
youngest job is assigned a ranking of 0.0. By comparing the resulting weighting
factor for each batch job, URM determines the highest priority job.

These default settings should be changed only by a system analyst experienced
at tuning systems running URM.

Note: Share priority is the result of the following calculation:
Usagel entitlement?

Although the share priority, usage, and share entitlement weighting factors
all have a nonzero value by default, you must disable one or two of these
values. Configure only one of the following choices:

e Share priority weight
® Share entitlement weight
* Usage weight

¢ Share entitlement weight and usage weight

8.4.9 Auto-configuration Settings

To enable auto-configuration of various subsystems, URM includes a tool in the
menu system. To see or change the auto-configuration settings, use the
following menu selections:

SG-2302 10.0.0.2 369

UNICOS Resource Administration

370

UNICOS 10.0 Installation / Configuration Menu System - >
Configure system ->
URM configuration ->
Auto-configuration settings ->

The as-shipped default setting for each subsystem is as follows:

Resource Enabled Tries Wait time

E-> memory YES 10 20
mpp YES 10 20
serial YES 10 20
session YES 10 20
sds YES 10 20
tape YES 10 20

The URM has the ability to determine the available system resources. This menu
allows you to modify the retry parameters of the auto-configuration mechanism.

The Resource field names the resource to be auto-configured. URM can
automatically determine the system’s memory, mpp, serial , session , sds,
and tape resources. The serial resource configures the machine’s serial
number and the information available through uname(3). The session
resource corresponds to the system’s defined maximum number of sessions
(NSESS. The Enabled (Perform auto-configuration) field is used to
enable or disable the auto-configuration of the specified resource. CRI
recommends that these fields remain set to YES to allow auto-configuration.

Note that disabling auto-configuration prevents URM from using the MAX
settings in the URMMachine target values and URM Individual
session initiator targets menus.

The Tries (Number of tries) field indicates the number of times URM
should attempt to auto-configure the specified resource. It is necessary to have
a retry value, because some resources may not be available when URM is first
initialized. For example, if URM is brought up before the tape daemon is
running, URM’s first attempt at auto-configuring tape resources fails.

The Wait time field represents the time in seconds to wait before retrying the
auto-configuration of the specified resource.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.4.10 Resetting to Default URM Configuration

The menu system allows you to reset all URM configuration parameters to the
as-shipped default state. This could be useful if you find that configuration
changes you have made have created unexpected problems and you want to
start over with a known-working URM configuration. To remove all local
changes, and return to the as-shipped default configuration parameters, use the
menu system. Traverse the menus using the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System - >
Configure system ->
URM configuration ->

Reset DEFAULT urm configuration

8.4.11 Importing URM Configuration

For systems on which a URM configuration has not yet been imported, the
menu system provides a tool that reads in certain defaults. To read in all values
contained in the /etc/config/urm/configuration file, use the following
menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->

Import urm configuration

Warning: This menu item should be selected only on systems that do not
e have a running URM, as it overwrites any previously existing values for
these URM parameters.

The values read in are for the following parameters: init , machine , res ,
structure , urminfo , and val .

8.4.12 Activ ating URM Configuration Changes

After implementing any URM configuration changes, you must activate the
changes for them to take effect. To activate the changes from within the menu
system, use the following menu selections:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->

Activate urm configuration

SG-2302 10.0.0.2 371

UNICOS Resource Administration

A\

The next time urmd is started, the menu system updates the contents of the
[etc/config/urm/configuration file.

Caution: The /etc/config/urm/configuration file should never be
edited directly; any changes should be made through the menu system.

Changes activated from within the menu system do not affect the currently
executing urmd process; you can make the changes known to the currently
executing urmd process by typing the following:

rmgr /etc/config/urm/configuration

8.4.13 Using URM with NQS

8.5 URM Administrator

372

By default, URM does not control NQS jobs. To enable full URM control over
the initiation of NQS jobs, enter the following gmgr subcommand:

set job scheduling urm unlimited

With full URM control, NQS queue limits are no longer honored; instead,
URM’s resource targets and job ranking priorities determine which jobs are
recommended to NQS for initiation. For information about NQS parameters,
see the gmgr(8) man page. For information on changing NQS configuration
parameters, see the UNICOS NQS and NQE Administrator’s Guide, publication
SG-2305.

Tasks
To administer URM, you should understand the following procedures:
e Using URM log files
* Viewing URM results
* Viewing machine load
¢ Viewing all users
¢ Viewing jobs of a given user
e Changing a job’s minimum rank
e Changing URM configuration based on time of day (cron)

* Customizing URM (user exits)

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

These procedures are described in the following sections.

8.5.1 Using URM Log Files

The urmd process maintains a log file to record its actions. Each time the
daemon initializes, it creates a log file if one does not exist in the URM log
directory. The log file is placed in the /usr/adm/urm/ directory and is named
Urm. yymmdd. The log file is appended to throughout the day (yymmadd),
recording all directives, errors, and other important actions when the daemon is
running. The next day, when a log message occurs, the existing log file is
closed, the date is incremented, and a new log file is created.

An example of log entries is as follows:

11:16:20 153 U D Set Basenode /
11:16:20 153 U D Set Kernelaccess
11:16:20 153 U D Set Initialized

The format of the log messages is as follows:
hh:mm:ss 000000 x y message

The message is prefixed by the time the message was logged (hh:mm:ss), the
UID of the current user when the message occurred (000000), the access
privilege (x), and the severity code (y). UID 999999 means that the message
comes from urmd and is not associated with a user.

The access privilege labels (x) are as follows:

L Public socket access
N No user defined (internal message)
u Unrestricted privilege socket access

The severity labels (y) are as follows:
Logging a directive
Fatal

Informative

Log message

No error

Error type out of range

STz - TO

Warning

SG-2302 10.0.0.2 373

UNICOS Resource Administration

X Exit message

8.5.1.1 Monitoring URM Log Files

Because urmd creates a new log file each day (/fusr/adm/urm/Urm . yymmdd),
the number of log files grows rapidly. To conserve disk space, you should
monitor this growth and implement a strategy to minimize the effects. For
example, you could archive all but the most recent log files. You could use
cron to accomplish this on a scheduled basis, such as running an archiving
script at the end of each week.

8.5.1.2 Turning Off URM Logging

The log file can be turned off, using the local configuration file. To turn off
logging the activities of URM commands, enter the following:

rmgr
rmgr-> set nolog

8.5.1.3 Moving the URM Log Files

374

By default, the URM log files are in the /usr/adm/urm directory. You can
change the default directory with either of the following methods.

When invoking the the URM daemon, /etc/urmd , use the -| option to specify
an alternate log directory. The log file names cannot be changed, only the path.
See the urmd(8) man page for more information about the -I option.

When URM is running, an authorized URM administrator can change the
location of the log using the following rmgr (1) subcommand:

set log directory

If directory specifies a valid directory, the current log is terminated with a
message and closed, and a new log is opened in directory. Error messages are
issued if the new log file cannot be opened, and logging remains with the old
log file.

The set log directory directive can also be specified in the local configuration
file. However, when this method is used, the URM daemon writes the
initialization log in the default directory (/fusr/adm/urm). To change the
location of the initialization log, use the -| option when starting /etc/urmd

See the rmgr (1) man page for more information about the set log directive.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.5.2 Viewing URM Results

At any time while URM is running, you can generate a list of the jobs that
URM currently recommends for initiation. To generate this list, first invoke the
rmgr (1) command:

rmgr
Then choose the view jselect (view job select) option:
rmgr-> view jselect

This yields a report of jobs currently recommended for initiation. You can use
this report to help determine configuration changes needed to tune URM for
your site.

8.5.3 Viewing Machine Load

8.5.4 Viewing All Users

SG-2302 10.0.0.2

To assess machine load, first invoke the rmgr (1) command:

rmgr

Then choose the view /machine/load (view machine load) option:
rmgr-> view /machine/load

This yields a report of the resource usage of all jobs currently running, showing
the load on all subsystems monitored by URM. This report can be useful in
troubleshooting URM, to determine whether some parameter has been set too
low and has been exceeded.

To generate a list of all URM users, first invoke the rmgr (1) command:
rmgr

Then choose the view users (view all users) option:

rmgr-> view users

This yields a report of all users currently connected to the URM daemon and
their respective privileges (privileged, public, or anonymous).

375

UNICOS Resource Administration

8.5.5 Viewing Jobs of a Given User

To monitor the activities of a single user, first invoke the rmgr (1) command:
rmgr

Then choose the view jobs (view one user) option:

rmgr- > view jobs login | UID

This yields a report of all jobs currently recommended for initiation that are
owned by the specified user (login or UID). This might be useful in predicting
system load or in troubleshooting URM.

8.5.6 Changing a Job’s Minimum Rank

By default, NQS sets the minimum rank of jobs in the job backlog. The
ustat (1) command allows the URM administrator to change the minimum
rank of a specific job or jobs to affect the URM rank of those jobs.

Use ustat (1) to display the minimum rank of batch jobs, as in the following
example:

ustat -a -m
The view directive of rmgr (1) also displays minimum rank values.

Use the usetjob (8) command to change the minimum rank of batch jobs. The
following example changes the minimum rank for NQS job ID 12345:

usetjob -r 7 12345

If multiple machines submit jobs, the machine name is necessary to prevent
possible misinterpretation of the request ID. If the job in this example
originated from the machine fred , you would use the NQS request ID
12345.fred . The host ID (for example, 999) could be used instead of the
machine name, giving a job identification field of 12345.999 .

8.5.7 Changing URM Configuration Based on Time of Day (cr on)

376

You can use the cron command to change the URM configuration at certain
times of day. This would be useful, for example, if you wanted one
configuration for daytime loads that include more interactive sessions and a
different configuration for night-time loads consisting primarily of batch jobs.
To implement such a configuration change:

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

. Use the menu system to create a configuration file for daytime use (for

example, config.day) and activate the change.

cp /etc/config/urm/configuration /etc/config/urm/config.day

. Use the menu system to create a configuration file for night-time use (for

example, config.night) and activate the change.

cp /etc/config/lurm/configuration /etc/config/urm/config.night

. Specify a local configuration file to be included when urmd is started (for

example, /etc/config/urm/local).

. Edit the config.day and config.night files to remove from each file

the following line:
Include "/etc/config/urm/local”

This allows the auto-configuration to work properly in the event of a restart.

. Create a crontab file that includes the following;:

cp /etc/config/lurm/config.day /etc/config/urm/local
rmgr /etc/config/urm/local

The correct configuration file for the time of day must be copied to the
local file, so that, in the event of a restart, the correct configuration file is
used automatically.

8.5.8 Customizing URM (User EXxits)

SG-2302 10.0.0.2

The URM contains code that allows you to customize it for the specific needs of
your site by creating a site-written job selector. In URM, this site-written
selector code is called last.

As shipped, the selector code is empty; it defaults to exiting without doing
anything. However, you can write your selector based on any ranking
algorithm you choose, and insert your code into URM. Then you could turn off
all URM selectors and allow your site-written selector to make all job-initiation
recommendations based on your ranking algorithm.

Warning: Use of any user exit is not permitted on a Cray ML-Safe
configuration of the UNICOS system. Use of any user exit may result in loss
of the evaluated rating.

377

UNICOS Resource Administration

8.5.8.1 URM User Exits

URM includes two user exits. The URM daemon (/fetc/urmd) contains two
routines that can be replaced with a set of user-defined versions by re-linking
urmd with them. These user exits are defined in site_rank.c

User exit Description
site_adjust_merit Allows the user to modify the ranking factor. A

higher number increases the chances that a job
will be recommended for execution. A lower
number makes it more difficult for the job to be
recommended.

site_target _check Allows the user to set and reset limit flags for a
job entry in URM. Jobs that have flags set will not
be recommended for execution.

The order in which these ranking functions are invoked affects how the user
exits can be used.

To understand URM user exits, you must understand certain functions and data
structures in URM that are involved with the URM user exits. These are
described in the following two sections.

8.5.8.2 URM Job-ranking Functions

378

URM includes three job-ranking functions (defined in rank.c) that call the user
exits. The job-ranking functions are as follows:

Function Description
rank_jobs () Forms the jobs list. To qualify, the job must pass

raw_select () and maximum filters. Next, the
relative priorities and resource requirements are
used for the final ranking in the job list. The
other two functions are called from this one.

adjust_merit () Adjusts the merit parameters of a job. The user’s
share is evaluated and used to adjust the relative
merit of a job. The relative ranking value is
stored in urm_rank . Called with 0 to preset the
statics. This function calls the user exit
site_adjust_merit 0-

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

target_check

0

Determines whether or not the job exceeds the

target usage limits. If the job will not exceed the
target, returns UR_NONEIf the job will exceed the

target, returns one of the other UR_xxx reason

codes. This function calls the user exit
site_target_check 0-

The pseudo-code for rank_jobs () is as follows.

rank_jobs {

initialize_the_first_list
initialize_the_job_list

initialize _the_rec_list
initialize_the _pre_list
initialize_the_rest_list
initialize _the_chkpnt_list

get_loadinfo(objects)

adjust_merit(initialize
site_adjust_merit(initialize)

variables)

target_check(0, TC_INIT)
site_target_check(initialize)

for (job_objects) {
update_prelist(job _object)
update_restlist(job_object)
update _chkpntlist(job_object)
if (already_ranked_job)
target_check(job,
site_target_check(initialize)
if (raw _select(job_object))
update_firstlist(job_object)

}
for (first_list) {
apply_jobmax_constraints
create_job_list
}

SG-2302 10.0.0.2

TC_PRELOAD)

/*

/*
/*
/*
/*
/*
/*

/*

/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*

/*
/*

*

~

*

~

The real ranking function. */
Initialize firstlist of jobs.*/
Initialize job list. */
Initialize recommend list. */
Initialize prempt list. */
Initialize restore list. *
Initialize checkpoint list. */
Get system load information. */
Initialize ranking weights. */
Allow user to initial other */
user specific variables. */
Initialize usage limits. */
Allow user to initial other *
user specific limits. */
Add job objects to |lists. */
Add to prempt list. */
Add to restore list. */
Add to checkpoint list. */
Update potential usage and */
/¥ initialize again. */
if job passes raw limits then*/
add to the first list. */
Begin to weed out jobs. */
Create actual job list. */

379

UNICOS Resource Administration

for (job_list) { /* Loop through the job list. */
adjust_merit(job) /* Calculate this jobs ranking */
I* factor. *
site _adjust_merit(job) /* And user can make changes to */
I* the ranking factor. */
}
sort_job_list /* Sort job list. */
for (job_list) { /* Loop through the job list. */
target_check(job) /* Wil the job exceed Ilimits? */
site_target_check(job) /* Allow wuser to do more checks */
I* and even reset limit flags.*/
if (no_reason_code)
add_job _to_rec_list /* Add to recommend list. */
}
}
/* The rec_list now contains the recommended list of jobs that */
/* the session initiator should try and start. */

8.5.8.3 URM Data Structures

The structures and typedefs that URM uses to contain the job list information
are defined in the following header files:

#include <urm.h>
#include <errnum.h>
#include "urmdefs.h"
#include "object.h
#include "job.h"
#include "rank.h"

Two URM data structures in particular are useful to the user exits. These
structures are defined in the following two header files, which are found in the
directory /usr/src/prod/admin/urm/urmdaemon

Typedef Object; Defined in object.h
Typedef Job; Defined in job.h

The Job data structure contains a field that allows URM to manage site-specific
job information. When the JOBHIST_UXIT flag in the history field is set,
URM interprets the uxit union in the Job data structure as a pointer to
allocated memory and frees the specified space. However, if the user exit does

380 SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

A\

not use the uxit field or uses it as a number, the JOBHIST_UXIT flag must not
be set.

It is vital to URM that a user exit correctly modifies data in these structures.
Whoever is working with user exits should understand and be familiar with the
structures present in the header files, in order to use them effectively.

There are also three predefined site flags and reason codes. When URM does a
target check, it returns a flag and a reason code for what caused the job to not
be recommended. The flags are defined as macros in rank.h and the reason
codes are defined by the typedef URM_codein job.h . The predefined site flags
and reason codes are as follows:

Flag Reason code

_SITE1 _TAR UR_SITE1_TAR
_SITE2_TAR UR_SITE2_TAR
_SITE3_TAR UR SITE3_TAR

Caution: The user exits can give a site almost total control over the ranking
algorithm used by URM. In theory, a site can totally modify the
recommended job list (and other internal URM structures).

When writing user exits, be careful when using any of the following.

These can have an adverse affect on URM and could result in an unreliable
or unusable URM daemon. The user exit should, if possible, avoid any of
these conditions or uses.

® System calls or functions that would block (such as trying to connect to a
socket).

e fork and exec calls.
* Creating pipes or opening files.
* Use of signals.

* Code that significantly slows down the ranking.

8.5.8.4 URM User Exit Example 1

SG-2302 10.0.0.2

In this example, a user is submitting a weather model batch job that should be
given a high priority to run, and should not have to wait in an NQS queue for

381

UNICOS Resource Administration

very long. The URM user exits can be used to ensure that user’s job is set to
run before most other jobs, if not first.

One solution is to use the site_adjust_merit () function. When

adjust_merit () calls site_adjust_merit () with obj set to 0, this indicates
that the user exit should initialize any variables. When an actual obj is passed
to site_adjust_merit (), it contains an associated job and the ranking factor.
At this point this user exit returns an increased ranking factor. The amount of
the increase determines where in the job list URM puts this job. The closer to
the top, the more likely this job is to be recommended by URM before others (if
no targets are exceeded in target _check ()).

The following example code (which should be placed in site_rank.c) would

do this:

/*
* Variable hold the static value for site _adjust_merit
*/
static float site_rank_adjust;
/*
* float site_adjust_merit() - Adjust the ranking of a job
* depending on specific needs of the site.
*
* Return the rank this job should have.
*/
float
site_adjust_merit(float rank,
const Object *obj)
{
if (‘obj) { [* initialize values */
site_rank_adjust = 10.0; /* set adjustment value */
/* This value may need to be */
/* increased at your site. *
} else { /* else make adjustment */
if (strncmp(obj->ovalue.job->owner, "userl",5) == 0) {
rank += site_rank_adjust;
} /* If ‘userl’ is the owner */
} /* give a high rank value. */
return (rank);
}

382

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

In this example code, obj->ovalue.job->owner contains the name of the
owner of that job. This example compares name to userl , which is assumed to
be running the weather model batch job. If true, the rank is adjusted and the
new value is returned. By giving a high rank to this job, we are guaranteed that
this job will be ordered first (or almost first) on the job list.

Note that if the weather model job does not pass the target checks, it still will
not be recommended for execution.

8.5.8.5 URM User Exit Example 2

/*

*

*/
static

peak_|

{

int peak_inter

int
inter_time()
int rc=0;

time_t timval,
struct tm *tmptr;

In this example, a user should be prevented from running batch jobs from 8:00
AM. to 5:00 PM. (during peak interactive loads). The URM user exits can be
used to prevent this particular user from running batch jobs during this time.

One solution would be to change the ranking factor as in example 1, but instead
of adding to the ranking factor, decrease it by a significant amount (make sure
the ranking is a positive number). Although this user could still possibly run
jobs, those jobs will be very difficult for URM to recommend for initiation.

Another way to prevent the user’s batch jobs from running during this time is
to use the site_target_check () user exit. The following example code
(which should be placed in site_rank.c) would do this:

_time() - determine if between 8:00am and 5:00pm

/* 0 = off hours, 1 = peak time */
/* see time(2) man pages */
/* see time(2) man pages */

timval = TOTIME(rtc()); /* TOTIME is a URMmacro that acts */

/* like time() system call but uses *
/* the real time clock instead and *
/* does not cause a context switch. */

tmptr = localtime(&timval); /* break into components */

if ((tmptr->tm_hour

SG-2302 10.0.0.2

>= 8)&&(tmptr->tm_hour < 17) rc = 1,
/* If greater than 8:00am and less */
/* than 5:00pm set the return code. */

383

UNICOS Resource Administration

return (rc);
}
/*
* int site_target_check() - Extend the target checking function
* according to needs of the site.
*
* Return appropriate flags to the calling routine.
*
* If init_flag is true, this is an initialization call which
* may or may not be useful depending on the nature of the
* code.
*/
int
site_target_check(int flags,
Object *obj,
struct _indirect_vals *target,
struct _indirect_vals *load,
struct _total_vals *total,
struct _need_vals *need,
const int init_flag)
{
if (init _flag) { /* initialize values */
/* do initialization */ /* set values */
} else { /* else make adjustment */
if (strncmp(obj->ovalue.job->owner, "userl",5) == 0) {
/* If ‘userl’ is the owner, */
if (peak_inter _time()) { /* and this is peak interactive time, */
flags |= _SITE1_TAR; /* prevent the job from running by */
} /¥ setting the flag. target_check() */
/* will set the reason code later. */
}
}
return (flags);
}

The site_target_check

() uses peak_inter_time () only to say if the

system is currently running in peak interactive time. site _target_check ()
checks to see if this job is owned by userl , and, if so, it calls

peak _inter_time

384

() to find out if this is peak interactive time. If all true, set

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

the flag value for _SITE1_TAR, meaning that a site-defined target has been
exceeded by this job (in this case, the job will not be recommended). After
returning the flag, target_check () knows that this flag means to set the
reason code to UR_SITE1_TAR and the job will not be recommended to run. If
userl were to queue up batch jobs at 4:45 PM., they will sit in the NQS queue
until 5:00 PM., at which time the user exit no longer flags these jobs and URM
begins to recommend that they be run.

8.5.8.6 URM User Exit Example 3

In this example, an NQS queue has been designated as a high priority queue
called weather , into which weather model batch jobs are submitted. The URM
user exits can be used to ensure that this queue gets high priority.

This example is similar to example 1, but instead of basing priority on the user
ID, priority is established by service priority. An assumption is made that NQS
queues have unique service priorities and that the weather queue service
priority is known inside the user exit. Using site_adjust_merit (), the
ranking factor for jobs having the service priority for the weather queue can
be increased. The amount of the increase determines where in the job list URM
puts this job. The closer to the top, the better chance this job has of being
recommended by URM before others (if no targets are exceeded in
target_check ().

The following example code (which should be placed in site _rank.c) would

do this:
/*
* Variable site_weather _svcpri holds the static value for svcpri.
* Variable site_rank_adjust holds the static value for rank adjustment.
*/

static int site_weather_svcpri;
static float site_rank_adjust;

/*

* float site_adjust_merit() - Adjust the ranking of a job

* depending on specific needs of the site.
*

* Return the rank this job should have.

*/

float

site_adjust_merit(float rank,

const Object *obj)
{

SG-2302 10.0.0.2 385

UNICOS Resource Administration

if (lobj) { /* initialize values */

site_weather _svcpri = 40; /* set ‘’weather’ queue service pri */

site_rank_adjust = 10.0; /* set adjustment value */
} else { /* else make adjustment */

if (obj->ovalue.job->svcpri == site _weather_svcpri) {

rank += site_rank_adjust;

} /* If svcpri ‘weather’ queue, */

} /* then give a high rank value. */

return (rank);

In the example code, obj->ovalue.job->svcpri

contains the svepri of the

batch queue of that job. This example compares an svcpri of 40, which is
assumed to be the service priority of the weather NQS queue, to what is in

obj- >ovalue.job->svcpri

for the job. If they are the same, the rank is

adjusted and the new value is returned. By giving a high rank to this job, we
are guaranteed that this job will be ordered first (or almost first) on the job list.

If the weather model job does not pass the target checks, it still will not be

recommended for execution.

8.5.8.7 URM User Exit Example 4

This example shows how to modify the site_target_check

() function so

that NQS jobs from queues with a specific service priority will always be

recommended for initiation.

#define EXPRESS_PRI 15

/*
* This module is reserved for local use.
*

* Please see rank.c for the calls to these function.
*/

* int site_target_check() - Extend the target checking

* according to needs of the site.
* Return appropriate flags to the calling routine.

* Zero means no targets exceeded.
* If init_flag is true, this is an initialization

386

function

which

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

* may or may not be useful depending on the nature of the code.
*/
int
site_target_check(int flags,
Object *obj,
struct _indirect_vals *target,
struct _indirect_vals *load,
struct _total vals *total,
struct _need vals *need,
struct _max_vals *max,
const int init _flag)
{
Job “p;
char msg[132];
if (init_flag) {
/*
* Do nothing for initialization.
*/
return(flags);
}
jp = obj->ovalue.job; /* Get the job object pointer */
if (jp->svcpri == EXPRESS_PRI) {
/*
* If the job’s svcpri is EXPRESS_PRI, format and write
* a log message.
* Returning zero makes sure this job is not removed
* from consideration by the target checking rules.
*/
sprintf(msg, "Batch job %din NQSexpress queue (pri %d) cleared",
jp- >svcid, EXPRESS_PRI);
write_urm_log(ESTATE _INFO, msg);
return(0);
} else {

SG-2302 10.0.0.2

387

UNICOS Resource Administration

/*

*

*

%
return

Jobs that

'flags’

(flags);

is

are not EXPRESS_PRIget no special treatment;

returned without change.

8.6 Troubleshooting URM

The URM is part of the Cray Message System and provides explicit indications
of the cause of many error conditions and statuses. Both the urmd(8) daemon
process and the rmgr (1) user interface command access the message system.

8.6.1 URM Daemon Failures

388

If the urmd process fails to start or aborts during execution, check the log file
for an indication of the reason. Reasons for the urmd process to fail include:

The urm service name does not exist in the /etc/services file. Use the
menu system to create the urm service port.

The /bin/rmgr ~ command does not exist.
The /etc/lurmd process was not initiated by a privileged process.

Configuration files either have not been installed in /etc/config/urm or
contain invalid commands.

Files with the same names as the configuration files exist in /usr/adm/urm
To open a configuration file, rmgr first checks its current directory (during
initialization, /ustr/adm/urm) before the configuration directory
(/etc/config/urm). The critical file names are configuration ,init
local , machine , res, structure , urminfo , and val .

The urmd process can be restarted on an active system. It reads the session
table to determine the current state of the machine and continue from there. It
is important to reconnect the NQS daemon to the restarted urmd process. To do
so, use gmgr directives to set URM scheduling on and to set URM restart on.
For details of enabling URM services in NQS, see the UNICOS NQS and NQE
Administrator’s Guide, publication 5G-2305.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.6.2 URM and NQS

SG-2302 10.0.0.2

If the rmgr command fails to connect to a urmd process on a remote machine,
it is likely that the URM configuration on the remote machine does not have
this machine in its /hosts list.

Note: To execute the following procedure and get the expected results, you
must be in the URM authorized administrator list (/fadmin/privileged).

To view which machines are allowed to connect remotely, use the rmgr
command, followed by the view /hosts option:

rmgr
rmgr-> view /hosts
-Vrw-- 0 0 Jan 4 13122 <* > "null"

In this case, the * shows that remote connections are accepted from all hosts (as
long as user validation also passes). If the desired host is not in the hosts list,
use the menu system to add the host(s) to the URM configuration.

If a non-superuser process fails to obtain a privileged connection to the urmd
process even though their name is in the URM /admin/privileged/ list,
ensure that the /bin/rmgr executable has been installed properly. This
program must be installed as setuid-root in order to use a privileged socket
connection with the urmd process.

The URM and NQS work closely together to maintain the desired system loads.
For NQS to work with URM, the NQS daemon must be configured to
communicate with the urmd process. To verify this communication, first make
sure that the urmd process is executing (and if not, restart it). Then check the
NQS configuration parameters to verify that URM scheduling is turned on (the
NQS set job scheduling option parameter must be set to the correct option).
For information on displaying the NQS configuration parameters, see the

gmgr (8) man page. For information on changing NQS configuration parameters,
see the UNICOS NQS and NQE Administrator’s Guide, publication SG-2305.

To manually establish (or re-establish) communication between NQS and URM
on a running system, you can use the gmgr(8) command, specifying the
appropriate subcommand.

To return NQS to its default mode (disable URM control), enter the following
gmgr subcommand:

set job scheduling ngs normal

389

UNICOS Resource Administration

For more information on the gmgr command and subcommands, see the
gmgr (8) man page.

8.6.3 URM and the Fair-share Scheduler

The URM considers fair-share usage information from the user data base (UDB)
when prioritizing batch jobs. If your system has the fair-share scheduler turned
on, it must be functioning properly, that is updating the usage information in
the UDB.

This section explains the three fair-share components used by URM: share
priority weight, share entitlement weight, and usage weight. For more
information on fair-share, see "Fair-share Scheduler", Chapter 4, page 191.

8.6.3.1 Share Priority Weight

390

In a system using the fair-share scheduler, URM evaluates the effective share of
each resource group and stores the information in a table named /share in the
URM object tree. Each of the table entries holds the relative share of its resource
group. The groups are converted from the hierarchy into a flat organization for
ease of searching and evaluation. Relative shares are not adjusted for usage in
the object tree.

URM evaluates the share organization at a rate determined by

/urm/share_eval (the time to go before the next evaluation is found in
/urm/share_to_go). Normally, the resource group hierarchy and the relative
priorities among the resource groups do not change frequently. If the
administrator changes the organization of the resource hierarchy or the relative
shares within the hierarchy, URM can be forced to regenerate its internal view
of the resource groups by setting share _to_go to 0.

When a job is being evaluated, the user’s resource group is determined as input
to the share evaluation function. The entitlement of the user is determined as
described in the following section. Next, usage is determined as described in
the "Usage weight" section, Section 8.6.3.3, page 391 (the method depends on
the setting of share _policy), and the priority is determined from the
following expression:

priority=usagel entitlement?

This is the same expression that is used in the kernel to compute kl_usage ,
which is the main component of p_sharepri . Numerically smaller values are
better. If the fair-share scheduler is not active, the value of this component is 0.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

Each job’s share priority for ranking is determined from the following
expression:

share_wt*(1.0-(job_priorityl max_priority))

Share priority ranking is a combination of usage and entitlement ranking
available separately. It is expected that either share priority ranking or a
combination of usage and entitlement ranking would be chosen, but not some
combination of share ranking and usage or entitlement ranking. This capability
offers additional flexibility in ranking choices.

8.6.3.2 Share Entitlement Weight

8.6.3.3 Usage Weight

SG-2302 10.0.0.2

The share entitlement at each level in the fair-share hierarchy is determined
from the following expression:

entitlement=node_sharel group_share

The value group_share is the total number of shares allocated in the resource
group. This means that a node’s entitlement is the fraction of the total shares of
the group assigned to that node, without regard to how many nodes in the
group have activity. This is not how the fair-share scheduler evaluates a user’s
entitlement, but an exact method is very difficult to implement when some of
the users or resource groups waiting to have jobs initiated may not be active.
The intent is to determine the relative entitlements of a number of users
competing for initiation.

Each level of the hierarchy is evaluated as described in the preceding
paragraph, and the product of the entitlements of each level in the hierarchy
becomes the user’s entitlement. This value is returned to the share priority
calculation and to the ranking evaluator separately to be normalized and
weighted with the entitle_wt factor.

Numerically larger values are better. If the fair-share scheduler is not active, the
value of this component is 0. Each job’s entitlement for ranking is determined
from the following expression:

entitle_wt*(job_entitlement/ max_entitlement)

Usage is derived from the decayed usage as maintained by the fair-share
scheduler in either the Inode or the UDB. When URM examines a job, it checks
for current active usage by using the limits (2) system call. If the user is active
(has an Inode), current usage is returned. If the user is not active, the user’s

391

UNICOS Resource Administration

8.7 URM Architecture

record is read from the UDB, and the current usage value is calculated from the
recorded usage decayed over the time period since the user last used the
machine.

If share_policy is Standard , only the terminal node’s usage is returned. If
share_policy is Fair_ratio , usage of the subject node, proportional to the
sum of the usage in each level of the hierarchy, is multiplied together to form
the usage value. Usage supplied to the share priority component is the value
determined by share_policy ; this value is also returned to the ranking
evaluator separately to be normalized and weighted with the usage_wt factor.

Numerically smaller values are better. If the fair-share scheduler is not active,
the value of this component is 0. Each job’s usage for ranking is determined
from the following expression:

usage_wt*(1.0-(job_usagel max_usage))

The URM includes three servers: the urmd selection server, the rmgr query and
command server, and the sdsmgr job server. The following sections describe
these URM servers.

8.7.1 Selection Server (ur md)

392

The urmd selection server (the URM daemon) accepts job selection requests and
responds with recommendations. This is the server that NQS, login , and other
session initiators use to get initiation recommendations from URM. This server
uses information about the state of the system and the backlog to recommend
which job or jobs should be initiated. If any of the resources required by the job
are not available, a recommendation is not issued and the job should not be
started, because it may block or fail during its device reservation process.

The initiating service makes requests of the selection server by presenting a
single job to add to the current backlog or by presenting its entire backlog of
jobs otherwise eligible to initiate. There is also the capability of removing a job
from the URM backlog. These functions are intended to provide enough
information internal to URM to know the backlog, while giving flexibility to the
service to add, delete, or rearrange jobs as required within the scope of the
service policy. Services such as login that do not have a backlog simply
present a job for evaluation. URM assumes that when a single job is presented
for evaluation, a positive recommendation implies job initiation.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

Device availability checks must succeed for URM to recommend initiation of a
job. Resource requirements known to the selection server do not affect the
execution of the job, because nothing is really reserved until the job initiates
and makes its own reservation requests. This approach is taken to prevent
incomplete or inaccurate resource information from affecting the actual
execution of jobs.

The selection server expects that all relevant information about the resources
needed by a job will be presented to it when a recommendation is requested.
Only in this way are useful recommendations possible. All of the URM
attributes associated with the job should be presented so they can also be
evaluated. URM evaluates these attributes and recommends initiation only
when all of the requirements are satisfied. Other information needed is the
identification of the service (NQS, interactive, and so on) and, for each job, the
following information:

e User name and/or user ID
* Memory and SDS size limits
e (CPU time limit and nice value

¢ Tape usage information and other resource requirements of the job (batch
only)

¢ Fair-share resource group ID

® Job priority (minimum rank)

8.7.2 Query and Command Server (r ngr)

The rmgr query and command server accepts requests for status information
and replies to such requests as appropriate. This server is intended to support
the needs of network-level scheduling and local administrators. This server also
provides the configuration capability to URM.

For more information about the query and command server, see the rmgr (1)
man page.

8.7.3 SDS Management (sdsngr)

SG-2302 10.0.0.2

URM includes the sdsmgr job server, which monitors any interactive or batch
session that uses secondary data space (SDS) in the SSD. When the sdsmgr is
enabled, SDS space can be oversubscribed in the same manner as memory can
be oversubscribed, by swapping SDS to swapdev . SDS in use and SDS changes

393

UNICOS Resource Administration

394

requested by all sessions are determined from the session table by the
kerninfo.c module of URM, which gathers load information. sdsmgr reads
the sdsmap information to obtain the amount of SDS that is available but not in
use at that time. If the amount of SDS in use at a particular point in time is
greater than the physical amount of SDS space available after Idcache
allocation, SDS is considered to be oversubscribed.

Changing the state of a session from active use of SDS to waiting for a turn at
using this resource is termed preemption. This releases the SDS space for use by
another session. Preemption of SDS space is done via the suspend () system
call, which causes both process memory and SDS space for the session to be
written to the swap device. Restoration of a session to a running state is
accomplished by using the resume () system call, which removes the
PC_SSPNDflag from each process. When sched makes each process eligible for
running and swapper swaps it in, the SDS space is reallocated. If the required
SDS space is not available, the process is not swapped in.

To manage SDS, sdsmgr first makes a list of sessions using SDS; this list is
ordered by nice value and time-in-queue. Preference is given to lower nice
values and older jobs in order to provide fastest wall-clock turnaround. The
amount of SDS in use (s_sdsuse in the session table) is further broken down
into SDS in core and SDS swapped out (S_SUSPNDEMag set). The amount of
SDS requested (s_sdsreqsz in the session table) is further broken down into
additional SDS needed for swapin and SDS needed to grow in core. As long as
no session needs more SDS, and no session needs to be swapped in to continue
running, sdsmgr takes no actions.

If, after accounting for swapped sessions, there is a session trying to ssbreak
for more SDS space, sdsmgr looks for a preemption candidate. Sessions with
SDS are guaranteed not to be preempted for a specific length of wall-clock time
(known as a residence interval), as long as they do not change their SDS
allocation. Sessions in core that are waiting on ssbreak (that is, the kernel
cannot allocate a larger SDS area) are preempted first. Exceptions to this rule
are sessions that have just been initiated (sp->s_sdsuse == 0 and
sp->s_sdsreqsz > 0). These sessions are given a chance to acquire SDS and
start running before being preempted. Because NQS jobs acquire all their SDS
specified on the gsub on the first ssbreak , NQS jobs should not be preempted
when they first start running, as happened with gfdaemon . This behavior also
assumes that users have not changed the environment variables SDSLIMIT,
SDSINCR and SDSMAXFR

If no sessions trying to grow their SDS space are found, sessions that have had
SDS allocated longer than the configured SDS residence interval are considered
for preemption next. Sessions are preempted until enough SDS space has been

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.8 URM Resour ces

SG-2302 10.0.0.2

freed up to satisfy the in-core SDS requested. If SDS space is available, and
there are swapped out sessions, the job that has been out the longest, has the
most favorable (lowest) nice value, and fits in the available SDS is swapped in.
As long as as there are no sessions needing SDS to be swapped in, sessions
currently using SDS are not preempted, even if they have exceeded the SDS
residence interval. The sdsmgr does only one preempt for residence time
exceeded and one restore per URM cycle.

This section describes the resources that URM controls. These are the resources
usually associated with physical objects and with such notions as available
devices or capacity.

URM resources include the following:

Resources Description

CPU time Like memory, this resource can be used to control job initiation
but is more likely to be used to group jobs of similar duration for
selection decisions.

Memory Memory is not strictly a controlled resource, but URM manages
oversubscription (swap control) and recommends against
initiating jobs that require memory usage above a specified
maximum. This is mostly needed for administrative controls,
such as preventing jobs needing more than a specified amount of
memory from being initiated during periods of heavy interactive
use. Another use of this resource is to group jobs of similar
usage, so that jobs with large memory requirements need not
compete against one another during execution.

MPP The MPP resources can be configured to allow multiple user
applications to run concurrently (space sharing). The MPP
hardware resources that must be shared are the barrier bits and
the processing elements (PEs). URM monitors the MPP barrier
synchronization mechanism (barrier pools for user-designated bits
and for operating-system-designated bits). URM monitors the
MPP administrative resource pools (sets of PEs designated for use
by batch, interactive, or both job types).

SDS Allocation of SDS space is evaluated both to deliver service to
deserving jobs in the proper order and to manage resource
conflicts to avoid oversubscription beyond manageable limits.

395

UNICOS Resource Administration

User limits on SDS space are controlled through the UDB limits
on batch and interactive.

Share Although shares, as used in the fair-share scheduler, are not
resources in the sense of tapes, each user has potential to do work
based on a priority derived from the share. Because this priority
depends on the user’s history, as well as the set of users active on
the machine at a given time, URM must consider the effective
priority of each request in the initiation recommendation.

Tape URM supports tape resources as defined by the UNICOS tape
subsystem. Eight different user limits are available to control tape
resources.

8.9 URM Checkpointing

URM can be configured to checkpoint interactive sessions at shutdown, if
requested by the owner of the session. The resulting restart images are kept in
the URM chkpnt directory.

URM can also be configured to do periodic checkpoints of interactive or batch
sessions, if requested by the owner of the session. URM sends checkpoint
notices to NQS when a batch session requires periodic checkpointing; the
resultant restart files are kept in the NQS chkpnt directory. URM manages
restart files for interactive sessions in a special URM chkpnt directory.

8.9.1 Configuring URM Checkpointing

396

Checkpointing is done only on an individual session basis. The chkptint (1)
command provides the mechanism by which any user is able to specify that
checkpointing be done at shutdown for an interactive session or that periodic
checkpointing is desired for an interactive or a batch session.

This command has one required option, of the form -s sec, which specifies the
requested checkpoint frequency in seconds. When URM is running in
checkpoint only at shutdown mode, all that is required is that the

chkptint -s # be nonzero; chkptint -s 0 can be used to turn off the
automatic or periodic checkpoint request for that session. The chkptint
command can be part of a script or placed in a user’s .cshrc or .profile file.

The following URM objects (as taken from a rmgr- > view /urm display) are
used to configure URM checkpoint features:

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

LVrwr- 0 0 Dec 28 08:13 <restart_switch> "Force "

LVrwr- 0 0 Dec 28 08:13 <chkpnt_switch > "Auto"

LVrwr- 0 0 Dec 28 08:13 <min_interval > Int, 1800
LVrwr- 0 0 Dec 28 08:13 <interval _type > "CPU, Clock"
LVrwr- 0 0 Dec 28 08:13 <retain_chkpnt > Int, 432000
LVr-r- 0 0 Dec 28 08:13 <shutdown > Int, O

LVr-r- 0 0 Dec 28 08:13 <shut_done > Int, O

LVrwr- 0 0 Dec 28 08:13 <restart_cmd > "UPATH/irstart "
LVrwr- 0 0 Dec 28 08:13 <chkpnt_path > "PPATH/chkpnt"
LVrwr- 0 0 Dec 28 08:13 <chkpnt_cmd > "UPATH/intchkpt"

The restart_switch object indicates whether or not to use the
RESTART_FORCHag on the restart system call when restarting an interactive
session.

The chkpnt_switch object defines the type of checkpointing desired. No turns
both features off; Shutdown turns on checkpointing for interactive sessions at
shutdown; and Auto turns on periodic checkpointing of batch and interactive
sessions and specifies checkpointing for interactive sessions at shutdown as well.

The min_interval object defines the minimum interval (in seconds) between
checkpoints with which URM will comply. If a user requests a checkpoint
interval less than this minimum, the minimum will be used. This constraint
applies only to periodic checkpoint behavior.

The interval_type object defines the checkpoint criteria. CPUmeans
user-plus-system CPU time; Clock means elapsed wall-clock time. This
constraint applies only to periodic checkpoint behavior.

The retain_chkpnt object defines the length of time (in seconds) URM will
keep a restart image before deleting it. Deleting these images prevents taking
up disk space with unwanted restart files.

The shutdown and shut_done flags indicate whether or not shutdown is in
progress or completed. When shutdown and shut_done are both 0, no
shutdown is in progress. If shutdown is equal to 1, URM goes through the
process of looking for sessions to checkpoint, but does not terminate when
completed. If shutdown is equal to 2, a checkpoint and terminate sequence has
been requested. When all shutdown checkpointing is complete, shut_done is
set to 1.

The restart_cmd object defines the name of the command rmgr executes to
restart a selected interactive session.

397

UNICOS Resource Administration

The chkpnt_path object defines the path to the URM checkpoint directory.
The default is /usr/adm/urm/chkpnt

The chkpnt _cmd object defines the name of the command URM spawns as a
separate process to checkpoint an interactive session.

For periodic checkpointing of interactive sessions, URM scans the session table,
notes when a checkpoint interval has been set by using the chkptint

command, and sets a timer for that session. When the requested CPU or
wall-clock interval has elapsed, URM will fork and exec a process to do the
checkpoint for the interactive session. The timer is reset after a successful
checkpoint.

When URM determines that it is time to do a periodic checkpoint of a batch
job, URM sends a chkpnt request, defined as part of the interface between
NQS and URM, along with job sequence number, MID, and SID. NQS creates
the restart file in the NQS checkpoint directory, as if a gchkpnt command had
been issued by the user.

8.9.2 Managing Restart Images

Several rmgr subcommands aid in the management of restart images. Upon
logging in, an interactive user can query URM, using the rmgr utility

view restart subcommand, to see if the user has any checkpointed sessions
available.

rmgr-> view restart kcz

Restart images belonging to User <kcz>, UID 343 on path /ptmp/urm/chkpnt/kcz
<1> 12281123.2640
<2> 12281153.2640
<3> 12281223.2640

User <kcz> has 3 restart images.

To decide which of the saved restart images to try to restart, a user can use the
rmgr utility view restart subcommand to obtain a detailed description of
the restart image.

rmgr-> view restart kcz 2
Restart file /tmp60/kcz/chkpnt/kcz/12281153.2640 belongs to uid 343
Restart file 12281153.2640 for session 2640 created Dec 28 11:53

Restart file session characteristics:
#procs = 5; #tasks = 5; pgrp inheritance = 69747; nice value 20.
PID of session parent = 69746; PID of foreground process group = 76223.

398 SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

User cputime = 118212137; system cputime = 196492829

cpulimit[0] = 4611686018427387903
cpulimit[1] = 4611686018427387903
cpulimit[2] = 4611686018427387903
Memory in use = 868; memhiwat = 2047; memlimit = 35184372088831
SDS in use = 0; sdshiwat = 0; sdslimit = 900000
Max #of procs allowed = 100
Mtask 1: name: csh pid: 69747 #sibs: 1.
process group pid = 102032, parent pid = 69746
Memory size= 124 Kklics, swap_image size= 0 Kklics.

SDS allocated= 0 klics, SDS requested= 0 Kklics.

Mtask 2. name: zup pid: 70005 #sibs: 1.
process group pid = 102032, parent pid = 69747
Memory size= 156 Kklics, swap_image size= 0 Kklics.

SDS allocated= 0 Kklics, SDS requested= 0 Kklics.

Mtask 3: name: csh pid: 70030 #sibs: 1.
process group pid = 102032, parent pid = 70005
Memory size= 96 Klics, swap_image size= 0 Kklics.

SDS allocated= 0 Kklics, SDS requested= 0 Kklics.

Mtask 4: name: man pid: 76223 #sibs: 1.
process group pid = 102032, parent pid = 70030
Memory size= 148 Kklics, swap_image size= 0 Kklics.

SDS allocated= 0 Kklics, SDS requested= 0 Kklics.

Mtask 5. name: more pid: 76224 #sibs: 1.
process group pid = 102032, parent pid = 76223
Memory size= 112 Kklics, swap_image size= 0 Kklics.

SDS allocated= 0 Kklics, SDS requested= 0 Kklics.
User <kcz> has 2 restart images.

The rmgr utility delete restart ~ subcommand allows users to delete
unwanted saved restart images. For example:

rmgr-> delete restart kcz 1
Deleted restart image <1> for user kcz
rmgr->

SG-2302 10.0.0.2 399

UNICOS Resource Administration

To request that a previously saved session be restarted, a user first views the
saved images and then specifies that a particular image be restarted. The
existing session with rmgr is eliminated, and the terminal connected to the
login shell is saved in the restart session.

The following example restarts a saved session that was in the middle of a man
ps command. Output resumes where it left off when the job was saved.

rmgr-> view restart kcz

Restart images belonging to User <kcz>, UID 343 on path /tmp60/kcz/chkpnt/kcz
<1> 12281153.2640
<2> 12281223.2640

User <kcz> has 2 restart images.

rmgr-> restart kcz 1
When a process has exited and has a parent, but the parent has not
waited for it, the process is marked <defunct>.

Format Specification
The -o option allows the output format to be specified under user
control. The format specification consists of a list of field names
--More--

8.9.3 Checkpointing at Shutdo wn

The rmgr subcommands used in a controlled shutdown are

set shutdown stopdaemon , or set shutdown and stopdaemon used
separately and sequentially. When set shutdown stopdaemon is used, urmd
terminates after all checkpointing has completed. When set shutdown is
used, any requested checkpoints are performed, but urmd continues. When
stopdaemon is used, urmd terminates without performing any checkpointing.

8.10 Tuning URM

This section provides information specific to tuning the Unified Resource
Manager (URM). It covers the following topics:

¢ Tuning URM control settings
¢ Tuning URM job selection criteria

e Using URM with NQS

400 SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

The examples in this section demonstrate changing URM settings with the

rmgr (1) command. Any changes made with rmgr affect the running version of
URM only; when the URM daemon is stopped, these changes are lost. To make
permanent changes to URM settings, use the menu system (install (8)
command), as described in Section 8.4, page 359.

8.10.1 Tuning URM Control Settings

URM is released with a set of default control settings, including the following:
® Machine target values (/machine/target)

* Monitoring cycles (/urm)

* Group scheduling control (/machine/target/group_sched)

* Load smoothing factors (/machine/rate)

The remainder of this section describes how to change each of these control
settings.

8.10.1.1 Machine Target Values

SG-2302 10.0.0.2

The URM machine target values set system-wide resource usage boundaries.
URM does not recommend initiation of jobs specifying resources that exceed
these targets.

When determining the recommendation status of each job, URM compares
system resource loads against the following targets:

* Memory oversubscription target
® SDS oversubscription target

* Maximum session target

¢ Tape limit target

e MPP limit targets

The values for the tape and MPP limit targets are automatically updated by
URM through its automatic configuration capability and should not be changed
manually. However, if your site does not have tapes, the automatic
configuration of tape usage targets should be disabled.

Use the rmgr command to view the current machine target values, as shown in
the following example:

401

UNICOS Resource Administration

rmgr => vi ew / machi ne/t ar get

LVrwr- O O Sep 16 06:21 <sds_os > Float, 2.000000
LVrwr- O O Sep 16 06:21 <memory_os > Float, 2.000000
LVrwr- O O Sep 16 06:21 <tape > Int, 2

LVrwr- O O Sep 16 06:21 <jobcount > Int, 300

LVrwr- O O Sep 16 06:21 <pe > Int, O

LVrwr- O O Sep 16 06:21 <bb > Int, O

The /machine/target display also shows other URM values, such as the
group scheduling controls; these values are discussed in following sections.

To change a machine target value, use the following rmgr directive:
/machine/target/ resource=value

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->

Machine target values

The remainder of this section describes the configurable machine targets for the
memory, SDS space, and active jobs.

8.10.1.1.1 Memory Oversubscription Target

402

The amount of memory in use is called the memory load. URM computes the
memory load by adding the size of all running jobs and recommended jobs.
The size of a running job is calculated from the actual size in the kernel session
table, smoothed by the requested size of the job (see Section 8.10.1.4, page 410).
The size of a recommended job is the amount of memory the job requested. If a
job did not request memory requirements (that is, interactive jobs), the default
memory usage is used; see Section 8.10.2.2.2, page 421, for more information.

The memory oversubscription target, /machine/target/memory_os , sets an
upper limit on the total amount of user memory (including swap space) that can
be in use at the same time. If the actual memory load matches or exceeds the

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

target value, no jobs are initiated until the load drops. This limitation includes
only jobs from session initiators that have been configured to allow URM
control of job initiation; for more information, see Section 8.10.2.2.2, page 421.

Estimating memory use in this manner allows URM to plan ahead for future
memory use, if smoothing factors are used, because most jobs do not use the full
amount of declared memory until they have been running for a period of time.

The memory oversubscription target is a multiplier, or percentage value, instead
of an absolute value. The default multiplier, 2.0, sets the memory target to twice
the total amount of user memory configured.

If a high amount of swapping is affecting system performance, consider
decreasing the memory oversubscription multiplier. For example, to change the
memory oversubscription target to 1.5, enter the following rmgr directive:

/machine/target/memory_os =15

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
Machine target values ->
Memory oversubscription multiplier

Note: The maximum value for the memory oversubscription target is limited
by the amount of swap space configured on the system. Do not set this target
to a value larger than the amount of available swap space. (If SDS space is
configured, the sum of the memory oversubscription target and the SDS
oversubscription target should be less than or equal to the amount of
available swap space.)

The following example demonstrates how to calculate a value for memory
oversubscription that corresponds to previous usage of the system by using the
data from the system sar (1) logs. For example, assume that the sar log for a
typical day shows the following average values for memory use:

e 53730 clicks of total user memory available (umemtot)
e 38144 clicks of user memory in use (umemnuse)
* 46769 clicks of swap space in use (swapuse)

Use the following equation to calculate the memory oversubscription target
value for URM:

403

UNICOS Resource Administration

memory_os = (umemuse + swapuse) | umemtot

(38144 + 46769) [/ 53730

=16

Setting /machine/target/memory_os to 1.6 will result in memory use with
URM that is similar to previous system behavior.

8.10.1.1.2 SDS Oversubscription Target

404

The SDS oversubscription target, /machine/target/sds _0s, sets an upper
limit on the total amount of SDS space that can be in use at the same time. If
the actual SDS load matches or exceeds the target value, no jobs requesting SDS
space are initiated until the load drops.

The SDS oversubscription target is a multiplier, or percentage value, instead of
an absolute value. The default multiplier, 1.5, sets the SDS target to one and
one-half times the amount of available SDS space. This target could be
increased to allow URM to recommend more jobs using SDS space (which
might increase swapping as well), as in the following example:

/machine/target/sds_os =20

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
Machine target values ->
SDS oversubscription multiplier

Note: The maximum value for the SDS oversubscription target is limited by
the amount of swap space configured. Do not set this target to a value larger
than the amount of available swap space. (If SDS space is configured, the
sum of the memory oversubscription target and the SDS oversubscription
target should be less than or equal to the amount of available swap space.)

In addition to monitoring SDS load, URM manages SDS space by preempting
the jobs using SDS to allow other jobs a chance to use SDS space. (Both batch
and interactive jobs are affected by this feature.) For more information, refer to
Section 8.10.1.2.5, page 407.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.10.1.1.3 Maximum Session Target

8.10.1.2 Monitoring Cycles

8.10.1.2.1 URM Main Loop

SG-2302 10.0.0.2

The maximum session target, /machine/target/jobcount , determines the
boundary at which URM stops recommending the initiation of any more jobs.
By default, this target is set to the size of the kernel session table (set by the
NSESSparameter).

Note: Setting the active job target to too small a value could result in wasted
CPU resources, because URM would not recommend jobs even when
adequate resources are available. To control job count and prevent the system
from becoming overcommitted, use the job targets for the individual session
initiators. Refer to Section 8.10.2, page 414, for more information on these
targets.

The URM monitoring cycles control the frequency of load monitoring, batch job
ranking, and SDS preemption. These cycles define the minimum possible delay
for initiation of batch jobs. (Interactive jobs are always handled immediately.)
The controlling monitoring cycle is called the main loop; this cycle calls all other
monitoring cycles. Therefore, all other cycles cannot occur more frequently than
the main loop cycle.

The monitoring cycles can be changed to increase or decrease URM’s sensitivity
to fluctuations in job load. This section describes changing the interval, or
delay, for the main loop and the subsidiary cycles.

The URM main loop consists of the following operations:

Operation Description
Kernel information check Checks system load and

configuration information,
monitors SDS usage

Job scheduling check Ranks and recommends any
batch jobs that are waiting in
its backlog

Share evaluation check Reevaluates the fair-share
hierarchy

405

UNICOS Resource Administration

SDS residence management Manages SDS usage

The main loop is controlled by the main loop delay, /urm/sleep_time ;itis
set to 10 seconds by default. This delay specifies the amount of time URM
waits before performing the subsidiary cycles. Each subsidiary cycle in the
main loop has its own delay; these should be set to a multiple of the main loop
delay. If they are not, the main loop delay will take precedence.

To increase the main loop delay to 20 seconds, for example, enter the following
rmgr directive:

/urm/sleep_time = 20

To permanently change the configuration, use the following menu in the menu
system. However, it is recommended that you not change this value.

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
URMcontrol settings ->

Main loop sleep period

8.10.1.2.2 Kernel Information Check

The kernel information delay, /urm/info_delay , controls the frequency of
checks for resource loads and configuration information; it is set to 10 seconds
by default. Changing this value is not recommended. Refer to Section 8.10.1.4,
page 410, for more information on the kernel information delay.

8.10.1.2.3 Job Scheduling Check

406

The job scheduling check controls the frequency of batch job ranking and batch
job recommendation. During the job scheduling check, URM ranks all jobs in
the backlog and makes any possible recommendations.

The job scheduling delay, /urm/sched_delay , is set to 10 seconds by default.
This delay, along with the main loop delay, defines the actual minimum delay

for batch jobs to receive an initiation recommendation after they are registered
with URM.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.10.1.2.4 Share Evaluation Check

If the fair-share scheduler is enabled, URM periodically evaluates the machine
share (normalized share) of each resource group or shareholder (account ID) for
use in the batch job ranking calculation.

The share evaluation cycle is controlled by the share evaluation delay,
/urm/share_eval , which is set to 900 seconds (15 minutes) by default.
Resource group hierarchies and relative priorities among the resource groups
tend to change infrequently, so this evaluation is not performed as often as the
other cycles.

The countdown timer for the fair-share evaluation period,
lurm/share_to_go , contains the amount of time remaining until the next
evaluation. Use the following rmgr directive to view this value:

view /urm/share_to_go

If relative fair-share priorities change on a one-time basis (for example, when
the share allocations are changed in the UDB), set /Jurm/share_to_go to 0;
this ensures that share evaluation will be performed during the next main loop
cycle.

For more information on the fair-share scheduler, see "Fair-share scheduler,”
Chapter 4, page 191.

8.10.1.2.5 SDS Residence Management

SG-2302 10.0.0.2

URM controls SDS oversubscription by preempting jobs, both batch and
interactive, to ensure that other jobs waiting for SDS space get a chance to use
it. Once during each main loop, URM checks to see if SDS space is in use, then
calls the sdsmgr program to handle the actual preemption.

The SDS residence interval is controlled by /urm/sds_residence ; this value
is set to 900 seconds (15 minutes) by default. You can disable URM
management of SDS space by setting /urm/sds_residence to 0.

To permanently change the configuration, use the following menu in the menu
system:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
URMcontrol settings ->

SDS residency time in secs

407

UNICOS Resource Administration

The following example shows the view sds directive to the rmgr command
on a system with SDS oversubscription:

rmgr-> vi ew sds
SDSwork: SDS residence interval set to 900

Number of sessions using SDS = 2
Number of preempted SDSjobs =0

SDS jobs:
preempted =0
restoring =0
swapped =1
in core =1

SDS units:
physical size 12288
allocated 23296
requested 0
available 128
in memory 12160
swapped out 11136
needed by running jobs 0
needed by suspended jobs O
being preempted out 0

being restored to memory O
SDS state is OVERSUBSCRIBEDy 11008

8.10.1.3 Group Scheduling Control

408

During the batch job ranking phase (see Section 8.10.2.1.1, page 415), the default
behavior for URM is to select the jobs with the best (highest) rank to
recommend for initiation. However, some jobs might receive a consistently low
rating because of atypical resource usage. Using rank alone as a selection
criterion can prevent these jobs from being recommended for initiation on busy
systems. To prevent this situation, URM has a group scheduling control feature to
control job recommendations by group characteristics, or similarity of resource
usage, as well as the batch job ranking calculation.

By default, group scheduling control is disabled. All jobs fall into the same
default group (also called the batch job pool). Group scheduling control is
enabled by setting /machine/target/group _sched to 1. When this feature
is enabled, URM divides all batch jobs into four groups (defined by computing

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

the average rank and standard deviation) based on how similar each job is to
the average job. Group 1 contains jobs closest to the average, and group 4
contains jobs farthest from the average. URM stores a count of jobs for each
group in four /machine/target/jobs_in_sg values.

URM also monitors the recommendation history for each group, that is, the
number of jobs selected, or picked, from each group. The group scheduling
control feature allows you to change the job selection percentage to favor
unusual or low ranked jobs by setting the pick value (selection percentage) for
each group. The pick values define how often a job is selected from each group.
URM stores integer values in four /machine/target/pick _in_sg values;
these are converted to relative values, or percentages. By default, a total value
of 20 is used to divide the group pick values; the pick value for group 1 is 9
(45% of jobs are selected from this group), group 2 is 7 (35%), group 3 is 3
(15%), and group 4 is 1 (5%). The recommendation history is stored in four
/machine/target/rec _from_sg wvalues.

The following rmgr directive displays sample URM values used for group
scheduling control:

rmgr => vi ew / machi ne/t ar get

LVrwr- 0 O Sep 20 07:23 <group_sched > Int, 1

Sep 20 07:23 <jobs _in_sgl

LVr-r- 00 > Int, 20
LVr-r- 0 0 Sep 20 07:23 <jobs_in_sg2 > Int, 11
LVr-r- 0 0 Sep 20 07:23 <jobs_in_sg3 > Int, 4
LVr-r- 0 O Sep 20 07:23 <jobs_in _sg4 > Int, 2
LVr-r- 0 O Sep 20 07:23 <rec_from_sgl > Int, 45
LVr-r- 0 O Sep 20 07:23 <rec_from_sg2 > Int, 35
LVr-r- 0 O Sep 20 07:23 <rec _from_sg3 > Int, 15
LVr-r- 0 O Sep 20 07:23 <rec_from_sg4 > Int, 5
LVrwr- 0 O Sep 20 07:23 <pick_in_sgl > Int, 9
LVrwr- 0 O Sep 20 07:23 <pick_in _sg2 > Int, 7
LVrwr- 0 O Sep 20 07:23 <pick_in_sg3 > Int, 3
LVrwr- 0 O Sep 20 07:23 <pick_in_sg4 > Int, 1

SG-2302 10.0.0.2 409

UNICOS Resource Administration

The line for group_sched shows that group scheduling control is enabled. The
number of jobs in each group are displayed in the values jobs_in_sgl ,

jobs _in_sg2 , jobs_in_sg3 , and jobs_in_sg4 . The recommendation
history is shown in the values rec_from_sgl , rec_from_sg2 ,

rec_from_sg3 , and rec _from_sg4 . The default pick values are shown in
pick_in_sgl , pick_in _sg2, pick_in_sg3 , and pick_in_sg4

To change the percentages for group selection, modify the pick_in_sg values.
The following example enables group scheduling control and sets pick values
so that jobs are selected from each group on an equal basis:

/machine/target/group_sched =
/machine/target/pick_in_sg1l
/machine/target/pick_in_sg2 =
/machine/target/pick_in_sg3
/machine/target/pick_in_sg4 =

N N

Note: The sum of the pick_in_sg values should be less than or equal to the
maximum number of initiations for the session initiator (that is, the value set
by /machine/jobmax/ initiator /start_max). See Section 8.10.2.1.3, page
419, for more information.

To permanently enable group scheduling control and make permanent changes
to the pick values, insert the appropriate rmgr directives in the local
configuration file by using the following menu in the configuration menu
system:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
URMcontrol settings ->

Full pathname of local URMconfig file

8.10.1.4 Load Smoothing Factors

410

Each resource that URM monitors has a specific load associated with it (stored
in /machine/load/ resource) that indicates the amount of the resource in use.
URM tracks the load for the following resources:

* Memory

Total active sessions

SDS usage

e Tape usage

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

* MPP resource usage

e Individual session initiators: batch , login , rsh , rexec , null , ftp , and
cron .

e Site-specific session initiators sitel , site2 , and site3 , if defined (see
Section 8.4.5, page 365, for more information)

Use the rmgr directive view /machine/load to display the current load
values, as in the following example:

rmgr => vi ew / machi ne/ | oad

LVrwr- 0 O Sep 17 08:22 <memory > Int, 41905
LVrwr- 0 O Sep 17 08:22 <shared_txt > Int, 10660
LVrwr- 0 O Sep 17 08:22 <sesstab_mem > Int, 54222
LVrwr- O O Sep 17 08:22 <sds > Int, O

LVrwr- O O Sep 17 08:22 <tape > Int, 1

LVrwr- O O Sep 17 08:22 <bb > Int, O

LVrwr- O O Sep 17 08:22 <pe > Int, O

LVrwr- O O Sep 17 08:22 <site3 > Int, O

LVrwr- O O Sep 17 08:22 <site2 > Int, O

LVrwr- O O Sep 17 08:22 <sitel > Int, O

LVrwr- O O Sep 17 08:22 <rsh > Int, 1

LVrwr- 0 O Sep 17 08:22 <rexec > Int, 0

LVrwr- 0 O Sep 17 08:22 <null > Int, 31

LVrwr- 0 O Sep 17 08:22 <login > Int, 35

LVrwr- 0 O Sep 17 08:22 <ftp > Int, O

LVrwr- 0 O Sep 17 08:22 <cron > Int, 1

LVrwr- O O Sep 17 08:22 <batch > Int, 1

Instead of using actual load values to estimate available system resources, URM
applies a smoothing function to each resource load before using the load in its
recommendation calculations. The smoothing function prevents overreaction to
fluctuations in resource use and helps protect users from an erratic system
response. (The load smoothing function is also called a moving average or rolling
average.) The amount of smoothing is controlled by smoothing factors.

Each resource has its own smoothing factor, which can be set to a proportional
value between 0.0 and 1.0, depending on how accurately you want it to
represent changes in actual resource loads. The value 1.0 specifies that URM
should match load values to actual changes; the value 0.0 specifies no change to
existing load values. The closer a smoothing factor is to 1.0, the more quickly
load changes will be adjusted. The closer to 0.0, the less effect actual resource
usage has on job selection. For example, the smoothing factors for the session

411

UNICOS Resource Administration

Memory size
(Mwords)

initiators (batch, ftp , login , and so on) are set to 1.0 by default; this allows
URM to enforce any session boundaries (jobcount target values).

Note: Smoothing occurs only when resource use drops. Increases in resource
use are reflected immediately.

The graph in Figure 9 shows how this adjustment takes place. This example
compares the results of four different smoothing factors for the memory load:

16

14

12

10

412

Measured use = 1.0

Smoothing factor = 0.2

110 120 130 140

Seconds

Smoothing factor = 0.4

= Smoothing factor = 0.05 10170
a

Figure 9. Example of different smoothing factors

Note: Smoothing factors of values at or near 0.0 is not recommended. Setting
a smoothing factor below 0.1 would cause URM to cease updating the load
values. Using a very low value for a smoothing factor can cause URM to
react too slowly to changes in resource loads.

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

The graph in Figure 10 shows the effect of the default smoothing factor for
memory (0.8) on URM calculations of memory load over time:

Memory size
(Mwords)

32
30 I\\ /\k

28

26

24

I
I
I
22 I -
0 [\
I
I
I
I

18

16

14 \\
\
~N
12 \w
10

"_/ "\\J
"_/ "\\J
0 I I I I
0 10 20 30 40 50
Seconds

Measured use

————— Smoothing factor = 0.8
alo171

Figure 10. Default smoothing factor for memory load

Use the rmgr command to display the current smoothing factors, as in the
following example:

413

UNICOS Resource Administration

rmgr =>vi ew / machi ne/rate

LVrwr- 0 0 Oct 25 23:59 <memory > Float, 0.800000
LVrwr- 0 0 Oct 25 23:59 <sds > Float, 0.800000
LVrwr- 0 0 Oct 25 23:59 <tape > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <bb > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <pe > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <sijte3 > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <sijte? > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <sitel > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <rsh > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <rexec > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <null > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <login > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <ftp > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <cron > Float, 1.000000
LVrwr- 0 0 Oct 25 23:59 <batch > Float, 1.000000

To change any of the load smoothing factors, enter the following rmgr directive:
/machine/rate/ resource = factor

The value resource specifies the resource, such as memory, and factor specifies a
value between 0.1 and 1.0.

To permanently change the configuration, use the following menu in the menu

system:
UNICOS 10.0 Installation | Configuration Menu System - >
Configure system ->
URM configuration ->

URMmachine load evaluation rates

8.10.2 Tuning URM Job Selection Criteria

In addition to controlling system resource targets, URM controls the job
selection criteria for each session initiator. (The job selection criteria are called
individual session initiator targets in the menu system.)

For the batch session initiator, URM monitors the session maximum targets (in
/machine/jobmax values) and the resource loads (in /machine/load

values). For nonbatch session initiators, URM monitors the defaults (in
/machine/default values) and the resource loads (in /machine/load

values) for each session initiator.

414 SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

8.10.2.1 Batch Jobs

The following sections describe the job selection criteria used for batch jobs and
for interactive jobs.

URM tracks the following job selection criteria for batch jobs:

e Job count; total number of active sessions allowed for the batch session
initiator

* Maximum number of batch job initiations per scheduling cycle
* Memory request for a batch job

¢ CPU request for a batch job

* Tape request for a batch job

® SDS request for a batch job

* MPP requests for a batch job

In addition to the job selection criteria, URM checks the machine target values
and batch job ranking before recommending a job for initiation. (Refer to
Section 8.10.1.1, page 401, for more information about target values; see the
following section for information on the batch job ranking calculation.)

Use the following rmgr directive to change any of the job selection criteria for
the batch session initiator:

/machine/jobmax/batch/ resource = value

To permanently change the configuration, access the following menu and select
batch as the session initiator name:

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->
URM configuration ->
URMcontrol settings ->
Individual session initiator targets

The following sections discuss each of the batch job selection criteria.

8.10.2.1.1 Batch Job Ranking Calculation

SG-2302 10.0.0.2

URM assigns a rank to each job based on the job’s resource attributes, or declared
amount of resources requested by the job (see "Using URM with NQS," Section

415

UNICOS Resource Administration

416

8.4.13, page 372, for more information). During batch job ranking, each resource
attribute is normalized (converted to a proportional value between 0.0 and 1.0)
and multipled by a weighting factor. Each resource has an associated weighting
factor that can be configured to a smaller or larger value based on the desired
importance for that resource in the batch job ranking calculation.

By default, all weighting factors are equal (set to 0.5). Increasing the value of a
weighting factor increases its relative importance in the ranking; setting a
weighting factor to 0 effectively removes that resource from the calculation.

URM uses following equation for batch job ranking:

rank = (share * share_wt) +
(usage * usage_wt) +
('service_pri * service_wt) +
(age * age_wt) +
(cpu * cpu_wt) +
(memory * mem_wt) +
(tape * tape_wt) +
(SDS * sds_wt) +
(bb * bb_wt) +
(PE * pe_wt) +
(PE_time * petime_wt) +
(prevrun_boost) +
(min_rank)

The resources and associated weighting factors are represented in this equation
as follows:

share * share_wt

Fair-share component. If the fair-share scheduler is not enabled,
the value of this component is 0. If fair-share is enabled, share
represents the normalized share value of the job owner’s
resource group or account; share_wt represents the fair-share
weighting factor. URM evaluates the system share hierarchy at
a rate determined by /urm/share_eval (default 900 seconds).
This weighting factor can be adjusted by changing

/urm/share _wt with the rmgr command.

usage * usage_wt
CPU usage component. The value usage represents the

normalized usage maintained for the job’s user in the shrusage
field in the UDB; usage _wt represents the usage weighting

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

SG-2302 10.0.0.2

factor. If the user already has jobs active on the system, the
current usage is obtained; otherwise, the decayed usage from
the UDB is used. The usage weighting factor can be adjusted
by changing /urm/usage_wt with the rmgr command.

service_pri * service_wt

age * age_wt

cpu * cpu_wt

NQS queue priority component. The value service_pri represents
the interqueue priority from NQS; service_wt represents the
service weighting factor. If service_wt is set to 0, the NQS
interqueue priorities no longer take effect in the URM priority
calculation. This weighting factor can be adjusted by changing
/urm/service_wt with the rmgr command.

Age-in-queue component. The value age represents the length
of time the job has been waiting for initiation from the URM
queue; age_wt represents the age weighting factor. The age of
the oldest job is 1.0, and the age of the youngest job is 0.0. The
age weighting factor can be adjusted by changing

/urm/age_wt with the rmgr command.

Requested CPU resource component. The value cpu represents
the normalized CPU requirement specified with each batch job;
cpu_wt represents the CPU weighting factor. The cpu _wt
value can be adjusted by changing /urm/cpu_wt with the
rmgr command.

memory * mem_wt

tape * tape_wt

Requested memory resource component. The value memory is
the normalized memory requirement specified with each batch
job; the largest job is 0.0, and the smallest job is 1.0. The value
mem_wtrepresents the memory weighting factor. This
weighting factor can be set by changing /urm/mem_wt with the
rmgr command.

Requested tape resource component. The value tape is the
normalized tape device requirement specified with each batch
job; tape is set to 0.0 for the job requesting the most tape
resources, and to 1.0 for the job requesting the least resources.

417

UNICOS Resource Administration

SDS * sds_wt

BB * Dbb_wt

PE * pe_wt

The value tape_wt represents the tape weighting factor. This
weighting factor can be set by changing /urm/tape_wt with
the rmgr command.

Requested SDS resource component. The value SDS represents
the normalized SDS requirement specified with each batch job;
SDS is set to 0.0 for the job requesting the most SDS space, and
to 1.0 for the job requesting the least resources. The value
sds_wt represents the SDS weighting factor. This weighting
factor can be set by changing /urm/sds _wt with the rmgr
command.

PE_time * petime_wt

prevrun_boost

min_rank

These components define the MPP resource attributes for MPP
barriers, processor elements, and requested PE time job
attributes, respectively.

Value to improve the rank of a previously checkpointed job.

Minimum rank (NQS job priority).

To make a permanent configuration change to the weighting factors, use the
following menu in the menu system:

UNICOS 10.0

Installation | Configuration Menu System - >

Configure system ->
URM configuration ->
Weighting factors for the selector

8.10.2.1.2 Batch Job Count

The job count, or maximum number of active batch sessions, is controlled by
/machine/jobmax/batch/jobcount . By default, this value is set to the size
of the kernel session table (set by the NSESSparameter) during URM’s

418

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

automatic configuration process. Changing this value affects the relative
proportions of batch and interactive jobs on the system.

8.10.2.1.3 Batch Maximum Initiation

The maximum number of batch initiations allowed during a single scheduling
cycle is controlled by the /machine/jobmax/batch/start_max value.
When this limit is reached, URM does not recommend any more batch jobs
until its next scheduling cycle. The default for this value is 10.

If group scheduling control is enabled, the sum of the pick_in_sg values
should be less than or equal to this value; see Section 8.10.1.3, page 408, for
more information.

8.10.2.1.4 Batch Memory Request Target

The memory request target for batch jobs is controlled by
/machine/jobmax/batch/memory . This value determines the maximum
size, in clicks, of a batch job. Jobs requesting more memory than this value will
not be recommended.

By default, this value is configured automatically to the maximum amount of
user memory available. Consider increasing this value if your site runs batch
jobs that have two or more processes whose total memory requirements exceed
the amount of available user memory.

8.10.2.1.5 Batch CPU Request Target

The CPU request target is controlled by /machine/jobmax/batch/cputime
This value determines the maximum amount of CPU time, in seconds, for a
batch job. Jobs requesting more CPU usage than this value are not
recommended for initiation. By default, this value is set to 9999999 seconds.

8.10.2.1.6 Batch Tape Request Target

SG-2302 10.0.0.2

The batch tape request target is controlled by

/machine/jobmax/batch/tape . This value specifies the maximum number
of tape devices allowed for a batch job. Jobs requesting more devices than this
value will not be recommended. This value is set to the number of online tape
devices during URM’s automatic configuration process.

419

UNICOS Resource Administration

8.10.2.1.7 Batch SDS Request Target

8.10.2.2 Interactive Jobs

The SDS request target is controlled by /machine/jobmax/batch/sds . This
value specifies the maximum amount of SDS space, in clicks, that a batch job
can use. Jobs requesting a larger SDS usage than this value are not
recommended for initiation. This value is set to the amount of available SDS
space during URM’s automatic configuration process. Consider increasing this
value if your site runs jobs whose total SDS requirements exceed the amount of
available space.

Interactive jobs (jobs initiated from all session initiators except batch) are
evaluated for initiation by URM immediately. Unlike batch jobs, no backlog
queue is maintained by URM. In most cases, if URM does not recommend the
job for initiation, the session initiator will terminate it. This is the case for jobs
submitted by login

In order for URM to recommend an interactive job for initiation, the requested
resources for the job must not exceed the following target and maximum values:

e Active job target for the system (/machine/target/jobcount). For more
information, refer to Section 8.10.1.1.3, page 405.

* Interactive job count; maximum number of active sessions for the specified
interactive session initiator.

* Memory oversubscription target for the system.

8.10.2.2.1 Interactive Job Count

420

The job count maximum for each interactive session initiator is controlled by
/machine/jobmax/ initiator [jobcount The default values for each
interactive session initiator are determined during the automatic configuration
process for URM. For example, the maximum job count for login sessions is
set to the size of the kernel session table by default. Use the rmgr command to
change this value, as in the following example:

/machine/jobmax/login/jobcount = 100

To permanently change the configuration, access the following menu and select
the desired session initiator name (for example, login):

UNICOS 10.0 Installation | Configuration Menu System ->
Configure system ->

SG-2302 10.0.0.2

Unified Resource Manager (URM) [8]

URM configuration ->
URMcontrol settings ->
Individual session initiator targets

8.10.2.2.2 Interactive Memory and CPU Defaults

For interactive jobs, URM does not monitor session initiator values, as is done
for the batch service initiator, because the interactive service initiators do not
supply resource requirement information to URM. Instead, URM uses the
default values for memory and CPU use in /machine/default/ initiator
/memory and /machine/default/ initiator /cputime . For example, to
determine if a login session will exceed the memory oversubscription target,
URM compares the memory default for the job (in
/machine/default/login/memory) to the current system memory load.

By default, these values are set to 0; this specifies that URM should recommend
all interactive jobs for initiation. To enable URM control of the number of active
interactive sessions for a specific initiator, both the memory and cputime
defaults must be set to a nonzero value. For example, use the following rmgr
directives to enable URM control of login sessions:

/machine/default/login/memory = 200
/machine/default/login/cputime = 10

The value 200 specifies the average size of memory, in clicks, allowed for login
sessions. The value 10 specifies the average amount of CPU time in seconds.
URM does not consider the cputime value when recommending interactive
sessions, but both memory and cputime must be set to a nonzero value to
enable URM to control jobs from a session initiator.

Note: The session initiator defaults are used only for URM job initiation
recommendations. They do not affect the actual memory and CPU limits of
the executing session.

SG-2302 10.0.0.2 421

